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SUMMARY

We present a new method for wave propagation in global Earth models based upon the

coupling between the spectral element method and a modal solution method. The Earth

is decomposed in two parts, an outer shell with 3D lateral heterogeneities and an inner

sphere with only spherically symmetric heterogeneities. Depending on the problem, the

outer heterogeneous shell can be mapped as the whole mantle or restricted only to the

upper mantle or the crust. In the outer shell, the solution is sought in terms of the spectral

element method, which stem from a high order variational formulation in space and a

second-order explicit scheme in time. In the inner sphere, the solution is sought in terms

of a modal solution in frequency after expansion on the spherical harmonics basis. The

spectral element method combines the geometrical flexibility of finite element methods

with the exponential convergence rate of spectral methods. It avoids the pole problems

and allows for local mesh refinement, using a non conforming discretization, for the reso-

lution of sharp variations and topography along interfaces. The modal solution allows for

an accurate isotropic representation in the inner sphere. The coupling is introduced within

the spectral element method via a Dirichlet-to-Neumann (DtN) operator. The operator is

explicitly constructed in frequency and in generalized spherical harmonics. The inverse
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transform in space and time requires special attention and an asymptotic regularization.

The coupled method allows a significant speed-up in the simulation of the wave propa-

gation in earth models. For spherically symmetric earth model, the method is shown to

have the accuracy of spectral transform methods and allow the resolution of wavefield

propagation, in 3D laterally heterogeneous models, without any perturbation hypothesis.

Key words: Global wave propagation – coupled method – spectral elements – modal

solution – surface waves – body waves – synthetic seismograms.

1 INTRODUCTION

The availability of continuously increasing large data sets of high quality broadband digital data from

global instrument deployments and global data centers, like IRIS or GEOSCOPE, have been critical

in fostering global seismology. Improvement of seismic earth models must incorporate new numerical

methods that allow the computation of detailed waveforms and provide insights into the physics of the

wave propagation in models with a broad range of heterogeneity scales. This new challenge takes place

at the same time as the advent of parallel computers. Progress in computational seismology is now

bringing direct numerical simulation of wave propagation back into the heart of global seismology.

In the past decades much effort has been expanded to improve images of the large scale variations

of velocity heterogeneities in the earth’s mantle with the aim of inferring some information on the

thermal and chemical heterogeneities and to relate them to dynamic processes. Arrival times (Vasco

& Johnson, 1998; van der Hilst et al., 1997; van der Hilst et al., 1998; Grand et al., 1997), differential

travel times of surface phases and body waves (Su et al., 1994; Liu & Dziewonski, 1998; Masters

et al., 1996), normal mode coefficients (Resovsky & Ritzwoller, 1999), and waveform analysis (Li

& Romanowicz, 1996) have been used in global tomography providing increasing evidence that the

earth’s mantle is laterally heterogeneous in a broad range of scales, with coherent large scale patterns.

Tomographic models, derived from global or regional studies, agree reasonably well, at least between

100 and 600 Km, on the long wavelength structure, i.e. the first 12 degrees in spherical harmonics with

a spatial resolution of the order of 1500 Km at the surface (Dziewonski, 1995; Ritzwoller & Lavely,

1995). Regional tomographic models tend, however, to predict somewhat higher power spectral den-

sity at shorter wavelengths than can be resolved in global studies (Chevrot et al., 1998b; Chevrot et al.,

1998a). An increasing number of indirect studies suggest the importance of small scale heterogeneities
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both in the upper (Aki, 1981; Kennett, 1997; Kennett & Bowman, 1990) and lowermost part of the

mantle (Lay, 1995; Ding & Helmberger, 1997; Lay et al., 1997; Lay et al., 1998; Pulliam & Sen, 1999;

Kendall & Silver, 1996; Matzel et al., 1996; Vinnik et al., 1996).

The impact of the theoretical assumptions used in the methods for computing synthetic seismo-

grams has not yet been fully assessed but recent studies by Clévédé et al. (2000) and Igel et al. (2000)

have pointed out the importance of the theoretical approximations in the tomography models. Direct

numerical simulation (DNS) methods are now required to: understand the physics of wave propagation

in heterogeneous earth models; assess the impact of the theoretical approximations used in practice

to compute the synthetic seismograms; assess the actual resolution of the tomographic models and

of the seismic records with respect to small scale heterogeneities. However, in contrast to the rapid

progress of computational seismology in exploration geophysics, DNS methods are less advanced in

global seismology in part because of the large scale of the system and of the pole problems associated

with the spherical coordinates system.

The principal methods used today in global seismology for the computation of synthetic seismo-

grams are based upon spectral transform methods (STM) (Gelfand et al., 1963; Newman & Penrose,

1966; Takeuchi & Saito, 1972; Phinney & Burridge, 1973; Wu & Yang, 1977), which expand the

solution, and the physical variables, into vector spherical harmonics defined on a spherical reference

configuration. These methods are exceptionally accurate and stable for smooth functions with a uni-

form resolution on the sphere and provide an elegant solution to the so-called pole problem.

Among these methods, normal mode summation methods have long been used in global seismol-

ogy (Dahlen & Tromp, 1998; Lognonné & Clévédé, 2000). The normal modes of a reference spherical

configuration, and the corresponding eigenfrequencies, are computed as intermediate functions for the

computation of the seismograms at the surface. Asphericity and lateral heterogeneity distributions

are then considered as perturbations. Perturbation theories (Dahlen, 1969; Woodhouse, 283; Valette,

1987; Valette, 1989; Lognonné, 1991; Dahlen & Tromp, 1998; Lognonné & Clévédé, 2000) rely on

two approximations: small lateral variations of amplitude and small lateral gradients. The most so-

phisticated perturbative normal mode methods (Lognonné & Romanowicz, 1990; Lognonné, 1991;

Lognonné & Clévédé, 1997; Lognonné & Clévédé, 2000) requires the coupling of modes along the

same dispersion branch while the multiple scattering is resolved up to the accuracy limit of the ac-

tual order of the perturbative expansion. Even for only a second order expansion, these methods face

serious computational limits when dealing with dominant periods of less than 50 seconds. For practi-

cal analysis, high frequency (asymptotic) approximations (Romanowicz & Roult, 1986; Romanowicz,

1987; Li & Tanimoto, 1993) are combined with a Born approximation (Snieder & Romanowicz, 1988;

Tromp & Dahlen, 1992; Pollitz, 1998; Friederich, 1998) in the computation of synthetic seismograms.
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High frequency approximations assume that the wavelengths of the heterogeneities remain large com-

pared to the dominant propagating wavelength while first order Born approximations assume that

heterogeneities can be considered as secondary sources. Despite continuous theoretical improvements

and the many successes of refined asymptotic theories, especially for surface waves, these methods

face serious theoretical problems when finite frequency effects on the whole waveform are important.

Higher order asymptotic approximations become rapidly computationally expensive and can not deal

with localized zones of high velocity contrasts.

Other spectral transform methods directly solve the elastodynamics equation in the frequency do-

main, bypassing the intermediate step of calculating the normal modes. For spherical earth models, the

method developed by Friederich & Dalkolmo (1995) integrates the strong form of the elastodynamics

equation expanded spatially on the vector spherical harmonics basis. The synthetic seismograms are

then obtained after summation over the spherical harmonics and a numerical inverse Fourier transform.

Another interesting method based on a weak variational formulation of the elastodynamics equation in

the frequency domain was proposed by Hara et al. (1993) and Geller & Ohminato (1994). This method

makes use of a weighted residual formalism (Finlayson, 1972; Zienkiewicz & Morgan, 1983), in which

boundary and continuity conditions becomes natural boundary conditions with the help of appropriate

surface integrals. Using a Galerkin approximation, the trial and the weight functions are chosen to be

the tensor product of linear splines in the radial direction and generalized spherical harmonics basis

functions. Cummins et al. (1994), Cummins et al. (1994) and Geller & Ohminato (1994) used the

direct solution method (DSM) to compute synthetic seismograms for laterally homogeneous media in

spherical coordinates. In this case, there is no coupling between the toroidal and the spheroidal modes.

Due to the degeneracy of the spherically symmetric case, the algebraic system can be decomposed into

smaller separate banded subsystems for spheroidal and toroidal displacements that are solved for each

angular and azimuthal order. For laterally heterogeneous models, all angular and azimuthal orders

become coupled and the computational requirement increases drastically. This implies some approx-

imations such as a truncation of the coupling between angular orders, the restriction to axisymmetric

lateral variations (zonal) (Cummins et al., 1997), or the use of Born approximations (Takeuchi et al.,

2000).

All these methods, based on global spectral transforms, usually solve the elastodynamics problem

in frequency and do not provide direct informations on the wave propagation. Moreover, spectral

transform methods involve an expansion of the variables into a non local spherical harmonics basis

as well as the computation of the spatial derivatives in this basis. The major drawbacks are therefore:

the need for high order spherical expansions when the lateral variations become rough and spatially

localized; the difficulty to incorporate mesh refinement; the inherent computational complexity and the
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communication overheads. Despite recent improvements (Kostelec et al., 2000), the transform requires
���������

operations, where
�

is the number of points in latitude. On distributed memory architectures,

the global structure of the communication between processors involved in this transform imposes an

overhead which becomes critical as
�

is increased.

A limited number of studies have been recently conducted toward direct numerical simulation

of seismic wave propagation in spherical earth models. They are based upon finite differences or

pseudo-spectral methods. Finite differences (FD) have been widely used in exploration seismology.

They however suffer from grid dispersion near strong gradients and require a large number of grid

points to achieve the expected accuracy (Kelly et al., 1976). Balancing the trade-off between numeri-

cal dispersion and the computational cost turns out to be quite difficult (Virieux, 1986; Dablain, 1986;

Bayliss et al., 1986; Levander, 1988) and critical in global seismology (Alterman et al., 1970). Higher

order methods, like the pseudo-spectral methods, enable to achieve the expected accuracy using fewer

grid points. Maximum efficiency is obtained when using fast Fourier transforms but for more general

boundary conditions the set of truncated Fourier series are often replaced by a set of algebraic poly-

nomials (Kosloff et al., 1990; Fornberg, 1996), Chebychev or Legendre, with the drawback of intro-

ducing non uniform grid points. This limitation can lead to severe stability problems that can be partly

overcome with the help of generalized coordinates (Fornberg, 1988; Kosloff & Tal-Ezer, 1993). Finite

differences and pseudo-spectral methods are based on a strong formulation of the elastodynamics ini-

tial boundary value problem and face severe limitations for an accurate approximation of free-surface

and continuity conditions which is crucial for long term simulation of surface and interface waves.

Finite differences and pseudo spectral methods have been used in global seismology under rather re-

stricted approximations: axisymmetric P and SV (Furumura et al., 1998; Furumura et al., 1999) or

SH (Igel & Weber, 1996; Chaljub & Tarantola, 1997) wave propagation avoiding the inherent pole

problems associated with spherical coordinates. The major problem with these grid-based methods

is that, unlike global spectral transform methods, they fail to provide an isotropic representation of

scalar functions on a sphere. Latitude-longitude grid points become clustered near the poles leading

to severe CFL conditions. This problem can be partly circumvented when using latitude-longitude

pseudo-spectral solvers (Merilees, 1973; Fornberg, 1995) in conjunction with suitable spectral filters

(Jakob-Chien & Alpert, 1997; Yarvin & Rokhlin, 1998) or when resorting to a multidomain approach

(Sadourny, 1972; Heikes & Randall, 1995; Rančić et al., 1996). However in the latter case, one is

faced with the non trivial problem of how to glue together the different coordinate systems. This im-

plies overlapping regions between the mesh subdomains which put severe stability conditions. These

techniques have not yet received much attention in the seismological community.

