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Abstract

We review the present status of global and regional mantle tomography, and discuss
how resolution has improved in the last decade with the advent of full waveform tomog-
raphy, and exact numerical methods for wavefield calculation. A remaining problem
with full waveform tomography is computational cost. This leads seismologists to only
interpret the long periods in seismic waveforms, and hence only constrain long wave-
length structure. In this way, tomographic images do not represent the true earth,
but rather a smooth effective, apparent or equivalent model that provides a similar
long wavelength data fit. In this paper, we focus on the problem of apparent radial
anisotropy due to unmapped small scale radial heterogeneities (e.g. layering). Here
we propose a fully probabilistic approach to sample the ensemble of layered models
equivalent to a given smooth tomographic profile. We objectively quantify the trade
off between isotropic heterogeneity and strength of anisotropy. The non-uniqueness of
the problem can be addressed by adding high frequency data such as receiver func-
tions, able to map first order discontinuities. We show that this method enables us
to distinguish between intrinsic and artificial anisotropy in 1D models extracted from
tomographic results.

1 Introduction

For more than thirty years, seismologists have imaged the earth’s interior using seismic
waves generated by earthquakes, and traveling through different structures of the planet.
A remaining challenge in seismology is to interpret the recovered Earth models in terms
of physical properties (e.g. temperature, density, mineral composition) that are needed for
understanding mantle dynamics and plate-tectonics. For example, a region of slow wave
speed can be either interpreted as anomalously warm, or rich in water, or iron.

Although seismic waves are sensitive to a large number of visco-elastic parameters as well
as density, the mantle models constructed from seismic tomography are only parameterized
with a few physical parameters, for example average isotropic shear wave velocity and radial
anisotropy (e.g. French et al., 2013). This is because given the available information observed
at the surface, there is not enough resolution to entirely describe the local elastic tensor. In
addition to the limitednumber of resolvable elastic (and anelastic) parameters, there is also
the question of spatial resolution, namely the smallest spatial scale at which heterogeneities
can be imaged.

The number of independent elastic parameters that can be constrained is intrinsically
associated with the level of spatial resolution. For example, it is well known that a stack of
horizontal isotropic layers will be equivalent, at large scales, to a homogeneous anisotropic
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medium (Backus, 1962). As we increase the scale at which we “see” the medium (the
minimum period in the observed waveforms), we lose the ability to distinguish different
layers, as well as the ability to distinguish between isotropy and anisotropy. The anisotropy
observed at large scales may be artificial, and simply the effect of unmapped fine layering.
In other words, whether a material is heterogeneous (and described by a number of spatial
parameters) or anisotropic (described by different elastic parameters) is a matter of the scale
at which we analyze its properties (Maupin & Park, 2014).

Therefore there is a trade-off between spatial roughness and anisotropy when inverting
long period seismic data. By introducing anisotropy as a free parameter in an inversion,
tomographers are able to fit seismic data with smoother models and fewer spatial parameters
(Montagner & Jobert, 1988; Trampert & Woodhouse, 2003).

In this manuscript we will first describe the issues that limit resolution in seismic imaging
at regional and global scales (uneven data sampling, limited frequency band, data noise,
etc ...), with a focus on the significance of observed seismic anisotropy, and on the problem
of distinguishing its different possible causes. Following Wang et al. (2013) and Fichtner
et al. (2013a), here we make the distinction between intrinsic anisotropy and extrinsic (i.e.
artificial) anisotropy induced by structure. In the last section, we propose a method to
separate these two effects in a simplified 1D case with vertical transverse isotropy (i.e.
ignoring azimuthal anisotropy).

2 The resolving power of regional and global seismic
tomography

It can be proven that if one had an unlimited number of sources, receivers, and an unlimited
frequency band, one would be able to entirely describe an elastic medium from the dis-
placement of elastic waves propagating through it, and observed at its surface. That is, the
function linking an elastic medium subjected to excitation by a source to the displacement
measured at its boundaries is bijective. For detailed mathematical proofs, see Nachman
(1988), Nakamura & Uhlmann (1994), and Bonnet & Constantinescu (2005).

However, in seismology there are a number of elements that limit the resolving power
of seismic observations, i.e. the ability to image structure. Firstly, the seismic records are
limited both in time and frequency, and the number of sources and receivers is limited.
Furthermore, there are a number of observational and theoretical errors that propagate
into the recovered images. Finally, the earth is not entirely elastic, and seismic energy is
dissipated along the path.

In this section we give a brief description of these limiting factors which directly condition
the level of resolution. Note that here, the phrase “level of resolution” or “resolving power”
will be used in a broad sense, and defined as the quantity of information that can be
extracted from the data (the maximum number of independent elastic parameters or the
minimum distance across which heterogeneities can be mapped). Here we do not consider
the resolution as it is mathematically defined in linear inverse theory and represented by a
resolution matrix (e.g. Backus & Gilbert, 1968; Aki et al., 1977), which for example does
not depend on data noise or theoretical errors.

2.1 Different seismic observables

There are a multitude of ways of extracting interpretable information from seismograms.
Due to practical, theoretical, and computational considerations, imaging techniques often
only involve a small part of the seismic record. Different parts of the signal can be used,
such as direct, reflected and converted body waves, surface waves, or ambient noise. Dif-
ferent components of the signal can be exploited such as travel-times, amplitudes, shear
wave splitting measurements, waveform spectra, full waveforms or the entire wave-field (for
comprehensive reviews, see Rawlinson & Sambridge, 2003; Romanowicz, 2003; Liu & Gu,
2012).

2



Interpreting Anisotropy in Tomographic models

Each observable has its own resolution capabilities. For example, analysis of converted
body waves, now widely called the “receiver function” is used as a tool to identify horizontal
discontinuities in seismic velocities (small scale radial heterogeneities), but fails at determin-
ing long wavelength anomalies. Conversely, surface-wave measurements are sensitive to 3D
absolute S-wave velocities, but cannot constrain sharp gradients, and are poor at locating
interfaces. Surface-wave based imaging usually involves only the relatively low-frequency
component of seismograms, and is particularly effective in mapping the large-scale pattern
of upper mantle structure. We will show how the seismic discontinuities that can be con-
strained with converted and reflected body waves are sometimes seen by surface waves as
anisotropic structure.

Hence, the gaps between existing models can be described in terms of seismic wavelengths.
The difficulty of assembling different databases with different sensitivities that sample the
earth at different scales, and the differences in the theory relating earth structure to seismic
data of different nature, have resulted in most models being based only on a limited portion
of potentially available observations.

2.2 An uneven sampling of the earth

One of the most important causes of poor resolution in seismic tomography is limited sam-
pling of the volume of interest. In global seismic mantle tomography, there is no control on
the distribution of the earthquake sources, which mostly occur at plate boundaries. More-
over, most receivers are located on continents, which cover only about one third of the surface
of the planet. This results in an uneven distribution of sources and receivers, especially in
the southern hemisphere.

Traditional tomography relies primarily on the information contained in the travel times
of seismic phases that are well separated on the seismic record: first arriving P and S body
waves on the one hand and fundamental mode surface waves on the other. For the latter,
which are dispersive, the measured quantity is the phase or group velocity as a function of
period, in a period range accessible for teleseismic observations, typically ∼ 30s to ∼ 250s.

The theoretical framework is typically that of infinite frequency ray theory for body waves,
or its equivalent for surface waves, the “path average approximation” (PAVA) (see reviews
by Romanowicz (2002); Romanowicz et al. (2008)). Below we briefly discuss how body and
surface waves sample the earth differently, and then discuss how waveform tomography al-
lows us to compensate for the non-uniform distribution of sources and receivers by exploiting
more fully the information contained in each seismogram.

2.2.1 Body wave tomography

Because of the lack of stations in the middle of the oceans, body wave tomography based on
first arrival travel times achieves best resolution in regions where the density of both sources
and stations is high, typically in subduction zone regions around the Pacific ocean and in the
Mediterranean region (e.g. Bijwaard et al., 1998; Kárason & Van Der Hilst, 2000; Fukao et al.,
2001). Much progress has been made in the last few years, owing to improvements in both
quality and quantity of seismic data. Some technical improvements have also been made,
such as the introduction of finite frequency kernels that take into account the sensitivity
of the body wave to a broader region around the infinitesimal raypath (e.g. Dahlen et al.,
2000). These improvements have led to increasingly high resolution images in the last ten
years indicating different behaviors of slabs in the transition zone, with some ponding on
the 660 km discontinuity, and/or around 1000 km depth, while others appear to penetrate
deep into the lower mantle (e.g. Li et al., 2008; Fukao & Obayashi, 2013).

