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S U M M A R Y
We perform the ambient noise Scholte and Love waves phase-velocity tomography to image
the shallow subsurface (a few hundreds of metres) at the Valhall oil field. Seismic noise was
recorded by multicomponent (north, east and vertical) ocean bottom cable from the Valhall
life of field seismic network. We cross-correlate six and a half hours of continuous recording
of noise between all possible pairs of receivers. The vertical–vertical and the transverse–
transverse components cross-correlations are used to extract the Scholte and Love waves,
respectively. We combine more than 10 millions of interstation correlations to compute the
average phase-velocity dispersion curves for fundamental mode and first overtone. Then, a
Monte Carlo inversion method is used to compute average 1-D profiles of VSV and VSH down to
600 m depth. In the next step, we construct 2-D Scholte and Love waves phase-velocity maps
for fundamental mode using the eikonal tomography method. These maps are then jointly
inverted to get the 3-D distribution of VSV and VSH from which the radial anisotropy and the
isotropic velocity (VS) are estimated. The final model includes two layers of anisotropy: one
in the shallow part (above 220 m) with a significant negative radial anisotropy (VSH < VSV)
due to vertical cracks because of subsidence and another in the deeper part (between 220 and
600 m) with a positive radial anisotropy (VSH > VSV) due to the stratification at that depth.

Key words: Tomography; Interferometry; Surface waves and free oscillations; Seismic
anisotropy.

1 I N T RO D U C T I O N

The presence of the seismic anisotropy in the Earth’s crust and
mantle is well established. Mantle anisotropy is well studied and
is believed to principally reflect the lattice preferred orientation
of olivine (e.g. Christensen & Lundquist 1982; Montagner &
Anderson 1989b). The crustal anisotropy can be caused by a va-
riety of mechanisms including mineral orientation, fine layering
within sedimentary or magmatic rocks, or the preferred orientation
of faults or cracks (e.g. Shapiro et al. 2004; Duret et al. 2010;
Moschetti et al. 2010; Jaxybulatov et al. 2014; Montagner 2014;
Maupin & Park 2015; Mordret et al. 2015).

S-wave velocities inferred from the Rayleigh waves often differ
from those obtained with the Love waves. Such incompatibilities
are generally considered as a robust diagnostic for the presence of
anisotropy in the crust and upper mantle, which is commonly called
as radial or polarization anisotropy (e.g. Anderson 1961; Schlue
& Knopoff 1977; Nakanishi & Anderson 1983; Montagner 1985;
Nataf et al. 1986; Ekström & Dziewonski 1998) or Rayleigh–Love
wave discrepancy. The radial anisotropy is a property of a medium
in which the speed of the wave depends on its polarization and corre-

sponds to a vertical transversely isotropic (VTI) medium. Seismic
anisotropy is becoming more and more important in exploration
seismology (e.g. Muyzert & Kommedal 2002; Helbig & Thomsen
2005; Hatchell et al. 2009; Tsvankin et al. 2010; Mordret et al.
2013c).

With the development of ambient noise surface-wave tomogra-
phy (ANSWT, e.g. Shapiro & Campillo 2004; Shapiro et al. 2005;
Campillo & Sato 2011; Ritzwoller et al. 2011), surface wave disper-
sion curves can be measured at periods short enough to construct
S-wave velocity models at crustal depths and to infer the seismic
anisotropy in the crust. The range of the tomography scale based
upon surface wave varies from several thousands of kilometres
(Nishida et al. 2009) to a few hundreds of metres. However, there
are only few studies based upon the ANSWT that investigate the
depth ranges from upper tens of metres to several hundreds of me-
tres. To investigate the depth down to 1 km, it is required to have
surface waves with the wavelengths smaller than 1 km, implying
that for frequencies between ∼0.5 and ∼2 Hz the phase veloci-
ties must be below 1000 m s−1. These frequencies are still lower
than the frequencies in most of the existing type of active seismic
sources.
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In exploration seismology, studies to image the subsurface using
surface waves have been developing recently (e.g. Stewart 2006;
Dellinger & Yu 2009; de Ridder & Dellinger 2011). In particular,
the Valhall passive seismic data sets were used extensively for the
ANSWT (e.g. de Ridder & Biondi 2013; Mordret et al. 2013a,b,c;
Mordret et al. 2014a,b). A high-resolution isotropic 3-D S-wave
velocity model down to 600 m has been derived by Mordret et al.
(2014a), using ANSWT of the fundamental mode of Scholte wave.
The Love wave group velocity maps were constructed at life of field
seismic (LoFS) by de Ridder (2014). Although, the Scholte and
Love waves analysis is done separately and azimuthal anisotropy is
estimated using Scholte wave at Valhall, we propose joint analysis
of Scholte and Love waves to obtain radial anisotropy as it differs
from the azimuthal anisotropy and depends upon the polarization
of waves.

In this paper, we present a study of the radial anisotropy at the
depths above 600 m. After presenting the data and giving a brief
introduction of methods, the 2-D phase-velocity maps of Scholte
and Love waves at different frequencies are constructed using the
eikonal equation (Aki & Richards 1980; Lin et al. 2009). The local
dispersion curves are computed from the Scholte and Love waves
phase-velocity maps and are jointly inverted by using the inversion
method based on the neighbourhood algorithm (NA; Sambridge
1999) to obtain local 1-D velocity profiles. All 1-D profiles are
then combined to obtain a 3-D radially anisotropic S-wave velocity
model of the Valhall overburden.