Another direction, that was recently explored (Chaljub, 2000; Chaljub et al., 2001), is to resort to
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the spectral element method (Patera, 1984; Maday & Patera, 1989; Bernardi & Maday, 1992). This

method which stems from a variational formulation of the elastodynamics equations (Priolo et al.,

1994; Faccioli et al., 1997; Komatitsch & Vilotte, 1998), combines the geometrical flexibility of con-

ventional finite element methods with the exponential convergence rate associated with spectral tech-

niques. It provides an optimal dispersion error and an accurate representation of surface and interface

waves. The first problem in applying the spectral element method in global seismology is the paving

of a 3-sphere using hexahedra, a natural element for efficient sum-factorization techniques. This was

solved (Chaljub, 2000; Chaljub et al., 2001) by first the tilling of embedded spherical interfaces in

six quadrangular regions using the central projection (Sadourny, 1972; Ronchi et al., 1996) of a cube

onto the circumscribed spherical interface, then by inscribing a cube at the center of the sphere with

a smooth transition between the six faces of the inner cube and the innermost spherical interface

(Chaljub, 2000). Such a discretization is shown to provide an almost uniform tilling of the spherical

interfaces and to avoid the pole problems and the singularity at the center of the sphere. Moreover, all

the transformations can be defined analytically, and perturbed to map aspherical geometries or inter-

face topographies. In contrast with finite differences, the spectral element method provides a natural

setting for handling the connection between the six regions produced by the central projection. Spec-

tral element can then be formulated in conjunction with a hybrid variational formulation (Chaljub,

2000; Chaljub et al., 2001) allowing : an efficient coupling between solid and fluid domains at the

core mantle boundary; a non conforming domain decomposition and mesh refinements with the help

of the mortar method (Bernardi et al., 1994; Ben Belgacem & Maday, 1994; Ben Belgacem, 1999).

Such mesh refinement flexibility is crucial for an accurate representation of localized heterogeneities

within a global model while reducing the computational cost. Coupled with an explicit second or-

der predictor-corrector scheme in time, the method can be very efficiently parallelized on distributed

memory architectures as shown in Chaljub et al. (2001). Even though this method should become

one of the leading method for direct numerical simulation in global seismology, it still requires front

end computational resources for realistic problems, typically 128 processors with more than 90 GB

distributed memory for a dominant period of less than 30 seconds, which still preclude its use in a day

to day basis.

It is worth noting that no one scheme can be expected to be optimal for the entire range of appli-

cations we might wish to consider in the context of global seismology. Within the actual limitation of

the computer resources, beside few front end infrastructures, it is of importance to explore the possi-

bility of combining the respective advantages of the spectral transform and spectral element methods

for exploring some realistic 3D problems. We present here a new method that couple spectral element

and normal mode summation methods. Such a coupled method actually allows the computation of
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synthetic seismograms and wavefield propagation in laterally heterogeneous earth models down to

periods of 30 seconds on a medium size parallel architecture, typically a cluster of 32 processors and

32 GB distributed memory. The underlying idea is that, with regard to the actual resolution of the

broad-band records, it is quite reasonable to focus on the effect of lateral heterogeneities confined in

an outer shell while the corresponding inner sphere is still approximated as spherically symmetric.

Depending on the problem in hand, the outer heterogeneous shell can be mapped as the whole mantle,

down to the CMB, or restricted to some portion of the upper mantle or to the crust. In this approach, a

modal solution is sought for the inner sphere while the high-order spectral element solution is retained

for the heterogeneous outer shell. The coupling between the spectral element method, formulated in

space and time, and the modal summation method, formulated in frequency and wave-number, re-

quires some original solution. Within the spectral element method, the a coupling is introduced via

a dynamic interface operator, a Dirichlet-to-Neumann (DtN) operator, which can be explicitly con-

structed in frequency and generalized spherical harmonics. The inverse transform in space and time

requires however an optimal asymptotic regularization. Such a coupling allows a significant speed-up

in the simulation of the wavefield propagation and the computation of synthetic seismograms in later-

ally heterogeneous earth models. It is of interest to note here that in the coupled method the outer shell

can be aspherical providing that the coupling interface remains a spherical interface. The interface can

then be chosen to be an artificial coupling interface below the CMB. This still reduces significantly

the computational requirements since the stringent CFL constrains come from the core discretization

in the full spectral element method.

In this paper, we focus on the construction of the DtN operator which is the crucial part of the

method and applications are restricted to spherical earth models for which we do have solutions to

compare with. Applications to laterally 3D earth models are part of two companion papers (Capdev-

ille et al., 2002; Capdeville et al., 2002). The paper is organized as follows. We first introduce the

coupling method in a simple 1D example where the explicit calculation of the DtN operator is pro-

vided with several numerical examples to assess the accuracy of the method. We then explicit the

construction of the DtN operator in the 3D case in conjunction with the spectral element method de-

veloped in Chaljub (2000) and Chaljub et al. (2001). Several numerical tests are performed in order to

illustrate the accuracy of the method and the efficiency of the asymptotic regularization of the DtN op-

erator. Then the method is used to compute the synthetic seismograms in the case of the PREM model

and a simple example is provided for the SAW12D model. In conclusion, we outline some ongoing

extensions especially for the study of the CMB zone.
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2 PROBLEM STATEMENT AND EQUATION OF MOTION

We consider a spherical earth domain � , with the boundary ��� and internal radius ��� , see Fig. 1.

The domain is decomposed in solid and fluid parts, ��� and �	� respectively, where the fluid part

typically includes the outer core. We assume here for sake of simplicity that each of these subdomains

is spherical with no interface between two fluid subdomains. The solid-solid interfaces are denoted

 ��� , the solid-fluid interfaces


 ��� and the set of all the interfaces



.

For a spherical non rotating earth model, the linearized momentum equation, around an initial

hydrostatic state of equilibrium, is given by :


 ��� � ����� ������� �
� � �

��� � ������� ����� ������� ���
(1)

where � is the elasto-gravity operator which, when neglecting the perturbation of the earth gravity

potential, is given by :

� � ������� ���! #"%$'& � � � � � "( )&+*-, �  ." � 
 � �0/	1 (2)

Here 
 is the initial density,
/

is the unperturbed gravity acceleration,
�

is a generalized source term

and
& *

the initial reference hydrostatic stress. The perturbed displacement � and the associated stress

perturbation
&

have to satisfy the following continuity relations :

243 � ������� � 3 5 ��6 78�:9 
 ��� � (3)
2;3 � ������� �<">= ��� � 3 5 ��6 78�:9 
 ��� � (4)

2;3 & � � � ������� �<">= ��� � 3 5 ��6 78�:9 
 �
(5)

with the initial conditions

� �����?6 �@��6 A �8�
� �
�����?6 �@��6 78�:9 � �

(6)

and the following free surface condition

& ������� �B1C= ��� �D��6 7 � 9 ��� �
(7)

where
= ��� �

denotes the unit outward normal.

In the solid parts �E� , the elasto-gravity operator can be rewritten as :

� � ������� ���! #">& � � � �  #" � 
 � �0/GFH � 
 � ">/ ��� (8)

where for a linearly elastic medium, the Lagrangian stress perturbation is simply defined as :

IKJML � � � ������� ����N JMLPOKQ ��� �SR OUT Q ������� ��� (9)

with
R OUT Q � � R OWV �YX Q and

N JMLPOKQ is the elastic tensor with all the major and minor symmetries.
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In the following, the lateral heterogeneities of interest are restricted within an outer spherical shell

��� and only radial heterogeneities are retained within the inner sphere ��� . The interface between

these two domains will be denoted
�

. Even though such a partitioning might appear quite artificial, it

has some practical interest. With regard to the actual resolution of the observations, it is quite reason-

able, when studying the mantle lateral heterogeneities, to assume only radial heterogeneities within

the earth core. The artificial boundary
�

can therefore be chosen at the core-mantle boundary or below

the CMB. In the latter case, the earth model can be aspherical as far as the coupling boundary remains

spherical. When focussing to the strong lateral heterogeneities within the crust, or the upper litho-

sphere, the interface
�

can be set somewhere within the mantle. The aim is to take advantage of the

high order variational formulation, in space and time, only within the domain ��� , where strong lateral

heterogeneities are assumed to be important depending on the problem in hand, while taking advan-

tage of the modal summation method in ��� . This leads to a significant speed up in the computation of

seismograms while retaining informations on the complicated wave propagation within the laterally

heterogeneous parts. The coupling between the variational formulation of the elastodynamic problem,

formulated in space and time, and the modal summation method, formulated in frequency and wave

number, requires special attention. We first consider a simple 1-D scalar example to introduce the

methodology and then extend it to more realistic 3D problems.

3 A ONE DIMENSIONAL EXAMPLE

We first consider, Fig. 2, a simple 1-D domain � of length � . The domain is decomposed into two

subdomains ��� � 2 6 � � * 5 and �	� � 2 � * � � 5 . The interface between the two domains
� ��
 �
� is

oriented by the unit outward normal
=��

, directed from the domain ��� toward ��� . The interface
�

may be related to a physical discontinuity or not. The elastic medium is characterized by the density

 � X � , the elastic parameter � � X � and the sound speed � � X � ��� � � X � V 
 � X � . The source condition is

taken as a collocated point force, at X � X�� 9 � � , with � ����� � X � X�� ��� � � � � * � where
�

denotes

the Dirac distribution,
�

a time wavelet centered at
� * and

�
the amplitude of the force.

The problem involves only a scalar displacement field in the X -direction, � � X ��� � � R � X ��� � �"!
and the only non zero stress component I � X ��� �	� I !#! � X ��� �E� � � X � � R � X ��� � V �YX . We introduce the

restrictions
R � and

R � of the displacement
R

to ��� and �$� respectively as
R � � X ��� ����R � X ��� �B� 7 X 9

��� and
R � � X ��� ��� R � X ��� �B��7 X 9 �%� .

The scalar wave equation
7 X 9'&

is :


 � X � �Y�
R � X ��� �
� � �

� �
�YX

( � � X � � R � X ��� ��YX ) � � � X ��� ��� (10)
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with the initial conditions:

R � X �?6 ����6
and

� R
� �
� X �?6 ����6 �

(11)

and at both ends, a free-boundary condition is assumed:

� ��6 ��� ��� � � � X � � R � X ��� ��YX
���� !�� * ��6 �

(12)

� � � ��� ��� � � X � � R � X ��� ��YX
���� !���� ��6 �

(13)

where
� � X ��� ��� I " = is the traction defined on the interface at position X with the unit outward normal

vector
=

. Across the solid-solid interface
�

, the solution has to satisfy the continuity conditions of both

displacement and traction :

2;3 R � � * ��� � 3 5 ��R �� � � � � R �� � � ����6 �
(14)

2;3 � � � * ��� � 3 5 � � �� � � � � � �� � � � ��6 �
(15)

where

R��� � � ��� �
	
���
 * T ��� * R � � *���� ��� � and
� �� �0��� ��� �
	
���
 * T ��� * � � � *���� ��� ���

In order to illustrate the coupling between the spectral element and the modal summation methods

in this simple 1-D case, the problem will be solved using a spectral element approximation within the

��� and a modal summation method within ��� . The coupling between the two solutions requires an

explicit matching of the traction and displacement at the interface
�

.