In other parts of the world, where only teleseismic data can be used, resolution in body
wave travel time tomography depends strongly on the density of stations. In the oceans and
in poorly covered continental regions, there is very poor vertical and horizontal resolution
in the upper mantle, even when considering finite frequency effects, because of smearing
effects due to the lack of crossing paths. In figure 1 we show an example of regional body
wave tomography under Hawaii, where only teleseismic events originating at subducting

3



Interpreting Anisotropy in Tomographic models

1000

-800

-600

-400

-200

0

0 500 1000 1500 2000 2500 -170˚ -165˚ -160˚ -155˚ -150˚ -145˚ -140˚
10˚

15˚

20˚

25˚

30˚

D
ep

th
 (k

m
)

Distance (km)

(b)

-2 20 (%)

(a)

Figure 1: Example of teleseismic body wave tomography under Hawaii with poor vertical
resolution, i.e. vertical smearing. (a) Vertical cross-sections (parallel to the Pacific
plate motion) through the HW13 model (Cheng et al., 2014). (b) Locations and
orientation of the cross-section, along with the distribution of stations. This is a
typical example of limited resolution due to poor data sampling. (Modified from
Cheng et al. (2014).

zones around the Pacific are used (Cheng et al., 2014). Seismic rays arrive almost vertically
under the array of stations, which results in poor vertical resolution as velocity anomalies
are “smeared” along seismic rays. In this context, interpretation of the vertical plume-like
low velocity anomalies must be done with caution, and extra constraints from surface waves
are needed (Cheng et al., 2014).

On the other hand, in some continental regions, such as in north America, owing to
the recent dense USArray deployment, improved resolution is progressively achieved (e.g.
Burdick et al., 2008; Obrebski et al., 2011; Sigloch & Mihalynuk, 2013). Nevertheless, at
the global scale, resolution from body wave tomography remains uneven, even when surface
or core reflected teleseismic phases are added. Also, these tomographic models generally
provide high resolution information on P velocity, since S wave travel times are more difficult
to measure accurately.

2.2.2 Surface wave tomography

Because their energy is concentrated near the surface along the source-station great circle
path, fundamental mode surface waves, in turn, allow the sampling of the upper mantle
under oceans and continents alike. This leads to robust resolution of the long-wavelength
component of lateral heterogeneity in shear velocity in the upper mantle at the global scale.
However, because the sensitivity to structure decreases exponentially with depth, resolution
from fundamental mode surface wave tomography is best in the first 300 km of the upper
mantle. In order to improve resolution at larger depths, i.e. into the transition zone, it
is necessary to include surface wave overtone data (e.g. Debayle & Ricard, 2012). These
have similar group velocities, and hence sophisticated approaches are required to separate
and measure dispersion on individual overtone branches (see review by Romanowicz, 2002).
This presents a challenge for achieving comparable coverage to fundamental mode surface
waves at the global scale.

This is why the recent global whole mantle shear velocity models that provide the best
resolution in the transition zone (Kustowski et al., 2008; Ritsema et al., 2011) are based
on a combination of different types of data which provide complementary sampling of the
mantle: 1) fundamental mode surface waves and overtones, which provide resolution across
the upper mantle; 2) for the lower mantle, body wave travel times, which generally include,
in addition to first arriving S waves, surface reflected SS and core reflected ScS waves,
sometimes complemented by core-propagating SKS travel time data. Some models, based on
secondary travel time observables, also consider another type of data, normal mode “splitting
functions”, which provide constraints on the longest wavelength structure throughout the
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Figure 2: Example of wavepacket selection procedure for time domain waveforms, as used in
Mégnin & Romanowicz (2000) and following models from the Berkeley group, that
are based on time domain waveform inversion. Shaded areas indicate wavepackets
picked. Note in the third wavepacket the combination of two body wave phases
(SSS, ScS2) that are not separable for travel time computation, but that sample
very different parts of the mantle. (courtesy of Scott French)

mantle (e.g. Ritsema et al., 2011).

2.2.3 Global Waveform Tomography Based on Asymptotic Methods

Since body and surface waves sample the earth differently, a powerful way to improve the
sampling of the mantle is to combine them by exploiting the information contained in the
entire seismogram (i.e. seismic waveforms). This idea was first introduced in global tomog-
raphy by Woodhouse & Dziewonski (1984), where observed and synthetic seismograms were
directly compared in the time domain. Introducing long period seismic waveform tomogra-
phy allowed these authors to include information from overtones in a simple way, and thus
to improve resolution in the transition zone. Synthetic seismograms were computed in a
3D earth using normal mode summation and the “path average” approximation (PAVA). A
similar type approach has also been developed (Nolet, 1990) and applied to upper mantle
tomography at the continental (Van der Lee & Nolet, 1997) and global scales (Lebedev &
Van Der Hilst, 2008; Schaeffer & Lebedev, 2013).

In standard body wave tomography, the ensemble of body wave phases available through
travel time measurements is largely limited. For example the study of Kustowski et al.
(2008) mentioned above was limited to measurements of SS, ScS, and SKS phases. A
clear advantage of waveform tomography is that one can include body phases that cannot
be separated in the time domain such as, for example ScS2 and SSS, as well as diffracted
waves, whose propagation cannot be well described by ray theory (see figure 2.)

However, when using body waveforms, the path-average approximation (PAVA) may not
be valid anymore. Indeed, the drawback of the PAVA is that it assumes that sensitivity of
the waveforms is limited to the average 1D structure between the epicenter and the receiver,
which is clearly inappropriate for body waves, whose sensitivity is concentrated along the
ray path (Romanowicz, 1987). In order to take into account the concentration of sensitivity
along the ray path of body waves, across-branch coupling needs to be included (e.g. Li & Tan-
imoto, 1993). Li & Romanowicz (1995) developed NACT (non-linear asymptotic coupling
theory), which introduced an additional term to PAVA that accounted for coupling across
normal mode dispersion branches, bringing out the ray character of body waveforms (see
Romanowicz et al. (2008) for details and a comparison of mode-based methods for modeling
seismic waveforms). This approach has been applied to the development of waveform based
global long wavelength shear velocity models since the mid-1990’s (e.g. Li & Romanowicz,
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Figure 3: Comparison of maps of isotropic Vs at a depth of 100 km from three whole mantle
tomographic models: a) S362ANI (Kustowski et al., 2008); b) SAW642AN (Pan-
ning & Romanowicz, 2006) and S20RTS (Ritsema et al., 1999). Model a) was
constructed using a combination on body wave travel times, surface wave disper-
sion and long period waveforms, albeit with the PAVA approximation; Model c)
was constructed using a combination of surface wave dispersion and body wave
travel times. Both models used over 200,000 data. Model b) was constructed
using time domain waveforms exclusively and the NACT theoretical framework,
obtaining an equivalent resolution to the 2 other models, albeit with an order of
magnitude fewer data (20,000 waveform packets).

1996; Mégnin & Romanowicz, 2000; Panning & Romanowicz, 2006; Panning et al., 2010).
Comparing models obtained by different groups using different datasets and methodologies

is one way to evaluate the robustness of the retrieved structure. The advantage of using full
waveform tomography is that, by including a variety of phases that illuminate the mantle
in different ways, the sampling is improved in ways that cannot be attained using only
travel times of well isolated phases, largely because the distribution of earthquake sources
and receivers is limited resulting in many redundant paths even as new data are added.
Thus, at the very least, the same resolution can be achieved using considerably fewer source
station paths. This is illustrated in figure 3 which shows a comparison of three recent global
shear velocity tomographic models at a depth of 100 km. Models a) and c) were obtained
using a conventional approach: Ritsema et al. (1999) used over 2 M fundamental mode and
overtone measurements combined with over 20,000 body wave travel time measurements to
construct model S20RTS (a), while Kustowski et al. (2008) used several million dispersion
measurements and about 150,000 body wave travel time measurements to construct model
362ANI. In contrast, Panning & Romanowicz (2006) used ”only” 20,000 long period time-
domain seismograms (i.e. waveforms) and NACT to construct model SAW36ANI, and were
able to resolve the long wavelength structure in the upper mantle just as well. With the
ability to include increasingly shorter periods, i.e. constraints from phases that sample the
mantle in yet other ways, as well as improving the accuracy with which the interactions of
the wavefield with heterogeneity are computed, this opens the way to increased resolution
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Figure 4: Comparison of 4 recent shear wave tomographic models at a depth of 2800 km.
(a: Kustowski et al. (2008); b: Ritsema et al. (2011); c: Mégnin & Romanowicz
(2000) d: Houser et al. (2008). Model c) was developed using only time domain
waveforms (about 20,000), while all other models are based on a combination
of secondary observables (travel times of body waves and surface waves), except
Model a) which includes long period waveforms, albeit in the surface wave (PAVA)
approximation. After Lekic et al. (2012).

in the future, as will be discussed in the next section. For now, beyond details of the
datasets and theories used, figures 3 and 4 indicate that the level of agreement between
global shear velocity models is presently excellent up to at least degree 12 in a spherical
harmonics expansion of the model, both in the upper and the lowermost mantle (e.g. Lekic
et al., 2012).

