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Abstract The Gulf of Aqaba (GoA) is the seismically most active region in the Red Sea, with a history of
large earthquakes and posing a high seismic hazard to coastal communities. This study uses back‐projection and
dynamic rupture simulation to investigate the largest instrumentally recorded earthquake in the GoA, the 1995
Mw 7.2 Nuweiba earthquake, to understand stress loading, failure mechanisms, and cascading rupture potential
on complex multi‐segment fault systems. Our results reveal a multi‐segment cascading rupture with supershear
rupture on the optimally prestressed Aragonese Fault. Supershear rupture significantly amplified offshore
ground shaking, elevating seismic hazard for the narrow gulf's coastal regions. This event partially ruptured the
GoA fault system, increasing Coulomb stress on the unbroken southern Arnona Fault, which has been silent
since 1588. This stress loading likely advanced a future rupture on this critical segment, requiring close
monitoring and increased preparedness for a potential large earthquake in the region.

Plain Language Summary The Gulf of Aqaba (GoA) fault system, the seismically most active
region in the Red Sea, has hosted multiple large earthquakes in historical times. The rapid development of
NEOM, an infrastructural giga‐project of the Kingdom of Saudi Arabia, near the GoA highlights the need for
seismic hazard assessment (SHA). However, the offshore nature of the fault system and limited data complicate
SHA efforts. Studying past earthquakes provides valuable insights into fault loading, failure mechanisms, and
rupture, enhancing SHA for the region. In this study, we analyze the rupture process of the magnitude 7.2 1995
Nuweiba earthquake, the largest instrumentally recorded earthquake in the GoA. Our findings reveal a multi‐
segment cascading rupture, including a supershear rupture on the central Aragonese Fault. Supershear ruptures
amplify seismic hazard in this narrow gulf region, with intensified and prolonged ground shaking, posing a
severe threat to coastal communities in the event of future earthquakes. The 1995 event only partially ruptured
the GoA fault system, increasing stress on the Arnona Fault, which has not ruptured since 1588. This stress
loading could advance a future earthquake on this critical segment, highlighting the need for close monitoring
and strengthened preparedness to mitigate potential earthquake risk in the region.

1. Introduction
The Gulf of Aqaba (GoA) constitutes a ~180 km long southern section of the Dead Sea Transform Fault (DSTF).
This left‐lateral strike‐slip plate boundary separates the Arabian plate from the Sinai micro‐plate (Ben‐Avraham
et al., 1979; Eyal et al., 1981). South of the gulf, the fault system connects with the Red Sea mid‐ocean ridge. The
GoA consists of three primary strike‐slip segments: the Eilat Fault (EF) in the north, the Aragonese Fault (AF) in
the center, and the Arnona Fault (ArF) in the south, forming an en echelon strike‐slip fault system (Barjous &
Mikbel, 1990) (Figure 1). These segments are separated by pull‐apart basins bounded by stepover normal faults
dipping toward the basins (Ben‐Avraham, 1985; Daggett et al., 1986). Additionally, the region features several
coastal normal faults, including the Haql Fault (HF), Dakar Fault (DF), and Tiran Fault (TF). Together with
several secondary fault branches, these faults form the intricate and geometrically complex GoA fault system
(Ribot et al., 2021).

The GoA fault system has been the seismically most active segment of the DSTF over the last century and the
seismically most active region in the Red Sea (Elhadidy et al., 2021; Mogren, 2021). Notably, it hosted the widely
felt and locally damaging Nuweiba earthquake on 22 November 1995, with a reported magnitude of approxi-
mately M 7.2 (referred to hereafter as Mw 7.2). This event remains the largest instrumentally recorded seismic

RESEARCH LETTER
10.1029/2025GL117448

Key Points:
• Back‐projection and dynamic simula-
tions indicate multi‐segment rupture of
the 1995 Mw 7.2 Nuweiba earthquake

• Supershear rupture can greatly amplify
ground shaking, increasing seismic
hazard for Gulf of Aqaba coastal
communities

• The 1995 Nuweiba event increased
fault stress on the Arnona Fault in the
southern Gulf of Aqaba, potentially
advancing its future rupture

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
B. Li,
bo.li.3@kaust.edu.sa