3.1 Variational formulation

The spectral element approximation of the scalar wave equation in the subdomain � � , is first out-

lined. The solution
R � , i.e. the restriction of the solution

R
to the domain � � , is searched in the space��� � � � � of the square-integrable functions with square-integrable generalized first derivative. Intro-

ducing a time interval, � � 2 6 � � 5
, the solution belongs to the space ��� of the kinematically admissible

displacements :

��� ���WR � X ��� � 9 � � � � � �! � �#" �%$'&)( 1
(16)
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The variational formulation of the problem (10)-(11) reads : find
R � 9 ��� , such that

7���9 � and
7�� 9 � �( � � 
 � � R �

� � � ) F������ ��R ��� � �	� � � � F�
�� � � � � R � ��
 � � (17)

� � � 
 R ��� �� � � * ��6 �
(18)��� � 
 � � R ��� �� � � * ��6 �
(19)

where
�0" � " �

is the classical � � inner product with

��� ��R �����
��� � " R N X 1 (20)

The bilinear form
� �0" � " �

defines the symmetric elastic strain-energy inner product :

� ��� ��� �@���
��� I ��� �  ���� N X ���

��� � � �� X � �� X N X � (21)

and the bilinear form

0" � "�
 �

is defined as:


�� � � � � R � ��
 � ��� � � " � � � R � ��N X ����� " � � � R � � � 3 ��� 1 (22)

The last term involves the traction along the interface between the two subdomains �'� and ��� .

Taking into account the continuity conditions (14), and assuming that we are able to compute the

solution that characterize the response of the domain �'� to a prescribed displacement
R �� � R �� on

the interface
�

, the interface operator � will relate the traction
� � on

�
to that imposed displacement :

�  � �� � � �+� � � R �� � � � ��� (23)

where � is defined in terms of a convolution. With the continuity conditions (14), the interface operator

relates directly the traction
� � to the displacement

R � on that side of the interface as a result of the

dynamic behavior of the domain ��� :

�  � �� � � �+� � � R �� � � � ��1 (24)

The interface operator � is a Dirichlet to Neumann (DtN ) operator which, for a given displacement

on the interface (Dirichlet condition), provides the associated traction (Neumann condition) on the

interface. Such an operator was first introduced for absorbing boundary conditions (e.g. Givoli &

Keller (1990) or Grote & Keller 1995). For the domain ��� , the DtN operator � , defined on
�

, acts as

a dynamical boundary condition in traction.

3.2 Spatial discretization

In order to solve numerically the above problem, the physical domain � � is discretized, Fig. 2, into� � non–overlapping elements � � �"! �$# � 1 1 1>� � � , such that � �&%�')(� � � � � . For each segment � � ,
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an invertible local geometrical transformation � � is defined which map the reference segment � �
2 � # � # 5 into � � , i.e. X ��� ��� � � ��� � , where

�
is a local reference coordinate system defined on � . In the

1D case, � � is trivial to define, as well as its inverse.

In the following, the upper-script � , for the restriction of
R

to the domain ��� , is dropped unless

some possible confusion, and
R��� denotes the restriction of

R
to the element � � .

Associated with the spatial discretization of �$� , a piecewise-polynomial approximation of the

kinematic admissible displacements is introduced :

� �� ���YR � 9 � �  WR � 9 � � � � � � and
R ��
	 � � 9�� � � � ��
 �

(25)

where
� � � � � is the set of the polynomials defined on � and of degree less than or equal to

�
, and

	 is the functional composition symbol. The discrete solution
R��

is therefore a continuous function

such that its restriction to each element � � can be represented in terms of local polynomials after

transformation to the reference element � . The spectral element approximation can be characterized

by the total number of elements ��� and the polynomial degree
�

on the reference element � . The

discrete variational problem then reads: find
R��E9 � �� , such that

7��D9 � and
7���� 9 � �� :( � � � 
 � � R �

� � � ) F���� � � ��R ��� ��� � � � � � F�
�� � � � � R � ��
 � � (26)

� � � � 
 R � � ��� � � * ��6 �
(27)

� � � � 
 � � R ��� ��� � � * ��6 1
(28)

The discretization is completed by the definition of a discrete inner product : a Gauss-Lobatto-Legendre

(GLL) quadrature allows the computation of each element integral after transformation into the ref-

erence element � . This quadrature defines
�#F #

integration points,

�� �J ��� � 6 � � � , as the zeros

of the polynomial
� # � � � ������ where

� � is the Legendre polynomial of degree N defined on � . The

polynomial basis on � can now be defined by the Lagrange polynomials

�� �J � ��� # � � � , associated

with the GLL points, such that
� �J ��� L �G� � JML , where

�
is the Kronecker symbol. The value of the

displacement at any arbitrary point X 9 � � is obtained through a Lagrange interpolation,

R �� � X ���
J � �!
J � *

� �J ��� �SR �J � (29)

where X � � � ��� � . The discrete displacement
R �

is defined uniquely by its values
R J � at the collocation

points � � ��� J � where
� J are the GLL integration points on � .

Expanding
� �

as in (29), the discrete variational problem (26) is shown to be equivalent to the set

of algebraic equations
7��D9 � :

" �Y�$#
� � �

� � � ! � � � J ' � � # � F �&% � � � # ��� (30)
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where # is the displacement vector of all the displacements associated to the total number of integra-

tion points, e.g., defined as the set of all the integration points defined at the element level. The mass

matrix
"

, the internal force vector
� J ' � � # � , the source term

� � ! � results from the assembly of the

element contributions
" �

,
� J ' � T � and

� � ! � T � according to the connectivity of each element with

" �JML � � � ' (! � � �
�!
Q � *

$ � �J ��� Q � 
 ��� Q � � �L ��� Q � � � � � ��� Q ��� Q , � (31)

� J ' � T �J �
� � ' (! � � �

�!
Q � *

� � ��� Q � � � 'L� � ��� Q �
�!
J � *�� � � �J� � ��� Q �SR �J�� � � � � � ��� Q � � � � � Q
	 �

(32)

� � ! � T �J �
� � ')(! � � �

�!
Q � *

$ � �J ��� Q � � � ��� Q � � � � � ��� Q ��� Q , � (33)

where
� Q are the integration weights associated with the GLL quadrature. It is worth to note here that

by construction the element mass matrix, and therefore the global mass matrix, is diagonal leading to

fully explicit schemes in time and great computational efficiency. The same procedure can be apply to

the DtN interface contribution which lead to a simple collocated expression in this simple 1D example.

The algebraic ordinary differential system (30) is solved in time using a classical Newmark scheme

(Hughes, 1987) with an explicit predictor-corrector scheme. Such a time stepping is conditionally

stable and requires that� �
� � ���)����� X� �
(34)

where � X is the size of the smallest grid cell, � the wave velocity and C the Courant number. The

average size of a spectral element for a fixed size scales as � � �� while the minimum grid spacing

between two Gauss-Lobatto-Legendre points within an element occurs at the edge and scales as
� � � .

Therefore the critical time step
� ����� ��� � � �� � � � � and a compromise has to be found between

the degree of the polynomial approximation and the number of elements. For the 1-D example, an

empirical value of
� ��6 1����

has been found to provide stable results.

3.3 Construction of the DtN operator in the frequency domain

The construction of the DtN operator requires the solution of the scalar wave equation in � � assuming

a Dirichlet boundary condition on the interface
�

, i.e.
R �� � � ��� R �� � � � . This problem can be solved in

the frequency domain, .i.e.� � 
 � X ���R � � X ��� �%F �
� X

( � � X � � �R � � X ��� �
� X ) ��6 �

(35)
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with the following boundary conditions :� � X ��������� ! � X ��� � � 6
for X � 6 ��R �� � � � � �R �� � � � for X � � * � (36)

and where
�R

is defined as :�R � X ��� ����� � �� � R � X ��� � ! � J	� � � ��� (37)

For a given frequency, the problem (35) has two solutions with only one satisfying the free bound-

ary condition at X �.6
. We denotes this solution # � X ��� � and the corresponding displacement and

traction on the coupling interface,
�

,

 � � �

where � � � � defined as :


 � � �+� # 3 � � � � and � � � ��� � ��#�YX ���� � � � ��1 (38)

Solutions of the problem in ��� are therefore of the form
�R � X ��� � � � � � � # � X ��� � , where

� � � �
is an

excitation coefficient that may be determined from the Dirichlet boundary condition, corresponding to

the continuity condition,

� � � ��� �R �� � � �
 � � � � 7 �
�9���� � 
 � ' � � 9�� � � (39)

where
���

is the set of the eigenfrequencies
� ' for which


 � � ' ��� 6
. The actual traction on the

coupling interface is given by :�� � � � ��� �� � � � ����� � � � � � � ��� � � � �
 � � � �R �� � � ��1
By definition, the DtN operator

�� in the frequency domain is:�� � � �+� � � � �
 � � � � 7 �
�9����+1
(40)

Transforming back the traction in the time domain, using the causality, leads to :

� �� � � ��� � � �� � � � � � I �SR �� � I � � I � � �
* � � � � I �SR �� � I � � I � (41)

3.4 Computing the operator DtN in the time domain

The inverse transform of the DtN operator
�� is not straightforward due to the singularities at all the

frequencies in
���

. The discrete spectrum, associated with these singular contributions, have first to be

isolated from the continuous spectrum. Noting � �' the Cauchy residual of
�� at the eigenfrequencies� ' , and using the continuity of �

� �' � �
	
�� 
 ��� � � � � ' � �� � � ��� � � � ' � � 
� � ���� � ���� 1
(42)
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The numerical computation of the derivative can be done using finite difference formula or more

accurately using the kinetic energy as detailed in the appendix A:� 
� � ���� ��� � ��� � '�� � � � ' �� � � ' � �
(43)

where� � � � ����� � �
*


 � X � # � � X ��� � � X � (44)

and therefore to

� �' � � � � � � ' �� � '�� � � � ' � 1 (45)

In practice, this requires an accurate computation of the kinetic energy � � .
The DtN operator

�� can be written as�� � � �+� !
' � �'� � � '� ��� �

a

F
	 �� � � � � ! ' � �'� � � '�
� ��� �

b

1
(46)

The inverse Fourier transform can be computed using Cauchy’s theorem for the singular contributions

(46.a) and a regular inverse numerical Fourier transform for the continuous contribution (46.b).

� � � �+� !
' � �' � ! J	��� � � � � �� ��� �

a

F #�
� � �

� �
	 �� � � � � ! ' � �'� � � ' 
 ! J	� � � �� ��� �

b

1
(47)

where
� � � �

is the Heaviside function. It is worth to note here that both contributions are in fact non

causal and that the causality is only retrieve by summing up the two contributions.

