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1.16.1 Introduction

The first global isotropic tomographic models of the
mantle were published in 1984 (Woodhouse and
Dziewonski, 1984; Dziewonski, 1984). Since that
time, many new tomographic models were published,
and a large family of techniques was made available.
This important progress was made possible by the
extensive use of computers which can handle very
large data sets and by the availability of good quality
digital seismograms recorded by broadband seismic
networks such as GEOSCOPE (Romanowicz et al.,
1984), IRIS (Smith, 1986) and all networks coordi-
nated by the Federation of Digital Seismograph
Networks (FDSN); Romanowicz and Dziewonski,
1986). Thanks to the installation of modern digital
networks, it is now possible to map the whole Earth
from the surface down to its center by seismic tomo-
graphy. However, most tomographic techniques only
make use of travel times or phase information in
seismograms and very few use the amplitude, even
when seismic waveforms are used (Woodhouse and
Dziewonski, 1984; Li and Romanowicz, 1996). Global
tomographic models have been improved over years

by an increase in the number of data and more
importantly by using more general parametrizations,
now including anisotropy (radial anisotropy in Nataf
et al. (1986); general slight anisotropy in Montagner
and Tanimoto (1990, 1991)) and to a lesser extent
anelasticity (Tanimoto, 1990; Romanowicz, 1990).
This chapter is focused on the imaging of large-
scale (>1000 km) lateral heterogeneities of velocity
and anisotropy in the upper mantle (0–660 km depth)
where the lateral resolution is the best, thanks to
surface waves providing an almost uniform lateral
and azimuthal coverage, particularly below oceanic
areas. We will discuss how tomographic imaging
completely renewed our vision of upper mantle
dynamics. It makes it possible to relate surface geol-
ogy and plate tectonics to underlying mantle
convection, and to map at depth the origin of geolo-
gical objects such as continents, mountain ranges,
slabs, ridges, and plumes. The goal of this chapter is
not to review all contributions to this topic, but to
underline the main scientific issues, to present differ-
ent approaches and to illustrate the different progress
(partly subjectively) by some of our results or by
other more recent models. This chapter aims to
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show why a major step, which takes a complete
account of amplitude anomalies in the most general
case and which will enable to map shorter scale
heterogeneities, is now possible and presently
ongoing.

1.16.2 Effects of Seismic Velocity
and Anisotropy on Seismograms

For theoretical and practical reasons, the Earth was
considered, for a long time, as composed of isotropic
and laterally homogeneous layers. While an isotropic
elastic medium can be described by two independent
elastic parameters (� and �, the Lamé parameters),
the cubic symmetry requires three parameters,
but the most commonly used anisotropic medium
(transverse isotropy with vertical symmetry axis)
necessitates five independent parameters (Love,
1927: Anderson, 1961) and the most general elastic
medium requires 21 independent parameters.
However, since the 1960s, it was recognized that
most parts of the Earth are not only laterally hetero-
geneous but also anisotropic. Though the lateral
heterogeneities of seismic velocities were used
for a long time for geodynamical applications,
the importance of anisotropy for understanding
geodynamic processes has only been recognized
recently.

Seismology is an observational field based on the
exploitation of seismic recordings of the displace-
ment (velocity or acceleration) of the Earth induced
by earthquakes. Broadband three-component high
dynamic seismometers have been installed in more
than 500 stations around the world during the last
20 years (see Chapter 1.01). Thanks to progress in
instrumentation and theoretical developments, it is
now possible to observe and to take a simultaneous
account of the effects of lateral heterogeneities of
velocity and anisotropy on seismograms.

1.16.2.1 First-Order Perturbation Theory

The basic equation which governs the displacement
u(r, t) is the elasto-dynamics equation:

�0
d2ui

dt 2
¼
X

j

�ij ; j þ Fli þ FEi ½1�

Fli et FEi represent, respectively, the whole ensemble
of applied inertial and external forces (see Takeuchi
and Saito (1972) or Woodhouse and Dahlen (1978)

for a complete description of all terms). Generally, by
neglecting the advection term, this equation is writ-
ten in a simple way:

ð�0qtt –H0Þuðr; tÞ ¼ FðrS; tÞ ½2�

where H0 is an integrodifferential operator and F
expresses all forces applied to the source volume in
rS at time t (considered as external forces). F is
assumed to be equal to 0 for t < 0. In the elastic
case, there is a linear relationship between �ij and
the strain tensor �kl : �ij¼�kl �ijkl�kl (þ terms related
to the initial stress). �ijkl is a fourth-order tensor,
often written in its condensed form Cij as a 6� 6
matrix. By using the different symmetry conditions
�ijkl¼�jikl¼�ijlk¼�klij , the tensor � is shown to
have 21 independent elastic moduli in the most
general anisotropic medium. In an isotropic medium,
this number reduces to two, the Lamé coefficients
� and �.

When solving for the free oscillations of the Earth,
F¼ 0. The solution u(r, t) of eqn [2] can be calculated
for a spherically symmetric nonrotating reference
Earth model associated with the operator H0, accord-
ing to the equation

�0qtt uðr; tÞ ¼ H0uðr; tÞ ½3�

The solution of eqn [3] is beyond the scope of this
chapter and is described in Chapter 1.02. The eigen-
values of the operator H0 are equal to – �0n!

2
l , where

n!l is the eigenfrequency characterized by two quan-
tum numbers n and l, respectively termed radial and
angular orders. The corresponding eigenfunctions n

um
l (r, t) depend on three quantum numbers n, l, m,

where m is the azimuthal order, with the property
that –l � m � l. Therefore, for a given eigenfrequency

n!l calculated in a spherically symmetric Earth model,
2lþ 1 eigenfunctions can be defined. The eigenfre-
quency n!l is said to be degenerate, with a degree of
degeneracy 2lþ 1. There is a complete formal similar-
ity with the calculation of the energy levels of the atom
of hydrogen in quantum mechanics. The eigenfunc-
tions num

l (r, t) of the operator H0 are orthogonal and
normalized.

The important point is that the basis of functions

num
l (r, t) is complete. This implies that any displace-

ment at the surface of the Earth can be expressed as a
linear combination of these eigenfuctions:

uðr; tÞ ¼
X

n; l ; m

nam
l num

l ðr; tÞ
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Therefore, these eigenfunctions can be used to cal-
culate the synthetic displacement at any point r, at
time t, due to a force system F in the source volume.
For a point force F at point rS, a step time function
and its associated moment tensor M, which is a good
starting model for earthquakes, the solution of eqn [2]
is given by (Gilbert, 1971)

uðr; tÞ ¼
X

n; l ; m

num
l ðrÞ
ð1 – cosn!l tÞ

n!2
l

� e – n!l t=2Q M : n�
m
l

� �
rs

½4�

where � is the deformation tensor. Since eqn [4] is
linear in M, it can be easily generalized to more
complex spatial and temporal source functions, and
can be rewritten as

uðr; tÞ ¼ Gðr; rS; t ; tSÞMðrS; tSÞ

where G(r, rS, t, tS) is the Green operator of the
medium. Normal mode theory is routinely used to
calculate synthetic seismograms at long periods
(T� 40 s.) and centroid moment tensor solutions
(Dziewonski et al., 1981).

An example of real and synthetic seismograms is
presented in Figure 1. However, there are still some

discrepancies (usually frequency dependent)

between the observed and synthetic seismograms.

The simplest way to explain the observed phase

shifts (time delays) is to remove the assumption that

the Earth is spherically symmetric, that is, there are

lateral heterogeneities between the source and the

receiver. The next step is to characterize these lateral

heterogeneities. Since the agreement between syn-

thetic and observed seismograms is good at long

periods (T� 40 s), we can reasonably infer that the

amplitude of heterogeneities is small (<10%). Behind

(a)

Real seismogram

Synthetic seismogram

2500 3000
Time (s)

Time (s)

(b)

n = 0 × 1/25

× 1/6.7

× 1/1.6

× 1/1.4

× 1/1.5

× 1/1.0

× 1/1.3

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

3500 4000 4500 5000

2500 3000 3500 4000 4500 5000

Figure 1 (a) Example of real and synthetic seismograms used for retrieving Rayleigh wave dispersion curve for the
fundamental mode and overtones (Beucler et al., 2003). Behind body waves, the signal is composed of surface waves.

(b) The complex phase before the high amplitude wave packet corresponding to the fundamental mode of Rayleigh wave

(n¼0) can be synthetized by summing the first overtones.
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the surface wave train, a long coda is usually
observed, interpreted as scattered waves. However,
when filtering out periods shorter than 40 s, this coda
vanishes, which means that the scattering effect is
only large in the shallowest regions of the Earth
(primarily the crust, and the upper lithosphere) but
that it is probably negligible at larger depths.
However, some groups are starting to use the infor-
mation contained in these coda waves (Aki and
Richards, 1980; Snieder et al., 2002), and even from
seismic noise (Shapiro et al., 2005) for imaging the
crust. For the sake of simplicity, our study is limited
to long-period surface waves and it is hypothesized
that the scale of lateral heterogeneities is large com-
pared with the seismic wavelength. This point will be
discussed in Section 1.16.3.1. A second hypothesis
that must be discussed is the isotropic nature of the
Earth materials. Actually, it is a poor assumption,
because seismic anisotropy can be unequivocally
observed at different scales. Finally, the influence of
lateral variations in attenuation must also be taken
into account and will be discussed elsewhere in this
treatise.

1.16.2.2 Effect of Anisotropic
Heterogeneities on Normal Modes and
Surface Waves

Different geophysical fields are involved in the inves-
tigation of the manifestations of anisotropy of Earth
materials: mineral physics and geology for the study of
the microscopic scale, and seismology for scales larger
than, typically, 1 km. The different observations
related to anisotropy, at different scales are reviewed
in Montagner (1998) and in Chapter 1.09.

Different kinds of observations have been used for
investigating anisotropy in the upper mantle: the
Rayleigh–Love wave discrepancy (Anderson, 1961),
the azimuthal variation of phase velocities of surface
waves (Forsyth, 1975) and the shear-wave splitting
particularly for SKS waves (Vinnik et al., 1992). The
lack of stations in oceanic areas explains why it is
necessary to use surface waves to investigate upper
mantle structure (isotropic or anisotropic) at the glo-
bal or regional scales.

In the simplest case (fundamental modes, no cou-
pling between branches of Rayleigh and Love waves),
the frequency shift �!/! (and the corresponding
phase velocity perturbation �V/V ), for a constant
wavenumber k can be written by applying
Rayleigh’s principle:

�!

!

���
k
¼ �V

V

���
k
¼ 1

2!

Z

�

��ij � �ijkl�kl d�
Z

�

�0num�
l num

l d�

½5�

where �ij and ��ijkl are, respectively, the deformation
and the deviations of elastic tensor components from
a spherically symmetric, nonrotating, elastic, isotro-
pic (SNREI) model, and num

l the eigenfunctions as
defined in the previous section.

We only consider the propagation of surface
waves in a plane-layered medium for a general slight

elastic anisotropy, but it can be easily extended to the

spherical Earth (Mochizuki, 1986; Tanimoto, 1986;

Romanowicz and Snieder, 1988; Larson et al., 1998;

Trampert and Woodhouse, 2003). Smith and Dahlen

(1973, 1975) found that, to first order in anisotropy

and at frequency !, the azimuthal variation of local

phase velocity (Rayleigh or Love wave) can be

expanded as a Fourier series of the azimuth �
along the path and is of the form

V ð!; �; 	; �Þ –V0ð!Þ ¼
0ð!; �; 	Þ
þ 
1ð!; �; 	Þcos 2�

þ 
2ð!; �; 	Þsin 2�

þ 
3ð!; �; 	Þcos 4�

þ 
4ð!; �; 	Þsin 4� ½6�

where V0(!) is the reference velocity of the unper-
turbed medium, and � is the azimuth along the path
with respect to the north direction. Montagner and
Nataf (1986) present the expressions for the differ-
ent azimuthal coefficients 
i (!, �, 	) as depth
integral functions dependent on 13 simple linear
combinations of standard cartesian elastic coeffi-
cients Cij . Appendix 1 shows how to relate �ijkl to
Cij and presents detailed calculation of azimuthal
terms for Love waves in the geographical coordinate
system:

� Constant term (0�-azimuthal term: 
0)

A ¼ �V 2
PH ¼

3

8
C11 þ C22ð Þ þ 1

4
C12 þ

1

2
C66

C ¼ �V 2
PV ¼ C33

F ¼ 1

2
C13 þ C23ð Þ

L ¼ �V 2
SV ¼

1

2
C44 þ C55ð Þ

N ¼ �V 2
SH ¼

1

8
C11 þ C22ð Þ – 1

4
C12 þ

1

2
C66
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� 2�-azimuthal term:


1 cos 2� 
2 sin 2�

Bc ¼
1

2
C11 –C22ð Þ Bs ¼ C16 þ C26

Gc ¼
1

2
C55 –C44ð Þ Gs ¼ C54

Hc ¼
1

2
C13 –C23ð Þ Hs ¼ C36

� 4�-azimuthal term:


3 cos 4� 
4 sin 4�

Ec ¼
1

8
C11 þ C22ð Þ þ 1

4
C12 –

1

2
C66 Es ¼

1

2
C16 –C26ð Þ

where indices 1 and 2 refer to horizontal coordinates
(1: North; 2: East) and index 3 refers to vertical
coordinate. � is the density, VPH, VPV are respectively
horizontally and vertically ‘propagating’ P-wave
velocities, VSH, VSV horizontal and vertical ‘polar-
ized’ S-wave velocities. So, the different parameters
present in the different azimuthal terms are simply
related to elastic moduli Cij .