Citation:
Li, B., Ulrich, T., Gabriel, A.‐A., Suhendi,
C., Klinger, Y., Jónsson, S., & Mai, P. M.
(2025). Supershear rupture of the 1995Mw
7.2 multi‐segment Nuweiba earthquake in
the Gulf of Aqaba. Geophysical Research
Letters, 52, e2025GL117448. https://doi.
org/10.1029/2025GL117448

Received 5 JUN 2025
Accepted 4 NOV 2025

Author Contributions:
Conceptualization: Bo Li,
Thomas Ulrich, Yann Klinger,
Sigurjón Jónsson, Paul Martin Mai
Data curation: Bo Li, Thomas Ulrich,
Alice‐Agnes Gabriel, Yann Klinger,
Sigurjón Jónsson
Formal analysis: Bo Li, Paul Martin Mai
Funding acquisition: Alice‐
Agnes Gabriel, Paul Martin Mai
Investigation: Bo Li, Thomas Ulrich,
Alice‐Agnes Gabriel, Yann Klinger,
Sigurjón Jónsson, Paul Martin Mai
Methodology: Bo Li, Thomas Ulrich,
Alice‐Agnes Gabriel, Cahli Suhendi,
Yann Klinger, Paul Martin Mai

© 2025. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

LI ET AL. 1 of 13

https://orcid.org/0000-0002-3548-5496
https://orcid.org/0000-0002-4164-8933
https://orcid.org/0000-0003-0112-8412
https://orcid.org/0000-0001-6572-2651
https://orcid.org/0000-0003-2119-6391
https://orcid.org/0000-0001-5378-7079
https://orcid.org/0000-0002-9744-4964
mailto:bo.li.3@kaust.edu.sa
https://doi.org/10.1029/2025GL117448
https://doi.org/10.1029/2025GL117448
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2025GL117448&domain=pdf&date_stamp=2025-11-17


event on the DSTF and in the Red Sea. It primarily ruptured the northern section of the GoA fault system
(Hofstetter, 2003; Klinger et al., 1999).

Historical earthquakes, inferred from seismo‐turbidite analysis of sediment cores, suggest that at least two past
events, in 1068 and 1588, ruptured the entire Gulf of Aqaba fault system (Bektaş et al., 2024). These findings
align with probabilistic seismic hazard assessment (PSHA) indicating there is a potential for large earthquakes of
up to Mw 7.6 in the region (Al‐shijbi et al., 2019; Elhadidy et al., 2021). With its capacity to generate Mw 7.2 or
larger earthquakes, the GoA fault system poses a significant seismic hazard to rapidly developing areas like
NEOM and nearby coastal communities. However, the offshore nature of the fault system and limited data
availability present considerable challenges for reliable seismic hazard assessment (SHA).

Detailed analysis of large (M> 7) earthquakes that occurred in the past decades can provide valuable insights into
fault loading, failure criteria, and the potential for cascading ruptures within multi‐segment fault networks,
thereby enhancing regional seismic hazard assessment (Kaneko et al., 2010; Klinger et al., 2018; B. Li et al., 2023;
Taufiqurrahman et al., 2023). Despite being the largest instrumentally recorded earthquake in the Gulf of Aqaba,
the limited local and regional data make it difficult to accurately pinpoint the initiation location and to identify the
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Figure 1. Map of the Gulf of Aqaba and its fault system. The “beach balls” represent the moment tensor solutions for the 1995
Mw 7.2 Nuweiba earthquake and a selected aftershock (Mw 5.3, 22 November 1995), from the Global Centroid Moment
Tensor (GCMT) database. The four yellow stars mark the potential epicenters of the earthquake used in back‐projection. Black
lines in the Gulf represent branch fault segments, while red lines show the modified fault traces used for dynamic modeling, both
based on Ribot et al. (2021). Abbreviations: EF—Eilat Fault; AF—Aragonese Fault; ArF—Arnona Fault; HF—Haql Fault; DF
—Dakar Fault; TF—Tiran Fault; DSTF—Dead Sea Transform Fault. The orange arrows in the top left denotes the orientation of
the maximum horizontal compressive stress. The top right inset shows teleseismic arrays used in the back‐projection and
supershear Rayleigh wave analysis. Yellow and cyan triangles indicate stations from the European Array and Asian Array,
respectively, used for the back‐projection. Stations used for the supershear Rayleigh wave analysis are shown as black solid
circles. The two unfilled black circles represent distances of 20° and 40° from the epicenter of theMw 7.2 Nuweiba earthquake.
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fault segments that ruptured during the 1995 Mw 7.2 Nuweiba event. Previous studies indicate that the main
rupture of the 1995 Nuweiba earthquake occurred close to the Aragonese Deep (Baer et al., 2008; Hofstetter
et al., 2003; Klinger et al., 1999; Pinar & Türkelli, 1997). However, exact location of epicenters vary. Using
teleseismic waveforms, some studies suggest dominant normal faulting for the first subevent, indicating that the
rupture initiated on the stepover normal fault between the Aragonese and Arnona faults (Abdel‐Fattah et al., 2006;
Pinar & Türkelli, 1997). In contrast, Klinger et al. (1999) suggest that the first subevent occurred on the eastern
side of the Aragonese Deep, aligning with the northern segment of the strike‐slip Arnona Fault. This interpretation
is consistent with recent Bayesian inversions that integrate both geodetic and teleseismic data (Vasyura‐Bathke
et al., 2024). Additionally, it remains uncertain whether the 1995 Nuweiba earthquake terminated on a normal
fault or a strike‐slip fault in the northern gulf.