3.5 Time regularization of the DtN operator

Due to the spectral element time discretization, the allowed maximum frequency is restricted to the

Nyquist frequency
� � . The corner frequency

���
(
����� � � ) of the source time function, defines

implicitly a truncated DtN operator,
�� � � � ��� �� 	 �� � � � , where�� � � �+� ���� #

for
3 � 3 � ���

6
for

3 � 3�� ��� 1
(48)

Since
� � � �

is not a causal filter,
�� � is non causal and the inverse transform of the traction becomes :

� �� � � ��� � � ���@R �� � � � ����� �
* � � � � � I �SR �� � I � � I � (49)
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but
R �� � � � comes from the spectral element solution and is known only up to the current time step. The

DtN operator has therefore to be regularized���� � � �+� �� � � � � �� � � ��� (50)

where
�� is an asymptotic approximation of

�� . At high frequencies,
���� � � ����6

and
���� 	 �� � ���� and

the causality problem is avoided, and the traction can be computed as

� �� � � ��� � ��� ��R �� � � � �� ��� �
a

F � � ��R �� � � � �� ��� �
b

�
(51)

where the convolution term (51.a) is now well defined and the last term can be computed analytically.

Following Barry et al. (1988),
�� can be constructed from the asymptotic solution of (35). We

consider�R � � X ��� ����! � J	����� !	� !O�
 * R O � X � ��� � � � O � (52)

and for the stress:�I � � X ��� ����! � J	����� !	� !O�
 * I O � X � ��� � � � O � � 1 (53)

Assuming the normalization
�R �� � � ��� #

, we have

R O 3 � � �� � #
pour 
 ��6

6
pour 
 ���6 and � � � � � � � � 9���1

(54)

The second-order hyperbolic equation (35), is equivalent to a first-order hyperbolic system of

equations in displacement and stress. Noting

� � X ��� ��� �� �R � � X ��� ��I � � X ��� �
��

�
(55)

the first-order system becomes :

� �
�YX

��� � X ��� � � � (56)

with

� � X ��� ��� �� 6 � � X � � �
� 
 � X ��� � 6

��
1

(57)

The solution � can be developed as

� � X ��� ����! � J	����� !	� !O�
 * � O � X ��� � ��� � � � O � (58)
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with

� O � X ��� ��� �� R O � X �� � I O � X �
��

1
(59)

In order to solve (56) as a perturbation problem,
�

is now developed in powers of
��� � � � � ,

� � X ��� ��� !
O�
 � � � O � X ��� � ��� � � �

O 1
(60)

In the 1D case, only
� � � is different from zero,

� � � � X ��� ���
�� 6 ��� � � � X � � � �� � 
 � X � 6

��
1

(61)

Combining (55)–(56), (58) and (60), we get


 � � # � � � � F � � � � � * ��6 �
(62)


 � 6 � � � � F � � � � � O � � � � �O � L � O!
L � *

� O � L � L � (63)

where � is the identity matrix and “
�
” denotes the X derivative. Equation (62) has a non-trivial solution

if and only if
3 � � � F � � � 3 ��6

which means ��� � ���� ��6
. The outgoing wave solution is � � � � � 
 V �

and from (62), we get

I * � X ��� 
 � R * � X �B1 (64)

where � is the sound wave velocity. This condition is similar to the para-axial condition of order 0 of

(Clayton & Engquist, 1977). After some manipulations, equation (63), for 
 ��6
, gives

I � � X ��� � � 
 � � � � � R * � X � F 
 � R � � X ��� (65)

and, with � � � � � 
 � � � � , we obtain for 
 � #
,

I �
� X ���

� � ( � � � � � � � 
 � � �
 � ) R * � X � �
� � � 
 � � � R � � X � F 
 � R � � X ��1 (66)

Setting X � � * in (64)–(66) and with the help of (54), we get a fourth order approximation of
�� :�� � � ��� O � �!

O � * � O " ��� � � � O � � � (67)

with� * � 
 � � � � � � � � � *� � � � � � � ( � � � � *� � * � � � � ) �

where 
 , � and their derivatives are computed at X � � �* .
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3.6 Validation tests of the coupled method

To validate the method, we performed several tests in two heterogeneous examples. In all cases, we

compare the displacements, at three positions, obtained when using a full spectral element method and

the coupled method. The difference between the two solutions, amplified by 100, is also shown.

In the first test, Fig. 3, the heterogeneity in ��� is smooth and can be represented using a fourth-

order polynomial. All the terms in the expansion � are different from zero as shown in Fig. 4. The first

term of the expansion
� ��� � �

, is similar to a time derivation. When substracted from
�� , the regularized

operator
�� � is closed to a filtered Dirac shape. The second term of the expansion

� ��� � � *
, is similar

to a Dirac term. After substraction, the regularized
���� get a filtered Heaviside shape. The third term

of the expansion,
� ��� � � � � , is similar to an integration. When substracted, all the non causal signal is

now removed. The agreement between the coupled method and the spectral element solution solution,

Fig. 5, is very good even at the coupling interface. The error is also shown as a function of the order

of the expansion used to compute � in Fig. 6. For this smooth example, the third order term does

not really improve the solution when compared to the second order approximation since the error is

already of the order of the accuracy of the spectral element time stepping.

In a second test, we consider a rougher heterogeneity distribution, Fig. 7. In this case, the third

order approximation is clearly more accurate even if the improvement is not that impressive due to the

simplicity of the example.

It is worth to mention here, that even for these simple examples the coupled method leads to an

interesting computational speed-up. Indeed, in the last example Fig. 7, the wave speed in � � leads to

a severe CFL condition for the full spectral element method. In contrast, the coupled method is only

controlled by the far less stringent CFL condition in � � . Such a computational speed-up will become

clear when solving the elastodynamics equations in spherical earth models.

4 THREE DIMENSIONAL CASE

We now consider the case of a 3D spherical earth domain � with the surface boundary � . The lateral

heterogeneities are restricted to be within the outer solid shell � � , which may be composed itself of

several subdomains, while the inner spherical domain ��� is assumed to be radially heterogeneous with

solid and liquid subdomains. The coupling interface
�

between the outer shell and the inner spherical

domain may be a physical interface, like the CMB, or an artificial interface somewhere within the

mantle or the outer core.

The original elastogravity problem, within the outer shell ��� , is solved, in space and time, us-

ing the variational spectral element approximation. The explicit construction the DtN operator, on the



Coupling the Spectral Element Method with a modal solution 19

coupling interface
�

, involves a modal solution within the inner spherical domain � � . We focus on

the actual coupling between the spectral element and the modal solution methods, and only sketch out

the spectral element variational formulation in ��� within the context of a conforming approximation,

i.e. point-wise continuity conditions on the solid-solid

 ��� and the solid-fluid


 ��� interfaces asso-

ciated with a conforming spatial discretization of ��� . In practice however, a more sophisticated non

conforming spectral element approximation is used allowing mesh refinements both in the radial and

lateral directions in order to resolve accurately the velocity and the geometry structures of realistic

earth models. For a more thorough presentation of the non conforming spectral element approxima-

tion, in the context of global earth models, the readers are referred to Chaljub (2000) and Chaljub et al.

(2001), where an efficient parallel implementation is also discussed in some details.

4.1 Variational approximation

We look now for a solution in the space of the kinematically admissible displacements,

� � ��� � ������� � 9 � � � � � � �  � ��" � $ & � ( � (68)

The problem to be solved is: find � � 9�� � , such that
7�� 9 � � 2 6 � � 5

and
7�� 9�� �

� 
 ���
� � �

����� F�� � � � ��� � � 
�� �� ��� 
 � � ������� ���
(69)� � � 
 � ��� �� � � * ��6 �
(70)(

� � 
 �8� �
� � ) ���� � � * ��6 �

(71)

where
�0" � " �

is the classical � � inner product. The symmetric bilinear form
� �0" � " �

is now given by� � � � ��� �+���
��� 2 & � � � �  - ����� 5 �	� F �

��� 
�
�� � � ��� "�/ � � " � � � � � " � ��� "�/ � ( �	� � (72)

and
�� �� ��� 
 � � � � � � �� "
� � �	� � (73)

where 
��
�

denotes the symmetric part and
� �� ��&�">= 3 � � � �� is the traction on the spherical coupling

interface
�

.

The continuity conditions across the coupling interface
�

, depend whether
�

is a solid-solid or

solid-liquid interface :

� �� ������� � ��� �� ������� ���
� �� ������� � � � �� ������� ��� if

�
is a solid–solid interface,

� �� ������� �B1C= � ��� � � � �� ������� � ">=�� ��� ���
if

�
is a solid–fluid interface,

(74)

where
� �� and � �� are the restrictions of

�
and � to

�
in � � . Assuming a solution of the elasto-gravity
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problem within the domain ��� , for a prescribed Dirichlet boundary condition along the interface
�

,

the DtN operator � , that relates the displacement � �� to the traction
� �� , can be constructed. Taking

into account the continuity equations, the DtN operator, for solid-solid coupling interface, is therefore:

�  � �� ������� ��� � � � �� ������� � � � (75)

and for a solid–fluid interface,

�  � �� ������� ��� � � � �� ������� � "U= ��� � � 1 (76)

4.1.1 Spatial discretization

The first step is to defined, in a Cartesian reference coordinate system, a spatial discretization of the

outer shell � � into � � non overlapping elements � � such that � � %�')(� � � � � . The spectral element

method puts the additional constraint that the spherical grid must be based on hexaedra. Furthermore,

the spherical mapping should be as regular as possible and such that the elements of the mesh are not

too distorted and the sampling of the grid-points as uniform as possible.

To satisfy the first constraint, we must be able, for each spherical interfaces of ��� , to tile a 2-

sphere with quadrangles. This is achieved using the central projection of a cube onto its circumscribed

sphere. Such a cubic-gnomic projection has been introduced by Sadourny (1972) and further extended

by Ronchi et al. (1996) as the “cubed sphere”. With the help of the central projection, the 2-sphere is

decomposed into six regions isomorphic to the six faces of a cube. By choosing the coordinate lines

within each region to be arcs of the great circles (see Fig. 8) six coordinate systems, with identical

metrics, are obtained free of singularity.

With a constant angular distance between each great circles, a regular meshing of the six regions is

defined in terms of deformed squares with uniform edge width. The surface mesh is quite uniform with

a maximum distortion not exceeding 30% (Chaljub, 2000). The construction of a 3D mesh inside the

spherical shell is then straightforward by simply radially connecting the quadrangles of two concentric

discretized spherical interfaces. These interfaces can be mapped onto physical interfaces associated

with radial discontinuities within the mantle. As a result, the spherical shell is discretized into regular

hexaedra (see Fig. 9) and the associated geometrical transformation is known analytically (Chaljub

et al., 2001). It can be easily extended to take into account an interface topography. We refer to Chaljub

et al. (2001) for more details and for the extension to the discretization of the whole sphere.

For each element � � , an invertible geometrical transformation � � can be defined allowing to map

the reference cube � " � " � into � � , with � � 2 � # � # 5 , such that �
��� �+� � � ��� � where

� � ��� � � � � � � � �
defines a local coordinate system associated with the reference unit cube.

Following the same steps than in the last section, we introduce a piecewise-polynomial approxi-
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mation of the kinematic admissible displacements
� � :

� �� � � � � 9�� �  � � 9 � � � � � � � and � �� 	 � � 9 2 � � � � � 5 � 
 �
(77)

In the reference cube,
2 � � � � � 5 � is taken as the space generated by the tensor product of the polynomi-

als of degree
� �

in each of the three Cartesian directions. The discrete inner products involved in the

variational formulation are constructed as the tensorial product of the 1-D Gauss-Lobatto-Legendre

formulas in each of the local Cartesian directions
� � � � � � � � . This defines a grid of

��� F #�� �
quadrature

points. The piecewise polynomial approximation � �� of � is defined using the Lagrange interpolation

associated with the grid composed of the Gauss-Lobatto-Legendre integration points. The Lagrange

interpolants are therefore the tensor product of the one dimensional Lagrange interpolants. At the end

of the discretization, the problem is reduced to an system of ordinary differential equations (30) in

time which is solved by a classical Newmark algorithm.