2 DATA A N D N O I S E
C RO S S - C O R R E L AT I O N S

The Valhall LoFS network is a permanent ocean-bottom cable array
made of 2320 four-component sensors (a three-component geo-
phone and a hydrophone) installed on the seafloor in the North
Sea (Fig. 1), above Valhall reservoir. We use 400 min (∼6.5 hr) of
continuous ambient noise records on vertical (Z), south–north (N)
and west–east (E) component of geophones for this study. The data
set was recorded at 250 samples per second with the low-cut filter
that removes almost all energy at periods longer than 2.5 s. The
interstation distance between the sensors along cable is 50 m and
intercable distance is 300 m.

For three component sensors more than 10 millions of intersta-
tion cross-correlations (CCs) are computed between all possible
pair of sensors for vertical–vertical (ZZ) component along with
north–north (NN), east–east (EE), north–east (NE) and east–north
(EN) components combinations. The noise is processed station by
station, before computing CC we apply mean and trend removal to
the signal, and then we do amplitude spectral whitening of the sig-
nal between 0.3 and 100 Hz. Although the signal at Valhall is clean
but one-bit normalization is also applied to the data set. Finally, we
follow the procedure described in Mordret et al. (2013a) for CCs
computation and also partially follow the workflow discussed in
Bensen et al. (2007). Scholte waves can be obtained directly from
ZZ CCs, while for Love waves, we need to rotate the CCs between
EE, EN, NN and NE component in radial and transverse directions.
The transverse–transverse (TT), radial–radial (RR), transverse–
radial (TR) and radial–transverse (RT) CCs between each pair
of stations are obtained using tensor rotation method discussed
in Lin et al. (2008). The TT and RR components exhibit Love
and Scholte waves, respectively. Here, only ZZ component CCs
are used for Scholte waves because of better signal-to-noise ratio
(SNR).

Figure 1. Map of Valhall LoFS array. Each magenta colour point indicates
a 4C sensors. The black circles are the approximate position of two platform
situated in the field for oil production and star is the position of 595th station
in the network. The geographical location of Valhall oil field is shown with
the red dot in inset.

Figure 2. Virtual gather of (a) ZZ component and of (b) TT component.
All the correlations computed for ZZ and TT components are stacked and
averaged in 10 m interstation distance bins. In the ZZ component, correlation
gathers the fundamental mode and first higher mode of Scholte waves are
observed and in TT component fundamental mode of Love waves is visible.

Fig. 2 shows the virtual gathers of ZZ and TT components
where, ∼2 690 040 CCs for each component are stacked that fall
within a 10 m interstation distance bin. These average CC gath-
ers are filtered between 0.3 and 3 Hz. Stacking the CCs together
increases the SNR dramatically and allow us to observe different
modes for Scholte and Love waves and can be used in depth inver-
sion to estimate average velocity model.
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Figure 3. (a) F-K spectrum of ZZ component virtual gathers, the fundamental and first higher modes of Scholte wave are clearly visible, (b) the picks of these
dispersion curves in F-K spectrum. (c) Average phase-velocity dispersion curves, the magenta and blue dots are the picks from F-K spectrum of fundamental
and first higher modes, respectively and curves with error bars are the third-order polynomial fit for the corresponding picks.

3 AV E R A G E D I S P E R S I O N C U RV E S
A N D 1 - D V E L O C I T Y M O D E L

3.1 Measurement of average dispersion curves for Scholte
and Love waves

To obtain the average dispersion curve, we use the average virtual
gather for Scholte wave (see Fig. 2a). A similar procedure has
been applied recently by Lin et al. (2013), Nishida (2013) and
Mordret et al. (2014a). Fig. 3 shows the procedure to compute the
average dispersion curves of Scholte waves. We perform frequency
wavenumber (F-K) analysis (Gabriels et al. 1987) of virtual gather
to measure the average dispersion curves of the fundamental mode
and the first overtone (Fig. 3a). The dispersion curves are measured
by picking the maximum energy for each mode (Fig. 3b) and phase-
velocity dispersion curves can be estimated for a frequency f and a
wavenumber k using the following equation:

cm ( f ) = 2π f

km ( f )
, (1)

where m is the mode number and c is phase velocity. We then fit
these measurements with third-order polynomial to obtain smoothed
versions of the dispersion curves (solid lines in Fig. 3c).

Fig. 4 shows the procedure to obtain average dispersion curves
of Love waves; we apply the same procedure to TT component (see
Fig. 2b) as developed for ZZ component. The average phase-velocity
dispersion curves with their error bars are shown in Fig. 4(c). Error

bar shows the confidence interval of data or deviation along a curve.
The fundamental mode of the Love waves (and in a lesser extent the
fundamental mode of the Scholte waves) seems to present a double
branch at high frequencies and high wavenumbers. This is due to the
heterogeneity of the medium (the Love wave velocity maps show
clearly a dichotomy with high velocity in the north and low velocity
in the south.) We chose to pick the fastest velocity dispersion curves
for both Scholte and Love waves.