With advancements in high‐performance computing, dynamic rupture modeling has become a critical tool for
physics‐based ground‐motion simulations that may inform seismic hazard assessment (Galvez et al., 2020; B. Li
et al., 2023; Mai et al., 2018; Wirp et al., 2024; Xin & Zhang, 2021). Its capability to incorporate 3D Earth
structure, including topography and bathymetry, 3D seismic‐wave propagation, complex fault geometry with
fault roughness, and rupture dynamics with potential off‐fault plasticity significantly enhances our understanding
of ground motion properties. Ensemble simulations can also account for uncertainties in fault models, prestress
loading, and frictional properties, enabling the simulation of alternative mechanically plausible rupture scenarios
and their resultant ground motions (B. Li et al., 2023), thereby providing deeper insights and serves as a valuable
complement to seismic hazard assessment.

In this study, we first apply back‐projection to obtain a first‐order understanding of the rupture process of the 1995
Nuweiba earthquake and identify the fault segments potentially involved. The back‐projection results suggest the
possibility of a supershear rupture during the event. Next, we examine the resemblance of Rayleigh waves be-
tween the 1995 Nuweiba earthquake and a collocated aftershock with a similar focal mechanism to further
investigate the presence of supershear rupture. Building on these findings, we develop three plausible rupture
scenarios that account for uncertainties and use the open‐source code SeisSol to perform fully 3‐D spontaneous
dynamic rupture simulations of the 1995 Nuweiba event. Finally, we evaluate the resulting ground shaking and
assess the event's implications for future seismic activity along the Gulf of Aqaba fault system.

2. Back‐Projection and Supershear Rupture
2.1. Back‐Projection

We analyze the coseismic rupture process using the back‐projection approach with global seismic arrays. Back‐
projection utilizes the time‐reversal property of curved wavefronts recorded by seismic arrays to image the
spatiotemporal evolution of high‐frequency seismic radiation in sliding time windows (Ishii et al., 2005; Krüger
& Ohrnberger, 2005). With its computational efficiency and minimal prior knowledge requirements—primarily
an assumed velocity model and a rough estimate of the rupture area—back‐projection has become a routine
method for rapidly tracking the rupture process of large and moderate earthquakes (Ishii et al., 2007; B. Li &
Ghosh, 2017; Mai et al., 2023; Zhang et al., 2023).