4.2 DtN operator construction in the spectral and frequency domain

The construction of the DtN operator requires the solution of the elasto-gravity problem in the inner

sphere ��� , assuming a Dirichlet boundary condition on the interface
�

: � �� � � �� for a solid-solid

coupling or � �� "K=�� � � �� "-= �
for a solid-liquid coupling. For a spherically symmetric inner domain,

the classical modal solution is computationally attractive. In the following, we outline the modal solu-

tion in the case of a solid-solid coupling. A similar solution can be found for the solid-liquid coupling

case and only the explicit expression of the DtN operator in this case is given.

In the following, the domain ��� is assumed to have a spherical symmetry. The problem can

be formulated in the generalized spherical harmonics base (Phinney & Burridge, 1973),
���

, � 9
 � �?6 �BF � , defined as� * � � � �'� � � #
� � ��� ��� � ����� �

where
� � � ��� � ��� are unit vectors in the � �
	 and � directions. The fully normalized generalized spherical

harmonics are denoted �
�
 T � ��	 � � � where � is the angular order, � the azimuthal order and � the

component in the
���

basis. The forward Legendre transformation of a given vector field � ������� � is

defined by

� 
 T � � � ��� ����� ���
*

� �
* � � � �
	 � � ��� �+"�� �
 T � ��	 � � � 
 	���	 � � � 	D1 (78)

where
� 
 T � is a tensor with components

2 � 
 T � 5 ���
�
� �

�
 T � � ���
� in the

���
basis and

� �
 T � its conjugate.

The inverse Legendre transform is therefore

� ������� ��� !

 T � � 
 T � � � ��� �<"�� 
 T � ��	 � � ��� (79)
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where the sum over � extends from � � to � .
The momentum equation in the frequency domain is,

� � � 
 ��� � � � ������� � �)� ��� � � � ������� ����6 1
(80)

The solutions have to be regular at the origin � � 6
, and must satisfy the Dirichlet condition at the

coupling interface
�

:

� �� ������� ��� � �� ������� ��1 (81)

Taking into account the spherical symmetry of �'� , we seek for a solution of of the form

� � ������� ����� 
 T � � � ��� �<"�� 
 T � ��	 � � ��1 (82)

and the corresponding stress vector, defined on concentric spherical surfaces as
� ������� ����& ������� �(" � � ,

is written as

� � ������� ����� 
 T � � � ��� � " � 
 T � ��	 � � ��1 (83)

It is worth to mention here there is a one to one relation between this parameterization and the more

classical one used for normal modes (e.g. Gilbert, 1971), where the solution is expressed as

� � ������� ��� 2 # 
 T � � � ��� � � � F�� 
 T � � � ��� �� � ��� 
 T � � � ��� � � � � "  � � 5 � *
 T � ��	 � � ��� (84)

where
 � is the gradient operator on the unit sphere. In the

� �
-basis, we do have,

N �
 T � �	� 
�
 
� � ��� 
 T � � � � 
 T � ���
N�*
 T � � � 
 # 
 T � �

(85)

N �
 T � � � 
�
 
� � ��� 
 T � F � � 
 T � ���

where 
 
 � � � � � F�#��
and � 
 � � � � � F�#�� V � � .

Inserting (82) into (80) leads to two independent systems of second order differential equations

in � degenerated for the azimuthal order � . The first system, spheroidal, is of order two, while the

second, toroidal, is of order one (Takeuchi & Saito, 1972; Saito, 1988; Woodhouse, 1988). For a given

� and a fixed frequency
�

, they are six independent solutions, four spheroidal ones and two toroidal

ones, but only three of them satisfy the regularity condition at the origin : two spheroidal ones and one

toroidal. These solutions are denoted 
 � 
 � � ��� � with � � 
 # � � ��� � .

The set of solutions

 
 � 
 � � ��� ��� � � # � � ��� � defines a complete basis for the displacement in � � .

The solution of the elasto-gravity equation (80) can therefore be written as :

� �
 T � � � ��� �@� !



 � 
 T � � � � 
 � 
 � � ��� ��1 (86)
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where

 
 � 
 T � � � � � , with

� � � � � 9�� " 2 � � � � 5 , are the excitation coefficients which have to be deter-

mined according to the Dirichlet boundary condition imposed on the coupling interface
�

.

In the following, we note � 
 and � 
 the tensors defined in the
� �

-basis by,

2 � 
 5 
 T � � � ��� 
 N �
 � � �%��� ��� 2 � 
 5 
 T � � � ��� 
 � �
 � � � ��� ��� (87)

and �� 
 T � the vector of components
2 �� 
 T � 5 
 � 
 � 
 T � . Taking into account the Dirichlet condition asso-

ciated to the solid-solid coupling, we get

�� 
 T � � � ��� � �
 T � � � �%��� �<" � 
 � � � � � 7 � � � � ��� �B� �
�9�� �
 � (88)

where
� �
 is the set of all eigenfrequencies for which � 
 is singular. It is worth to note here that,

in contrast to the earth free oscillation problem,
� �
 is defined as the set of all the eigenfrequencies

corresponding to an homogeneous Dirichlet boundary condition, see appendix B.

When �� 
 T � � � � is known, the traction on the surface
�

, on the � � ’s side, can be easily found using

the continuity conditions :

� �
 T � � � �%��� ����� �
 T � � � �%��� ��� �� 
 T � � � � " � 
 � � ��� (89)

and therefore

� �
 T � � � �%��� ��� � �
 T � � � �%��� � " � 
 � � � � � " � 
 � � ��1 (90)

This explicitly defines the DtN operator :

� �
 T � � � �%��� ��� � 
 � � � " � �
 T � � � � ��� � 7 � �9 � �
 � (91)

where in the frequency–spectral domain

� � 
 � � ��� � � �
 � � � " � 
 � � � 7 � �9�� �
 � (92)

and � denotes the transposition. The DtN operator can be shown to be symmetric (see appendix B) and

therefore, the transposition in expression (92) can be dropped.

In the case of a solid–fluid coupling interface
�

, there is only one solution for (80) which satisfy

the regularity condition at the origin. The tensors � and � reduce now to scalars



and � . The

expression of the DtN operator in the
� �

-basis is given by:

2 � 
 � � � 5 ��� � � 
 � �
 � � � � 
 � � � � * T � � � * T � 7 �
�9�� �
 1 (93)
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4.3 Time and space regularization of the DtN operator

The spectral element approximation requires the interface traction
� �� to be known in space and time,

� �� ������� ��� !

 T �

� � �
* � 
 � I �<" � �
 T � � � � ��� � I � � I�� " � 
 T � ��	 � � ��1 (94)

The sum over � and � is the inverse Legendre Transform and the time integral involves a convolution.

Numerically, the DtN operator requires a truncation both in the spherical harmonics expansion and in

frequency. In order for the truncated problem to be well posed, it has to be regularized both in time

and space. Such a regularization follows the same steps than in the 1D example.

The singularity contributions have first to be isolated as in (46). The Fourier transform can then be

computed using Cauchy’s theorem for the singular contributions and a regular Fourier transform for

the continuous part. However, due to the truncature in frequency, � 
 � � � has to be regularized in order

to circumvent the same causality problem that was encountered in the 1D example. This is done with

the help of an asymptotic approximation
� 
 � � � , for the high frequencies, of the DtN operator � :

� �
 � � �+� � 
 � � � � � 
 � � ��1 (95)

where
� 
 � � � is given by :

� 
 � � ��� L������!
L � *
	 
 T L " ��� � � � L � � � (96)

and the coefficients 	 
 T L can be explicitly computed, see appendix C for details. In practice, a third

order approximation, � �
� ! � � , is required. The regularized DtN operator � �
 � � � is now causal and

its inverse transform in space and time presents no difficulty. The traction on the coupling interface

can be computed as :

� �� ������� ��� !

 T �

� � �
* � �
 � I �<" � �
 T � � � � ��� � I � � I F 	 
 T * "�� �
 T � � � � ��� � F 	 
 T � " � �
 T � � � � ��� �

F 	 
 T � " ���
* � �
 T � � � � � I � � I � "�� 
 T � ��	 � � ���

(97)

where
� � is the first time derivative of � � . As shown in appendix C, 	 
 T * corresponds to the Sommer-

feld operator and does not depend on � , i.e. 	 
 T * is local in space, leading to :

� �� ������� ��� 	 * T * "�� �� ��� � ��� � F !

 T �

� � �
* � �
 � I � " � �
 T � � � � ��� � I � � I F 	 
 T � " � �
 T � � � � ��� �

F 	 
 T � " � �
* � �
 T � � � � � I � � I � "�� 
 T � ��	 � � ��1

(98)

The inverse Legendre transform in equation (94) or (98) requires to truncate the infinite sum over

� and � . The choice of the truncature � �
� ! is based directly on the dispersion curves Fig. 10 which
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provides an upper angular order. Knowing the corner frequency of the spectral element approximation,

a critical � � can be determined such that there is no eigenfrequency smaller than the corner frequency.

Far enough from the source, the wave field has a maximum angular degree of � � and therefore � �
� ! �
� � provides an accurate approximation for the coupling. Such an estimation is only valid when the

source is not too close to the coupling interface. When this is not the case, the choice � �
� !:� � � � has

been found empirically to provide an accurate approximation.

Even though there is no causality problem induced by the space truncature, such a truncature is

only well-posed for the lower-order spherical harmonics. The problem may be circumvented, as shown

by Grote & Keller (1995), with the help of a spatially regularized operator � �
 � � 
 ��� 
 :

� �� ������� ��� 
 ��� �!

 � *

� 
!
� � 
 � �
 � � � " � �
 T � � � � ��� � "�� 
 T � ��	 � � � F � � � � " � � ��� � ��� ��� (99)

where � 
 � � � may be any computationally efficient approximation of the DtN operator with the prop-

erty : � 
 � � � � 
 � � 6
, where � denote the imaginary part. In practice for � 
 � � � , one can take the

Sommerfeld operator:

� 
 � � ��� � � �
���
� 
�� 6 6

6 
 � 6
6 6 
��

�
���
� 1

(100)

where � and � are respectively the P- and S-wave velocities. The Sommerfeld operator is an absorbing

boundary operator corresponding to the first order para-axial approximation (Clayton & Engquist,

1977). Therefore, all spurious waves, with spatial spectrum of angular order greater to � �
� ! , will not be

transmitted by the regularized operator but actually absorbed, an interesting and stabilizing property.

It is worth noting here that � 
 � � � � � � 	 
 T * . Therefore the space regularization is already taken into

account by the time regularization and (98) can be used directly to compute
� �� ������� � truncating the

sum over � to the appropriate � �
� ! .

5 VALIDATIONS TESTS OF THE 3D COUPLED METHOD

In this section, synthetic seismograms for a simple homogeneous sphere and the spherical earth model

PREM (Dziewonski & Anderson, 1981) are computed and compared with the solution obtained by

the summation of the free oscillations in order to test the accuracy of the method. In a homogeneous

sphere, normal modes radial eigenfunctions are known analytically and eigenfrequencies are known

up to the computer accuracy. In a spherically symmetric earth model, normal modes are known with

a very good precision. Therefore, in both cases, the normal mode solution is a very accurate reference

solution which allows for the validation of the coupled method.
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In the homogeneous sphere test, only a solid–solid
�

interface is included. For the more realistic

PREM test, the coupling interface
�

is set to be the CMB and includes a solid-liquid coupling.