3.2 Inversion of the average dispersion curves: isotropic
velocity model

We invert Scholte and Love waves average dispersion curves with
the method described by Mordret et al. (2014a) based on an NA
(Sambridge 1999; Xie et al. 2013). The NA is a Monte Carlo global
direct search technique to sample the whole model space. Model
space is bounded by a priori information that includes the range in
which the individual model parameters are allowed to vary. In the
inversion, the model is 1-D layered S-wave velocity/depth profile,
where the parameters for inversion could be both thickness and
velocity of each layer. In this paper, only the S-wave velocity is
inverted because of the low sensitivity of surface wave to P-wave
velocity and density. Therefore, the P-wave velocity and density
are not considered as free parameters but taken by scaling from the
empirical relation: Vp = 1.16Vs + 1.36 (Castagna et al. 1985) and
ρ = 1.74(Vp)2 with Vp in kilometres per second (Brocher 2005).



4 G. Tomar et al.

Figure 4. (a) F-K spectrum of TT component virtual gathers, the fundamental and first higher modes of Love wave are clearly visible, (b) the picks of these
dispersion curves in F-K spectrum. (c) Average phase-velocity dispersion curves, the magenta and blue dots are the picks from F-K spectrum of fundamental
and first higher modes, respectively and the curves with error bars are third-order polynomial fit for the corresponding picks.

The S-wave velocity of Valhall overburden is modelled using a
power-law expression of the form (Wathelet 2004):

Vs (d) = V0((d + 1)α − (d0 + 1)α + 1), (2)

where Vs is the S-wave velocity, d is the depth, V0 is the velocity
at the seafloor, α is the power-law parameter and d0 is the water
depth. Valhall bathymetry is nearly flat therefore, we take constant
d0 = 70 m, requiring only two parameters V0 and α to fit eq. (2).
This equation is valid when d ≤ 600 and we choose to invert the
velocity (Vs = Vn when, d > 600) of half-space at the 600 m depth,
as a third parameter of inversion.

The NA is applied in different steps to invert average dispersion
curves. In the first step, the method generates n1 random models
inside the model space. Then, a mesh of Voronoi cells (the nearest
neighbour portion of space associated with each model) is created.
Using Herrmann & Ammon (2004) algorithm, the theoretical dis-
persion curves are computed for fundamental and first higher modes
of Sholte and Love waves and misfit between theoretical and ob-
served dispersion curves is calculated in the corresponding cell. The
misfit of Scholte and Love waves dispersion curves are defined as
the ratio between the area of synthetic dispersion curves and the area
of measured dispersion curves with its uncertainties (see Mordret
et al. 2014a for definition). In the second step, we choose the best nc

cells with minimum misfit and generate ns new models within each
of these cells. The set of new Voronoi cells are generated using all
new and previous models. The new misfit is calculated and new nc

cells are chosen to be resampled.

The last step is repeated and algorithm stopped after ni itera-
tions. When the model space is considered to be well sampled,
the ensemble of tested models and their respective misfits can be
used statistically to characterize the solution of the inverse prob-
lem. The selected parameters bounds are [150, 550] m s−1 for V0

[0.08, 0.28] for α and [550, 1350] m s−1 for Vn. We run NA with
n1 = 10 000, ns = 1000, n5 = 5 and ni = 8, that is, a total of
50 000 models are tested. For that, we use computer with 24 cores
and 45 GB internal memory and Matlab as a platform to run the
NA code written in C language that took around 15 min to run the
inversion for a point. Finally, we select 1000 the best-fit models and
take average of these 1000 models for defining the final velocity
profile. See Appendix A, where we show that the choice of tak-
ing the average of these 1000 cells does not change the final model.
The averaged models and corresponding dispersion curves obtained
with isotropic-parametrization inversion of the Scholte and the Love
waves are shown in Fig. 5.

3.3 Average radial anisotropy

The 1-D velocity profiles obtained with the inversion of Scholte
and Love waves are different (Fig. 5c). We performed several tests
and found that the measured dispersion curves for these two types
of waves cannot be predicted simultaneously with a single S-wave
velocity profile. Fig. 6 shows the isotropic joint inversion of Scholte
and Love waves. It can be clearly seen that synthetic dispersion
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Figure 5. Isotropic inversion of average dispersion curves. (a) The inverted dispersion curves associated with the best-fit models of Scholte wave; fundamental
mode in red, first overtone in cyan, the observed dispersion curves with error bars of the fundamental mode in magenta and first overtone in blue colours. (b)
The inverted and observed dispersion curves of Love wave. (c) VSH and VSV are the averaged best-fit models, there is a difference between the two models
above 220 m VSH < VSV and below 220 m down to 600 m VSH > VSV.

curves do not fit observed dispersion curves well in isotropic joint
inversion. Suggesting the presence of anisotropy in the medium.

In a most general case of anisotropic media, seismic wave prop-
agation is sensitive to the full elastic tensor (21 parameters), the
density and the attenuation. Often, medium with hexagonal sym-
metry are considered, where the anisotropy is described by five
elastic parameters A, C, N, L and F (Love 1927). When the axis
of symmetry is vertical (so-called VTI medium), these parameters
can be related to vertically and horizontally polarized compressional
wave speeds (VPV, VPH, respectively), the vertically and horizontally
polarized shear wave speeds (VSV and VSH, respectively) and with a
parameter F = η (A – 2 L), where η �= 1 for an anisotropic medium.
This type of medium is called as radially anisotropic (Anderson
1961; Montagner & Anderson 1989a; Babuska & Cara 1991). It
is assumed that Rayleigh or Scholte waves are mainly sensitive to
VSV and Love waves to VSH (e.g. Anderson & Dziewonski 1982;
Montagner & Nataf 1986). The difference between these waves is
called radial anisotropy that also corresponds to transverse isotropy
and can be represented in percentage by a parameter ξ (e.g. Huang
et al. 2010; Jaxybulatov et al. 2014; Tomar et al. 2015):

ξ =
(

VSH − VSV

VS

)
. (3)

VS is the isotropic component of the S-wave velocity of such medium
and can be represented by the Voigt average (Dziewonski & Ander-
son 1981; Montagner 2014):

VS ≈
√

2V 2
SV + V 2

SH

3
. (4)

After considering the isotropic inversion results, we therefore, intro-
duce the radial anisotropy in the top 600 m of our velocity model to
explain simultaneously the observations of Scholte and Love waves
at Valhall.