From a practical point of view, once source phase
is removed and assuming that the scale of heteroge-
neities is larger than the wavelength, the total phase
	t (and the travel time) between the epicenter E and
the receiver R is easily related to the measurement of
phase velocity Vd(!), and therefore to the local phase
velocity V (!, �, 	, �):

	t ¼ !tE!R ¼
!�

Vdð!Þ
¼ !

Z R

E

ds

V ð!; �; 	; �Þ ½7�

Therefore, eqns [6] and [7] define the forward pro-
blem in the framework of first-order perturbation
theory. We will see in the next section how to solve
the inverse problem. This means that, ideally, surface
waves in the plane case have the ability to provide
information on 13 elastic parameters, which empha-
sizes the enormous potential of surface waves in
terms of geodynamical and petrological implications.
There are only 13 elastic moduli among 21, since
propagation of surface waves is invariant against
rotation by �, which corresponds to a monoclinic
symmetry.

The 0-� term corresponds to the average over all
azimuths and involves five independent parameters,
A, C, F, L, N, which represent the equivalent trans-
versely isotropic medium with a vertical symmetry
axis (more simply named VTI or radial anisotropy).
It must be noted that it is possible to retrieve the
equivalent isotropic shear modulus from these five

parameters. By using a Voigt average, the shear

modulus �iso is given by

�iso ¼ �V 2
Siso
¼ 1

15
ðC11 þ C22 þ C33 –C12

–C13 –C23 þ 3C44 þ 3C55 þ 3C66Þ

According to the expressions of A, C, F, L, N in terms of

elastic moduli, �iso ¼ 1
15ðC þ A – 2F þ 6Lþ 5NÞ So

we can see that the equivalent isotropic velocity
depends not only on VSV and VSH, but also on
P-wave velocity and anisotropy (	¼C/A) and on
�¼F/(A – 2L). By rewriting this expression

�iso ¼ 1
15ðC þ ð1 – 2�ÞAþ ð6þ 4�ÞLþ 5NÞ, neglect-

ing anisotropy in P-wave (	¼ 1) and assuming �¼ 1,
it is found that �iso ¼ �V 2

Siso
� 2

3Lþ 1
3N ¼

2
3�V 2

SV þ 1
3�V 2

SH. Naturally, this choice is partly

arbitrary, since usually, there is no S-wave anisotropy
without P-wave anisotropy. Another way might consist
in using correlations between anisotropic parameters
for petrological models as derived by Montagner and
Anderson (1989a).

The other azimuthal terms (2-� and 4-�) depend
on four groups of two parameters, B, G, H, E, respec-

tively describing the azimuthal variation of A, L, F, N.

These simple parameters make it possible to describe

in a simple way the two seismically observable effects

of anisotropy on surface waves, the ‘polarization’

anisotropy (Schlue and Knopoff, 1977) and the azi-

muthal anisotropy (Forsyth, 1975).
Another important point in these expressions is

that they provide the partial derivatives for the radial

and azimuthal anisotropy of surface waves. The cor-

responding kernels and their depth dependence are

plotted in Montagner and Nataf (1986) (Figures 14

and 15). These partial derivatives of the different

azimuthal terms with respect to the elastic para-

meters can be easily calculated by using a radial

anisotropic reference Earth model, such as PREM

(Dziewonski and Anderson, 1981). The partial deri-

vatives of the eigenperiod 0Tl with respect to

parameter p, (p/T ) (qT/qp) can easily be converted

into phase velocity partial derivatives by using

p

V

qV

qp

� �

T

¼ –
V

U

p

T

qT

qp

� �

k

For example, the parameters Gc and Gs have the same
kernel as parameter L (related to VSV) as shown
by comparing the expressions of R1, R2, and R3 in
eqn [29] of Appendix 1. For fundamental modes, the
calculation of kernels shows that Love waves are
almost insensitive to VSV (Figure 14) and Rayleigh
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waves to VSH. Rayleigh waves are the most sensitive
to SV waves. However, as pointed out by Anderson
and Dziewonski (1982), the influence of P-waves
(through parameters A and C ) can be very large in
an anisotropic medium. The influence of density is
also very large for Love and Rayleigh waves but, as
shown by Takeuchi and Saito (1972), it is largely
decreased when seismic velocities are inverted for,
instead of elastic moduli and density.

1.16.2.3 Comparison between Surface
Wave Anisotropy and SKS Splitting Data

It can be noted that some of the linear combinations

of elastic moduli Cij , derived from surface waves in

the previous section, also come up when considering

the propagation of body waves in symmetry planes

for a weakly anisotropic medium (see, e.g., Crampin

et al. (1984)), and their azimuthal dependence

�V 2
P ¼ Aþ Bccos 2�þ Bssin 2�

þ Eccos 4�þ Essin 4�

�V 2
qSH ¼ N – Eccos 4� – Essin 4�

�V 2
qSV ¼ Lþ Gccos 2�þ Gssin 2�

where VqSH and VqSV correspond, respectively, to
quasi-SH and quasi-SV waves.

A global investigation of anisotropy inferred from
SKS body wave splitting measurements (delay times

and directions of maximum velocities) has been

undertaken by different authors (Vinnik et al., 1992;

Silver, 1996; Savage, 1999). Unfortunately, most SKS

measurements have been done in continental parts of

the Earth, and very few in oceans. It turns out that a

direct comparison of body wave and surface wave

data sets is now possible (Montagner et al., 2000). If

the anisotropic medium is assumed to be character-

ized by a horizontal symmetry axis with any

orientation (this is a very strong assumption which

can be alleviated as shown by Chevrot et al., 2004),

and for a vertically propagating SKS wave, a syn-

thetic data set of SKS delay times and azimuths can

be calculated from the global distribution of aniso-

tropy derived from surface waves, by using the

following equations:

�tSKS ¼
Z h

0

dz

ffiffiffi
�

L

r
GcðzÞ
LðzÞ cosð2�ðzÞÞ
�

þ GsðzÞ
LðzÞ sinð2�ðzÞÞ

	
½8�

where �tSKS is the integrated travel time for the
depth range 0 to h for a propagation azimuth �,
where the anisotropic parameters Gc(z), Gs(z), and
L(z) are the anisotropic parameters retrieved from
surface waves at different depths. It is remarkable to
realize that only the G -parameter (expressing the
SV wave azimuthal variation) is present in this
equation. From eqn [8], we can infer the maximum
value of delay time �t max

SKS and the corresponding
azimuth �SKS:

�t max
SKS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ h

0

dz

ffiffiffi
�

L

r
GcðzÞ
LðzÞ


 �2

þ
Z h

0

dz

ffiffiffi
�

L

r
GsðzÞ
LðzÞ


 �2
s

½9�

tanð2�SKSÞ ¼

Z h

0

dzGsðzÞ=LðzÞ
Z h

0

dz
GcðzÞ
LðzÞ

½10�

However, eqn [8] is approximate and only valid
when the wavelength is much larger than the thick-
ness of layers. It is possible to make more precise
calculations by using the technique derived for two
layers by Silver and Savage (1994) or by using the
general expressions given in Rumpker and Silver
(1998), Montagner et al. (2000), and Chevrot et al.
(2004).

With eqns [9] and [10], a synthetic map of the
maximum value of delay time �t max

SKS can be obtained

by using a 3-D anisotropic surface wave model.

A detailed comparison between synthetic SKS derived

from anisotropic upper mantle (AUM) model

(Montagner and Tanimoto, 1991) and observed

SKS (Silver, 1996) was presented in Montagner et al.

(2000). Figure 2 shows such a map for the Earth

Synthetic SKS prem amax = 1.88 s

60°

30°

0°

–30°

–60°

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 1.00 1.50 3.00

–60°

–30°

0°

30°

60°

Figure 2 Map of synthetic SKS splitting delay time

derived from the anisotropic surface wave model of

Montagner (2002). The delay time is expressed in seconds;
Amax¼ 1.88 s.
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centered in the Pacific, by using the anisotropic sur-
face wave model of Montagner (2002) derived from
the data of Montagner and Tanimoto (1991) and
Ekström et al. (1997). First of all, the comparison
shows that both data sets are compatible in magni-
tude but not necessarily in directions. Some
contradictions between measurements derived from
surface waves and from body waves have been noted.
The agreement of directions is correct in tectonically
active areas but not in old cratonic zones. The dis-
crepancy in these areas results from the rapid lateral
change of directions of anisotropy at a small scale.
These changes stem from the complex history of
these areas, which have been built by successive
collages of continental pieces. It might also result
from the hypothesis of horizontal symmetry axis,
which was shown to be invalid in many areas
(Plomerova et al., 1996). The positive consequence
of this discrepancy is that a small-scale mapping of
fossile anisotropy in such areas might provide clues
for understanding the processes of growth of conti-
nents and mountain building opening a new field, the
paleoseismology.

Unlike surface waves, SKS waves have a good
lateral resolution, and are sensitive to the short wave-
length anisotropy just below the stations. But their
drawback is that they have a poor vertical resolution.
On the other hand, global anisotropy tomography
derived from surface waves only provides long-
wavelength anisotropy (poor lateral resolution) but
enables the location at depth of anisotropy. The long-
wavelength anisotropy derived from surface waves
will display the same direction as the short-wave-
length anisotropy inferred from body waves only
when large-scale vertical coherent processes are pre-
dominant. As demonstrated by Montagner et al.
(2000), the best agreement between observed and
synthetic SKS can be found when only layers in the
uppermost 200 km of the mantle are taken into
account. Moreover, tomographic models derived
from surface waves lose resolution at depths greater
than 200 km. In some continental areas, short-scale
anisotropy, the result of a complex history, might be
important and even might mask the large-scale ani-
sotropy more related to present convective processes
(see, e.g., Marone and Romanowicz, 2006 for North
America). From a statistical point of view, good
agreement is found between orientations of aniso-
tropy and plate velocity motion for fast-moving
plates. The differences between anisotropy and tec-
tonic plate directions are related to more complex
processes, as will be seen in Section 1.16.3.

1.16.3 Upper Mantle Tomography of
Seismic Velocity and Anisotropy

We now show how to implement theory of Section
1.16.1 from a practical but general point of view, and
how to design a tomographic technique in order to
invert for the 13 different elastic parameters and
density. A tomographic technique necessitates sol-
ving simultaneously a forward problem and an
inverse problem. By using the results of the previous
section, it successively considers how to set the for-
ward problem, and how it is used to retrieve a set of
parameters by inversion.

1.16.3.1 Forward Problem

First, it is necessary to define the data space d and the
parameter space p. It is assumed that a functional g
relating d and p can be found such that

d¼gðpÞ

where d is the set of data (which samples the data
space), and p the set of parameters.

1.16.3.1.1 Data space: d

The basic data set is made of seismograms u(t). We
can try to directly match the waveform in the time
domain, or we can work in the Fourier domain, by
separating phase and amplitude on each component
ui (t):

uiðtÞ ¼
Z 1

–1
Aið!Þeið!t –	i Þd!