2.2.4 Global Waveform Inversion Based on Direct Numerical Solvers

In the previous section, we have described how, in principle, full waveform tomography
provides access to more of the information contained in seismograms than a collection of
travel times of a limited number of seismic phases. As mentioned above, normal mode
summation has provided a successful theoretical approach for computation of waveforms, and
led to several generations of whole mantle shear velocity models in the last 20 years. However,
asymptotic normal mode perturbation theory (Li & Romanowicz, 1995) is only valid for
earth models for which the wavelength of the structure is large compared to that of the
seismic waves considered (i.e. smooth models) and heterogeneity is weak (nominally, lateral
variations of up to ∼ 10%). Yet, in the earth’s boundary layers, i.e. in the upper mantle and
in the D” region, there is ample evidence for the presence of stronger heterogeneity, whereas
throughout the mantle, heterogeneity at many different scales may be present. First order
mode perturbation theory is not appropriate in this case, and more accurate numerical
methods must be used. The challenge then is how to compute the synthetic seismograms in
a 3D earth model without the weak heterogeneity approximation.

Finite difference methods are the traditional approach used for numerical calculation of
seismograms (Kelly et al., 1976; Virieux, 1986). In the 90’s, pseudo-spectral methods have
also become a popular alternative, and have been applied to regional (Carcione, 1994) and
global (Tessmer et al., 1992) problems. However, both finite difference and pseudo-spectral
schemes perform poorly at representing surface waves. This issue can be addressed with
the Spectral Element Method (SEM) where the wave equation is solved on a mesh that
is adapted to the free surface and to the main internal discontinuities of the model. The
SEM was first introduced by Priolo et al. (1994) and Seriani & Priolo (1994) for wavefield
calculation in 2D, and later perfected by Komatitsch & Vilotte (1998), Komatitsch & Tromp
(1999), and Komatitsch & Tromp (2002) for the 3D case. See Virieux & Operto (2009) for
a review of numerical solvers in exploration geophysics.

Although these approaches started earlier in the exploration community than in global
seismology, they are now reaching similar advance levels. Numerically computed seismo-
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Figure 5: Upper mantle depth cross sections across the Pacific superswell, comparing two
recent global models obtained using classical approaches based on a combination of
travel times, dispersion measurements and approximate wave propagation theories
(S362ANI, Kustowski et al. (2008); S40RTS, Ritsema et al. (2011)) and a recent
model constructed using waveforms and wavefield computations using SEM (SE-
Mum2, French et al., 2013). While all three models agree in their long wavelength
structure in the transition zone, model SEMum2 shows more sharply delineated
structures, both in subduction zones (highlighted by seismicity) and in the cen-
tral Pacific, where the large low velocity region is now resolved into two separate
vertically oriented features. Model SEMum2 also exhibits stronger low velocity
minima in the uppermost mantle low velocity zone. After French et al. (2013),
courtesy of Scott French.

grams automatically contain the full seismic wavefield, including all body and surface wave
phases as well as scattered waves generated by lateral variations of the model Earth prop-
erties. The amount of exploitable information is thus significantly larger than in methods
mentioned above. The accuracy of the numerical solutions and the exploitation of complete
waveform information result in tomographic images that are both more realistic and better
resolved (Fichtner et al., 2010). In seismology, the use of SEM has now been applied to
tomographic inversions for crustal structure at the local scale (e.g. Tape et al., 2010) and
upper mantle structure at regional scales (e.g. Fichtner et al., 2009, 2010; Rickers et al.,
2013; Zhu et al., 2012; Zhu & Tromp, 2013).

The forward numerical computation is generally combined with an ”adjoint” formulation
for the numerical computation of the kernels for inversion (Tromp et al., 2005; Fichtner
et al., 2006) or, alternatively, with a “scattering integral formalism” (e.g. Chen et al., 2007).
In this context, Fichtner & Trampert (2011) showed how a local quadratic approximation
of the misfit functional can be used for resolution analysis.

Here we note that the inverse step is currently approached differently by different investi-
gators. Following the nomenclature of the geophysical exploration community, the term FWI
(Full Waveform Inversion) is often used synonymously to ”adjoint inversion”, which relies,
at each iteration, on the numerical computation of the gradient followed by a conjugate-
gradient step. An alternative method, which has been used so far in SEM-based global
waveform inversions, is to compute an approximate Hessian using mode-coupling theory in
the current 3D model, followed by a Gauss-Newton (GN) inversion scheme. While it might
be argued that the partial derivatives computed in this manner are more ”approximate”, the
GN scheme is much faster converging (less than 10 iterations typically, compared to 30-40
or more) and can now take advantage of efficient methods for the assembly (e.g. French et
al., 2014) and inversion (ScalaPak) of large full matrices.

8



Interpreting Anisotropy in Tomographic models

At the global scale, because the wavefield needs to be computed for a long time interval, in
order to include all seismic phases of interest, the use of the SEM is particularly challenging
computationally (Capdeville et al., 2005). Furthermore, computational time increases as the
fourth power of frequency, and limits the frequency range of waveforms to relatively long
periods (typically longer than 40 or 50 s). The first global shear velocity models developed
using SEM (Lekić & Romanowicz, 2011; French et al., 2013) are limited to the upper mantle
due to the use of relatively long periods (longer than 60 s). In these models, the numerical
computation of the forward step is restricted to the mantle, and coupled with 1D mode
computation in the core (CSEM, Capdeville et al., 2003). For the inverse step, kernels are
computed using a mode-based approximation.

These modeling efforts have demonstrated the power of the SEM to sharpen tomographic
images at the local, regional and global scales, and have led to the discovery of features
previously not detected, such as the presence of low velocity channels in the oceanic as-
thenosphere (e.g. French et al., 2013; Colli et al., 2013; Rickers et al., 2013). This is shown
in figure 5 where model SEMum2 (French et al., 2013) is compared to other global shear-
velocity models. SEMum2 more accurately recovers both the depth and strength of the
low-velocity minimum under ridges. It also shows stronger velocity minima in the low ve-
locity zone, a more continuous signature of fast velocities in subduction zones, and stronger,
clearly defined, low-velocity conduits under the Pacific Superswell, while confirming the
robust long-wavelength structure imaged in previous studies, such as the progressive weak-
ening and deepening of the oceanic low velocity zone with overlying plate age. Of course,
a more objective way to compare tomographic methods would be to conduct a blind test
using numerically generated data, but this is beyond the scope of this study.

Because the frequency range of global inversions remains limited, and because features
smaller than the shortest wavelength cannot be mapped, this approach is not able, however,
to resolve sharp discontinuities. The resulting tomographic images can therefore be seen as
a smooth representation of the true earth. However, they are not a simple spatial average
of the true model, but rather an effective, apparent, or equivalent model that provides a
similar long-wave data fit (Capdeville et al., 2010a,b). Hence the geological interpretation
of global tomographic models is limited, mainly due to two reasons:

1. The constructed images are smooth and do not contain discontinuities that are crucial
to understand the structure and evolution of the earth.

2. The relations that link the true earth to the effective (and unrealistic) earth that is seen
by long period waves are strongly non-linear and their inverse is highly non-unique.
As a result, it is difficult to quantitatively interpret the level of imaged anisotropy
in tomographic models, as it may be the effect of either “real” local anisotropy or
unmapped velocity gradients, or a combination of both.

3 Seismic Anisotropy

3.1 Observation of anisotropy

It is well known that anisotropic structure is needed to predict a number of seismic obser-
vations such as:

1. Shear-wave splitting (or birefringence), the most unambiguous observation of anisotropy,
particularly for SKS waves (Vinnik et al., 1989).

2. The Rayleigh-Love wave discrepancy. At global as well as at regional scale, the litho-
sphere appears faster to Love waves than to Rayleigh waves. It is impossible to si-
multaneously explain Rayleigh and Love wave dispersion by a simple isotropic model
(Anderson, 1961).