Assuming sub‐vertical fault segments within the Gulf of Aqaba fault system, we perform back‐projection con-
strained to the mapped fault traces. We fix the source depth at 10 km considering the poor depth resolutions of
back‐projection (Ishii et al., 2005; B. Li et al., 2024) and shallow locking depth of faults in Gulf of Aqaba (X. Li
et al., 2021; Castro‐Perdomo et al., 2022). Cross‐correlation (CC) of first‐arrival P‐waves is commonly employed
to correct waveform polarity and estimate travel‐time biases using a 1D velocity model. However, this requires
knowledge of the hypocenter location, which has not been well determined for this event. Therefore, we perform
four realizations of back‐projection, each based on a potential hypocenter on a different fault segment (Figure 1),
to account for varying rupture nucleation hypotheses proposed in previous finite‐fault inversions (Baer
et al., 2008; Hofstetter et al., 2003; Shamir et al., 2003; Vasyura‐Bathke et al., 2024). We utilize two global
teleseismic arrays: the European array and Asian Array (Figure 1). For each array, we estimate travel‐time biases
relative to the hypothesized hypocenter by applying a cross‐correlation method to a 10‐s window around the direct
P‐wave phase within a frequency range of 0.25–1 Hz. Only stations with an average correlation coefficient CC ≥
0.65 are included in the back‐projection analysis. Then we employ a 4‐s sliding time window with a 0.1‐s time
step across the continuous data, including the event signals, to image the rupture process.
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Back‐projection results of both arrays consistently show that the initial rupture phase occurred on the northern
Arnona Fault (ArF), regardless of the assumed hypocenter location (Figure 2a; Figure S1a in Supporting In-
formation S1). This finding aligns with the inversion models presented by Klinger et al. (1999) and Vasyura‐
Bathke et al. (2024). If the assumed hypocenters were located elsewhere, the imaged rupture rapidly propa-
gates to and is subsequently imaged on the Arnona Fault. The results also illustrate a multi‐segment rupture
involving the Arnona Fault and Aragonese Fault, and the stepover normal faults in between. In addition, a notably
higher rupture velocity, with average value Vr ≥ 4 km/s on the northern Aragonese Fault, is consistently observed
across both arrays (Figure 2b; Figure S1b in Supporting Information S1). This velocity exceeds the shear‐wave
velocity depicted in the 1D velocity model (Tang et al., 2016) (Figure S2 in Supporting Information S1), sug-
gesting the occurrence of a supershear rupture during this event.

As the rupture propagates farther from the hypocentral region, the uniformly applied time‐bias calibration based
on the hypothesized hypocenter becomes less valid. In addition, interference from depth phases further con-
tributes to increased location uncertainties. These factors lead to notable uncertainty regarding the ruptured
northern segments, particularly whether the rupture extended along the Eilat Fault or the nearby coastal Haql Fault
(Figure 2; Figure S1 in Supporting Information S1).

2.2. Supershear Validation

The back‐projection results indicate a potential supershear rupture along the Aragonese Fault. To further
investigate the existence of a supershear rupture, we check the waveform similarity between the mainshock and a
smaller collocated aftershock (Mw 5.3) with a similar focal mechanism (Figure 1). Previous studies suggest that
within the Rayleigh wave Mach‐cone zone, the waveforms between the mainshock and aftershock should closely
resemble each other at periods shorter than the supershear event's rupture duration but longer than its rise time,
while the similarities decrease when moving outside of the Mach‐cone zone (Bao et al., 2019; Vallée & Dun-
ham, 2012). We compare the Rayleigh wave similarity in the period range between 15 and 20 s (Figure S3 in
Supporting Information S1) for stations within an epicentral distance of 15°‐45° (black circles in Figure 1). The

Figure 2. The rupture process for the Mw7.2 Nuweiba earthquake imaged by the back‐projection and supershear rupture
evidence. (a) Back‐projection results from the European array, with each panel corresponding to a hypothesized epicenter
location (Epi, yellow star). (b) Evolution of rupture distance over time relative to the hypothesized initiation location. The
pink‐shaded region highlights a relatively faster rupture velocity on the Aragonese Fault. (c) Rayleigh waveform cross‐
correlation between the mainshock and a collocated aftershock with a similar focal mechanism, as shown in Figure 1. The
two red dashed lines indicate ±38° relative to the rupture direction.
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results in Figure 2c reveal the highest cross‐correlation coefficient (up to 0.99) within a narrow zone around 38°
(relative to the northward rupture direction on the Aragonese Fault, θ), but much lower correlation coefficient in
other directions. Assuming a Rayleigh wave velocity (VR) of 3 km/s (Corchete et al., 2007), the rupture velocity
(Vr) is calculated as VR/cos(θ) = 3/cos(38°) =3.8 km/s, exceeding the S‐wave velocity at depths shallower than
20 km (Figure S2 in Supporting Information S1), thereby confirming the supershear rupture process. Further-
more, the supershear rupture section coincides with a noticeable reduction in aftershock activity (Klinger
et al., 1999), consistent with previous observations of supershear earthquakes (Bouchon & Karabulut, 2008; Wen
et al., 2009).