The approach consisting in fitting seismic waveforms
is quite general but, from a practical point of view, it
does not necessarily correspond to the simplest
choice. In a heterogeneous medium, the calculation
of amplitude and phase effects makes it necessary to
calculate the coupling between different multiplets
(Li and Tanimoto, 1993; Li and Romanowicz, 1995;
Marquering et al., 1996), which is very time consum-
ing. When working in Fourier domain, different time
windows can be considered and the phase of different
seismic trains, body waves and surface waves can be
separately matched (Nolet, 1990; Lévêque et al.,
1991) under drastic simplifying assumptions.
Figure 1 shows an example of observed and synthetic
seismograms, the latter obtained by normal mode
summation with the different higher modes. The
fundamental wave train is well separated from other
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modes at large epicentral distances. The part of the
seismogram corresponding to higher modes is more
complex and shows overlap of these modes in the
time domain. Therefore, from a practical point of
view, the fitting of the fundamental mode wave
train will not cause any problem and has been widely
used in global mantle tomography. The use of higher
mode wave trains and the separation of overtones is
much more difficult. The first attempts were per-
formed by Nolet (1975), Cara (1979), Okal and Jo
(1985), and Dost (1990) by applying a spatial filtering
method. Unfortunately, all these techniques can only
be applied in areas where dense arrays of seismic
stations are present, that is, in North America and
Europe. By using a set of seismograms recorded at
one station but corresponding to several earthquakes
located in a small source area, Stutzmann and
Montagner (1994) showed how to separate the dif-
ferent higher modes. A similar approach was also
followed by Van Heijst and Woodhouse (1997).
We only detail in this paper the technique which
was designed for fitting the fundamental mode
wave train and the reader is referred to Stutzmann
and Montagner (1994), Van Heijst and Woodhouse
(1997), and Beucler et al. (2003) for the description of
the recovery of higher-mode dispersion properties
and to Romanowicz (2002) for a general overview.
Figure 3 presents an example of phase velocity

dispersion for different surface wave modes (funda-
mental and first higher modes (Beucler et al., 2003))

and how they compare with previous investigations
(Cara, 1979; Van Heijst and Woodhouse, 1997).

We take advantage of the fact that, according to
the Fermat’s principle, the phase velocity perturba-
tion is only dependent to second order on path
perturbations, whereas amplitude perturbations are

dependent, to first order, on these perturbations,
which implies that the eigenfunctions must be re-
calculated at each iteration. Therefore, the phase is

a more robust observable than the amplitude. The
amplitude A(!) depends in a complex manner on
seismic moment tensor, attenuation, scattering,

focusing effects, station calibration and near-receiver
structure whereas the contribution of lateral hetero-
geneities of seismic velocity and anisotropic

parameters to the phase 	(!) can be easily extracted.
The data set under investigation, is composed of
propagation times (or phase velocity measurements

for surface waves) along paths: d¼ { �/V(!)}.
On the other hand, the phase of a seismogram at

time t is decomposed, as follows: 	 ¼ k?rþ 	00,

where k is the wave vector, 	
0

0 is the initial phase
including several terms: 	

0
0 ¼ 	0 þ 	S þ 	I; 	S is

the initial source phase, 	0 is related to the number
of polar phase shifts, 	I is the instrumental phase.
	 can be measured on seismograms by Fourier

4

6

8

σ 
(k

m
 s

–1
)

σ 
(k

m
 s

–1
)

σ 
(k

m
 s

–1
)

σ 
(k

m
 s

–1
)

10

12

14

PREM
This study

van Heijst et Woodhouse [1997]
Cara [1979]

4.3
4.2
4.1
4.0
3.9
3.8

6.8

n = 0

n = 1

n = 2

6.4
6.0
5.6
5.2
4.8

6.4
6.0
5.6
5.2
4.8

4.4

25 50 75 100 125 150

25

30 40 50 60 70

50 75 100 125 150

Period (s)

Period (s)

Period (s)
10050 150 200 250 300

Period (s)
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transform. We usually assume that 	S is correctly

given by the centroid moment tensor solution. For a

path between epicenter E and receiver R with an

epicentral distance �, the phase 	 is given by

	 ¼ !�

Vobs
þ 	0 þ 	S þ 	I ½11�

In the general case, we want to relate the observed
phase velocity Vobs(!) to the parameters of the Earth
model p(r, �, 	). Data and 3-D parameters can be
related through integrals over the whole volume of
the Earth. But for computing reasons, it is usual to use
a multistep approach, where we first retrieve the
local phase velocity V(!, �, 	) including its azimuthal
terms, and then perform the inversion at depth.
These two steps can be reversed since the order of
the integrations can be reversed. It is necessary to
consider the nature of the perturbed medium.
Following the approach of Snieder (1988), if the
perturbed medium is at the same time smooth
(long-wavelength heterogeneities) and weak (small
amplitude of heterogeneities), the geometrical optics
approximation (and ray theory) applies. This
hypothesis is not necessarily met within the Earth
where some geological objects (slabs, mantle plumes,
etc.) have a length scale which can be close to the
seismic wavelength. In the approximation of ray
theory, the volume integral reduces to the curvilinear
integral along the geometrical ray path. When ray
theory is applicable, we have

	 –	
0

0 ¼
!�

Vobsð!Þ
¼
Z R

E

! ds

V ð!; �; 	Þ ½12�

where the integral is evaluated along the ray path
between the epicenter E and the receiver R.
Following the results of the previous section, differ-
ent approximations are implicitly made when using
this expression of the phase:

� Large angular order l	 1, but not too large (scat-
tering problems). From a practical point of view,

this means that measurements are performed in the

period range 40 s < T < 200 s with seismic wave-

lengths between 200 and 1000 km.
� Geometrical optics approximation. If � is the

wavelength of the surface wave at period T, and

�S the spatial wavelength of heterogeneity:

�S 	 � ¼ VT ) �S & 2000 km. Epicentral dis-

tance � must be larger than seismic wavelength.

� Slight anisotropy and heterogeneity. �V/V
 1.
According to Smith and Dahlen (1973) for the
plane case, the local phase velocity can be decom-
posed as a Fourier series of the azimuth � (eqn
(6)): Each azimuthal term 
i(T, �, 	) of eqn [6] can
be related to the set of parameters pi(r, �, 	) (den-
sityþ 13 elastic parameters), according to the
expressions derived in Appendix 1:

�

VobsðT Þ
–

�

V0ðT Þ

¼ –
X2

j¼0

X14

i¼1

Z R

E

ds

V0

Z a

0

pi

V

qV

qpi

� �

j

�piðr ; �; 	Þ
pi

cosð2j �Þ
"

þ pi

V

qV

qpi

� �

j

�piðr ; �; 	Þ
pi

sinð2j �Þ ½13�

Equation [13] defines the forward problem in the
framework of first-order perturbation theory, relat-
ing the data and the parameter spaces. This
approach is usually named path average approxima-
tion (PAVA). Many terms in eqn [13] are equal to
zero since all parameters are not present in each
azimuthal term. A last important ingredient in the
inverse problem formulation is the structure of the
data space. It is expressed through its covariance
function (continuous case) or covariance matrix
(discrete case) of data Cd. When data di are indepen-
dent, Cd is diagonal and its elements are the square
of the errors on data �di

.

1.16.3.1.1.(i) Finite-frequency effects As men-
tioned previously, a strong hypothesis is that in the
framework of geometrical optics approximation, only
large-scale heterogeneities can be retrieved. But
interesting geological objects such as slabs and
plumes are smaller scale. To go beyond the ray
theory, it is necessary to take account of the finite-
frequency effect when scale length has the same
order of magnitude as the seismic wavelength. It is
possible to use the scattering theory based on the
Born or Rytov approximations (see, e.g.,
Woodhouse and Girnius (1982) for normal mode
approach, Snieder (1988) for surfaces waves,
Yomogida (1992), and Dahlen et al. (2000) for body
waves). Equation [13] shows that the sensitivity ker-
nels are 1-D, meaning that only heterogeneities in
the vertical plane containing the source and the
receiver are taken into account, whereas, by using
the scattering theory, it is possible to calculate 3-D
kernels and consequently to take account of off-path
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heterogeneities. Equations [12] and [13] must be
replaced by an integral over the volume �:

�

VobsðT Þ
–

�

V0ðTÞ
¼
X14

i¼1

Z Z Z

�

� KiðT ; �; 	Þ
�piðr ; �; 	Þ

pi

d� ½14�

where K(T, �, 	) is the scattering Fréchet sensitivity
kernel, which depends on wave type (Rayleigh or
Love) and on the relative location of E and R (see,
e.g., Romanowicz (2002) for a review). Very different
strategies can be followed for calculating this triple
integral, by separating the surface integral and the
radial integral. For a point scatterer, the kernel dis-
plays a typical shape of banana-doughnut (Dahlen
et al., 2000). Different approximations of K(T, �, 	)
have been proposed (Spetzler et al., 2002; Yoshizawa
and Kennett, 2002; Ritzwoller et al., 2002), but
Sieminski et al. (2004) claimed that ray theory surface
wave tomography with a very dense path coverage
can detect heterogeneities with length scales close
and even smaller than the seismic wavelength. The
discussion of the advantages and shortcomings of
these different techniques is beyond the scope of
this chapter, but some new tomographic models
using 3-D sensitivity kernels are starting to be con-
structed (Zhou et al., 2004, 2006) for radially
anisotropic media.

1.16.3.1.2 Parameter space: p

It is quite important to consider the structure of the
parameter space in detail. First of all, it is necessary to
define which parameters are required to explain our
data set, how many physical parameters can be effec-
tively inverted for, in the framework of the theory
that is considered. For example, if the Earth is
assumed to be elastic, laterally heterogeneous but
isotropic, only three independent physical para-
meters, VP, VS, and density � (or the elastic moduli
�, �, and �) can be inverted for, from surface waves.
In a transversely isotropic medium with a vertical
symmetry axis (Anderson, 1961; Takeuchi and Saito,
1972), the number of independent physical para-
meters is now six (five elastic parametersþ density).
In the most general case of a weak anisotropy, 14
physical parameters (13 combinations of elastic mod-
uliþ density) can actually be inverted for, using
surface waves. Therefore, the number of ‘physical’
parameters pi depends on the underlying theory
which is used for explaining the data set.

Once the number of physical independent para-
meters is defined, we must define how many spatial
(or geographical) parameters are required to
describe the 3-D distributions pi (r, �, 	). This is a
difficult problem because the number of spatial
parameters that can be reliably retrieved from the
data set is not necessarily sufficient to provide a
correct description of pi (r, �, 	), that is, of the real
Earth. The correct description of pi (r, �, 	) depends
on its spectral content: for example, if pi (r, �, 	) is
characterized by very large wavelengths, only a
small number of spatial parameters is necessary,
but if pi (r, �, 	) presents very small scale features,
the number of spatial parameters will be very large.
In any case, it is necessary to assess the range of
possible variations for pi (r, �, 	) in order to provide
some bounds on the parameter space. This is done
through a covariance function of parameters in the
continuous case (or a covariance matrix for the dis-
crete case) Cpipj (r, r9) at two different points r, r9.
These a priori constraints can be provided by other
fields in geosciences, geology, mineralogy, numer-
ical modeling, etc.

Consequently, a tomographic technique must
not be restricted to the inversion of parameters
p¼ {pi (r, �, 	)} that are searched for, but must
include the calculation of the final covariance func-
tion (or matrix) of parameters Cp . This means that
the retrieval of parameters is contingent to the reso-
lution and the errors of the final parameters and is
largely dependent on the resolving power of data
(Backus and Gilbert, 1967, 1968, 1970). Finally, the
functional g which expresses the theory relating the
data space to the parameter space is also subject to
uncertainty. In order to be completely consistent, it
is necessary to define the domain of validity of the
theory and to assess the error �T associated with the
theory. Tarantola and Valette (1982) showed that
the error �T is simply added to the error on data �d .