3.3.1 Inversion of the average dispersion curves: anisotropic
velocity model

We jointly invert the Scholte and Love waves dispersion curves,
using NA with a different parametrization than discussed above.
Based on results shown in Section 3.2 and Fig. 5(c), we consider
two layers of anisotropy: a layer with negative S-wave anisotropy
(VSV > VSH) above 220 m and a layer with a positive S-wave
anisotropy (VSV < VSH) below 220 m. To reduce the number of
inverted parameters, we make a simplification by scaling VPV to
VSV and VPV to VSH using Castagna’s relation discussed above, and
take η = 1. This simplification is not fully physical, because in
real-mineral assemblages, the S-wave anisotropy is different from
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Figure 6. Isotropic joint inversion of average dispersion curves of Scholte and Love waves. (a) The inversion result of Scholte wave dispersion curves associated
with the best-fit model; the fundamental mode is in red, first overtone in cyan, the observed dispersion curves with error bars of the fundamental mode in
magenta and the first overtone in blue colours. (b) The inverted and observed dispersion curves for Love wave and (c) VS the averaged best-fit model.

P-wave anisotropy and η differ from unity (Babuska & Cara 1991;
Erdman et al. 2013). Also, it has been shown that this simplifica-
tion might result a slight underestimation or overestimation of the
anisotropy (Anderson & Dziewonski 1982; Montagner 1985; Xie
et al. 2013). However, the difference between the anisotropy ob-
tained using two coefficients and with five coefficients is small and
lies within the uncertainties (Xie et al. 2013). Here, the anisotropic
inversion is performed with four parameters; V0 and α for the power
law and ξ 1 and ξ 2 two anisotropic parameters for two different depth.
The velocity of the half-space below 600 m depth is fixed on the
basis of isotropic inversion to avoid over parametrization. The a-
priori range of parameters is [150, 550] m s−1 for V0, [0.08, 0.28]
for α, [−20, 5] in per cent for ξ 1 and [−5, 30] in per cent for ξ 2.

The inversion is performed in several steps, first, a model is
randomly chosen by NA and is attributed to VSV. We compute a
synthetic Scholte wave dispersion curve using computer program
in seismology package (Herrmann & Ammon 2004) and the misfit
mr between the synthetic and observed dispersion curves is stored.
Then, the same model is perturbed using two random anisotropy
parameters to obtain VSH. A synthetic Love wave dispersion curve
is computed and misfit ml is stored. The final combined misfit M is
computed as:

M = 0.4ml + 0.6mr . (5)

We choose this Love wave misfit with 0.4 weight because the Love
wave dispersion curves have smaller number of points fitted with
two more parameters than the Scholte waves. We test 50 000 1-D
profiles and select N = 1000, the best-fit models that are averaged for
defining the final anisotropy and 1-D velocity model. The average
anisotropy at each location (each gridpoint) is computed as:

ξ = 1

N

N∑
i = 1

ξi = 1

N

N∑
i = 1

(
VSHi − VSVi

VSi

)
. (6)

The Vs isotropic model at each location is computed in a similar
way:

VS = 1

N

N∑
i = 1

VSi = 1

N

N∑
i = 1

√
2V 2

SVi
+ V 2

SHi

3
. (7)

The results of the anisotropic inversion for the average 1-D model
are shown in Fig. 7. We can see that the synthetic dispersion curves
fit the observations well, indicating that the parametrization is suf-
ficient to model the average velocity profile accurately down to
600 m depth. These average velocity structure could, therefore, be
used as a reference model for 3-D depth inversion. Here, we find
the anisotropy in the shallow part ξ 1 = −2.79 per cent with 0.9 per
cent of uncertainty and in the deeper part ξ 2 = 9.7 per cent with
1.89 per cent of uncertainty for the average dispersion curves. The
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Figure 7. Anisotropic inversion of average dispersion curves of Scholte and Love waves. (a) The inversion result of Scholte wave dispersion curves associated
with the best-fit model; the fundamental mode in red, the first overtone in cyan, the observed dispersion curves with error bars of the fundamental mode in
magenta and the first overtone in blue colours. (b) The inverted and observed dispersion curves for Love wave and (c) VSH and VSV are the averaged best-fit
models.

uncertainties are computed as standard deviation of the anisotropy
from 1000 best-fit models. The negative anisotropy in the shallower
part is really low for average model. Three parameters (considering
only one layer of anisotropy in the deep part) could also fit the data
well. In that case, to perform inversion with four parameters might
not significantly improve the results. In order to investigate the im-
pact of inversion with three and four parameters, we use F-test in
Section 4.3.