3. Dynamic Rupture Modeling
3.1. Fault Model

We construct the fault model based on the recent fault trace mapping from high‐resolution multi‐beam imaging of
the Gulf of Aqaba (Ribot et al., 2021), where 41 fault segments have been identified. Building on this mapping, as
well as insights from previous fault inversion studies and the back‐projection results of our analysis, we select the
primary strike‐slip segments, the connecting normal stepover segments, and the major coastal normal faults to
define the fault model for simulating the 1995 Nuweiba earthquake (red lines in Figure 1). Additionally, through a
series of tests, we introduce model modifications by connecting the strike‐slip faults with the stepover normal
faults (Figure 1), enabling rupture cascading across segments.

In our fault model, the strike‐slip segments are set to be vertical, the coastal normal faults are assigned a dip of 80°
to the west, and the stepover normal faults are given a dip of 70° toward their associated pull‐apart basin. As a
transitional zone between Red Sea spreading and Dead Sea transform motion, the Gulf of Aqaba exhibits crustal
thinning, as inferred from geophysical and geodetic studies (Abdelazim et al., 2023; Castro‐Perdomo et al., 2022;
Ginzburg et al., 1981; Hamouda et al., 2019). To account for this, we limit the rupture extent at depth by smoothly
tapering deviatoric stresses between 12 and 16 km, aligning with the 13 km locking depth estimated in the GPS
study by Mahmoud et al. (2005). At the surface, the non‐planar faults intersect with the complex topography and
bathymetry, sampled at a resolution of ∼122 m. Additionally, we incorporate fault roughness on the fault planes,
modeled with a self‐similar fractal distribution (Power & Tullis, 1991) over length scales from 100 m up to the
fault dimensions, with a maximum cutoff at 50 km. Following Fang and Dunham (2013), the amplitude‐to‐
wavelength ratio of natural faults ranges from 10− 3 to 10− 2; in our model, we adopt a ratio of 10− 2.7. The
same random seed is applied across all fault segments.

The fault model is embedded in a 1D velocity structure (Castro‐Perdomo et al., 2022; Tang et al., 2016). We
follow the approach outlined by Ulrich, Gabriel, et al. (2019) to constrain the initial fault stress and strength, and
assume a non‐associated Drucker‐Prager elasto‐viscoplasticity rheology to model coseismic off‐fault energy
dissipation (Wollherr et al., 2018, 2019). Further details are provided in Text S1 in Supporting Information S1:
Dynamic Model Parameterization. We use the open‐source software SeisSol to run 3D dynamic rupture and
seismic wave propagation simulations; subsequently, we analyze the resulting ground‐motion properties as well
as the Coulomb stress changes on the surrounding fault segments.

3.2. Rupture Dynamics and Synthetics

The resolution of back‐projection using limited array data cannot well constrain the northern rupture of the 1995
Nuweiba earthquake, leaving ambiguity about whether it propagated along the Eilat Fault or the coastal Haql
Fault (HF), which are approximately 10 km apart. Additionally, depth phases, coda waves, and the heterogeneous
velocity structure—distinct from the nucleation region—further complicate the identification of the rupture
pathway. Under the proposed regional stress field, an evaluation of prestress loading reveals that the strike‐slip
segments are more optimally oriented and dynamically favored for rupture compared to the coastal normal faults,
despite their similar fault trends (Figure S4 in Supporting Information S1).

With these constraints and assumptions, we develop a preferred dynamic rupture model. The rupture is artificially
nucleated in the northern section of the Arnona Fault and propagates bilaterally (Figure 3a). To the south, the
rupture quickly terminates at a geometric complexity, where changes in fault orientation modulate the prestress
loading, increasing resistance to rupture (Figure S4 in Supporting Information S1). Meanwhile, the rupture breaks
the stepover normal faults simultaneously and subsequently triggers rupture on the Aragonese Fault. This
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correlates with the first peak in the moment rate function (MRF) (Figure 3c). While the northward rupture on the
Aragonese Fault is directly triggered, there is a short delay for the southward (or backward) rupture on Aragonese
Fault. This delay is attributed to asymmetrical and progressively increasing stress changes induced by accu-
mulating slip along the intersected stepover normal faults on either side of the Aragonese Fault, a phenomenon
similar to the rupture delay also observed during the 2023Mw 7.8 Türkiye earthquake (Gabriel et al., 2023; B. Li
et al., 2025). The combined influence of dynamic stress effects and optimal prestress loading causes the northward
rupture on the Aragonese Fault from subshear to supershear, accompanied by a daughter crack and a Mach‐wave
cone (Figure 3a and Movie S1). Together with the bilateral rupture, this northward supershear transition con-
tributes to the second and largest peak in the moment rate function (Figure 3c). The supershear rupture section of
the Aragonese Fault coincides with a large slip asperity, exhibiting a maximum slip of up to 5.4 m on the
Aragonese Fault (Figure 3b). Following this, the northward rupture continues, sequentially triggering the stepover
normal faults that connect with the Eilat Fault. Slip on the stepover normal faults dynamically affects the Ara-
gonese Fault, producing a distinct slip pattern characterized by much lower slip amplitude north of the inter-
section (Figure 3b). The rupture then smoothly terminates on the Eilat Fault at around 25 s, where a prescribed
gradual reduction in prestress is applied. Without this stress constraint, the rupture would propagate through the
entire fault, which is inconsistent with observed surface displacement data and aftershock distributions that do not
extend to the end of this segment (Hofstetter, 2003; Klinger et al., 1999; Shamir et al., 2003; Vasyura‐Bathke
et al., 2024). This scenario produces an Mw 7.27 rupture.