1.16.3.2 Inverse Problem

So far, we did not make assumption on the functional
g relating data and parameters. But in the framework
of first-order perturbation theory, the forward pro-
blem is usually linearized and eqn [13] can be simply
written in the linear case:

d ¼ Gp

where G is now a matrix (or a linear operator) com-
posed of Fréchet derivatives of d with respect to p,

568 Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography

Treatise on Geophysics, vol. 1, pp. 559-589



Author's personal copy

which has the dimensions nd� np (number of data�
number of parameters). This matrix usually is not
square and many different techniques in the past
have been used for inverting G. In any case, the
inverse problem will consist in finding an inverse
for the functional g, which we will write g̃ – 1, not-
withstanding the way it is obtained, such that

p ¼ g̃ – 1ðdÞ

To solve the inverse problem, different algorithms
can be used. The least-squares solution is usually
solved by minimizing a cost function J. Making the
data space and the parameter space symmetric,
Tarantola and Valette (1982) define the cost function
J as

J ¼ ðd –GpÞtC – 1
d ðd –GpÞ þ ðp – p0Þ

t
C – 1

p ðp – p0Þ

The first term corresponds to classical least-squares
with no damping, whereas the second term corre-
sponds to norm damping, which imposes smoothness
upon the parameter space. Different choices were
proposed for this second term. For example,
Montagner (1986b) uses a Gaussian covariance func-
tion characterized by a correlation length and an
a priori error �p on parameters, whereas Su et al. (1984)
prefer to minimize the roughness of the model. Other
choices consist in taking a constant value such that

�ptC – 1
p �p ¼ �2�pt�p (Yoshizawa and Kennett, 2004).

Or the covariance operator can be replaced by a
Laplacian operator (see, e.g., Zhou et al., 2006):

�ptC – 1
p �p ¼ "

Z Z Z
jr2 �p

p

� �
j2d�

� �1=2

A discussion about damping can be found in
Trampert and Snieder (1996), who prefer Laplacian
over model damping to reduce the spectral leakage.

As an example, by using the expression of J, a
quite general and widely used algorithm has been
derived by Tarantola and Valette (1982):

p – p0 ¼ GtC – 1
d G þ C – 1

p0

�  – 1

GtC – 1
d ðd – gðpÞ þ Gðp – p0ÞÞ

¼ Cp0
GtðCd þ GCp0

GtÞ – 1ðd – gðpÞ
þ Gðp – p0ÞÞ ½15�

where Cd is the covariance matrix of data, Cp0 the
covariance function of parameters p, and G is the
Frechet derivative of the operator g at point p(r).
This algorithm can be made more explicit by writing
it in its integral form:

pðrÞ ¼ p0ðrÞ þ
X

i

X

j

Z

V

dr9Cp0ðr; r9Þ

� Giðr9ÞðS – 1Þij Fj ½16�

with

Sij ¼ Cdij
þ
Z

V

dr1dr2Giðr1ÞCp0
ðr1; r2ÞGj ðr2Þ

Fj ¼ dj – g j ðpÞ þ
Z

V

dr0Gj ðr0Þðpðr0Þ – p0ðr0ÞÞ

This algorithm can be iterated and is suited for
solving slightly nonlinear problems. Different strate-
gies can be followed to invert for the 3-D models
p(r), because the size of the inverse problem is
usually enormous in practical applications and a
compromise must be found between resolution and
accuracy (and also computing time). For the example
of mantle tomography, a minimum parameter space
will be composed of 13 (þdensity) physical para-
meters multiplied by 30 layers (if the mantle is
divided into 30 independent layers. If geographical
distributions of parameters are searched for up to
degree 40 (lateral resolution around 1000 km), this
implies a number of �700 000 independent para-
meters. Such a problem is still very difficult to
handle from a computational point of view. A simple
approach for solving this problem consists in dividing
the inversion procedure into two steps. The first step
consists in regionalizing phase (or group) velocity
data in order to retrieve the different azimuthal
terms, and the second step is the inversion at depth.
It was implemented by Montagner (1986a, 1986b)
and a very similar technique is presented by Barmin
et al. (2001). In case of a large data set, Montagner and
Tanimoto (1990) showed how to handle the inverse
problem by making a series expansion of the inverse
of matrix S. It was recently optimized from a compu-
tational point of view by Debayle and Sambridge
(2004) and Beucler and Montagner (2006). One
advantage of this technique is that it can be applied
indifferently to regional studies or global studies. In
case of imperfect spatial coverage of the area under
investigation, it does not display ringing phenomena
commonly observed when a spherical harmonics
expansion is used (Tanimoto, 1986).

From a practical point of view, the choice of the
model parameterization is also very important and
different possibilities can be considered:

� Discrete basis of functions. A simple choice con-
sists in dividing the Earth into 3-D blocks with a
surface block size different from the radial one.
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The size of block depends on the lateral resolution
expected from the path coverage. A variant of this
parametrization is the use of a set of spherical
triangular grid points (see, e.g., Zhou et al.
(2006)). The block decomposition is valid as well
for global investigations as for regional studies.
Usually, the Earth surface parametrization is
different for the radial one. For global study,
the natural basis is composed of the spherical
harmonics for the horizontal variations

piðr ; �; 	Þ ¼
Plmax

l¼0

Pl
m¼ – l am

l ðrÞY m
l ð�; 	Þ. Other

choices are possible, such as spherical splines
(Wang and Dahlen, 1995). When data coverage is
very uneven, other strategies are proposed using
irregular cells or adaptative meshes (see, e.g.,
Zhang and Thurber (2005)).
� Continuous function p(r). In this case, the function

is directly inverted for. Since the number of para-
meters is then infinite, it is necessary to regularize
the solution by defining a covariance function of
parameters Cp0(r, r9). For the horizontal variations, a
Von Mises distribution (Montagner, 1986b) can be
used for initial parameters P0(r):

Cp0
ðr; r9Þ ¼ �pðrÞ�pðr9Þ exp

cos �rr9 – 1

L2
cor

� �pðrÞ�pðr9Þ exp
–�2

rr9

2L2
cor

where Lcor is the correlation length, which defines
the smoothness of the final model. This kind of
distribution is well suited for studies on a sphere and
is asymptotically equivalent to a Gaussian distribution
when Lcor
 a (a radius of the Earth). When distribu-
tions of different azimuthal terms are searched for, it is
possible to define cross-correlated covariance func-
tions of parameters Cpipj (r, r9), but since the different
terms of the Fourier expansion in azimuth correspond
to orthogonal functions, the cross-correlated terms off
the diagonal can be taken equal to zero.

It is interesting to note that in eqn [16] the Frechet
derivatives G along the path are multiplied by the
Gaussian covariance operator Cp0. It means that the
technique, which can be named Gaussian tomogra-
phy, is equivalent to use fat rays: when the
correlation length is wider than the Fresnel zone,
ray theory applies and, consequently, the finite-fre-
quency effects can be neglected. As discussed by
Ritzwoller et al. (2002) and Sieminski et al. (2004),
there might be some slight differences in amplitude
between Gaussian tomography and diffraction tomo-
graphy (taking account of finite-frequency effects),

but not in the location of heterogeneities provided
that the spatial path coverage is sufficiently dense.

The radial parametrization must be related to the
resolving capability of the data at depth, according

to the frequency range under consideration. For the
radial variations, polynomial expansions can be used
(see, e.g., Dziewonski and Woodhouse (1987) for

Tchebyshev polynomials, or Boschi and Ekström
(2002) for radial cubic splines). Since the number of

physical parameters is very large for the inversion at
depth, physical parameters are usually correlated.

The different terms of the covariance function Cp

between parameters p1 and p2 at radii ri and rj can
be defined as follows:

Cp1 ; p2
ðri ; rj Þ ¼ �p1

ðriÞ�p2
ðrj Þp1 ; p2

exp –
ðri – rj Þ2

2Lri
Lrj

" #

Where p1,p2 is the correlation between physical para-
meters p1 and p2 inferred for instance from different
petrological models (Montagner and Anderson,
1989a) such as pyrolite (Ringwood, 1975) and piclo-
gite (Anderson and Bass, 1984; Bass and Anderson,
1986). Lri

; Lrj
are the radial correlation lengths,

which are used to smooth the inverse model.
The a posteriori covariance function is given by

Cp ¼ Cp0
–Cp0

GT ðCd þ GCp0
Gt Þ – 1

GCp0

¼ GT C – 1
d G þ C – 1

p0

�  – 1

½17�

The resolution R of parameters can be calculated as
well. It corresponds to the impulsive response of the
system: p¼ g̃ �1 d¼ g̃ �1 gp9¼ Rp9. If the inverse
problem is perfectly solved, R is the identity function
or matrix. However, the following expression of reso-
lution is only valid in the linear case (Montagner and
Jobert, 1981):

R ¼ Cp0
Gt ðCd þ GCp0

Gt Þ – 1
G ¼ ðGt Cd G þ Cp0

Þ – 1
Gt C – 1

d G

½18�

It is interesting to note that the local resolution of
parameters is imposed by both the correlation length
and the path coverage, unlike the Backus-Gilbert
(1967, 1968) approach, which primarily depends on
the path coverage. The effect of a damping factor in
the algorithm to smooth the solution is equivalent to
the introduction of a simple covariance function on
parameters weighted by the errors on data (Ho-Liu
et al., 1989). When the correlation length is chosen
very small, the algorithms of Backus-Gilbert (1968,
1970) and Tarantola and Valette (1982) are
equivalent.
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By considering the a posteriori covariance function
and the resolution, it is possible to assess the reliability
of the hypotheses made about the independence of
parameters. For example, Tanimoto and Anderson
(1985) and Montagner and Jobert (1988) showed that
there is a tradeoff between azimuthal terms and con-
stant term in case of a poor azimuthal coverage. For
the inversion at depth, Nataf et al. (1986) also display
the tradeoff between physical parameters VPH, VSV, �,
	, and � when only Rayleigh and Love wave 0-�
terms are used in the inversion process.

Though 13 elastic parameters (þ density) are
necessary to explain surface wave data (Rayleigh and
Love waves), only four parameters are well resolved
for small anisotropy (Montagner and Jobert, 1988):
the azimuthally averaged S-wave velocity VS, the
radial anisotropy expressed through the � parameter
(�¼ (VSH/VSV)2), where VSH (resp. VSV) is the velocity
of S-wave propagating horizontally with horizontal
transverse polarization (resp. with vertical polariza-
tion), and the G (Gc, Gs) parameters expressing the
horizontal azimuthal variation of VSV. � was introduced
in the reference Earth model PREM (Dziewonski
and Anderson, 1981) down to 220 km in order to
explain a large data set of free oscillation eigenfrequen-
cies and body wave travel times. The other elastic
parameters can be derived by using constraints from
petrology in order to reduce the parameter space
(Montagner and Anderson, 1989a). This approach
was followed by Montagner and Anderson (1989b) to
derive an average reference earth model, and by
Montagner and Tanimoto (1991) for the first global
3-D anisotropic model of the upper mantle.

1.16.3.3 Isotropic and Anisotropic Images
of the Upper Mantle

The complete anisotropic tomographic procedure
has been implemented for making different regional
and global studies. Many global isotropic tomo-
graphic models of the upper mantle were published
since Wooodhouse and Dziewonski (1984) and the
recent results have been reviewed by Romanowicz
(2003). Many models inverting only for radial aniso-
tropy but neglecting azimuthal anisotropy have also
been published (Nataf et al., 1984, 1986; Ekström and
Dziewonski, 1998; Shapiro and Ritzwoller, 2002,
Gung et al., 2003; Panning and Romanowicz, 2004;
Zhou et al., 2006) The complete anisotropic tomo-
graphic technique (including azimuthal anisotropy)
has been applied for investigating the upper mantle

structure either at a regional scale of the Indian
Ocean (Montagner, 1986a; Montagner and Jobert,
1988; Debayle and Lévêque, 1997), the Atlantic
Ocean (Mocquet and Romanowicz, 1989; Silveira
et al., 1998), Africa (Hadiouche et al., 1989; Debayle
et al., 2001; Sebai et al., 2005; Sicilia et al., 2005), Pacific
Ocean (Nishimura and Forsyth, 1989; Montagner,
2002; Ritzwoller et al., 2004), Antarctica (Roult et al.,
1994), Australia (Debayle and Kennett, 2000; Simons
et al., 2002), and Central Asia (Griot et al., 1998a,
1998b); Villaseñor et al., 2001) or at a global scale
(Montagner and Tanimoto, 1990, 1991; Montagner,
2002; Debayle et al., 2004). The reader is also referred
to a quantitative comparison of tomographic and
geodynamic models by Becker and Boschi (2002).