5.1 Wave propagation in a homogeneous sphere

We consider a homogeneous solid sphere with a radius ��� ��� ����#
km, a density 
 � � 6W6W6 kg/m

�
, a

P-wave speed � � �
km/s and a S-wave speed � ���

km/s. The position of the solid-solid coupling

interface
�

is set to � � � ������#
km. The overall thickness of the outer spherical shell ��� is � � 6W6 km.

Each of the 6 regions of ��� are discretized with
� " � elements horizontally and 2 elements vertically

(see Fig. 11), with a total number of
��� �

elements.

In each element, the polynomial approximation is of degree
� � �

, which set a total number

of
����	 ��� � grid points in �%� . The shortest distance between two grid points is

� �
km, which, for a

Courant number of
6 1 �

, leads to a maximal time step of
# 1 	

s. In the numerical experiment, the actual

time step is
6 1 �

s which is quite conservative.

For the source, the lowest period of the wavelet time function has been set to
# � � s which, for a

wave speed of
�

km/s (the approximate Rayleigh wave group velocity in this model), insures less than

two wavelengths per element. The wavelet time function, Fig. 12, is a Ricker with a central frequency# V � # � Hz and a corner frequency of
# V # � � Hz. The source is an explosion of amplitude

# 6 � * kg m/s �
and three different source depths are used:

(i) source A: at
� 	 �

km depth. The source is very closed, compared to the wavelength to the free

surface and provides a good test for the spectral element accuracy in the case of strong surface waves.

(ii) source B: at
# 6 � �

km depth.

(iii) source C: at � � 	 � km depth. The source is now very closed to, compared to the wavelength,

the coupling interface
�

and provides a good test for the accuracy of the coupling when
�

is in the

near field range.

In all these numerical experiments, � �
� ! � ���
, but for sake of security, we choose � �
� ! �����

for

source A and B and � �
� ! ��# # 	
for source C, in order to capture with the near field. The explosion

has been chosen for its symmetric radiation pattern, but a test with non diagonal moment tensor is also

presented to check the transverse component and a more realistic source.

Snapshots of the wave propagation in �$� are shown in a crossection, Fig. 13, for the source B. At
���
��� 6

s, the central time of the source time function is
��6W6

s, the P-wave start to be absorbed by the

DtN operator, without any visible spurious reflection. At
# 6 � �

s, the pP wave start now to be absorbed

by the DtN operator. At
# ��� #

s the P-wave emerges from ��� into ��� . The X phase, a superposition
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of higher spheroidal modes, is strongly excited by the source B. The Rayleigh wave, which is weakly

excited due to the depth of the source, is however visible on the snapshots.

Traces, of the vertical component of the displacement, are also recorded on the surface as a func-

tion of the epicentral distance, Fig. 14. Despite the depth of the source, the Rayleigh wave is clearly

visible. The Rayleigh wave is almost non dispersive for this frequency source range : a small disper-

sion is only observed, and accurately modeled, for the lowest frequencies as expected theoretically.

The X-phase, which corresponds in terms of body waves to a superposition of P-wave subsurface re-

flections, is strongly excited. This phase is quite dispersive as expected theoretically and the dispersion

is accurately modeled. Finally the P-wave is clearly observed as well as some several multiples PP,

PPP, ... It is worth to note that this multiples tend slowly towards the X phase.

No spurious phase can be observed on Fig. 13 and 14. However, in order to assess the accuracy

of the simulation, a direct comparison between the results obtained with the coupled method, for the

three source positions, and the reference solution obtained by the normal modes summation is shown

on Fig. 15. In each case the residual, i.e. the difference between the two solutions, has been multiplied

by a factor ten. The agreement between the two solutions is indeed very good, with less than
#��

of

error. Surface waves, which are strongly excited in the case of the the source A, are very accurately

modeled by the spectral element method, as well as the body waves (P- and S-waves) recorded directly

on the coupling interface
�

, which is an especially difficult test for this method and clearly show that

the DtN operator accurately capture the response of the inner sphere for all the phases. The same

accuracy is achieved on the transverse component with a moment tensor (
" � � = " � �

=
" � �

=
" � � =0

and
" � � =

" � �
=1) using the source B location (Fig. 16).

5.2 Wave propagation in PREM

We consider the spherically symmetric reference earth model PREM. The coupling interface
�

is set

at the CMB. The spectral element outer shell �$� includes the whole mantle and the crust. This is in

fact a quite challenging problem for the spectral element method due to the crustal structure inherent

to the PREM model. The crust is characterized by slow wave velocities and the presence of very

thin piecewise homogeneous layers with sharp elastic property contrasts:
# �

and
# 6

km for the two

uppermost layers. In the vertical direction, each of these concentric layers has to match with an element

boundary in order to correctly approximate those contrasts. This drastically reduce the minimum size

of the elements, in the vertical direction, and therefore put stringent constraints on the time step which

must fulfill the CFL condition. Since each of these layers are piecewise homogeneous, the problem

can be partly improved when using a very low vertical polynomial degree, a degree 2, within these

crustal layers while retaining a degree 8 in the lateral directions. The time step imposed by the vertical
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structure of the crust in PREM is of the order of
6 1 � 	 s. The slow wave velocities in the crust imply

laterally a good spatial resolution in order to accurately represent the surface waves.

The mesh used in this example is built in order to match the nine surfaces of discontinuity in the

mantle that are included in PREM. The mesh is non conforming (Chaljub et al., 2001) in the vertical

direction. In the lateral direction,
� � elements are used in the upper mantle and

# �
elements in the crust.

The non conforming interface is set at the
��� 6

km transition zone. Such a mesh allow for a uniform

CFL condition all through the mantle. This mesh could theoretically support a corner frequency of# V � � Hz, but the actual corner frequency used in this example is
# V � � Hz, Fig. 18. The source is still

explosive, for sake of simplicity, and its location is at
# � 	

Km.

The vertical component of the displacement recorded at the surface, for PREM, is shown on Fig. 19

as a function of time and of the epicentral distance. In order to identify some of the body wave phases,

time arrivals of various phases have been computed by an asymptotic ray tracing, as shown on Fig. 20

and superimposed on the synthetic seismograms of Fig. 19. The comparison between the time arrivals,

derived from a high frequency approximation and a full wave form modeling, derived from a direct

numerical simulation, is not that obvious due to finite frequency effects on the whole wave form,

especially for body waves. Actually the notion of the “arrival time” only makes sense within the

high frequency approximation. As a matter of fact, as for the P-wave, the ray tracing arrival time

points sometimes to the maximum of the phase amplitude, in which case the agreement appears quite

good, while sometimes it points to the minimum of the phase amplitude, or to a change of sign,

mixing of different phases ... Obviously full waveforms obtained by direct numerical simulation does

contain much more informations than traditional arrival time analysis based on asymptotic theories.

However for the subject of this paper, such a comparison does not allow to assess the accuracy of the

coupled method. A more thorough discussion of these results in the case of PREM and other laterally

heterogeneous earth models will part of a forthcoming paper.

The accuracy can be assessed by a direct comparison between the synthetic seismograms obtained

by the proposed direct numerical simulation and the classical normal modes summation method. Such

a comparison is shown on Fig. 21 and Fig. 22 where displacements are recorded at the free surface

and on the coupling interface, actually the CMB, for three different epicentral distances. The residual

between the two solutions, amplified by a factor 10, does show a very good agreement, even when

the displacement is recorded on the coupling interface. This clearly show that the DtN operator, cor-

responding in this case to a solid-fluid interface, accurately model the response of the earth core, for

all the wave phases.

Interestingly enough, one should note here that if the PREM example was solved by a full spectral

element approximation (Chaljub et al., 2001), the geometry and the velocity structures of the inner core
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would put stringent constraint on the time step. This is completely removed here in the coupled method

since the core domain is now solved by a modal summation technique. Typically for large problems,

such as the PREM example, the construction of the DtN operator and the coupling represents less than

13% of the whole CPU time. With the mesh used in this example and a corner frequency of
# V � � Hz, a

simulation over
� 6 � 6

s, e.g. 12200 time steps, requires 30 hours on a cluster of 32 processors Pentium

IV 900 MHz with 16 GB distributed memory and further minor optimizations should allow to reduce

by a factor 1/3 the requested memory.

Fully 3D validation tests are very difficult to set up because a reference solution is missing in

that case. Nevertheless some comparisons with method based upon approximation can be performed

in the condition of validity of the approximation. Such a comparison with first order normal mode

perturbation (Born approximation) has been attempted in Capdeville et al. (2002) and shows very

good agreement when the heterogeneity velocity contrasts is weak .

6 CONCLUSIONS

A new method which couple a spectral element with a modal summation method for simulating 3-D

seismic wave propagation in non rotating elastic earth models has been presented. The strategy is to

decompose the earth model into a 3D heterogeneous outer shell and an inner sphere that is restricted

to be spherically symmetric. The two domains are therefore connected through a spherical coupling

interface that may be either a physical interface or an artificial one. Depending on the problem, the

outer shell can be mapped either as the whole mantle or restricted to some portion of the upper mantle

or the crust.

In the outer heterogeneous shell, the solution is sought in terms of the spectral element method

based on a high order variational formulation in space and a fully second-order explicit time discretiza-

tion. Within the inner sphere, the solution is sought in terms of a modal summation in the frequency

domain after expansion of the space variable into the generalized spherical harmonics basis. The spec-

tral element method combines the geometrical flexibility of classical finite element method with the

exponential convergence rate associated with spectral techniques. Classical pole problems are avoided

by tilling the spherical interfaces with six rectangular regions that can be easily mapped to rectangles.

This is accomplished using the central or gnomic projection. The six regions can be further divided

into quasi-uniform rectangular elements. The surface discretizations are then connected radially to

build the 3D mesh of the outer shell. An essential feature of the spectral element method is that it can

resolve sharp localized variations, as well as topographical features along the interfaces. High resolu-

tion can be obtained using mesh refinements with a non conforming discretization. The coupling with

the modal summation method is achieved in the spectral element method by introducing a dynamic
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coupling operator, the DtN operator, which can be explicitly constructed in the frequency/wavenumber

domain. This allows to significantly speed up the computation. The key point here is the inverse trans-

formation in the space-time domain of the coupling operator. This requires special attention and a

suitable asymptotic regularisation. This is fully detailed for both a simple 1D example and 3D earth

models.

The effectiveness of the method is then demonstrated for both the simple 1D example and 3D

cases: a homogeneous elastic sphere and the PREM model. For spherically symmetric earth model, the

method is shown to have most of the accuracy of spectral transform methods. However, the method

has the advantage of allowing the resolution of wavefield propagation in a 3D laterally heterogeneous

model for the same computational cost and without any perturbation hypothesis. Applications to 3D

laterally heterogeneous earth models has already been performed and will be detailed in a forthcom-

ing paper. The method has been highly parallelized on distributed memory architecture, both for the

spectral element and the modal summation part, as detailed in Capdeville (2000), Chaljub (2000) and

Chaljub, Capdeville, & Vilotte (2001). The coupled method allows to speed up the computation and

makes the simulation of seismic wavefield in earth models down to 30 seconds possible today on a

medium size parallel architecture such as a cluster of 32 processors with 32 GB of memory. This

is in contrast with the more demanding full spectral element approximation, as detailed in Chaljub,

Capdeville, & Vilotte (2001), even though the last approach is more general. The gain in memory and

time computing obtain by using the coupled method compared to full spectral elements is strongly

dependent on the Earth model, location on the DtN and frequency range. In cases presented in this

paper, the gain obtain by the coupled method is the not sufficient to justify the coupled method (less

that a factor two on both memory ans time computing). But there are cases, like the simulation in 3D

D” models at period under 10s (Capdeville et al., 2002), where the coupled method is the only option

with a gain of more than 10 in memory (machine necessary to do the same thing with only spectral

elements are not available), which fully justified the coupled method.