4 A M B I E N T N O I S E S U R FA C E WAV E
T O M O G R A P H Y O F S C H O LT E
A N D L OV E WAV E S

After constructing the average 1-D velocity model, we proceed with
3-D tomography. At this stage, we retain only the fundamental-mode
measurements and do not use the first overtone data because it is
too noisy, when considering individual station pairs. The surface
wave tomography is done using a common three-step approach (e.g.
Ritzwoller et al. 2011). In the first step, the frequency-dependent
phase traveltime is measured for all noise CCs computed of every
individual virtual source. In the second step, the phase traveltime is
inverted to construct 2-D phase-velocity maps for Scholte and Love

waves at different frequencies using eikonal tomography technique
(Lin et al. 2009). In the final step, we invert the local dispersion
curves computed from 2-D phase-velocity maps for depth structure.
The regionalized dispersion curves for every cell of the grid are
inverted for a local 1-D S-wave velocity profile. The ensemble of
these 1-D velocity profiles is then combined to obtain a final 3-D
subsurface structure.

4.1 Scholte wave phase-velocity maps

The method discussed in Mordret et al. (2013b) is used here to
construct Scholte wave phase-velocity maps in the following steps:
first, the frequency-dependent phase traveltimes are computed from
each interstation noise CC and interpolated on to a regular grid of
50 × 50 m across the whole Valhall array, using spline in-tension
interpolation (Wessel & Bercovici 1998). The in-tension coefficient
takes care of smoothness of the interpolated surface between the
data points. Secondly, we compute the slowness maps for all 2320
receivers by taking the gradient of interpolated phase traveltime in
this period range. Thirdly, the 2-D slowness maps are constructed by
averaging all 2320 maps and its uncertainty is estimated by taking
their standard deviation.
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Figure 8. Final phase-velocity maps at (b) 0.7 s and (d) 1 s of Scholte wave and corresponding velocity uncertainty maps of (a) 0.7 s and (c) 1 s. The dashed
line in (b) indicates the shallow palaeochannels, the rectangle box in (d) indicates the large palaeochannel and the circle indicates the low-velocity anomaly.

Finally, we invert the slowness map to get a 2-D phase-velocity
distribution for the whole Valhall array at a particular frequency.
Fig. 8 shows results obtained at periods of 0.7 and 1 s. The un-
certainties in phase velocities for the whole grid are very low
(<20 m s−1, see Figs 8b and d). Also, these uncertainty maps
are used in the depth inversion to drive 3-D structure of Valhall. We
see high-velocity anomaly indicated with the dotted curve in 0.7 s
map (see Fig. 8a) that corresponds to the shallow palaeochannels as
interpreted by BP author (see, Sirgue et al. 2010). In the southeast
part of the area, a big palaeochannel is clearly visible in the 1 s map
(Fig. 8c, indicated with the rectangle) also interpreted by BP author
(see, Sirgue et al. 2010). The phase-velocity maps of Scholte wave
are computed from 0.7 to 1.6 s at an interval of 0.1 s.

4.2 Love wave phase-velocity maps

We use the TT CCs to measure the Love wave phase traveltimes.
From ZZ and TT average correlation gathers (Fig. 2), it can be
seen that Love wave signal is weak in comparison with the Scholte
wave. Therefore, for the Love wave fundamental-mode tomography,
a slightly different processing from Scholte waves is designed. To
increase the SNR for Love wave, for a particular virtual source
the CCs from every four closely located sensors, which lie within
the interstation distance of 100 m and 180◦ of azimuth angle, are
stacked before applying the eikonal tomography. This technique is
well known in exploration seismology to increase semblance for
velocity analysis (Yilmaz 2001). The horizontal resolution analysis

at Valhall performed by Mordret et al. (2013b) had shown that
the features could be resolved at the scale of 300–400 m. This
indicates that by stacking CC from close pairs of receivers, we do
not compromise the horizontal resolution in our data set. Fig. 9
shows the individual virtual source gather of 595th station (position
of this station is indicated with a star in Fig. 1) before (Fig. 9a) and
after (Fig. 9b) trace stacking. In the figures, black lines represent the
correlations that pass our SNR criteria and for these correlations,
we compute spectral phase. It can be seen that after stacking the
SNR as well as the phase information are improved (Fig. 9d).

After stacking closely located traces, we apply the same pro-
cedure to compute phase-velocity distribution for Love waves as
was applied for Scholte waves. Fig. 10 shows Love wave phase-
velocity maps at periods of 1 and 1.4 s. Similar to the Scholte waves,
the uncertainties of Love wave phase-velocity maps are very low
(<20 m s−1, see Figs 10b and d) for whole grid. In Love phase-
velocity map at 1.4 s, the big palaeochannel is clearly visible (in-
dicated with the rectangle in Fig. 10c). The phase-velocity maps of
Love wave are computed from 0.8 to 1.5 s at an interval of 0.1 s.
These phase-velocity maps along with the Scholte waves are used
to estimate the local dispersion curves.

4.3 Depth inversion of the Scholte and Love waves local
dispersion curves

We create local dispersion curves from the 2-D phase-velocity maps
at different periods for Scholte and Love waves fundamental mode
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Figure 9. (a) TT component correlations of 595th station to all other stations of the network and sorted with increasing interstation distance, (b) the spectral
phase of selected correlations. (c) The TT component correlations after near-trace stack, (d) the spectral phase of selected correlations in (c). These black lines
indicate the correlations for that we have computed spectral phase.