3. Azimuthal variation of the velocity of body waves. For example, Hess (1964) showed
that the azimuthal dependence of Pn-velocities below oceans can be explained by
anisotropy.
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The goal here is not to provide a review of seismic anisotropy, but to address the issue
of separating intrinsic and extrinsic anisotropy in apparent (observed) anisotropy. There
are excellent review papers and books that have been written on anisotropy. For example,
the theory of seismic wave propagation in anisotropic media has been described in Crampin
(1981), Babuška & Cara (1991), and Chapman (2004). See also Maupin & Park (2014)
for a review of observations of seismic anisotropy. Montagner (2014) gives a review of
anisotropic tomography at the global scale. Montagner (1994); Montagner & Guillot (2002)
give a review of geodynamic implications of observed anisotropy. Finally, a review of the
significance of seismic anisotropy in exploration geophysics has been published by Helbig &
Thomsen (2005).

Seismic waves are sensitive to the full elastic tensor (21 parameters), density, and attenu-
ation. As seen above, it is not possible to resolve all 21 components of the anisotropic tensor
at every location. Therefore, seismologists rely on simplified (yet reasonable) assumptions
on the type of anisotropy expected in the earth’s upper mantle, namely hexagonal symme-
try. This type of anisotropy (commonly called transverse isotropy) is defined by the 5 Love
parameters A, C, F , L, N (Love, 1927) and two angles describing the tilt of the axis of
symmetry (Montagner & Nataf, 1988). In this manuscript, we will limit ourselves to the
case of radial anisotropy, which corresponds to transverse isotropy with a vertical axis of
symmetry, and no azimuthal dependence.

It can be shown (Anderson, 1961; Babuška & Cara, 1991) that for such a vertically trans-
versely isotropic (VTI) medium, long period waveforms are primarily sensitive to the two
parameters :

VSH =

√
N

ρ
(1)

VSV =

√
L

ρ
(2)

where ρ is density, and where VSV is the velocity of vertically traveling S waves or horizontally
traveling S waves with vertical polarization, and VSH is the velocity of horizontally traveling
S waves with horizontal polarization. The influence of other parameters A (related to VV H),
C (related to VPV ), and F can be large (Anderson & Dziewonski, 1982), and is usually
taken into account with petrological constraints (Montagner & Anderson, 1989). That is,
once VSH and VSV are constrained from long period seismic waves, the rest of the elastic
tensor and density is retrieved with empirical scaling laws (e.g. Montagner & Anderson,
1989). Globally, SH waves propagate faster than SV waves in the upper mantle. The
velocity difference is of about 4 per cent on average in the Preliminary reference Earth
model (PREM) of Dziewonski & Anderson (1981) in the uppermost 220km of the mantle.

Although early global radially anisotropic models were developed in terms of VSH and VSV ,
more recent models are parameterized in terms of an approximate Voigt average isotropic
shear velocity (Montagner, 2014) and radial anisotropy as expressed by the ξ parameter (e.g.
Gung et al., 2003; Panning & Romanowicz, 2006):

VS =
2VSV + VSH

3
=

√
2L+N

3ρ
(3)

ξ =
V 2

SH

V 2
SV

=
N

L
(4)

3.2 Anisotropy of minerals: Intrinsic anisotropy

Anisotropy can be produced by multiple physical processes at different spatial scales. It ex-
ists from the microscale (crystal scale) to the macroscale, where it can be observed by seismic
waves that have wavelengths up to hundreds of kilometers. We name intrinsic anisotropy, the
elastic anisotropy still present whatever the scale of investigation, down to the crystal scale.
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Most minerals in the earth’s upper mantle are anisotropic. Olivine, the most abundant min-
eral in the upper mantle, displays a P-wave anisotropy larger than 20%. Other important
constituents such as orthopyroxene or clinopyroxene are anisotropic as well (> 10%). Under
finite strain accumulation, plastic deformation of these minerals can result in a preferential
orientation of their crystalline lattices. This process is usually referred to as LPO (Lattice
Preferred Orientation) or CPO (Crystalline Preferred Orientation). This phenomenon is
often considered as the origin of the observed large-scale seismic anisotropy in the upper
mantle. With increasing the depth, most of minerals undergo a series of phase transforma-
tions. There is some tendency (though not systematic), that with increasing pressure, the
crystallographic structure evolves towards a more closely packed, more isotropic structure,
such as cubic structure. For example, olivine transforms into β-spinel and then γ-spinel in
the upper transition zone (410-660km of depth) and into perovskite and magnesiowustite
in the lower mantle, and possibly into post-perovskite in the lowermost mantle. Perovskite,
post-perovskite (Mg,Fe)SiO3 and the pure end-member of magnesiowustite MgO are still
anisotropic. That could explain the observed anisotropy in some parts of the lower mantle
and D”-layer.

Mantle rocks are assemblages of different minerals which are more or less anisotropic. The
resulting amount of anisotropy is largely dependent on the composition of the aggregates.
The relative orientations of crystallographic axes in the different minerals must not coun-
teract in destroying the intrinsic anisotropy of each mineral. For example, the anisotropy
of peridotites, mainly composed of olivine and orthopyroxene, is affected by the relative
orientation of their crystallographic axes, but the resulting anisotropy is still larger than
10%.

In order to observe anisotropy due to LPO at very large-scale, several conditions must be
fulfilled. The crystals must be able to re-orient in the presence of strain and the deformation
due to mantle convection must be coherent over large scales to preserve long wavelength
anisotropy. These processes are well known for the upper mantle, and in oceanic plates,
and anisotropy remains almost uniform on horizontal length-scales in excess of 1000km.
The mechanisms of alignment are not so well known in the transition zone and in the
lower mantle. In addition, a significant water content such as proposed by Bercovici &
Karato (2003) in the transition zone, can change the rheology of minerals, would make
the deformation of the minerals easier and change their preferential orientation. A complete
discussion of these different mechanisms at different scales can be found in Mainprice (2007).

At slightly larger scale (but smaller than the seismic wavelength), a coherent distribution
of fluid inclusions or cracks (Crampin & Booth, 1985) can give rise to apparent anisotropy
due to shape-preferred orientation (SPO). This kind of anisotropy related to stress field can
be considered as the lower lilt of extrinsic anisotropy.

Anisotropic properties of rocks are closely related to their geological history and present
configuration, and reveal essential information about the earth’s structure and dynamics
(Crampin 1981 ; Chesnokov 1977). This justifies the great interest of geophysicists in all
seismic phenomena which can be interpreted in the framework of anisotropy. However, the
observation of large-scale anisotropy is also due to other effects such as unmapped velocity
gradients.

3.3 Apparent anisotropy due to small scale inhomogeneities

It has been known for a long time in seismology and exploration geophysics that small scale
inhomogeneities can map into apparent anisotropy (Postma, 1955; Backus, 1962). The prob-
lem is very well described in the abstract by Levshin & Ratnikova (1984):“ lnhomogeneities
in a real material may produce a seismic wavefield pattern qualitatively indistinguishable
from one caused by anisotropy. However, the quantitative description of such a medium as
an apparently anisotropic elastic solid may lead to geophysically invalid conclusions.”

The scattering effect of small-scale heterogeneities on seismograms has been extensively
studied in seismology (e.g. Aki, 1982; Richards & Menke, 1983; Park & Odom, 1999; Ricard
et al., 2014). As an example, Kennett & Nolet (1990) and Kennett (1995) demonstrated the
validity of the great circle approximation when modeling long period waveforms. However,
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despite all these studies, poor attention has been given to the theoretical relations between
small scale heterogeneities, and equivalent anisotropy. By definition, an anisotropic mate-
rial has physical properties which depend on direction, whereas a heterogeneous material
has properties which depend on location. But the distinction between heterogeneity and
anisotropy is a matter of the scale at which we analyze the medium of interest. Alternating
layers of stiff and soft material will be seen at large scales as a homogeneous anisotropic
material. At the origin of any anisotropy, there is a form for heterogeneity. In this way, the
most basic form of anisotropy, related to the regular pattern made by atoms in crystals, can
also be seen as some form of heterogeneity at the atomic scale (Maupin & Park, 2014).

Although poorly studied theoretically, this phenomenon has been recognized in a number
of studies.Maupin (2001) used a multiple-scattering scheme to model surface waves in 3-D
isotropic structures. She found that the apparent Love-Rayleigh discrepancy (VSH − VSV )
varies linearly with the variance of isotropic S-wave velocity anomalies. In the case of surface
wave phase velocity measurements done at small arrays, Bodin & Maupin (2008) showed
that heterogeneities located close to an array can introduce significant biases which can
be mistaken for anisotropy. For the lowest mantle, Komatitsch et al. (2010) numerically
showed that isotropic velocity structure in D” can explain the observed splitting of Sdiff,
traditionally interpreted as LPO intrinsic anisotropy due to mantle flow.