It is worth noting that no one scheme can be expected to be optimal for the entire range of applica-

tions we might wish to consider in the context of seismology. The method presented here is therefore

a first step toward efficient direct numerical simulation methods for wavefield propagation and syn-

thetic seismograms for some applications in global seismology. Extensions are already actually under

study. Among them, it is worth to mention the incorporation of realistic surface topographies and the

implementation of a spectral element strip between two domains in which the solution is sought via a

modal summation technique. The latter will allow the study of highly localized heterogeneities in the

vicinity of some interfaces like the core-mantle boundary at relatively high frequencies (Capdeville

et al., 2002).
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9 FIGURE LEGENDS

Figure 1. The Earth model � , with boundary ��� and internal radius ��� . The solid and fluid parts are ��� and

�	� respectively. 
���� and 

��� denote respectively the set of all the solid-solid and solid-fluid interfaces. The

spectral element domain is ��� while the domain of modal summation is ��� with � denoting the artificial

interface between � � and � � .

Figure 2. The one dimensional domain � : the modal solution method is used in � � and the spectral element

method in � � . The Discretization of the domain � � in six regions is also represented. The dotted lines denotes

the ������� transformation of the reference segment into ��� . The Gauss–Lobatto–Legendre (GLL) integration

points are shown with the black squares in the reference element ����� � ��� �"!
for a polynomial degree #$�&% .

Figure 3. 1-D smooth heterogeneous model with ')(��&*,+-+,+ m .

Figure 4. a): .0/21436587�/2143 computed for the the one dimensional example of Fig. 3. The source time wavelet, 7 ,

is a Gaussian of width 30 9 , centered in 1:� �<; +,+ s

b): /2.0/2143
�>=:/214343:5�7�/?143 after applying the first order regularization term. The Gaussian derivative shape has

disappeared, and only a Gaussian shape remains.

c): /@.0/?143A��=:/?143B3�5�7�/2143 after applying the second order regularization term. Now only a filtered Heaviside shape

remains.

d): /@.0/?143:�C=:/214343D5E7�/?143 after applying the third order regularization term. A causal signal is now retrieved.

Figure 5. Displacement computed for the smooth heterogeneous example of Fig. 3 and recorded at FG�&'�( (a),

FC��*-H,I,+ m (b) and FC��' (c). The time source function is a Ricker (second derivative of a Gaussian) of *-+ s

width and centered at 1 ( �KJ�+,+ s. The modal solution for the wole domain is shown in solid line. The difference

with the coupled solution, amplified by a factor 100, is shown in dotted line. The amplitude is normalized with

reference to the maximum displacement recorded at FL�K' .

Figure 6. Displacement recorded at FM�&*-H,I-+ m for the heterogeneous example of Fig. 3 with the same source

time function than Fig. 5. The solution obtained when using only the spectral element method is shown in solid

line. The Dotted lines represent the difference, amplified by a factor 100, with the solution obtained using the

coupled method with a first order regularization (error 1), a second order regularization (error 2), and a third

order regularization (error 3).
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Figure 7. Right: the same experiment as in Fig. 6 but for a rougher heterogeneity distribution shown on the left.

The displacement is recorded at FG�&*,H,I-+ m.

Figure 8. The Gnomic projection: great circles used to mesh one region of the “cubic sphere”.

Figure 9. Left: a splitted view of the six regions produced by the gnomic projection which map the six faces

of a cube inscribed inside the sphere to the surface of the sphere. Right: a gathered view of the six regions of

the sphere. Each region has its own coordinates system and the coordinate transformations can be calculated

analytically.

Figure 10. The sphéroidal (left) and the toroidal (right) eigenfrequencies of the DtN operator computed for a

homogeneous sphere.

Figure 11. The spectral element mesh used for the homogeneous sphere model. The regions 1 and 4 have been

removed for visibility.
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Figure 12. The source time function used for the homogeneous sphere model (left) and the correspnding source

spectrum content (right). The central frequency is *�� � � � + �
�����

( * � � 9 ) and the corner frequency is % �
� + �

���	�
(
� �-; 9 ).

Figure 13. The wave field propagation in a crossection of the homogeneous sphere model for an explosive

source. The snapshots represent the F -component of the displacement field inside � � , the spherical shell domain

of the spectral element method, at different time steps of the propagation. The displacements in � � , the inner

sphere of the modal summation method, are not shown here. The accuracy of the coupling method can be

assessed here looking at the transmitted wavefield.

Figure 14. The vertical component of seismograms, recorded at the surface, as a function of the epicentral

distance from the source B. Different phases are pointed out here: Rayleigh (R), X phase (X) and P wave (P).

Figure 15. The vertical component of the displacement, at an epicentral distance of H-+�
 , recorded on the surface

(left) and on the coupling interface � (right). The reference normal mode solution is drawn with the solid line, the

coupled method solution is displayed with the dotted line and the residual between the two methods, amplified

by a factor 10, is displayed with the bold dotted line. The method is very accurate and the maximum relative

error is less than a few percents.

Figure 16. The transverse component of the displacement, at an epicentral distance of J�H 
 , recorded on the

surface (left) and on the coupling interface � (right). The source is at 1048 km depth, with a moment tensor

with ��
�
 = ����� = ����� = ��
�� =0 and ��
�� = ����� =1. The reference normal mode solution is drawn with the solid

line, the coupled method solution is displayed with the dotted line and the residual between the two methods,

amplified by a factor 10, is displayed with the bold dotted line.

Figure 17. The non conforming mesh used for the PREM example: below the I-I,+ km interface, the mesh has

been derefined by a factor two in the horizontal direction. The color indicates the density structure of the model.

The regions 1 and 4 have been removed here for visibility.

Figure 18. The source time function used for the PREM example (left) and the corresponding spectrum content

(right). The corner frequency is
��� J-% Hz.
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Figure 19. The vertical component of the seismograms computed in PREM and recorded at the surface, as a

function of the epicentral distance. Time arrivals of some body waves computed by a ray tracing has been

superposed and can be identified using Fig. 20.

Figure 20. Time arrivals of some body waves in PREM computed with a ray tracing.

Figure 21. Displacement recorded at the free surface in the PREM example. The vertical (right) and longitudinal

(left) displacements are plotted for three epicentral distances. The modal solution (reference) is plotted with a

solid line while the coupled method solution is displayed with a dotted line (superposed to the previous one). In

a bold dotted line, the residual, multiplied by 10, between the two solutions is also shown on the same figures.

Figure 22. Displacement recorded at the CMB which is here the coupling interface � for the PREM example.

The vertical (right) and longitudinal (left) displacements are plotted for three epicentral distances. The modal

solution (reference) is plotted with a solid line while the coupled method solution is displayed with a dotted line

(superposed to the previous one). In a bold dotted line, the residual, multiplied by 10, between the two solutions

is also shown on the same figures.

APPENDIX A: RESIDUAL COMPUTATION

The analytical computation of the Cauchy residuals � �' in equation (42) requires the evaluation of the

derivative of



at
� ' . Using the continuity of � at the frequency

� ' ,

�
	
�� 
 ��� � � � � ' � �� � � ��� � � � ' � � 
� � ���� � ���� 1
(A1)

An expression of this derivative can be directly obtained from the weak form of the equation (35). The

solution # � X ��� � of (35) satisfies
7�� 9 �� � � X � � � X � ��#�YX � � � � � � � � � �*

 � X � # � X � � � X � � X F � � �

* � � X � ��#�YX � �
�YX � X 1 (A2)

With
� � # and noting � � the kinetic energy and � � the elastic strain energy,� � � � ����� � �

*

 # � � X ��� � � X �� � � � ��� � � �

* � � X � ( ��#
�YX

� X ��� � ) � � X �
(A2) becomes� � � X � # � X ��� � ��#�YX � X ��� � � ��� � � � � � � � � � F � � � � ��1 (A3)

For
� � � ' , # � X ��� ' ��� 6

and therefore

� � �' � � � � ' � F � � � � ' ����6 1
(A4)
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Furthermore, (A3) follows the Rayleigh’s stationary principle, e.g. Takeuchi & Saito (1972) or Dahlen

& Tromp (1998), and for all perturbations ��# � X ��� ' � of # � X ��� ' � :

� � �' � � � � � ' � F � � � � � ' ����6 1
(A5)

Computing the derivative of (A3) along
�

, we obtain� � � X � ( ��#
� � ��#

� X
F # �Y�$#

�YX8� � ) � � � � � � � � � � � � � � �� � F � � �� � 1
(A6)

Setting
� � � ' in the last equation, we finally obtain for X � � * ,� 
� � ���� � � � � � � '�� � � � ' �� � � ' � �

(A7)

and therefore

� �' � � � � � � ' �� � ' � � � � ' � 1 (A8)

APPENDIX B: DtN OPERATOR USING RADIAL FUNCTIONS # ,
�

AND �

For practical reason, it is of interest to express the operator DtN in terms of the radial functions
� # � ��� � �

, as defined in the equation (84), with the corresponding stress vectors
� ��� � ��� � ��� �

, as

classically used in surface wave seismology and normal modes theory (e.g. Gilbert 1971). The three in-

dependent solutions of (82) in � � , regular in � ��6
, are denoted according to (84) as

� # � � �
 � � � � �
 �?6 �
,

� # � � �
 � � � � �
 �?6 �
and

� 6 �?6 � � 
 � . Using (85) we obtain

� 
 � � 


�
����
� � 
 � � � �
 # � � �
 � 
 � � � �

� 
 � � � �
 # � � �
 � 
 � � � �

� � � 
 � 
 6 � � 
 � 


�
����
� �

(B1)

and for the stress vectors

� 
 � � 


�
����
� � 
 � � � �� T 
 � � � �� T 
 � 
 � � � �� T 


� 
 � � � �� T 
 � � � �� T 
 � 
 � � � �� T 

� � � 
 � � T 
 6 � � 
 � � T 


�
����
� �

(B2)

Where � 
 � 
 
 V � � ��� � � � � F�#�� V � � . The inverse of �
�


is straightforward to compute:

��� � �
 � #� � 
 � 
 � 


�
�����
� # � � �
 � # � � �


� � 

� 
2 �	�Y� 5 � � � � � �
 � 
 � � � � �
 � 
 6

# � � �
 � # � � �
 � � � 

� 


�
�����
� (B3)
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where
� 
 � � � � �
 # � � �
 � � � � �
 # � � �
 . This last equation is undefined for

�H9 � �
 , the set of all the eigen-

frequencies of � � corresponding to a rigid displacement condition:
� 
 � � � ��� ����6

or � 
 � � � ��� ����6
.