Figure 10. Final Love wave phase-velocity maps at (b) 1 s and (d) 1.4 s and corresponding velocity uncertainty maps of (a) 1 s and (c) 1.4 s. The rectangle
box in (d) indicates the large palaeochannel.
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Figure 11. The anisotropic inversion of a point at 529 km eastward and 6233 km northward. (a) and (b) the inversion with power-law parametrization of Scholte
and Love waves, respectively. (d) and (e) are the inversion result with the modified parameters for palaeochannel of Scholte and Love waves, respectively. (c)
and (f) are the Voigt’s average model computed with the two different parametrizations. (g) Valhall network, the position of a point that is inverted is shown by
a black bullet point.

and invert them jointly using the method described in Section 3
with the anisotropic parametrization. The local dispersion curve at
a particular location is sensitive to 1-D S-wave velocity structure
beneath that point. At every location, a total of 25 000 models are
tested with n1 = 10 000, ns = 500, nc = 5 and ni = 5. The procedure
of inversion is defined in Section 3.2 in details. As mentioned in
Section 3.2 for a point inversion, it takes 15 min but for local
inversion it takes 7 min for one point and we run inversion for
14 550 local points. Among 25 000 models, we select 1000 best-fit
models and take their average models to get the final 1-D vertical
profile and depth-dependent anisotropy using eqs (6) and (7). In
Appendix A, we compute the histograms (Fig. A1) of these 1000
misfit at four different locations to show that the choice of taking
the average of these 1000 cells does not change the final model.

The average anisotropy results from Section 3 show that in the
shallow part of Valhall the anisotropy is relatively low. Therefore,
we test how statistically significant was adding this extra parameter
in the inversion. For that, we perform inversion for whole grid by
considering two different parametrizations: one is with four param-
eters, as described above in Section 3 and another is with three
parameters, where we consider only one parameter of anisotropy
for the layer below 220 to 600 m. We use the standard F-test (Stein
& Gordon 1984; Trampert & Spetzler 2006; Pollitz & Snoke 2010)
based on χ 2 distribution defined as:

χ 2 =
N∑

i=1

(
di − dm

i

)2

σ 2
i

, (8)
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where, N is the total number of data points (the discrete phase-
velocity measurement at different frequencies in our example), d
is data, dm is the data prediction, m is the number of independent
parameters and σ is uncertainty in the velocity measurement.

The ratio of χ 2 from two different models is F distributed, that
allows to compute a probability to test the two χ2 are significantly
different or this is just a random fluctuation in the data. If a data
set is fitted with two different independent parameters p (inversion
with three parameters) and q (inversion with four parameters) and
q > p, then the second model should fit the data better (e.g. the
inversion with four parameters should fit the data better than the
inversion with three parameters in our case) or we could say that the
χ 2(q) should be less than χ 2(p). To test the increase in number of
parameters makes a significant improvement in fitting the observed
data with synthetic or not, we use the statistical parameter F:

F =
[
χ 2 (p) − χ 2 (q)

]
/ (q − p)

χ 2 (q) / (N − q)
. (9)

To get the significance of the two parametrization from the test, we
get the probability, Pf(F, v1, v2), where v1 = q − p and v2 = N − q
are the degree of freedom. The F-value is computed for different
models by using eq. (9). Thus, if we have Pf = 0.01 that means we
have only 1 per cent risk that the improvement in the fit is due to
chance, while 99 per cent chance is the extra parameter is warranted.

First, we performed inversion with three parameters (p) and then
with four parameters (q). Appendix B shows the misfits between
the inverted and observed dispersion curve are estimated using eq.
(5) at each location for both cases (Fig. B1) and it can be seen that
using four parameters misfit is improved in comparison of using
three parameters. The significance of the improvement in misfit is
measured using F-test in Appendix C. The probability distribution
indicate that we have 99 per cent chance the inversion with the four
parameters bring more information about the subsurface at Valhall
than the inversion with the three parameters (Fig. C1).

4.4 Modified parametrizations for the large palaeochannel

For most of the region, the misfit (Fig. B1b) is small (<0.7), im-
plying that the four parameters are sufficient to explain the data.
However, in the southeastern part of field, the misfit remains very
high. This is due to the presence of a large palaeochannel with very
high velocities at depths between 180 and 240 m (Sirgue et al. 2010;
Mordret et al. 2013a,b; de Ridder 2014). Therefore, we need to mod-
ify our parametrization to invert such a high-velocity anomaly at
that depth. For this, we use the power law eq. (2) with the addition
of the Gaussian–bell layer for varying depth, width and height to
model a high-velocity anomaly:

VS (d) = V0((d + 1)α − (d0 + 1)α + 1) + 	Vle
(d−dl )2

2σ2
l . (10)

where 	Vl is the velocity perturbation, dl is the depth and σ l is
the thickness of the layer. After few tests with inverting the average
dispersion curves of the palaeochannel region, we fix the depth and
the thickness of anomaly to 185 and 87 m, respectively, and keep
only one free parameter 	Vl. Therefore, our final anisotropic pa-
rameterization for the palaeochannel area includes five parameters:
V0, α, ξ 1, ξ 2 and 	Vl.