An important issue when constructing tomo-
graphic models is the correction for crustal
structure, where sedimentary thickness and Moho
depth variations are so strong that they affect disper-
sion of surface waves at least up to 100 s: it has been
shown (Montagner and Jobert, 1988) that standard
perturbation theory is inadequate to correct for crus-
tal correction and more rigorous approaches have
been proposed (Li and Romanowicz, 1996; Boschi
and Ekström, 2002; Zhou et al., 2005) using the
updated crustal models 3SMAC (Nataf and Ricard,
1996; Ricard et al., 1996) or CRUST2.0 (Mooney et al.,
1998; Laske et al., 2001).

As an example of the results obtained after the first
step of the tomographic procedure, Figure 4 shows
different maps of 2-� azimuthal anisotropy for
Rayleigh waves at 100 s period for the first three
modes, n¼ 0,1,2, superimposed on the isotropic part
(0-� term) of phase velocity (Beucler and
Montagner, 2006). From petrological and mineralo-
gical considerations, Montagner and Nataf (1988)
and Montagner and Anderson (1989a, 1989b) showed
that the predominant terms of phase velocity
azimuthal expansion are the 0-� and 2-� for
Rayleigh waves, and 0-� and 4-� for Love waves.
However, Trampert and Woodhouse (2003) care-
fully addressed the requirement of azimuthal
anisotropy, and demonstrated that Rayleigh wave
data need both 2-� and 4-� terms, which is
also confirmed by Beucler and Montagner (2006). It
was shown that for the same variance reduction, a
global parametrization of anisotropy including
azimuthal anisotropy requires fewer parameters
than an isotropic parametrization. This apparent
paradox can be explained by the fact that the
increase of physical parameters is largely compen-
sated by the smaller number of geographical
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parameters, that is, larger-scale heterogeneities.

Other tests have questioned whether phase data are

sensitive enough to detect azimuthal anisotropy

(Larson et al., 1998; Laske and Masters 1998) and

the use of additional polarization data has been

proposed.
Most tomographic models agree that down to

�250–300 km, the deep structure is closely related

to plate tectonics and continental distribution.

Figure 5 presents two horizontal cross-sections

from the most recent model of Debayle et al. (2005),

which illustrates and confirms the robust features of

the upper mantle models published so far since

Montagner and Tanimoto (1991). In the upper man-

tle depth range around 100 km, all plate boundaries

are slow: ridges and back-arc areas are slow, shields are

fast, and seismic velocity in oceanic areas is increasing

with the age of the seafloor. Except at few places, it is

found that radial anisotropy expressed through the �
parameter ð� ¼ ðV 2

SH –V 2
SVÞ=V 2

SVÞ is positive, as large

as 10% in some oceanic areas and decreases with

depth.

The amplitude of SV-wave azimuthal anisotropy
(G parameter) presents an average value of �2%
below oceanic areas (Figure 5). Montagner (1994,
2002) noted a good correlation between seismic azi-
muthal anisotropy and plate velocity directions
(primarily for fast moving plates) given by Minster
and Jordan (1978) or DeMets et al. (1990). However,
the azimuth of G parameter can vary significantly as a
function of depth. For instance, at shallow depths
(down to 60 km), the maximum velocity can be par-
allel to mountain belts or plate boundaries (Vinnik
et al., 1992; Silver, 1996; Babuska et al., 1998), but
orthogonal to them at large depth. This means that,
at a given place, the orientation of fast axis is a
function of depth, which explains why the interpre-
tation of SKS splitting with a simple model is often
difficult.

As depth increases, the amplitude of heterogene-
ities rapidly decreases, some trends tend to vanish,
and some distinctive features come up: most fast

T = 100 s
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Figure 4 Rayleigh wave phase velocity maps at period
T¼ 100 s for the first three modes (n¼ 0, 1, 2). Modified from

Beucler E and Montagner J-P (2006) Computation of large

anisotropic seismic heterogeneities. Geophysical Journal

International 165: 447–468.

100 km

(a)

60°

–10 –5
δ V s(%) V sref

 = 4.41 km s–1
5 10

120° 180° 240° 300° 0°

(b)
200 km

–10 –5
δ V s(%) V sref

 = 4.44 km s–1
5 10

60° 120° 180° 240° 300° 0°

Figure 5 (a, b) Two cross-sections at 100 km (top) and

200 km (bottom) depths of the global tomographic model of
Debayle et al. (2005). Directions of azimuthal anisotropy are

superimposed on S-wave velocity heterogeneities. The

length of bars is proportional to its amplitude (<2%).
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ridges are still slow but slow ridges are hardly visible
and back-arc regions are no longer systematically
slow below 200 km. Large portions of fast ridges are
offset with respect to their surface signatures. Below
300 km of depth (not shown here), high-velocity
body below the western and the eastern Pacific rim
is the most striking feature, which can be related to
subducting slabs.

A visual and quantitative comparison of existing
models can be found in the reference Earth model
(REM) web site.

1.16.4 Geodynamic Applications

The most popular application of large-scale tomo-
graphic models is the understanding of mantle
convection. Seismic velocity anomalies can be con-
verted, under some assumptions, into temperature
anomalies, density anomalies, and also into chemical
or mineralogical heterogeneities. The application of
seismic anisotropy to geodynamics in the upper man-
tle is straightforward if we assume that, due to the
lattice-preferred orientation (LPO) of anisotropic
crystals such as olivine (Christensen and Lundquist,
1982; Nicolas et al., 1973), the fast-polarization axis of
mineralogical assemblages is in the flow plane paral-
lel to the direction of flow. Figure 6 shows what is
expected for the observable parameters VS, �, G,  G

in the case of a simple convective cell with LPO.
Radial anisotropy � expresses the vertical (� < 1) or
horizontal character (�> 1) of convective flow, and
the azimuthal anisotropy G can be related to the
horizontal flow direction. Conversely, the three
maps of VS, �, G, can be interpreted in terms of
convective flow. These three pieces of information
are necessary to correctly interpret the data. For
example, upwellings or downwellings are both char-
acterized by a weak or negative � parameter, but a
correlative positive or negative �VS discriminates
between these possibilities. By simultaneously
inverting at depth for the different azimuthal terms
of Rayleigh and Love waves, it is therefore possible
to separate the lateral variations in temperature from
those induced by the orientation of minerals. Such an
interpretation might, however, be erroneous in
water-rich mantle regions where LPO of minerals
such as olivine is not simply related to the strain
field (e.g., Jung and Karato, 2001). We will only
present some examples of interesting applications of
anisotropy in large-scale geodynamics and tectonics.

Seismic anisotropy in the mantle primarily reflects

the strain field prevailing in the past (frozen-in ani-
sotropy) for shallow layers or present convective
processes in deeper layers. Therefore, it makes it

possible to map convection in the mantle. It must
be noted that, when only the radial anisotropy is
retrieved, its interpretation is nonunique. A fine
layering of the mantle can also generate such a kind

of anisotropy, and neglecting the azimuthal aniso-
tropy can bias the amplitude of radial anisotropy
and its interpretation.
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Figure 6 Horizontal cross sections of the seismic

observable parameters Vs, �, G, �G associated with a

simple convecting cell in the upper mantle, assuming
LPO of anisotropic minerals such as olivine. A vertical

flow is characterized by a negative � radial anisotropy

(ratio between VSH and VSV, and a small azimuthal
anisotropy (G � 0). An upwelling (resp. downwelling) is

characterized by a large positive (resp. negative)

temperature anomaly inducing �Vs < 0 (resp.

�Vs > 0). A predominant large-scale horizontal flow will be
translated into a significant amplitude of the G azimuthal

anisotropy and its orientation will reflect the direction of

flow (with a 180 ambiguity). Modified from Montagner

J-P (2002) Upper mantle low anisotropy channels below
the Pacific plate. Earth and Planetary Science Letters

202: 205–227.
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The uppermost mantle down to 410 km is the
depth range where the existence of seismic aniso-
tropy is now widely recognized and well
documented. Azimuthal variations have been found
for body waves and surface waves in different areas
of the world. During the last years, the shear wave
splitting, primarily for SKS waves has extensively
been used to study continental deformation, but
very few studies using body waves are devoted to
oceanic areas. Conversely, global anisotropic upper
mantle models have been primarily derived during
the last 10 years from surface waves, which are
sensitive to structure below oceanic areas in the
absence of ocean bottom stations and consequently
of dense body wave data. The intercomparison of
anisotropic body wave and surface wave data is still
in its infancy. However, as shown by Montagner
et al. (2000), Vinnik et al. (2003), and Simons et al.
(2002), such a comparison is providing encouraging
results.

1.16.4.1 Oceanic Plates

Oceans are the areas where plate tectonics applies
almost perfectly and this is particularly the case in
the largest one, the Pacific plate. Figure 7 presents
three vertical cross-sections at two different latitudes,
displaying VSV velocity anomalies (Figure 7(a)) and
the two kinds of anisotropy, which can be retrieved
by simultaneous inversion of Rayleigh and Love
waves constant 0-� and azimuthal terms of eqn (1)
from the model of Montagner (2002). In Figure 7(b),
the equivalent radial anisotropy of the medium, for
S-wave expressed through the � parameter, is dis-
played. The maps of Figure 7(c) are the distributions
of the G parameter related to the azimuthal variation
of SV-wave velocity. The maximum amplitude of
G is �5% and rapidly decreases as depth increases.
The distributions of velocity and anisotropy are
completely different for these different cross-
sections. The thickening of lithosphere with the age
of the seafloor is well observed on VSV velocity maps,
but lithosphere is much thicker in the northern
cross-section. When compared with the cooling
half-space model, bathymetry, heat flux and litho-
spheric thickness flatten with age (see Ritzwoller et al.
(2004) for recent results). This flattening is explained
by basal reheating, especially in the Central Pacific
and the birth of small-scale convection below the
lithosphere (Davaille and Jaupart, 1994; Solomatov
and Moresi, 2000).

Radial cross-sections (Figure 7(b)) show that the
��¼ � – �PREM parameter is usually negative and
small, where flow is primarily radial (mid-ocean
ridges and subduction zones). For the East-Pacific
Rise, Gu et al. (2005) found that a negative radial
anisotropy is observed at least down to 300 km.
Between plate boundaries, oceans display very large
areas with a large positive radial anisotropy such as in
the Pacific Ocean (Ekström and Dziewonski, 1998),
characteristic of an overall horizontal flow field. This
very large anisotropy in the asthenosphere might be
the indication of a strong deformation field at the
base of the lithosphere (Gung et al., 2003), corre-
sponding to the upper boundary layer of the
convecting mantle (Anderson and Regan, 1983;
Montagner, 1998).

Since convective flow below oceans is dominated
by large-scale plate motions, the long-wavelength
anisotropy found in oceanic lithospheric plates and
in the underlying asthenosphere should be similar to
the high-resolution anisotropy measured from body
waves. Incidentally, one of the first evidences of
azimuthal anisotropy was found in the Pacific
Ocean by Hess (1964) for Pn-waves. So far, there
are very few measurements of anisotropy by SKS
splitting in the oceans. Due to the lack of seismic
stations on the sea floor (with the exception of H2O
half-way between Hawaii and California), the only
measurements available for SKS were performed in
stations located on ocean islands (Ansel and Nataf,
1989; Kuo and Forsyth, 1992; Russo and Okal, 1999;
Wolfe and Silver, 1998), which are by nature anom-
alous objects, such as volcanic hotspots, where the
strain field is perturbed by the upwelling material
and not necessarily representative of the main mantle
flow field. SKS splitting was measured during the
temporary MELT experiment on the East-Pacific
Rise (Wolfe and Solomon, 1998) but the orientation
of the splitting is in disagreement with the petrologi-
cal predictions of Blackman et al. (1996). Walker et al.
(2001) presented a first measurement of SKS splitting
at H2O, but it is in disagreement with independent
SKS splitting measurements at the same station by
Vinnik et al. (2003) and with surface wave anisotropy
(Montagner, 2002).

The large-scale azimuthal anisotropy within and
below lithosphere in the depth range 100–300 km is
closely related to plate motions (Montagner, 1994;
Ekström, 2000) and modeled in this framework
(Tommasi et al., 1996). Fast-moving oceanic plates
are zones where the comparison between directions
of plate velocities (Minster and Jordan, 1978) or
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NUVEL-1 (DeMets et al., 1990) and directions of

G parameter is the most successful (Figure 8).