In the context of joint inversion of Love and Rayleigh waveforms, a number of studies
acknowledged that the strong mapped anisotropy is difficult to reconcile with mineralogical
models. This discrepancy may be explained in part by horizontal layering, or by the presence
of strong lateral heterogeneities along the paths, which are simpler to explain by radial
anisotropy (Montagner & Jobert, 1988; Friederich & Huang, 1996; Ekström & Dziewonski,
1998; Debayle & Kennett, 2000; Raykova & Nikolova, 2003; Endrun et al., 2008; Bensen
et al., 2009; Kawakatsu et al., 2009).

Bozdağ & Trampert (2008) showed that the major effect of incorrect crustal corrections
in surface wave tomography is on mantle radial anisotropy. This is because the lateral
variation of Moho depth trade-offs with radial anisotropy (see also Montagner & Jobert
(1988), Muyzert et al. (1999), Lebedev et al. (2009), Lekić et al. (2010), and Ferreira et al.
(2010)).

Therefore it is clear that both vertical and lateral isotropic heterogeneities can con-
tribute to the observed radial anisotropy. The problem of separating intrinsic and apparent
anisotropy is too complex in full generality. We can, however, examine a simple and illustra-
tive problem. Following the recent work of Wang et al. (2013) and Fichtner et al. (2013a),
we will place ourselves in the 1D radially symmetric case (VTI medium), and assume that
apparent radial anisotropy is only due to vertical gradients, i.e. layering. Indeed, apart
from the crust, the D” layer and around subducting slabs, to first order the earth is radi-
ally symmetric, with sharp horizontal seismic discontinuities separating different “layers”
(Dziewonski & Anderson, 1981). In such a layered earth, vertical velocity gradients are
much stronger than lateral ones, and will significantly contribute to apparent anisotropy.

4 The elastic Homogenization

We have seen that the limited resolution of long wavelength seismic tomography only allows
us to probe a smooth representation of the earth. However, this smooth equivalent Earth
is not a simple spatial average of the true earth, but the result of highly non-linear “up-
scaling” relations. In solid mechanics, these “up-scaling” relations that link properties of a
rapidly varying elastic medium to properties of the effective medium as seen by long waves
have been the subject of extensive research (e.g. Hashin & Shtrikman, 1963; Auriault &
Sanchez-Palencia, 1977; Bensoussan et al., 1978; Sanchez-Palencia, 1980; Auriault et al.,
1985; Murat & Tartar, 1985; Sheng, 1990; Allaire, 1992, and many others)

In global seismology, up-scaling schemes, also called elastic homogenization, have been
recently developped for different kinds of settings (Capdeville & Marigo, 2007; Capdeville
et al., 2010a,b; Guillot et al., 2010). This class of algorithms enables to compute the effective
properties of complex media, thus reducing the meshing complexity for the wave equation
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solver, and hence the cost of computations. Elastic homogenization has been used to model
complex crustal structures in full waveform inversions (Fichtner & Igel, 2008; Lekić et al.,
2010), and to combine results from different scales (Fichtner et al., 2013b).

4.1 The Backus Homogenization

Following the pioneering work by Thomson (1950), Postma (1955), and Anderson (1961), it
was shown by Backus (1962) that a vertically transversely isotropic (VTI) medium is a “long
wave equivalent” to a smoothly varying medium of same nature (i.e. transversely isotropic).
For parameters concerning shear wave velocities, the smooth equivalent medium is simply
described by the arithmetic and harmonic spatial average of elastic parameters N and L:

Ñ = 〈N〉 (5)

L̃ = 〈1/L〉−1 (6)

where 〈.〉 refers to a spatial average with length scale given by the shortest wavelength
defining our “long-wave”. In the rest of the manuscript, the symbol˜will be used to describe
long wave equivalent parameters. Note that these two relations are analogous to computing
the equivalent spring constant (or equivalent resistance) when multiple springs (or resistors)
are mounted either in series or parallel. In simple words, a horizontally traveling wave VSH

will see a set of fine horizontal layers “in parallel” (5), whereas a vertically traveling wave
VSV will see them “in series” (6). The apparent density ρ̃ is also given by the arithmetic
mean of the local density:

ρ̃ = 〈ρ〉 (7)

In the case of a locally isotropic medium (N = L), i.e. with no intrinsic anisotropy, the
homogeneous anisotropy is simply given by the ratio of arithmetic to harmonic mean :

ξ̃ =
Ñ

L̃
= 〈N〉 〈1/N〉 (8)

It can be easily shown that the arithmetic mean is always greater than the harmonic mean,
which results in having artificial anisotropy in (8) always greater than unity in the case of
an underlying isotropic model. In the case where the underlying layered model contains
anisotropy (N 6= L), the observed anisotropy is given by

ξ̃ =
Ñ

L̃
= 〈N〉 〈1/L〉 (9)

Here it is clear that when inverting waveforms with a minimum period of ∼ 40s (i.e. with
minimum wavelength is 160km), that sample a medium with velocity gradients occurring
at much smaller scales, the observed apparent anisotropy ξ̃ is going to be different from the
intrinsic anisotropy ξ = N/L. Therefore, as shown by Wang et al. (2013) and Fichtner et al.
(2013a), interpreting the observed effective ξ̃ in terms of ξ may lead to misinterpretations.

4.2 The residual homogenization

In this study, the goal is to interpret smooth tomographic models in terms of their lay-
ered and hence more realistic equivalent. However, tomographic models are not completely
smooth, they are instead constructed as smooth anomalies around a discontinuous reference
model. This is because the function linking the unknown model to the observed waveforms
is linearized around a local point in the model space. This reference model often contains
global discontinuities such as the Moho, or transition zone discontinuities at 410km and
660km, which are fixed in the inversion, and preserved in the model construction.

In the previous section, we have summarized an absolute homogenization for which no
small scale is left in the effective medium. To account for the presence of a reference model,
Capdeville et al. (2013) recently described a modified homogenization, carried out with
respect to a reference model, which we refer to as the residual homogenization. It allows
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Figure 6: Example of residual homogenization. Left: Voigt average shear wave velocity.
Right: Radial Anisotropy. The layered model in red is homogenized around a
reference model in light blue. The homogenized model is plotted in blue.
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Figure 7: Waveforms computed for the layered and homogenized models in Figure 6. This is
the radial component for an event with Epicentral distance 82◦ and depth 150km.
The computation was done by normal mode summation (Gilbert & Dziewonski,
1975)
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us to homogenize only some interfaces of a discontinuous medium while keeping the others
intact.

Let’s define the reference earth model by its density and elastic properties: (ρref , Aref ,
Cref , Fref , Lref , Nref ). Capdeville et al. (2013) showed that an equivalent model to the
layered (A,C,F,L,N) medium can be constructed with simple algebraic relations. For elastic
parameters related to shear wave velocities, we have :

Ñ = Nref + 〈N −Nref 〉 (10)

1
L̃

=
1

Lref
+
〈

1
L
− 1
Lref

〉
(11)

Note that no particular assumption on the reference model is made, which can contain any
wavelengths, and can be discontinuous. Furthermore, there is no linearity assumption, and
this results holds for large differences between the reference and the layered model.

We show in Figure 6 an example of residual homogenization. The layered VTI Model is
shown in red with layers either isotropic (ξ = 1) or anisotropic (ξ 6= 1). A smooth equivalent
model (for long waves of minimum wavelength of 100 km) that preserves the small scales of
the reference model is shown in blue. The homogenization is done on the difference between
the layered model in red and the reference model in thick light blue. After homogenization,
we lose information about both the number and locations of discontinuities which are not
in the reference model, as well as the location and level of intrinsic anisotropy.

It can be verified numerically that waveforms computed in the residual effective model,
and in the true layered model are identical when filtered with minimum period of 25s (which
corresponds to a minimum wavelength of 100km). Figure 7 shows an example of seismogram
computed by normal mode summation (Gilbert & Dziewonski, 1975) in the residual effective
model, and compared with the solution computed in the true layered model. In both cases,
the reference and homogenized traces show an excellent agreement.

4.3 An approximation of “the tomographic operator”

Global full waveform tomography is always carried out with frequency band limited data.
Intuitively, it makes sense to assume that such inversions can retrieve, at best, what is ”seen”
by the wavefield, i.e. an homogenized equivalent, and not the real medium.