Fig. 11 shows the comparison of the depth inversion results at one
point located within the palaeochannel region (the point is indicated
with black bullet in Fig. 11g), using parametrizations including four
and five parameters. We clearly see that adding the fifth parameter
improves the fit between the dispersion curves significantly. The

Figure 12. (a) Velocity anomaly depth slice at 120 m below sea level, the
dotted lines are the shallow palaeochannels. (b) Velocity anomaly depth
slice at 180 m, the dotted square indicates the large palaeochannel and circle
indicates the low-velocity anomaly.

final 3-D velocity model is constructed by merging the inversion
results of the Gaussian layer parametrization for the palaeochannel
region with the results based on four parameters elsewhere. In Ap-
pendix D, we compute the misfit map (Fig. D1) of the hybrid model
where, it can be seen that the misfit anomaly disappears after the
hybrid inversion taken into account.

5 I N V E R S I O N R E S U LT S
A N D D I S C U S S I O N

We compute the 3-D Voigt average Vs isotropic model for Valhall
using eq. (7) and present two depth slices of velocity anomalies at
120 m (Fig. 12a) and 180 m (Fig. 12b) depths below sea level. Fig. 13
shows the vertical profiles along the section that are indicated on
the depth slice at 100 m (Fig. 13e).

In the depth slices, we can clearly see some geological feature
such as the shallow palaeochannels (indicated with the black dotted
lines in the velocity slice at 120 m depth), the low-velocity anomaly
and the large palaeochannel (indicated with the dotted circle and
a rectangle in the velocity map at 180 m depth, respectively). The
palaeochannels are the quaternary structure at Valhall. In the profile
DD′ the depth of the large palaeochannel is retrieved very well and
match with the results obtained in Sirgue et al. (2010) and Mordret
et al. (2014a). The shallow palaeochannel (Fig. 13a profile AA′)
extend up to the seabed, due to poor resolution in the shallower part
and limited higher frequency measurement in this study.

With the limited vertical resolution, we are able to extract the
precise information about the location, depth and the shape of the
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Figure 13. (a)–(d) show 2-D vertical slices across the 3-D velocity model along the profile shown on the depth slice at 100 m below sea level (e).

geological structure at Valhall within the 600 m depth that are
previously highlighted in de Ridder & Dellinger (2011), Mordret
et al. (2013a,b), Mordret et al. (2014a) and de Ridder (2014).

On the profiles BB′ and CC′ (Figs 13b and c, respectively), a
high-velocity anomaly can be seen in the shallow part of the model
overlaying a low-velocity anomaly in the deeper part. This kind of
velocity anomaly corresponds to the subsidence at Valhall (Pattillo
et al. 1998; Olofsson et al. 2003; Barkved et al. 2005; Zwartjes
et al. 2008; Hatchell et al. 2009). It is very well related to the oil
production, there is a compaction in the reservoir that leads to the
subsidence the whole overburden. The subsidence varies along the
rock column and at the reservoir level, it is stronger (∼10 m) than at
the surface (∼6 m; Kristiansen & Plischke 2010). This subsidence
differential stretches the rocks in the overburden from ∼180 m
down to the reservoir and the resulting volumetric strain decreases
the seismic velocities (Barkved et al. 2005). While, in the shallower
part the subsidence of the seafloor creates a contraction regime that
leads to the increase of the seismic velocities (Barkved et al. 2005).

We get significant negative and positive radial anisotropy at Val-
hall (Fig. 14). The negative radial anisotropy above 220 m depth
(Fig. 14a) could be due to the vertically oriented cracks. This type
of radial anisotropy is observed in the mantle below mid-ocean
ridge (Ekström & Dziewonski 1998; Zhou & Nolet 2006; Nettles
& Dziewonski 2008) and rarely observed in the crust (Huang et al.
2010; Xie et al. 2013; Mordret et al. 2015; Tomar et al. 2015; Xie
et al. 2015). Production induced seafloor subsidence can produce
radial discontinuities that result in anisotropy in top hundreds of
metres. This mechanism has been suggested as a possible cause
of the azimuthal anisotropy observed in shallow part of the Val-
hall overburden (Muyzert & Kommedal 2002; Wills et al. 2008;
Hatchell et al. 2009; Mordret et al. 2013c).

The prominent positive radial anisotropy (Fig. 14b) found be-
tween 220 and 600 m can be due to the finely layered medium
(stratification) (Backus 1962; Huang et al. 2010; Erdman et al.
2013; Wang & Montagner 2013; Jaxybulatov et al. 2014; Thomsen
& Anderson 2015). During the inversion, the azimuthal anisotropy,
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Figure 14. (a) The negative anisotropy and (b) corresponding uncertainty in the shallow part up to 220 m. (c) Positive anisotropy and (d) corresponding
uncertainty in the deep part from 220 to 600 m. The final anisotropy maps are computed after including the anisotropy using the modified parametrization for
palaeochannel region and power-law parametrization elsewhere.

which is significant in Valhall (Mordret et al. 2013a) is not cor-
rected. The velocities used to characterize the radial anisotropy
are isotropic Scholte and Love wave phase velocities. Azimuthal
anisotropy in Valhall is thought to be caused by subvertical cracks
in the shallow overburden with a dominant orientation. Negative
radial anisotropy, on the other hand, can be caused by subverti-
cal cracks with random orientations. It is possible that the small
magnitude of negative radial anisotropy in the shallow part of the
model indicates that there are few randomly oriented cracks and that
azimuthal anisotropy dominates at this level. However, the deeper
positive radial anisotropy attributed to the sediments horizontal lay-
ering can hardly be biased by azimuthal anisotropy, therefore we
are confident about our deep positive radial anisotropy results, even
without azimuthal anisotropy correction.