As in the normal mode case, there are two types of eigenfrequencies: the spheroidal ones correspond-

ing to the zeros of
� 
 � � � ��� � ; the toroidal ones corresponding to the zeros of � 
 � � � ��� � . Performing

the product of (B3) with (B2), the following expression for � is obtained:

� 
 � #� � 


"

�
�����
�

� � � �� 
 # � � �
 � � � � �� 
 # � � �
 � � � � �� 
 # � � �
 � � � � #
� � �
 � V � 
 � � � �� 
 # � � �
 � � � � �� 
 # � � �
� � 
 � � � � �� 
 � � � �
 � � � � �� 
 � � � �
 � � � � � � �� 
 � � � �
 � � � � �� 
 � � � �
 � � � 
 � � � � �� 
 � � � �
 � � � � �� 
 � � � �
 �

� � � �� 
 # � � �
 � � � � �� 
 # � � �
 � � � � �� 
 # � � �
 � � � � �� 
 # � � �
 � V � 
 � � � �� 
 # � � �
 � � � � �� 
 # � � �


�
�����
�

F � � 
� � 


�
���
� # 6 � #

6 6 6
� # 6 #

�
���
� 1

(B4)

where the radius � is set to � � .

In the case of a spherical symmetry, the radial eigenfunctions and the eigenfrequencies can be

computed with the help of the minors corresponding to the solutions basis (Takeuchi & Saito, 1972;

Saito, 1988; Woodhouse, 1988). In terms of these minors, the DtN operator has the following expres-

sion :

� � � ��� #� � �
� � � ��� �

�
����
� � � � � � ��� � � � � � � ��� � V � � � � � � � ��� �
� ��� � � � ��� � V � � � ��� � � � ��� � � ��� � � � ��� � V � �
� � � � � ��� � � � � � � ��� � V � � � � � � � ��� �

�
����
�

F�� �
� � �%��� �� ��� � � � ��� �

�
���
� # 6 � #

6 6 6
� # 6 #

�
���
� 1

(B5)

where � � � 1 1 1�� ��� denotes the minors corresponding to the spheroidal solutions and ���
�
� � the radial

eigenfunctions and the stress vector corresponding to the toroidal solution, as defined by (Saito, 1988).

The � dependence have been omitted for sake of simplicity. The symmetry of � results directly from

the fact that � � � � ��� .
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APPENDIX C: ASYMPTOTIC EXPANSION OF THE DtN OPERATOR IN THE 3D CASE

Following Takeuchi & Saito (1972), we seek a solution of (80) in the form of (82) for the displacement

and of (83) for the stress vector. This leads to solve : for the solid-solid case, two 1D coupled first-

order differential equations in � for the spheroidal solutions and one for the toroidal solution ; for

the solid–fluid case, a 1D coupled first-order differential equation in � . In both cases, the procedure

follows the same steps than in the 1D example of section 3.5.

For sake of simplicity, only a linearly isotropic medium will be considered here. Extension to

transversely isotropic medium is quite straightforward and does not lead to any specific problem. The

P-wave and S-wave velocities are denoted here respectively � � � � � F � � � V 
 and � � � � V 
 ,

where � and � are the elastic Lame parameters.

C1 Solid–fluid coupling

This involves only a scalar differential equation and therefore this case is very close to the 1D example.

The only difference is that the expansion in
��� � � � O of

� � X ��� � matrix has now more terms. Following

Saito (1988),

� � � ��� �@�
�
��
� �

#
�

#

 � � � � � � F�#��� � 
 � �

� � � 
 #
�

�
��
� 1

(C1)

� � � ��� � is expanded in
��� � � � � as

� � � ��� �@� �� 6 �J	�
�
���

� 
 � 6
��
� � F

�� � �� 6
6 ��

��
F
�� 6 ���J �
6 6

�� #
� � 1

(C2)

where
� 
 � � � � F�#�� V 
 �W� and

� � � , � * and
� � are here equal to zero.

Equation (62) gives

� � � � #� � � 6 1
(C3)

This last equation has two solutions. Keeping only the outgoing waves, we obtain � � � � # V � .

Furthermore, (62) gives

� * � � �+� � * R * � � ��� (C4)

with � * � 
 � .

After some algebra, (63) leads for 
 � #
� � � � �+� � (

� � � *� F � *
� ) R * � � � F � * R � � � ��� (C5)
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and
R � * � � ��� �

�
�
�
�
� � R * � � � . We note � � � � �+� � � � � � �� F ���� � .

and for 
 � � ,
�
�
� � �+� � � T 
 � � �SR * � � � F � 
 �

� � � � * � R � � � � F � * R � � � ��� (C6)

where

� � T 
 � � ��� � � (
� � �* � 
 � � � � � � �� � � *� * F � �

� ) 1
(C7)

Setting � � � � , we obtain the first three terms of the asymptotic expansion of � *�*
 ,

� *�*
 � � * � � � � � � F � � � � � � F � � T 
 � � � � #� � F � � ��� � � � � � 1 (C8)

The remaining components � ��� �
 for � �� 6
or � � �� 6

are equal to zero. The first two terms of � *�*

do not depend upon � which means that these operators are local in space in contrast to the third term� � T 
 .
C2 Solid–solid coupling

This case involves two uncoupled systems of equations, one for the SH waves (toroidal) and one for

the P–SV waves (spheroidal).

C2.1 Toroidal case

Once again, the equation to solve is a scalar one and the procedure is the same as in the previous case.

� � � ��� �@�
�
��
� �� #

�

� 
 � � F & 
 �
� ����

�
��
� �

(C9)

where
& 
 � � � � #�� � � F � � and

�
can be expanded as

� � � ��� �@� �� 6 �J	���
� � 
 6

��
� � F

��
�� 6
6 � � �

��
F
�� 6 6

� ���� 6
�� #
� � 1

(C10)

For 
 ��6
, one get

� � � �
#
� and

� * � � ��� � * R * � � � (C11)

with
� * � 
 � .

For 
 � #
,

� � � � �+��� � R * � � � F � * R * � #�� with
� � � � � � ( � � � F � � *

� ) (C12)
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For 
 � � , one finally get

�
�
� � �+���

�
R * � � � � �

( � � * F � � *� ) R � � � � F � * R �
� � ��� (C13)

with

�
�
� � � ( & 
 �

�
F � �� � � *� * � � � � � � � �� ) 1

(C14)

C2.2 Spheroidal case

In this case, the dimension of the solution space is now 2. Let first introduce here the following pa-

rameters :


 
 � � � � � F�#��8� �E� �
� �

( � F � � � � �� F � � � � ) �

� 
 � 
 

� �

( � F � � � �Y�� F � � ) � � �� � � N	��# � � �� F � � �
! 
 � 
 
 �� F � � 1

We have

� � � ��� �@�
�
������������
�

N
�

#� F � � ! 

�

6

� 
 � � F � �
N
�

� 
 
� 
 

�

� 
 
�
6 �� #

�� 
 
� �
! 

� � 
 � � F � 
 � ��

�
������������
� (C15)

which can be expanded as

� � � ��� �@�
�
�����
�

6 ��� � 
 � � � � � 6 6
� � 
 6 6 6
6 6 6 ��� � 
�� � � � �6 6 � � 
 6

�
�����
� � ��F

�
�����
�

�� 6 � �� 6
6 � �� 6 � ��
� � �� 6 �� 6
6 � � �� 6 � ��

�
�����
�

F

�
�����
�

6 6 6 6
� � � 6 � � �

�
� � 6

6 6 6 6� � �

�
� � 6 � 
 � � 6

�
�����
� #
� � (C16)

Looking for a solution of the form

� � � ��� ����! � J	����� !	� !O�
 * � O � X ��� � ��� � � � O � (C17)
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with

� O � X ��� ��� � � R O � � �B� � � � � T O � � �B��� O � � �B� � � ��� T O � � � � � (C18)

where � denotes the transpose operator.

Equation (62) leads to( � � � #� � ) ( � � � #
� � ) � 6 1

(C19)

This last equation has four solutions

� � � � #� �

� � � � #
�
1

Keeping only the outgoing waves, we get two solutions. The first solution is � � � � � � � for � � � �
and

R � � � ��#
� � � �� �"� � * � � F � � � F � � � ��� � � � �
� � � � � � � * F � � � ��� � � � � F � � � ��� � � � �� � � �� � � � * � � F � � � F � � � ��� � � � �

(C20)

The second solution is � �Y� � � � � for � � � � and

R � � � � � � * F � � � ��� � � � � F � ��� ��� � � � �� � � �� � �

� *
� � F �

� � F �

���
��� � � � �

� � � � ��#
� � � �� �"�

� *
� � F �

� � F �
���
��� � � � �

(C21)

For the first solution, � � � � � � � , equation (62) gives

� � � �� T * � � ����� � * � � �SR � � �* � � ���

with
� � * � 
 � , and also

� � � � � � ��� � � � �� T * � � � . This implies that � � * � � � * � 6
.

Now equation (63), for 
 � #
, leads to

� � � �� T � � � ����� � � � � �SR � � �* � � � F�� � * R � � �� � � ���
�
� � �� � � � � � � �SR � � �* � � ���

� � � �� T � � � ��� � � � � � �SR � � �* � � ���
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with

� � � � � � � ( � � � * F � � � * N� ) �

� � � � 
 � � � �
� � � � � � � � ��! 
 F 
 
 ���� � � � � � �� � * F � ! 


�
1

and for 
 � � , equation (63) gives

� � � �� T � � � ����� � � � � �SR � �
�

* � � � F ...
�

�
� � �
�

� � � � � � �SR � � �* � � � F ...
�

� � � �� T �
� � ��� � � � � � �SR

� � �* � � � F ...
�

where “...” stands for the remaining terms which take a zero value for � � � � , and are therefore only

relevant for the third order approximation of the solution of (63). The coefficients
� � � , � � � and � � � can

be explicitly computed :

� � � � � � � ( � � � � � � � � *� � � * � � � F � � � N
� � 
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�
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(
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� �
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� ) � �

Setting � � � � provides the asymptotic expansion of the first solution on
�

.

For the second solution, following the same steps it can be shown that

�
� *
� 
 � �

�
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��6 �

� � * ��6 �
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�
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with finally

�
���
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Having characterized the asymptotic expansion of the two spheroidal solutions, they still have to

be combined in order to obtain the asymptotic expansion of
�

. First, the asymptotic expansion of
�

can be readily computed as� � � � � � # � � � � � � � � # � � � � � # � � � � � ��� ��� � � � � F � � ��� � � � � � 1 (C22)

and

� *�* �
� � � �� � � � � � � � � �� � � � �� �

��� � * � � F�� � � F �	� � � F � � � � � � � � * � � � � �

� � � ��� � � � � F � � ��� � � � � � � (C23)

� * � �
� � � �� � � � � � � � � �� � � � �� � � �

� #
� � $ � � � F � � � � � � � � � � � � � � � � � * � ��� � � � � , F � � ��� � � � � � � (C24)

� � * �
� � � �� # � � � � � � � �� # � � �� � � �

� #
� � $ �

� � F � �

��� � � � � � � � F � ��� � � * � ��� � � � � , F � � ��� � � � � � � (C25)

� � � �
� � � �� # � � � � � � � �� � � � �� � �

� #� $ �
� *
� � F �

� � F ���
���
F � � � � � � � � * � � � � � � � � ��� � � � � , F � � ��� � � � � � 1 (C26)

The full asymptotic expansion of
�

is obtained by adding the toroidal solution. One can check that

� * � � � � * , and that the first two terms of � *�* and � � � are local in space (independent of � ).
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