To further investigate the initial rupture phase and complement the back‐projection analysis, we conducted
dynamic simulations with scenarios nucleating on the southern section of the Aragonese Fault (AF) and the
stepover normal fault connecting the AF and ArF (Figure S5 in Supporting Information S1). While all scenarios
yield a broadly similar fault displacement distribution on the commonly ruptured AF and Eilat Fault (EF) (Figure
S5a in Supporting Information S1), they exhibit distinct differences in the details of their moment rate functions
(Figure S5b in Supporting Information S1). The results indicate that nucleation on the southern AF also produces
a two‐peak moment rate function. However, the first peak is relatively higher, and the second peak is notably

Figure 3. A dynamic rupture scenario for the 1995 Mw 7.2 Nuweiba earthquake. (a) Snapshots of the absolute slip rate and
surface seismic wavefield, highlighting the complex rupture process for the earthquake, at rupture times of 3, 7, 10, 15, 17,
and 21 s. The labels indicate noteworthy features of the rupture. Black circles represent the hypocenter location on the ArF.
The unruptured coastal faults are omitted from this figure to provide clearer visualization of the rupture dynamics. (b) Final
rupture velocity and fault displacement of the simulation. (c) Comparison of normalized moment rate functions (MRFs), with
the SCARDEC MRF taken from Vallée et al. (2011), and the MRF inferred by Klinger et al. (1999) and Hofstetter
et al. (2003).

Geophysical Research Letters 10.1029/2025GL117448

LI ET AL. 6 of 13

 19448007, 2025, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
117448 by C

ochrane France, W
iley O

nline L
ibrary on [17/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



narrower compared to previous kinematic studies. In contrast, nucleation on the stepover normal fault does not
distinctly capture the imprint of the first “sub‐event,” and the peak moment rate release occurs a few seconds
earlier. Furthermore, both alternative scenarios failed to trigger rupture on the northern ArF, particularly the
scenario with nucleation on the southern AF. The initial left‐lateral slip on the southern section of the AF,
combined with the acute angle between the AF and the stepover normal faults, do not favor backward branching
rupture propagation (Fliss et al., 2005). Additionally, the acute angle between the stepover normal faults and the
ArF further impedes northward rupture propagation along the ArF. Furthermore, a sustained subshear rupture
scenario with the same nucleation location as the preferred model produces three peaks in the MRF and a longer
rupture duration than previous kinematic inversions, resulting in a poorer match compared to the preferred
supershear scenario (Figure S5 in Supporting Information S1).

The simulation results of the preferred multi‐segment rupture are consistent with previous studies and obser-
vations of the 1995 Nuweiba earthquake. The two‐crest moment rate function (MRF) closely aligns with MRFs
derived from published kinematic fault inversion studies (Hofstetter et al., 2003; Klinger et al., 1999; Vallée
et al., 2011). For comparison of teleseismic waveforms, we discretize the rupture into 90 point sources (30 along
strike and 3 along dip) to adequately capture the source properties and ensure reliable synthetic waveform
generation. The moment tensor for each point source is calculated by averaging the moment tensors of fault
element faces in the ruptured subregion (Ulrich et al., 2022). Synthetic teleseismic waveforms are then generated
using precomputed Green's Functions (see Data Availability Statement for details). These low frequency tele-
seismic waveforms, though not highly sensitive to the details of the rupture process, exhibit a good match with
surface waveform observations from teleseismic stations across all azimuths (Figures S6 and S7 in Supporting
Information S1), reproducing both phase arrivals and amplitude characteristics.