6 C O N C LU S I O N S

Only 6.5 hr of continuous recording of noise data at Valhall LoFS
network allowed us to image Valhall structure down to 600 m
depth and to observe high-resolution 3-D S-wave velocity struc-
ture with the depth-dependent radial anisotropy information. A set
of 2-D phase-velocity maps of Scholte wave at periods 0.7–1.6 s
and of Love wave phase-velocity maps at periods 0.8–1.5 s were
constructed to image the near-surface structure of Valhall using
the eikonal tomography method. Near-trace stacking helps us to
improve SNR for Love wave signal. A Monte Carlo inversion is
applied to invert average dispersion curves of Scholte and Love
waves to get 1-D isotropic velocity (VS). Our depth inversion results

show good agreement with the geological structure already found
using controlled source seismic observations (Sirgue et al. 2010).
The ensemble of the data could not fit with an inversion based
on an isotropic parametrization. Therefore, we included the depth-
dependent radial anisotropy into the inversion. The local dispersion
curves obtained from phase-velocity maps, are inverted to obtain the
3-D distribution of VSV and VSH in the uppermost crust (down to the
depth of ∼600 m). Summarizing these distributions with their mean
and standard deviation at each location, we observed a significant
negative radial anisotropy (VSV > VSH) with the average amplitude
of −10 per cent ± 1.5 per cent in the shallow layers and the pos-
itive radial anisotropy (VSV < VSH) with the average amplitude of
15 per cent ± 2.5 per cent in the deeper layers at Valhall.
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A P P E N D I X A : H I S T O G R A M O F 1 0 0 0
B E S T M I S F I T

We compute histogram of the 1000 best misfits (Fig. A1) for four
cells that are chosen randomly from different position. It can be seen
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Figure A1. Histogram of the 1000 best misfits, these are chosen randomly from four different cells and at different locations. Although the misfit for full
tomography goes from 0 to 0.8. The minimum and maximum misfits (within 1000) in (a) 0.554, 0.558; (b) 0.7155, 0.718; (c) 0.7302, 0.7314 and (d) 0.6676,
0.6686.
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that there are few outliers in these 1000 models but these outliers are
also very close to the best misfit and therefore they do not change
the final results. Also we show the what misfit span is shown at each
point. By misfit span, we mean (max (1000 misfits) – min (1000
misfits))/(max (absolute - misfit) – min (absolute - misfit)). Here,
absolute minimum misfit is 0 and absolute maximum misfit is 0.8.
So, for example, for the first point (Fig. A1a), the span would be
(0.558 − 0.5545)/(0.8 − 0) = 0.44 per cent meaning that the width
of the distribution of the 1000 best misfits span only 0.44 per cent
of the width of the distribution of all misfits (for the whole map).
Similarly, for second point (Fig. A1b), the span is = 0.34 per cent,
for third point (Fig. A1c), the span is = 15 per cent and for fourth
point (Fig. A1d), the span is = 0.11 per cent. Therefore, the 1000
best misfits are very concentrated around their best value.

A P P E N D I X B : M I S F I T C O M P U TAT I O N

Fig. B1 shows minimum misfit maps that are constructed com-
bining the misfits from all 1-D vertical profiles, computed for the
inversion with three parameters (Fig. B1a) and with four parameters
(Fig. B1b). It can be seen that the misfit in the inversion is improved
using four parameters in comparison of using three.

Figure B1. The maps of the minimum misfits from the inversion with
the power-law parametrization at each cell; the inversion with (a) three
parameters and (b) four parameters.

A P P E N D I X C : F - T E S T

We then check if this improvement in misfit is significant. The F-
value is distributed with q − p and N − q degree of freedom; here,
N = 18 (10 phase-velocity measurement of Scholte waves and 8
phase-velocity measurement of Love waves), first we fit N = 18
points dispersion curves with p = 3 parameters and second, with
q = 4 parameters. The probability Pf(F, v1,v2), for individual depth
profile at all locations is shown in Fig. C1. One can see that the
probability is less than 1 per cent for whole grid except some points
in the northern part. Therefore, we have 99 per cent chances that the
inversion with the four parameters bring more information about the
subsurface at Valhall than the inversion with the three parameters.
On the basis of this statistical analysis, it is considered that the two
layers of anisotropy significantly improved the inversion results,
hence the inversion with four parameters is considered for final
model.

Figure C1. The p-value map from F-test to compare the two parametrization
and check that the improvement in the fit with four parameters is significant
or not. The probabilities are around 0 per cent for whole region except some
points in north part of the network, it indicates that we need to include
the two layers of anisotropy in the inversion, while in the north part of the
network the negative anisotropy should be weak.

A P P E N D I X D : M I S F I T C O M P U TAT I O N
F O R H Y B R I D I N V E R S I O N

Fig. D1 shows misfit map of the hybrid model, where misfit anomaly
due to palaeochannel disappears.

Figure D1. The map of minimum misfits for the final model that is con-
structed using the Gaussian layer parametrization for large palaeochannel
region and power-law parametrization elsewhere. It could be noted that
the misfit anomaly in the southeast part is disappeared with the modified
parametrization.