Conversely, such a comparison is more difficult and

controversial below plates bearing a large proportion

of continents, such as the European–Asian plate,

characterized by a very small absolute motion in

the hotspot reference frame and probably a large

influence of inherited anisotropy.
The map with the G parameter at 100 km

(Figure 5) as well as the cross-sections of Figure 7(c)
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show that the azimuthal anisotropy is very large along
spreading ridges with a large asymmetry for the East-
Pacific Rise. The direction of anisotropy is in very
good agreement with plate motion, which is also
found in all other available models (Ekström, 2000;
Smith et al., 2004; Debayle et al., 2005). The anisotropy
is also large in the middle of the Pacific plate, but a line
of very small azimuthal anisotropy almost parallel to
the East-Pacific Rise is observed there (see also
Figure 2 for synthetic SKS). This linear area of small
anisotropy was named low anisotropy channel (LAC)
by Montagner (2002). When calculating the variation
of the amplitude of azimuthal anisotropy as a function
of depth, a minimum comes up between 40 and 60 Ma
age of the seafloor (Figure 9(a)). The LAC is presum-
ably related either to cracking within the Pacific plate
and/or to secondary convection within and below the
rigid lithosphere, predicted by numerical and analog
experiments and also translated in the VS velocity
structure (Ritzwoller et al., 2004; Figure 9(b)). These
new features provide strong constraints on the decou-
pling between the plate and asthenosphere. The
existence and location of these LACs might be related
to the current active volcanoes and hotspots (possibly
plumes) in Central Pacific. LACs, which are dividing
the Pacific plate into smaller units, might indicate a

future reorganization of plates with ridge migrations in
the Pacific Ocean. They call for more thorough
numerical modeling.

1.16.4.2 Continents

Differences in the thickness of high-velocity layer
underlying continents as imaged by seismic tomogra-
phy have fuelled a long debate on the origin of
continental roots (Jordan, 1975, 1978). Some global
tomographic models provide a continental thickness
of �200–250 km in agreement with heat-flow analy-
sis or electrical conductivity, but others suggest
thicker zones up to 400 km.

Seismic anisotropy can provide fundamental
information on the structure of continents, their
root, and the geodynamic processes involved in
mountain building and collision between continents
(Vinnik et al., 1992; Silver, 1996) such as in Central
Asia (Griot et al., 1998a, 1998b). Radial anisotropy � is
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usually very heterogeneous below continents in the
first 150–200 km of depth with positive or negative
areas according to geology. But it seems to display a
systematic tendency of being positive at larger depth
(down to 300 km), whereas it is very large in the
oceanic lithosphere in the depth range 50–200 km
and decreases rapidly at larger depths (Montagner,
1994). Conversely, radial anisotropy displays a max-
imum (though smaller than in oceanic lithosphere)
below very old continents (such as Siberian and
Canadian Shield) in the depth range 200–400 km
(Montagner and Tanimoto, 1991). Seismic aniso-
tropy below continents, sometimes confined to the
upper 220 km (Gaherty and Jordan, 1995) can still be
significant below. A more quantitative comparison of
radial anisotropy between different continental pro-
vinces is presented in Babuska et al. (1998), and
demonstrates systematic differences according to
the tectonic context. The existence of positive
large-scale radial anisotropy below continents at
depth might be a good indicator of the continental
root which was largely debated since the presentation
of the model of tectosphere by Jordan (1975, 1978,
1981). If this maximum of anisotropy is assumed to be
related to an intense strain field in this depth range, it
might be characteristic of the boundary between
continental lithosphere and ‘normal’ upper mantle
material. Gung et al. (2003) showed that it is possible
to reconcile different isotropic tomographic models
by taking into account seismic anisotropy. They find
that significant radial anisotropy (with VSH > VSV)
under most cratons in the depth range 250–400 km,
similar to that found at shallower depths (80–250 km)
below oceanic basins. Such a result is also in agree-
ment for the Australian continent (Debayle and
Kennett, 2000; Simons et al., 2002). So, all results
seem to show that the root of continents as defined
by radial anisotropy is located between 200 and
300 km. However, this result is not correlated with a
maximum in azimuthal anisotropy in this depth
range (Debayle and Kennett, 2005): the fast-moving
Australian plate seems to be the only continental
region with a sufficiently large deformation at its
base to be transformed into azimuthal anisotropy.
They propose that, for continents other than
Australia, weak influence of basal drag on the litho-
sphere may explain why azimuthal anisotropy is
observed only in a layer located in the uppermost
100 km of the mantle. This layer shows a complex
organization of azimuthal anisotropy suggesting a
frozen-in origin of deformation, compatible with
SKS splitting.

The difference in radial and azimuthal anisotro-
pies between oceans and continents might reflect a
difference of coupling between lithosphere and asth-
enosphere, through the basal drag. The coupling
might be weak below most continental roots, in con-
trast with the Pacific plate, where the coupling
(reflected by plate direction) is the first-order effect
in the uppermost 200 km for young ages, before ther-
mal instabilities take place at the base of the
lithosphere, as evidenced by the existence of low-
anisotropy channels. These results on the difference
between oceanic and continental anisotropies are
illustrated in Figure 10.

1.16.4.3 Velocity and Anisotropy in the
Transition Zone

The transition zone plays a key role in mantle
dynamics, particularly the 660 km discontinuity,
which might inhibit the passage of matter between
the upper and the lower mantle. Its seismic investiga-
tion is made difficult on the global scale by the poor
sensitivity of fundamental surface waves in this depth
range and by the fact that teleseismic body waves
recorded at continental stations from earthquakes
primarily occurring along plate boundaries have
their turning point below the transition zone. For
body waves, many different techniques using SS pre-
cursors (Shearer, 1991) or P-to-S converted waves
(Chevrot et al., 1999) were used at global scale to
investigate the thickness of the transition zone. In
spite of some initial controversies, a recent model
by Lawrence and Shearer (2006) provides a coherent
large-scale image of the transition zone thickness.

Whatever the type of data (normal mode, higher
modes of surface waves, or body waves), an important
feature of the transition zone is that, contrarily to the
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Figure 10 Scheme illustrating the difference in the
location of maximum anisotropy between oceans and

continents. Modified from Gung Y, Panning M, and

Romanowicz B (2003) Global anisotropy and the thickness

of continents. Nature 422: 707–711.
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rest of the upper mantle, the upper transition zone is
characterized by a large degree-2 pattern (Masters
et al., 1982), and to a less extent, a strong degree-6.
The degree-2 pattern (as well as degree-6) can be
explained by the predominance of a simple large-
scale flow pattern characterized by two upwellings
in central Pacific Ocean and Eastern Africa and two
downwellings in the Western and Eastern Pacific
Ocean (Montagner and Romanowicz, 1993), pro-
posed initially in the lower mantle (Busse, 1983).
This scheme was corroborated by the existence, in
the upper transition zone, of a slight but significant
degree-4 radial anisotropy displayed by Montagner
and Tanimoto (1991) and Roult et al. (1990) in agree-
ment with the prediction of this model. Therefore,
the observations of the geographical distributions of
degrees 2, 4, 6 in the transition zone are coherent and
spatially dependent. Montagner (1994) compared
these different degrees to the corresponding degrees
of the hotspot and slab distribution. In this simple
framework, the distribution of plumes (degree 2þ6)
are merely a consequence of the large-scale simple
flow in the transition zone. The degree 6 of velocity
in the transition zone is well correlated with the
distribution of hotspots and might indicate that
many mantle plumes might originate in the transition
zone. Ritsema and van Heijst (2004) observe lower-
than-average shear velocity at eight hotspots in this
depth range (Figure 11). These results suggest that
there are different families of plumes, some of them
originating in the transition zone.

As for anisotropy in the transition zone, Montagner
and Kennett (1996), by using eigenfrequency data,
display some evidence of radial anisotropy in the

upper (410–660 km) and lower (660–900 km) transi-

tion zones. Gung et al. (2003) also display a slight

maximum of the degree-0 � in the transition zone.

The existence of anisotropy close to the 660 km dis-

continuity was also found by Vinnik and Montagner

(1996) below Germany, and by Vinnik et al. (1998) in

Central Africa. By studying P-to-S converted waves

at the GRF network and at GEOSCOPE station

BNG in Central Africa, they observed that part of

the initial P-wave is converted into SH wave. This

signal can be observed on the transverse component

of seismograms. The amplitude of this SH wave

cannot be explained by a dipping 660 km discontinu-

ity and it constitutes a good evidence for the

existence of anisotropy just above this discontinuity.

However, there is some evidence of lateral variation

of anisotropy in the transition zone as found by the

investigation of several subduction zones (Fischer

and Yang, 1994; Fischer and Wiens, 1996). Fouch

and Fischer (1996) present a synthesis of these dif-

ferent studies and show that some subduction zones

such as Sakhalin Islands require deep anisotropy in

the transition zone, whereas others, such as Tonga,

do not need any anisotropy. They conclude that their

data might be reconciled by considering the upper

transition zone (410–520 km) intermittently anisotro-

pic, and the rest of the transition zone might be

isotropic.
Anisotropy in the transition zone was also advo-

cated by two independent studies, using different

data sets. The observations of Wookey et al. (2002),

though controversial, present evidence of very large

S-wave splitting (up to 7 s) in the vicinity of the

660 km discontinuity between Tonga–Kermadec

subduction zone and Australia. On a global scale,

Trampert and van Heijst (2002) show a long-wave-

length azimuthal anisotropic structure in the

transition zone. The root-mean-square amplitude of

lateral variations of G is�1%. Beghein and Trampert

(2003), using probability density functions and separ-

ating �, 	, and � anisotropies, suggest a chemical

component to explain these different parameters.

The interpretation of these new tentative results is

not obvious and new data are necessary to close the

debate on the nature of velocity and anisotropy het-

erogeneities in the transition zone. The transition

zone might be a mid-mantle boundary layer, and a

detailed and reliable tomographic model of S-wave

velocity and anisotropy in the transition zone will

provide fundamental insights into the dynamic of the

whole mantle.

Shear-velocity variation from 1-D
–2% +2%

Depth = 575 km

Figure 11 Shear-velocity variation and hotspot

distribution. Modified from Ritsema J and van Heijst HJ

(2004) Global transition zone tomography. Journal of
Geophysical Research 109: B02302 doi:10.1029/

2003JB002610.

578 Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography

Treatise on Geophysics, vol. 1, pp. 559-589



Author's personal copy

1.16.5 Numerical Modeling and
Perspectives

In the previous sections, we have highlighted the pre-

sence of lateral heterogeneities in seismic velocity and

anisotropy in different parts of the Earth’s upper man-

tle. However, anisotropy is not present in all depth

ranges nor at all scales. There is some consensus for

the presence of radial anisotropy in many parts of the

upper mantle in order to simultaneously explain

Love-wave and Rayleigh-wave dispersion, and even

in the lower mantle (Panning and Romanowicz , 2004).

The existence of azimuthal anisotropy is more con-

troversial, though, from petrological reasons, it turns

out that radial anisotropy and azimuthal anisotropy

are intimately related and should be searched for

simultaneosuly. Additional data, such as polarization

data, might help to provide additional constraints on

both kinds of anisotropy (Yu and Park, 1993; Pettersen

and Maupin, 2002). But it requires the development of

improved theoretical and numerical methods in order

to work on the amplitude of seismograms.
Thanks to the access to very powerful computers,

we are at the beginning stage of a new era for seismol-

ogy. The twentieth century was dominated by the use

of ray theory, and later on the normal mode theory.

Since it is now feasible to numerically compute syn-

thetic seismograms in complex 3-D structures in

global spherical geometry (Komatitsch and Vilotte,

1998; Komatitsch and Tromp, 1999; Capdeville et al.,

2003), it is possible to model the complex interaction

between seismic waves and 3-D heterogeneity, parti-

cularly in anisotropic, anelastic media. Some new and

sophisticated tomographic methods are presently

developed (Montelli et al., 2004; Capdeville et al.,

2005; Tromp et al., 2005; Zhou et al., 2006) that should

provide access to the complexity of the Earth mantle

by the mapping of short-scale heterogeneities such as

mantle plumes, in anisotropic and anelastic media.
A second important challenge is the complete

understanding of the origin of anisotropy from the

mineral scale up to global scale in the different layers

of the Earth. In the upper mantle, seismic anisotropy is

due to LPO of anisotropic minerals such as olivine at

large scales, requiring several strong conditions, start-

ing with the presence of anisotropic crystals up to the

existence of an efficient large scale present or past

strain field. In order to fill the gap between grain

scale modeling (McKenzie, 1979; Ribe, 1989;

Kaminski and Ribe, 2001) and large-scale anisotropy

measurements in a convective system (Tommasi et al.,

2000), there is now a real need to make more quanti-
tative comparisons between seismic anisotropy and
numerical modeling. Gaboret et al. (2003) and Becker
et al. (2003) calculated the convective circulation in the
mantle by converting perturbations of S-wave velocity
into density perturbations. Figure 12 shows two cross-
sections through the Pacific hemisphere and the asso-
ciated flow lines (Gaboret et al., 2003) derived from the
tomographic model of Ekström and Dziewonski
(1998). This kind of modeling makes it possible to
calculate the strain tensor and to test different hypoth-
eses for the prevailing mechanisms of alignment, by
comparison with seismic data.