4. Discussion
The offshore rupture and limited local and regional data complicate the precise determination of the rupture
initiation point and the fault segments involved in the 1995 Nuweiba earthquake. Uncertainties in the hypocenter
locations also limit the direct application of back‐projection with travel time corrections for imaging the
coseismic rupture process, especially the initial rupture phase. However, by assuming and testing all highly
plausible hypocenter locations across different segments, back‐projection effectively demonstrates its capability
to identify the most likely rupture scenario. Both back‐projection analysis and dynamic rupture simulations with
various hypocenter locations on different fault segments consistently indicate that the rupture initiated on the
northern Arnona Fault (ArF) and then triggered multi‐segment rupture. This nucleation around the intersection of
strike‐slip and stepover normal faults reconciles inconsistencies in the reported nucleation phase among previous
studies (Baer et al., 2008; Hofstetter et al., 2003; Klinger et al., 1999; Pinar & Türkelli, 1997; Vasyura‐Bathke
et al., 2024). The 1995 Nuweiba earthquake appears to have simultaneously broken both the northern segment
of the strike‐slip ArF and the stepover normal faults that connecting with the AF at the onset of the event,
generating a very complex radiation pattern.

Compared to the well‐constrained initial rupture process revealed by back‐projection, the termination phase of the
1995 Nuweiba earthquake remains poorly constrained and hence uncertain. Back‐projection results from different
arrays suggest that the rupture most likely terminated on the Eilat Fault (EF). However, due to the limited res-
olution of the back‐projection, some interpretations also allow for the possibility of termination on the Haql Fault
(HF) near the eastern coast (Figure 2; Figure S1 in Supporting Information S1). In this study, we select termi-
nation on the EF as the preferred model, given its more favorable prestress loading (Figure S4 in Supporting
Information S1). However, this assessment is based on the assumption of a uniform regional stress field for both
EF and HF. Recent studies indicate that non‐uniform stress fields, with significant stress rotations, may be present
within the same fault network. For instance, a regional stress rotating along the East Anatolian Fault (Güvercin
et al., 2022; Yilmaz et al., 2006) and the Sürgü‐Misis Fault (Koc &Kaymakcı, 2013) leads to the 2023Mw 7.8 and
Mw 7.6 Türkiye Kahramanmaraş earthquake doublet (Gabriel et al., 2023; B. Li et al., 2025). Tectonic studies in
the Gulf of Aqaba show evidence of plate rotation, further supporting the complex regional stress field (Bosworth
et al., 2019; Lyberis, 1988). This non‐uniform stress regime, combined with the stress loading from historical
earthquakes, likely results in a more complex prestress distribution across the fault system (Kaneko et al., 2010;
Taufiqurrahman et al., 2023). Such a configuration may bring coastal normal faults closer to failure, potentially
triggering them to rupture in conjunction with the strike‐slip segments, thereby potentially increasing seismic
hazard for coastal communities.
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In addition to uncertainties in the regional stress conditions, the offshore fault system and limited data availability
introduce ambiguity in frictional properties and fault geometry, including the connectivity of fault segments,
seismogenic depth, dip angles, and roughness levels (Fang & Dunham, 2013; B. Li et al., 2023). However, all
alternative fault models should be able to reproduce the 1995Mw 7.2 Nuweiba earthquake, capturing the observed
rupture cascading, overall rupture extent, and key dynamic features, comparable to those of the preferred model
presented in this study, while remaining viable for a full rupture cascade across the entire fault network to be
consistent with the record of historic earthquakes (Bektaş et al., 2024).

A reduced prestress was applied on the Eilat Fault to inhibit rupture from propagating along its entire length,
consistent with observed surface displacements and aftershock distributions (Klinger et al., 1999). This hetero-
geneous prestress may be due to previous local earthquake activity on the Eilat Fault. Seismo‐turbidite records
from Bektaş et al. (2024) show a localized turbidite near the termination, which could be attributed either to a
localized flooding event or an earthquake. Alternatively, a western branch fault connecting to the Eilat Fault
(Figure 1) may have modified the prestress loading, with left‐lateral slip producing heterogeneous stress on both
sides of the intersection. In addition, variations in local geological setting, such as sedimentary layers or velocity
structure, could also contribute to rupture termination. A comparable case occurred in the 2025Mw 7.7 Myanmar
earthquake, where rupture termination on a simple fault coincided with a transition from post‐Pliocene alluvial
fans to the volcanic Singu basalt unit (Choi et al., 2018; Mai et al., 2025).