Although it is difficult to mathematically prove this conjecture in general, Capdeville et al.
(2013) numerically showed with synthetic examples, that this is indeed the case for VTI
media. That is, the inverted medium coincides with the residual homogenized version of the
target model. Given a radially symmetric Earth, and given enough stations and earthquakes,
an inversion of full waveforms carried out around a reference model will therefore produce
the residual homogeneous model defined above.

In this way, for any given layered model, one is able to predict with simple non-linear
algebraic smoothing operations what an inversion will find, without actually running the
inversion. Therefore we can view the residual homogenization as a first order approximation
of the “tomographic operator”.

In practice, several practical issues complicate the situation: the real inversions are
damped, producing unknown uncertainties in the recovered model, which can potentially
bias our results. Furthermore, as seen above, ray coverage is not perfect and tomographic
schemes may actually recover less than the effective medium.

5 Downscaling Smooth Models: The Inverse
Homogenization

As we have seen, a tomographic inversion of long period waves can only retrieve at best a
homogenized model (and less in the case of an incomplete data coverage). Homogenization
can lead to non-trivial and misleading effects that can make the interpretation difficult. We
propose to treat the interpretation of tomographic images in terms of geological structures
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(discontinuities in our layered case) as a separate inverse problem, allowing to include a
priori information and higher frequency data.

We call this inverse problem the inverse homogenization: for a given smooth 1D profile
extracted from a tomographic model, what are the possible fine scale (i.e. layered) models
that are equivalent to this smooth 1D profile? Since the upscaling relations are based on
non-linear smoothing operators, it is not trivial to invert them to derive the true earth from
tomographic images, i.e. from it residual equivalent. In this section we show that, although
there is an infinite number of layered models that are equivalent to the smooth model in
blue (Figure 6), these models share common features, and Bayesian statistics can be used
to constrain this ensemble of possible models. Furthermore, higher frequency data sensitive
to discontinuities in radially symmetric models, such as receiver functions, can be used to
constrain the location of horizontal discontinuities and reduce the space of possible earths.

5.1 Major assumptions

Given the simple machinery presented in previous sections, there are obvious limitations to
the proposed procedure. Let us here acknowledge a few of them.

1. We will assume here that long period waves are only sensitive to the elastic parameters
N and L (i.e. VSH and VSV ). However, in a VTI medium, long period seismograms,
and hence the observed radial anisotropy, are also sensitive to the 3 other Love pa-
rameters (i.e. A, C, and F ). Fichtner et al. (2013a) recently showed that P wave
anisotropy is also important to distinguish between intrinsic and extrinsic anisotropy.
Here, P wave anisotropy will be ignored.

2. Here we restrict ourselves to transverse isotropy with a vertical axis of symmetry.
Although this simple parameterization in terms of radial anisotropy is widely used in
global seismology, it clearly represents an over-simplification, adopted for convenience
in calculation. This is because the separation of intrinsic and apparent anisotropy can
be studied analytically. The Earth is certainly not transversely isotropic, and there
are indisputable proofs of azimuthal anisotropy. Azimuthal anisotropy might map
into radial anisotropy in global models. These effects could be analyzed using the 3D
version of non-periodic homogenization (Capdeville et al., 2010a,b).

3. We assume that 1D vertical profiles extracted from 3D tomographic models are the
true earth that has been homogenized with Backus relations. However, the smooth-
ing operator applied to the true earth during an inversion, namely the “tomographic
operator”, is determined by an ensemble of factors such as, poor data sampling, the
regularization and parameterization imposed, the level of data noise, the approxima-
tions made on the forward theory, and limited frequency band. It is very difficult to
estimate how these averaging processes are applied to the true Earth during a tomo-
graphic inversion. What we assume here is that all these effects are negligible compared
to the last one (limited frequency band), for which the smoothing operator is simply
given by elastic homogenization. This only holds if data sampling is perfect, if no
strong regularization has been artificially applied, and if the forward theory is perfect.
Therefore, it is going to be most true in the case of full waveform inversion, and full
waveform tomographic models are the most adequate for such a procedure. However,
it is clear that other types of observations could be used as any tomographic method
unavoidably produces apparent anisotropic long wavelength equivalents. For exam-
ple, our proposed procedure could be used to describe the ensemble of discontinuous
models that fit a set of dispersion curves as in Khan et al. (2011).

5.2 Bayesian Inference

Using the notation commonly employed in geophysical inversion, the problem consists in
finding a rapidly varying model m, such that its homogenized equivalent profile g(m) is
“close” to a given observed smooth model d. Here the forward function g is the residual
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Figure 8: Adaptive parameterization used for the inverse homogenization. The number of
layers as well as the number of parameter in each layer (one for isotropic layers, and
two for anisotropic layers) are unknown in the inversion. This is illustrated here
with 3 different models with different parameterizations. The parameterization
is itself an unknown to be inverted for during the inversion scheme. Of course,
data can always be better fitted as one includes more parameters in the model,
but within a Bayesian formulation, preference will be given to simple models that
explain observations with the least number of model parameters.

homogenization procedure in (10) and (11). Since the long period waveforms are sensitive
to smooth variations of the “Backus parameters” (Capdeville et al., 2013), the observed
tomographic profile is parameterized as d = [Ñ , 1/L̃] .

This takes the form of a highly non-linear inverse problem, and a standard linearized
inversion approach based on derivatives is not adequate since the solution would strongly
depend on the initial guess. Furthermore, the problem is clearly under-determined and
the solution non-unique, and hence it does not make sense to look for a single best fitting
model that will minimize a misfit measure ‖d− g(m)‖. For example, one can expect strong
correlations and trade-offs between unknown parameters as homogeneous anisotropy can be
either explained by discontinuities or intrinsic anisotropy. An alternative approach is to
embrace the non-uniqueness directly and employ an inference process based on parameter
space sampling. Instead of seeking a best model within an optimization framework one
seeks an ensemble of solutions and derives properties of that ensemble for inspection. Here
we use a Bayesian approach, and tackle the problem probabilistically (Box & Tiao, 1973;
Sivia, 1996; Tarantola, 2005). We sample a posterior probability distribution p(m|d), which
describe the probability of having a discontinuous model m given an observed tomographic
homogeneous profile d.

An important issue is the degree of freedom in the layered model. Since the inverse
homogenization is a downscaling procedure, the layered model may be more complex (i.e.
described with more parameters) than its smooth equivalent. As discussed above, the smooth
model may be equivalent to either isotropic models with a large number of spatial parameters
(layers), or anisotropic models described with more than one parameter per layer. This
raises the question of the parameterization of m. How many layers should we impose on m?
Should the existence (or not) of anisotropy be a free parameter? If yes, how many isotropic
and anisotropic layers ?

We propose to rely on Occam’s razor, or the principle of parsimony, which states that
simple models with the least number of parameters should be preferred (Domingos, 1999).
The razor states that one should favor simpler models until simplicity can be traded for
greater explanatory power. Although we acknowledge that the definition of “simplicity” is
rather subjective, in our problem, we will be giving higher probability to layered models
described with fewer parameters.

We impose on m to be described with constant velocity layers separated by infinite gradi-
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ents. As shown in Figure 8, we use a transdimensional parameterization, where the number
of layers, as well as the number of parameters per layer are free variables, i.e. unknown
parameters (Sambridge et al., 2013). In this way, the number of layers will be unknown
in the inversion, as well as the number of parameters in each layer: 1 for isotropic layers
(VS) and 2 for anisotropic layers (VS and ξ). The goal here is not to describe the algorithm
and its implementation in detail, but instead to give the reader a general description of
the procedure, and show how it can be used to distinguish between intrinsic and extrinsic
anisotropy. For a details on the algorithm , we refer the reader to Bodin et al. (2012b) and
Bodin et al. (2014a).

Bayes’ theorem (Bayes, 1763) is used to combine prior information on the model with the
observed data to give the posterior probability density function:

posterior ∝ likelihood× prior (12)

p(m | d) ∝ p(d) |m)p(m) (13)

p(m) is the a priori probability density of m, that is, what we (think we) know about the
model m before considering d. Here we use poorly informative uniform prior distributions,
and let model parameters vary over a large range of possible values.