The upper mantle is the best known of the deep
layers of the earth, where there is now good agreement
between many isotropic global tomographic models. But
the account of seismic anisotropy is mandatory to avoid
biased isotropic heterogeneities. The main application
of anisotropy is the mapping of mantle convection and
its boundary layers (Karato, 1998; Montagner, 1998).
The finding of anisotropy in the transition zone (if
confirmed) will provide strong constraints on the flow
circulation and the exchange of matter between the
upper and the lower mantle. Pursuing the first pionneer-
ing efforts, the systematic modeling of the complete
seismic waveform in 3-D heterogeneous, anisotropic
and anelastic media associated with new techniques of
numerical modeling of seismograms will probably
enhance our vision of the whole mantle.

In parallel to these theoretical and numerical chal-
lenges, there is a crucial need for instrumental
developments since there are still many areas at the
surface of Earth devoid of broadband seismic stations.
These regions are primarily located in Southern
Hemisphere and more particularly in oceanic areas
where no islands are present. Therefore, an interna-
tional effort is ongoing, coordinated through
International Ocean Network (ION) in order to pro-
mote the installation of geophysical ocean bottom
observatories in order to fill the enormous gaps in
the station coverage (for a description of ION).

Appendix 1: Effect of Anisotropy on
Surface Waves in the Plane-Layered
Medium

The half-space is assumed to be homogeneous and
may be described by its density �(z) and its fourth-
order elastic tensor �(z) with 21 independent elastic
coefficients. All these parameters are so far supposed
independent of x and y coordinates (in Figure 13, z is
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the vertical component). This condition will be
released in the next section. The unperturbed med-
ium is assumed isotropic with an elastic tensor �0(z).
In that medium, the two cases of Love and Rayleigh
wave dispersion can be successively considered.

The unperturbed Love wave displacement is of
the form:

uðr; tÞ ¼

�W ðzÞsin�

W ðzÞcos�

0

0
BB@

1
CCAexp i k x cos�þ y sin�ð Þ –!t½ �ð Þ

½19�

where W(z) is the scalar depth eigenfunction for
Love waves, k is the horizontal wave number, and
� is the azimuth of the wave number k measured
clockwise from the north.

The unperturbed Rayleigh wave displacement is
of the form

uðr; tÞ ¼

V ðzÞcos�

V ðzÞsin�

iU ðzÞ

0

BB@

1

CCAexpði½kðx cos �þ y sin �Þ –!t �Þ

½20�

where V(z) and U(z) are the scalar depth eigenfunc-
tions for Rayleigh waves. The associated strain tensor
�(r, t) is defined by

�ij ðr; tÞ ¼ 1=2ðui; j þ uj ; iÞ ½21�

y (East)

x (North)

Ψ k

z

Figure 13 Definition of the Cartesian coordinate system

(x, y, z) used in the calculations; � is the azimuth of the
wavevector with respect to north.

–1.5 –1.2 –0.9 –0.6 –0.3 –0.0 0.3 0.6 0.9 1.2 1.5

d Vs/Vs (%)5 cm yr 

–1

A′A

B′B

A

A′

B

B′

Figure 12 Mantle heterogeneities and convective flow below the Pacific Ocean. Modified from Gaboret C, Forte A, and
Montagner J-P (2003) The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth

and Planetary Science Letters 208: 219–223.
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where ,j denotes the differentiation with respect to
the jth coordinate. The medium is perturbed from
�0(z) to �0(z)þ �(z), where �(z) is small compared to
�0(z) but quite general in the sense that there is no
assumption on the kind of anisotropy. This means
that in this approximation we can still consider quasi-
Love modes and quasi-Rayleigh modes (Crampin,
1984). From Rayleigh’s principle, the first-order per-
turbation �V (k) in phase velocity dispersion is
(Smith and Dahlen, 1973, 1975):

�V ðkÞ ¼ V

2!2

Z 1

0

�ijkl �ij �
�
kl

Z 1

0

�0uku�k dz

dz ½22�

where ui and �ij are, respectively, the displacement
and the strain for the unperturbed half-space, and
the asterisk denotes complex conjugation. Now
because of the symmetry of the tensors �(z) and �,
we use the simplified index notation cij and �i for
the elements �ijkl and �ij , but the number, nij, of
coefficients �ijkl for each cij must be taken into
account. The simplified index notation for the
elastic tensor �ijkl is defined in a coordinate system
(x1, x2, x3) by

�ijkl ! cpq

if i ¼ j ) p ¼ i

if k ¼ l ) q ¼ k

if i 6¼ j ) p ¼ 9 – i – j

if k 6¼ l ) q ¼ 9 – k – l

8
>>>>><

>>>>>:

½23�

This kind of transformation enables us to relate
the fourth-order tensor � (3�3�3�3) to a matrix

c (6�6). The same simplified index notation can be

applied to the components of the strain tensor "ij,

transforming the second-order tensor � (3�3) into a

vector with six components. However, it is necessary

to be careful, because to a given cpq correspond sev-

eral �ijkl, and �ijkl must be replaced by npqcpq, where

npq is the number of �ijkl giving the same cpq.

Therefore, eqn [22] expressing Rayleigh’s principle

can be rewritten as

�V ðkÞ ¼ V

2!2

Z 1

0

X
ij

nij cij �i�
�
j

Z 1

0

�0uku�k dz

dz ½24�

We only detail the calculations for Love waves.

Love Waves

By using previous expressions for u(r, t), [19], and

�ij (r, t), [21], the various expressions of strain are

�1 ¼ – i cos � sin �kW

�2 ¼ i cos � sin �kW

�3 ¼ 0

�4 ¼ 1=2 cos �W 9

�5 ¼ – 1=2 sin �W 9

�6 ¼ 1=2 ðcos2 � – sin2 �ÞkW

½25�

where W9¼ dW/dr. In Table 1, the different terms
nij cij �i�

�
j are given. We note that when cij �i�

�
j is a

purely imaginary complex, its contribution to �V (k,
�) is null. When all the contributions are summed,
the different terms cosk � sinl � are such that kþ l is

Table 1 Calculation of the various cij�i�j for Love waves,

with the simplified index notation (
¼cos �; �¼ sin �)

n ij cij�i�j

1 11 c11

2 �2 k2 W2

1 22 c22

2 �2 k2 W2

1 33 0

2 12 �c12

2 �2 k2 W2

2 13 0

2 23 0

2 24 0

4 14
c14ð – i
2�Þ kWW9

2
4 15

c15ði
2�Þ kWW9

2
4 16

c16ð –
�Þð
2 –�2Þ k
2W2

2
4 24

c24ð – i
2�Þ kWW9

2
4 25

c25ð – i
�2Þ kWW9

2
4 26

c26ð
�Þð
2 –�2Þ k
2W2

2
4 34 0

4 35 0
4 36 0

4 44
c44


2 W92

4
8 45

c45ð –
�Þ
W92

4
8 46

c46ð – i
Þð
2 –�2Þ kWW9

2
4 55

c55�
2 W92

4
8 56

c56ði�Þð
2 –�2Þ kWW9

2
4 66

c66ð
2 –�2Þ k
2W2

4
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even, which is not surprising in the light of the
reciprocity principle. Therefore, each term can be
developed as a Fourier series in � with only even
terms. Finally, it is found that

�VLðk;�Þ¼
V

2!2L0

Z 1

0

dz k2W 2 1

8
ðc11þ c22 –2c12þ4c66

� 	


þW 92 1

2
ðc44þ c55Þ

� 	
þ cos2�W 92

� 1

2
ðc44 – c55Þ

� 	
–sin2�W 92c45 –cos4�k2W 2

� 1

8
ðc11þ c22 –2c12 –4c66Þ

� 	
þ sin4�k2W 2

� 1

2
ðc26 – c16Þ

� 	�
½26�

In the particular case of a transversely isotropic
medium with a vertical symmetry axis (also named

radial anisotropic medium), we have: c11¼ c22¼ �A,

c33¼ �C, c12¼ �(A – 2N), c13¼ c23¼ �F, c44¼ c55¼ �L,

c66¼ �N, and c14¼ c24¼ c15¼ c25¼ c16¼ c26¼ 0.

The local azimuthal terms vanish and eqn [26]

reduces to

�VLðk; �Þ ¼ 1

2VLL0

Z 1

0

W 2�N þW 92

k2
�L


 �
dz ½27�

Therefore, the same expressions as in Takeuchi
and Saito (1972, p. 268) are found in the case of radial

anisotropy. The 0-� term of eqn [26] corresponds to

the averaging over azimuth �, which provides the

equivalent transversely isotropic model with vertical

symmetry axis by setting

�N ¼ 1

8
ðc11 þ c22Þ –

1

4
c12 þ

1

2
c66

�L ¼ 1

2
ðc44 þ c55Þ

If we call Cij the elastic coefficients of the total
elastic tensor, we can set

N ¼ �V 2
SH ¼

1

8
ðC11 þ C22Þ –

1

4
C12 þ

1

2
C66

L ¼ �V 2
SV ¼

1

2
ðC44 þ C55Þ

According to eqn [26], the first-order perturbation
in Love wave phase velocity �VL(k, �) can then be

expressed as

�VLðk; �Þ ¼ 1

2V0L
ðkÞ ½L1ðkÞ þ L2ðkÞcos 2�þ L3ðkÞsin 2�

þ L4ðkÞcos 4�þ L5ðkÞsin 4� ½28�

where

L0ðkÞ ¼
Z 1

0

�W 2dz

L1ðkÞ ¼
1

L0

Z 1

0

W 2�N þW 92

k2
�L

� �
dz

L2ðkÞ ¼
1

L0

Z 1

0

–Gc
W 92

k2

� �
dz

L3ðkÞ ¼
1

L0

Z 1

0

–Gs
W 92

k2

� �
dz

L4ðkÞ ¼
1

L0

Z 1

0

– Ec:W
2dz

L5ðkÞ ¼
1

L0

Z 1

0

– Es:W
2dz

Rayleigh Waves

The same procedure holds for the local Rayleigh

wave phase velocity perturbation �VR, starting from

the displacement given previously (Montagner and

Nataf, 1986):

�VRðk; �Þ ¼ 1

2V0R
ðkÞ ½R1ðkÞ þ R2ðkÞcos 2�

þ R3ðkÞsin 2�þ R4ðkÞcos 4�

þ R5ðkÞsin 4� ½29�

where

R0ðkÞ ¼
Z 1

0

�ðU 2 þ V 2Þdz

R1ðkÞ ¼
1

R0

Z 1

0

h
V 2�Aþ U 92

k2
�C þ 2U 9V

k
:�F

þ V 9

k
–U

� �2

�L
i
dz

R2ðkÞ ¼
1

R0

Z 1

0

h
V 2Bc þ

2U 9V

k
Hc þ

V 9

k
–U

� �2

Gc

i
dz

R3ðkÞ ¼
1

R0

Z 1

0

h
V 2Bs þ

2U 9V

k
Hs þ

V 9

k
–U

� �2

Gs

i
dz

R4ðkÞ ¼
1

R0

Z 1

0

EcV 2dz

R5ðkÞ ¼
1

R0

Z 1

0

EsV
2dz

The 13 depth-dependent parameters A, C, F, L, N,
Bc, Bs, Hc, Hs, Gc, Gs, Ec, and Es are linear combinations

of the elastic coefficients Cij and are explicitly given

as follows:

� Constant term (0�-azimuthal term: independent
of azimuth)
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A ¼ �V 2
PH ¼

3

8
ðC11 þ C22Þ þ

1

4
C12 þ

1

2
C66

C ¼ �V 2
PV ¼ C33

F ¼ 1

2
ðC13 þ C23Þ

L ¼ �V 2
SV ¼

1

2
ðC44 þ C55Þ

N ¼ �V 2
SH ¼

1

8
ðC11 þ C22Þ –

1

4
C12 þ

1

2
C66

� 2�-azimuthal term

cos 2� sin 2�

Bc ¼
1

2
ðC11 –C22Þ Bs ¼ C16 þ C26

Gc ¼
1

2
ðC55 –C44Þ Gs ¼ C54

Hc ¼
1

2
ðC13 –C23Þ Hs ¼ C36

� 4�-azimuthal term

cos 4� sin 4�

Ec ¼
1

8
ðC11 þ C22Þ –

1

4
C12 –

1

2
C66 Es ¼

1

2
ðC16 –C26Þ

where indices 1 and 2 refer to horizontal coordinates
(1: north; 2: east) and index 3 refers to vertical coordi-
nate. � is the density, VPH, VPV are, respectively, the
horizontal and vertical propagating P-wave velocities,
and VSH, VSV the horizontal and vertical polarized S-
wave velocities. So, the different parameters present in
the different azimuthal terms are simply related to
elastic moduli Cij. We must bear in mind that A, C, L,
N anisotropic parameters can be retrieved from mea-
surements of the P- and S-wave velocities propagating
perpendicular or parallel to the axis of symmetry.