The likelihood function p(d | m) quantifies how equivalent a given discontinuous model
is to a our observed smooth profile d. The form of this probability density function is given
by what we think about uncertainties on d. In our case, the form of the error statistics for a
tomographic profile must be assumed to formulate p(d | m). A problem with tomographic
images is that they are obtained with linearised and regularised inversions, which biases
uncertainty estimates. Therefore, we adopt a common and conservative choice (supported by
the Central Limit Theorem) and assume Gaussian-distributed errors. Since the data vector
d is smooth, its associated errors must be correlated, and the fit to observations, Φ(m), is no
longer defined as a simple ‘least-square’ measure but is the Mahalanobis distance between
observed, d, and estimated, g(m), smooth profiles:

Φ(m) = (g(m)− d)T C−1
e (g(m)− d) (14)

where Ce represents the covariance matrix of errors in d. In contrast to the Euclidean
distance, this measure takes in account the correlation between data (equality being obtained
where Ce is diagonal). Note that there is no user-defined regularization terms in (14) such
as damping or smoothing constraints. This misfit function only depends on the observed
data.

The general expression for the likelihood probability distribution is hence:

p(d |m) =
1√

(2π)n|Ce|
× exp

{−Φ(m)
2

}
. (15)

This is combined with the prior distribution to construct the posterior probability density
function, which is thus defined in a space of variable dimension (transdimensional).

5.3 Sampling a transdimensional probability density function

Since the problem is transdimensional and non-linear, there is no analytical formulation for
the posterior probability density function, and instead we approximate it with a parameter
search sampling algorithm (Monte Carlo). That is, we evaluate the posterior at a large num-
ber of locations in the model space. We use the reversible jump Markov chain Monte Carlo
(rj-McMC) algorithm (Geyer & Møller, 1994; Green, 1995, 2003), which is a generalization
of the well known Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
to variable dimension models. The solution is represented by an ensemble of 1D models
with variable number of layers and thicknesses, which are statistically distributed according
to the posterior distribution. For a review of transdimensional Markov chains, see Sisson
(2005). For examples of applications in the Earth sciences, see Malinverno (2002), Dettmer
et al. (2010), Bodin et al. (2012a), Ray & Key (2012), Iaffaldano et al. (2012, 2013), Young
et al. (2013), and Tkalčić et al. (2013).
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Figure 9: Posterior probability distribution for the number of layers, and number of
anisotropic layers. This 2D marginal distribution allows us to quantify the trade-
off between heterogeneity and anisotropy. Indeed, the smooth model in Figure
6 can be either be explained with a large number of isotropic layers or a few
anisotropic layers.

In order to illustrate the power of the proposed Bayesian scheme, we applied it to the
synthetic homogenized profile shown in Figure 6, polluted with some Gaussian random
correlated (i.e smooth) noise. The solution is a large ensemble of models parameterized
as in Figure 8, for which the statistical distribution approximates the posterior probability
distribution. As will be shown below, there are a number of ways to look at this ensemble of
models. Here, in figure 9 we simply plot the 2D marginal distribution on the number of layers
and number of anisotropic layers. This allows us to quantify the trade-off between anisotropy
and heterogeneity. The distribution is clearly bi-modal, meaning that the smooth equivalent
profile can either be explained by many isotropic layers or a few anisotropic ones. From this
it is clear that we haven’t been able to distinguish between real and artificial anisotropy.
However, we are able (given a layered parameterization) to quantify probabilistically the
non-uniqueness of the problem.

This trade-off may be “broken” by adding independent constraints from other disciplines
such as geology, mineral physics, or geodynamics. Here we will show how higer frequency
seismic data can bring information on the number and locations of discontinuities, and hence
enable us to investigate the nature of radial anisotropy in tomographic models.

6 Incorporating Discontinuities with Body Waves –
Application to the North American Craton

A smooth equivalent profile brings little information about location of discontinuities, and
extra information from higher frequency data is needed. Here we show in a real case how
adding independent constraints from converted P to S phases can help locating interfaces.
Again, here we place ourselves in the simplest case, and assume horizontal layering when
modeling converted phases. We acknowledge that dipping interfaces, or a tilted axis of
anisotropy would produce apparent azimuthal anisotropy. Accounting for these effects are
the subject of current work. We construct a 1D probabilistic seismic profile under North-
West Canada, by combining in a joint Bayesian inversion a full-waveform tomographic profile
(SEMum2, French et al., 2013) with receiver functions. The goal here is to incorporate
horizontal lithospheric discontinuities into a smooth image of the upper mantle, and thus
investigate the structure and history of the North American craton.

Archean cratons form the core of many of Earth’s continents. By virtue of their longevity,
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Figure 10: Tomographic profile under station YKW3 for model SEMum2

they offer important clues about plate tectonic processes during early geological times. A
question of particular interest is the mechanisms involved in cratonic assembly. The Slave
province is one of the oldest Archaen cratons on Earth. Seismology has provided detailed
information about the crust and upper mantle structure from different studies, such as
reflection profiling (e.g. Cook et al., 1999), receiver function analysis (e.g. Bostock, 1998),
surface wave tomography (e.g. Van Der Lee & Frederiksen, 2005), or regional full waveform
tomography (Yuan & Romanowicz, 2010).

Recent studies (Yuan et al., 2006; Abt et al., 2010) have detected a structural bound-
ary under the Slave craton at depths too shallow to be consistent with the lithosphere-
asthenosphere boundary. Yuan & Romanowicz (2010) showed that this Mid-Lithospoheric
Discontinuity (MLD) may coincide with a change in the direction of azimuthal anisotropy,
and thus revealed the presence of two distinct lithospheric layers throughout the craton: a
top layer chemically depleted above a thermal conductive root. On the other hand, Chen
et al. (2009) showed that this seismic discontinuity as seen by receiver functions, overlapped
with a positive conductivity anomaly, and interpreted it as the top of an archean subducted
slab.

This type of fine structure within the lithosphere is not resolved in global tomographic
models such as SEMum2, and hence may be mapped into radial anisotropy. Here we will
explore whether lithospheric layering as seen by scattered body waves (receiver functions)
is compatible with the radial anisotropy imaged from global tomography.

6.1 Long period information: a smooth tomographic profile

We used the global model recently constructed by the Berkeley group: SEMum2 (Lekić &
Romanowicz, 2011; French et al., 2013). This model is the first global model where the syn-
thetic waveforms are accurately computed in a 3D Earth with the spectral element method.
Sensitivity kernels are calculated approximately using non-linear asymptotic coupling the-
ory (NACT: Li & Romanowicz (1995)). The database employed consists of long-period
(60 < T < 400s) three-component waveforms of 203 well-distributed global earthquakes
(6.0 < Mw < 6.9), as well as global group-velocity dispersion maps at 25 < T < 150s.

Compared to other global shear-velocity models, the amplitudes of velocity anomalies are
stronger in SEMum2, with stronger velocity minima in the low velocity zone (asthenosphere),
and a more continuous signature of fast velocities in subduction zones.

Here we extract a 1D profile (figure 10) under station YKW3, located in the southern
Slave craton, northwest Canada. As seen in figure 10, the crustal structure in SEMum2 is
replaced with a single, smooth equivalent anisotropic layer, valid for modeling long period
waves. Note also that the high amplitude of radial anisotropy below the crust may be due
to unmapped layering at these depths.
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6.2 Short period information: teleseismic converted phases

In order to bring short wavelength information to the tomographic profile, we analyzed
waveforms for first P arrivals on teleseismic earthquake records at the broadband station
YKW3 of the Yellowknife seismic array. The station was installed in late 1989 and has
collected a large amount of data. Receiver function analysis consists on deconvolving the
vertical from the horizontal component of seismograms (Vinnik, 1977; Burdick & Langston,
1977; Langston, 1979). In this way the influence of source and distant path effects are
eliminated, and hence one can enhance conversions from P to S generated at boundaries
beneath the recording site. This is a widely used technique in seismology, with tens of
papers published each year (e.g. Ford et al., 2010; Hopper et al., 2014). see For a recent and
comprehensive review, see Bostock (2014).

Algorithms for inversion of receiver functions are usually based on optimization proce-
dures, where a misfit function is minimized. Traditionally, this misfit function is constructed
by comparing the observed receiver function with a receiver function predicted for some
Earth model m:

Φ(m) =
∥∥∥∥H(t)
V(t)

− h(t,m)
v(t,m)

∥∥∥∥2

(16)

where V(t) is the vertical and H(t) the horizontal (radial) component of the observed seis-
mogram, and where v(t,m) and h(t,m) are predicted structure response functions for the
unknown Earth model m. The fraction refers to a deconvolution (or spectral division).

A well known problem is that the deconvolution is an unstable numerical procedure that
needs to be damped, which results in a difficulty to correctly account for uncertainties.
Therefore, for Bayesian analysis, we choose an alternative misfit function based on a simple
cross-product that avoids deconvolution (Bodin et al., 2014b):

Φ(m) = ‖H(t) ∗ v(t,m)−V(t) ∗ h(t,m)‖2 (17)

This misfit function is equivalent to the distance between the observed and predicted re-
ceiver functions in (16). Since discrete convolution in time is a simple summation, and since
seismograms can be seen as corrupted by random errors, each sample of the signal obtained
after discrete convolution is then a sum of random variables, whose statistics are straightfor-
ward to calculate with algebra of random variables. This is not the case with deconvolution
schemes.

Assuming that V(t) and H(t) contain independent, and normally distributed random
errors with standard deviation σ, a likelihood probability function can be constructed:

p(dRF |m) =
1√

(2πσ2)n
× exp

(
−Φ(m)

2σ2

)
(18)

The observed vertical V(t) and horizontal H(t) waveforms needed for inversion were
obtained by simply stacking a number of events measured for a narrow range of backazimuths
and epicentral distances (see Figures 11 and 12). Influence of the receiver structure is
common to all records and is enhanced by summation (Shearer, 1991; Kind et al., 2012).
We refer to Bodin et al. (2014b) for details of the procedure.

This likelihood function thus defined for receiver functions p(dRF | m) can be combined
with the likelihood function defined above for the Inverse homogenization problem p(dtomo |
m) for joint inversion of short and long wavelength information. Since the observations
given by the tomographic model dtomo are independent of the receiver function observations
dRF , the complete posterior probability function is then defined as:

p(m | dtomo,dRF ) ∝ p(dtomo |m)× p(dRF |m)× p(m) (19)

and can be sampled with the reversible jump algorithm described above.

6.3 Results

Transdimensional inversion was carried out allowing between 2 and 60 layers. As noted
above, each layer is either described by one or two parameters. An a priori constrain
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YKW3

Figure 11: Station YKW3 with the set of events used for receiver function analysis.
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Figure 12: Stack of P arrivals for receiver function analysis for event shown in Figure 11.
A total of 44 events were used with backazimuths between 290◦ and 320◦ and
with ray parameters between 0.04 and 0.045s.km−1. Seismograms were cut for
the same time window, normalized to equal energy, and rotated to radial and
tangential components.
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Figure 13: Joint Inversion of converted body waves in Figure 12 and of the tomographic
model in 10. Left: Probability distribution for Vs. Middle: probability of having
an anisotropic layer. Right: probability for ξ

for minimum and maximum velocity value and anisotropy in each layer was applied. The
algorithm was implemented for parallel computers, providing a thorough search of the model
space, with an ensemble solution made of about 106 different Earth models. The posterior
distribution is approximated from the distribution (i.e. the histogram) of the ensemble of
models in the solution (Figure 13). The solution is thus given by an ensemble of 1D models
with variable number of layers, thicknesses, and elastic parameters. In order to visualize the
final ensemble, the collected models can be projected into a number of physical spaces that
are used for interpretation.

For example, Figure 13A shows the marginal distribution for S-wave velocities as a func-
tion of depth, simply constructed from the density plot of the ensemble of models in the
solution. Here a number of expected lithospheric discontinuities have been imaged, such as
the mid-lithospheric discontinuity at 90km and a sharp lithosphere-asthenosphere boundary
at 200km. But interestingly, we also note a sharp positive velocity change at 150km, which
establishes the base of an intra-lithospheric low velocity zone between 90km and 150km.
This low velocity zone is clearly visible in Chen et al. (2007) who inverted Rayleigh wave
phase velocity observations (20s < T < 142s) measured by the Yellowknife array. This
feature is also observed in the regional full waveform tomographic model by Yuan & Ro-
manowicz (2010). This low velocity zone can be interpreted as a piece of archean subducted
slab, stacked vertically over another archean block.

Since here we are interested in the relative contribution of layering to the observed
anisotropy in SEMum2, we can look at the probability at each depth to have intrinsic
anisotropy (i.e. ξ 6= 1 ). For each model, each layer is either isotropic or anisotropic.
Therefore, at each depth, one can count the ratio of isotropic to anisotropic layers in the
ensemble of models. This is shown in figure 13B. When no information is brought by the
data (prior distribution), the probability to have anisotropy is 50%. However here, the
probability is lower and around 20% across much of the depth profile. This implies that
intrinsic anisotropy is not required to fit the smooth tomographic profile. In other words,
the discontinuities required to fit the converted body waves may be enough to explain the
anisotropy in the tomographic model. We view this as an important result, indicating that
radial anisotropy (at least under cratons) should not be directly interpreted in tomographic
models.

The third panel in Figure 13C shows the probability distribution for ξ at each depth. Note
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that, for a given depth, around 80% of models are isotropic with ξ = 1, and this distribution
only represents the level of anisotropy in the 20% remaining models.

Note that these are only preliminary results. This study is only a proof of concept, or
study of feasibility, which opens a range of potential applications. Let us acknowledge a
number limitations:

1. Here we assume that smooth tomographic profiles are the true Earth that has been
homogenized. Although this has been numerically demonstrated on 1D synthetic tests
for VTI models (Capdeville et al., 2013), it may not always be true. For example, the
effect of poor data sampling, and hence model regularization may act as a smoothing
operator not accounted for here.

2. Little is known about uncertainties in tomographic models, which are crucial in the
context of a Bayesian formulation.

3. Here we only place ourselves in the case of VTI profile. No azimuthal anisotropy
is considered. Furthermore, it is well known that lateral heterogeneities (e.g. Moho
topography) may also produce apparent radial anisotropy. This case has not been
considered here.

7 Conclusion

Global tomographic imaging is an inverse problem where different types of observables (e.g.
surface waves, body waves) are used to constrain different types of parameters (e.g. P and
S wave velocity, anisotropy, density). Different measurements have different sensitivities,
and all parameters are not equally well resolved. Some parameters present strong trade-offs.
Furthermore, the elastic properties to be constrained are scale dependent. These issues have
led seismologists to simplify the inverse problem, and to invert separately different observ-
ables, different frequency bands, and with different spatial and physical parameterizations.
Thus, different classes of models with different resolving power have been published, which
are sometimes difficult to reconcile.

Recent theoretical developments as well as increased availability of computational power
have allowed the emergence of full waveform inversion, where the full wavefield (and its
derivatives with respect to the model) are exactly computed with purely numerical meth-
ods. Inverting the full wavefield in the time domain enables us to combine body and surface
waves in the same inversion scheme. The recent local, regional, and global applications
of full waveform tomography reveal indeed an improved resolution. For example, the am-
plitudes of the imaged anomalies increase, and more small-scale features are constrained.
However, a remaining challenge is computational cost. One way to keep reasonable the time
of computations is to limit the frequency content of waveforms, and only invert the long
periods. As a result, the resolving power of full waveform tomography is mainly determined
by the minimum period, or minimum wavelength.

Elastic properties are scale dependent, and hence the small scale heterogeneities that are
not resolved in tomographic models, are mapped into large scale structure. This mapping
is non-linear, which makes large scale structure difficult to interpret. In this study, we have
focused on vertical transversely isotropic (VTI) models, where small scale heterogeneities in
S wave velocity are mapped into large scale radial anisotropy.

A method has been proposed to “downscale” smooth tomographic models. Given the
laws of homogenization which link a medium to its effective long wave equivalent, we are
able to explore the space of possible small scale models that are equivalent to a given
tomographic profile. We cast this inverse problem in a Bayesian formulation, which enables
us to probabilistically quantify the trade-off between heterogeneity (in our case layering)
and anisotropy.

We have applied this method to a tomographic profile of the North-American craton,
and added short period information from receiver functions, to help locate the depth of
discontinuities. This allows us to investigate the nature and history of the craton. But
more importantly, we have shown that a large part of anisotropy present in the tomographic
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model may be due to unmapped discontinuities. Therefore, we conclude that one shouldn’t
interpret radial anisotropy in tomographic models only in terms of geodynamics, e.g. mantle
flow. The inferred radial anisotropy contains valuable information about the earth, but one
has to keep in mind that this is only apparent anisotropy. It may only be interpreted when
associated with higher frequency information, or with additional information from other
disciplines (geology, mineral physics, or geodynamics).

Here we have assumed that the observed radial anisotropy is either due to layering or
intrinsic radial anisotropy. We recognize that this a strong approximation. Indeed, both
lateral heterogeneities and intrinsic azimuthal anisotropy may also contribute to the observed
radial anisotropy. Although these effects are not considered here, they are the subject of
current work. For example, we expect observations of azimuthal anisotropy to provide
important additional constraints: 1) these observations cannot be explained by horizontal
layering; 2) they may sometimes be due to LPO with a tilted axis of symmetry, in which
case part of the observed radial anisotropy may still be intrinsic.
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