The corresponding kernels are plotted in
Figure 14 for long waves and Figure 15 for

Rayleigh waves.
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Figure 14 Partial derivatives for Love waves of the period of fundamental normal modes 0T40 (left) and 0T120 (right) with

respect to the elastic coefficients of a transversely isotropic Earth, L, N, and density �, as a function of depth in the upper

mantle (from Montagner and Nataf, 1986). The partial derivatives with respect to A, C, F are null for these modes. The plots are
normalized to their maximum amplitudes, given for a �h¼1000 km thick perturbed layer. The combinations of elastic

coefficients that have the same partial derivative as L are �Gc, �Gs for the azimuthal terms 2-�, and as N are Ec, Es for the

azimuthal term 4-�. Note that the amplitude of the L-partial is very small for the fundamental modes, which is not the case for

higher modes.
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Sieminski A, Lévêque J-J, and Debayle E (2004) Can finite-
frequency effects be accounted for in ray theory surface
wave tomography. Geophysical Research Letters
31: L24614 doi:10.129/2004GL02142.

Silveira G, Stutzmann E, Montagner J-P, and Mendes-Victor L
(1998) Anisotropic tomography of the Atlantic Ocean from
Rayleigh surface waves. Physics of the Earth and Planetary
Interiors 106: 259–275.

Silveira G and Stutzmann E (2001) Anisotropic tomography of
the Atlantic Ocean. Physics of the Earth and Planetary
Interiors 132: 237–248.

Silver PG (1996) Seismic anisotropy beneath the continents:
Probing the depths of geology. Annual Review of Earth and
Planetary Science 24: 385–432.

Silver PG and Chan WW (1988) Implications for continental
structure and evolution from seismic anisotropy. Nature
335: 34–39.

Silver PG and Holt WE (2002) The mantle flow field beneath
North America. Science 295: 1054–1057.

Silver PG and Savage M (1994) The Interpretation of shear-
wave splitting parameters in the presence of two anisotropic
layers. Geophysical Journal International 119: 949–963.

Simons FJ, van der Hilst R, Montagner JP, and Zielhuis A (2002)
Multimode Rayleigh wave inversion for shear wave speed
heterogeneity and azimuthal anisotropy of the Australian

upper mantle. Geophysical Journal International
151: 738–754.

Singh S, Taylor M, and Montagner JP (2000) On the presence of
fluids in the Earth’s inner core. Science 287: 2471–2474.

Smith SW (1986) IRIS; a program for the next decade. EOS,
Transactions of the American Geophysical Union
67: 213–219.

Smith ML and Dahlen FA (1973) The azimuthal dependence of
Love and Rayleigh wave propagation in a slightly anisotropic
medium. Journal of Geophysical Research 78: 3321–3333.

Smith ML and Dahlen FA (1975) Correction to ‘The azimuthal
dependence of Love and Rayleigh wave propagation in a
slightly anisotropic medium. Journal of Geophysical
Research 80: 1923.

Smith D, Ritzwoller MH, and Shapiro NM (2004) Stratification of
anisotropy in the Pacific upper mantle. Journal of
Geophysical Research 109: B11309 doi:10.10209/
2004JB03200.

Snieder R (1988) Large-scale waveform inversions of surface
waves for lateral heterogeneity, 1. Theory and numerical
examples. Journal of Geophysical Research
93: 12,055–12,066.

Snieder R, Gret A, Douma H, and Scales J (2002) Coda wave
interferometry for estimating non-linear behavior in seismic
velocity. Science 295: 2253–2255.

Solomatov VS and Moresi LN (2000) Scaling of time-dependent
stagnant lid convection: Application to small-scale convec-
tion on Earth and other terrestrial planets. Journal of
Geophysical Research 105: 21795–21817.

Spetzler J, Trampert J, and Snieder R (2002) The effect of
scattering in surface wave tomography. Geophysical Journal
International 149: 755–767.

Stutzmann E and Montagner JP (1994) Tomography of the
transition zone from the inversion of higher-mode surface
waves. Physics of the Earth and Planetary Interiors
86: 99–116.

Su W-J, Woodward RL, and Dziewonski AM (1984) Degree 12
model of shear velocity heterogeneity in the mantle. Journal
of Geophysical Research 99: 6,945–6,980.

Su L, Park J, and Yu Y (1993) Born seismograms using coupled
free oscillations: The effect of strong coupling and aniso-
tropy. Geophysical Journal International 115: 849–862.

Suetsugu D and Nakanishi I (1987) Regional and azimuthal
dependence of phase velocities of mantle Rayleigh waves in
the Pacific Ocean. Physics of the Earth and Planetary
Interiors 47: 230–245.

Suyehiro K, Kanazawa T, Hirata N, Shinohara M, and
Kinoshita H (1992) Broadband downhole digital seismometer
experiment at site 794: A technical paper. In, Proceedings of
the Ocean Drilling Project, Scientific Results, pp. 127–128
TX: Ocean Drilling Program, College Station.

Takeuchi H and Saito M (1972) Seismic surface waves.
Methods in Computational Physics 11: 217–295.

Tanimoto T (1986) Free oscillations in a slightly anisotropic
Earth. Geophysical Journal of the Royal Astronomical
Society 87: 493–517.

Tanimoto T (1990) Long-wavelength S-wave velocity structure
throughout the mantle. Geophysical Journal International
100: 327–336.

Tanimoto T and Anderson DL (1985) Lateral heterogeneity and
azimuthal anisotropy of the upper mantle: Love and Rayleigh
waves. 100–250s. Journal of Geophysical Research
90: 1842–1858.

Tarantola A and Valette B (1982) Generalized nonlinear inverse
problems solved using least squares criterion. Reviews of
Geophysics and Space Physics 20: 219–232.

Tommasi A, Vauchez A, and Russo R (1996) Seismic anisotropy
in ocean basins: Resistive drag of the sublithospheric man-
tle? Geophysical Research Letters 23: 2991–2994.

588 Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography

Treatise on Geophysics, vol. 1, pp. 559-589



Author's personal copy

Tommasi A, Mainprice D, Canova G, and Chastel Y (2000)
Viscoplastic self-consistent and equilibrium-based modeling
of olivine preferred orientations. Implications for the upper
mantle anisotropy. Journal of Geophysical Research
105: 7893–7908.

Trampert J and Snieder R (1996) Model estimations biased by
truncated expansions: Possible artifacts in seismic tomo-
graphy. Science 271: 1257–1260.

Trampert J and van Heijst HJ (2002) Global azimuthal aniso-
tropy in the transition zone. Science 296: 1297–1299.

Trampert J and Woodhouse JH (2003) Global anisotropic
phase velocity for fundamental mode surface waves
between 40 and 150s. Geophysical Journal International
154: 154–165.

Tromp J, Tape C, and Liu Q (2005) Seismic tomography, adjoint
methods, time reversal and banana-doughnuts kernels.
Geophysical Journal International 160: 195–216.

Van Heijst HJ and Woodhouse JH (1997) Measuring surface-
wave overtone phase velocities using a mode-branch strip-
ping technique. Geophysical Journal International
131: 209–230.

Villaseñor A, Ritzwoller MH, Levshin AL, et al. (2001) Shear
velocity structure of Central Eurasia from inversion of surface
wave velocities. Physics of the Earth and Planetary Interiors
123: 169–184.

Vinnik LP, Chevrot S, and Montagner J-P (1998) Seismic
evidence of flow at the base of the upper mantle.
Geophysical Research Letters 25: 1995–1998.

Vinnik L, Makayeva LI, Milev A, and Usenko AY (1992) Global
patterns of azimuthal anisotropy and deformations in the
continental mantle. Geophysical Journal International
111: 433–447.

Vinnik L and Montagner J-P (1996) Shear wave splitting in the
mantle from Ps phases. Geophysical Research Letters
23: 2449–2452.

Vinnik L, Montagner JP, Girardin N, Dricker I, and Saul J (2003)
Shear wave splitting at H2O: A comment. Geophysical
Research Letters 30(13): 1675.

Walker KT, Bokelmann GH, and Klemperer SL (2001)
Shear-wave splitting to test mantle deformation models
around Hawaii. Geophysical Research Letters
28: 4319–4322.

Wang Z and Dahlen FA (1995) Spherical-spline parameteriza-
tion of three-dimensinal earth models. Geophysical
Research Letters 22: 3099–3102.

Wielandt E and Streickeisen G (1982) The leaf-spring seism-
ometer: Design and performances. Bulletin of the
Seismological Society of America 72: 2349–2367.

Wolfe CJ and Silver PC (1998) Seismic anisotropy of oceanic
upper mantle. Journal of Geophysical Research
103: 749–771.

Wolfe CJ and Solomon SC (1998) Shear-wave splitting and
implications for mantle flow beneath the melt region of the
East Pacific Rise. Science 280: 1230–1232.

Woodhouse JH and Dziewonski AM (1984) Mapping the upper
mantle: Three dimensional modelling of Earth structure by
inversion of seismic waveforms. Journal of Geophysical
Research 89: 5953–5986.

Woodhouse JH and Dahlen FA (1978) The effect of a general
aspherical perturbation on the free oscillations of the Earth.
Geophysical Journal of the Royal Astronomical Society
53: 335–354.

Woodhouse JH and Girnius (1982) Surface waves and free
oscillations in a regionalized earth model. Geophysical
Journal of the Royal Astronomical Society 68: 653–673.

Wookey J, Kendall JM, and Barruol G (2002) Mid-mantle defor-
mation inferred from seismic anisotropy. Nature 415: 777–780.

Yomogida K (1992) Fresnel-zone inversion for lateral heteroge-
neities in the Earth. Pure and Applied Geophysics
138: 391–406.

Yoshizawa K and Kennett BHN (2002) Determination of the
influence zone for surface wave paths. Geophysical Journal
International 149: 441–454.

Yoshizawa K and Kennett BHN (2004) Multimode surface wave
tomography for the Australian region using a three-stage
approach incorporating finite frequency effects. Journal of
Geophysical Research 109: B02310 doi:10,1029/
2002JB002254.

Yu Y and Park J (1993) Anisotropy and coupled long-period
surface waves. Geophysical Journal International
114: 473–489.

Zhang H and Thurber CH (2005) Adaptative mesh seismic
tomography based on tetrahedral and Voronoi diagrams:
Application to Parkfield. Journal of Geophysical Research
110: B04303 doi:10,129/2004JB003186.

Zhang S and Karato S-I (1995) Lattice preffered orientation of
olivines aggregates deformed in simple shear. Nature
375: 774–777.

Zhou Y, Dahlen FA, and Nolet G (2004) Three-dimensional
sensitivity kernels for surface wave observables.
Geophysical Journal International 158: 142–168.

Zhou Y, Nolet G, Dahlen FA, and Laske G (2006) Global upper-
mantle structure from finite-frequency surface-wave tomo-
graphy. Journal of Geophysical Research 111: B04304
doi:10.1029/2005JB003677.

Relevant Websites

http://seismo.berkeley.edu – Berkeley Seismological Lab.

http://matri.ucsd.edu – Whole Eart’h Geophysics at IGPP.

Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography 589

Treatise on Geophysics, vol. 1, pp. 559-589