The potential for supershear rupture within the GoA fault system increases the seismic hazard for coastal
communities along the narrow Gulf of Aqaba. Subshear rupture tends to produce strongly focused energy ra-
diation, generating intense shaking primarily in the near‐fault region and in the rupture's forward direction
(Andrews, 2010). In contrast, supershear rupture concentrates energy within the Mach cone, resulting in elevated
and sustained ground‐motion intensity over greater distances but confined to the Mach zones (Dunham &
Bhat, 2008). The coherence of Mach waves can be disrupted by rupture and medium heterogeneities, thereby
diminishing their amplification effect (Vyas et al., 2018). Figure 4a shows the peak ground velocity (PGV)
distribution for the preferred rupture scenario of the 1995 Nuweiba earthquake. To the south, strong directivity
amplification is evident from the subshear rupture on the Aragonese Fault, whereas to the north, the transition to
supershear mitigates the directivity effect but produces intensified shaking in the off‐fault coastal areas within the
Mach zones.

These characteristics of subshear and supershear rupture are not unique to the GoA fault system. Similar be-
haviors have been observed along other major strike‐slip faults worldwide, including the 2018 Mw 7.5 Palu
earthquake on the Palu‐Koro Fault, the 2023 Mw 7.6 Türkiye earthquake on the Sürgü‐Misis Fault, and the 2025
Mw 7.7 Myanmar earthquake on the Sagaing Fault (Ulrich, Vater, et al., 2019; B. Li et al., 2025; Mai et al., 2025).
The widespread occurrence of supershear rupture and off‐fault Mach‐zone amplification highlights the impor-
tance of considering supershear scenarios in regional seismic hazard assessment for other strike‐slip faults, such
as the San Andreas Fault.

The 1995 Nuweiba earthquake resulted in positive Coulomb failure stress changes (ΔCFS) on the southern Haql
and Arnona faults (Figure 4b), advancing these segments closer to failure. The potential rupture of the Arnona
Fault in particular increases the seismic hazard to the NEOM region. Seismo‐turbidite records suggest that the
most recent large earthquake in the southern Gulf of Aqaba occurred in 1839, likely rupturing only part of the
Tiran or Arnona Faults, or one of the secondary faults in the southern gulf (Bektaş et al., 2024). Beyond this, most
of the Tiran and Arnona Faults have remained unruptured since the 1588 event.

The post‐rupture on‐fault Coulomb failure stress change (ΔCFS) transmitted from the ruptured segments in the
1995 Nuweiba earthquake to the unbroken segment show a positive ΔCFS ≥ 1MPa south of the southern rupture
edge on the Arnona Faults (Figure 4b). This segment is optimally oriented relative to the regional stress field
(Figure S4 in Supporting Information S1) and may already be highly prestressed. As a result, the 1995 Nuweiba
earthquake likely advanced the time of occurrence of a future rupture on this segment. Previous studies suggest
that geometrical complexities can act as preferred nucleation sites due to stress concentrations from prior
earthquakes (Duan & Oglesby, 2005, 2007), indicating that nucleation on the northern Arnona Fault, just south of
the complex geometry where the 1995 rupture terminated, may be plausible. The optimally prestressed linear
segment is also favorable for supershear rupture, potentially leading to intensified ground shaking in the rapidly
developing NEOM area. This highlights the need for close monitoring and strengthened preparedness to mitigate
potential seismic hazards in the region.
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Figure 4. Computed ground shaking and the Coulomb failure stress change (ΔCFS) from dynamic rupture simulations of the
1995 Nuweiba earthquake. (a) Physics‐based ground motion simulations showing peak ground velocity (PGV) in m/s for the
synthetic Nuweiba event. The black squares denote the major cities in the region. (b) Postseismic Coulomb failure stress
change (ΔCFS) resulting from the 1995 Nuweiba earthquake. The scattering observed within the ruptured segments reflects
the roughness and heterogeneous slip on the fault plane. The color bar is saturated at±1MPa. The orange dashed box highlights
the section of the ArF with positive ΔCFS.
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5. Conclusions
This study investigates the 1995 Mw 7.2 Nuweiba earthquake through back‐projection analysis and dynamic
rupture simulations, unraveling a multi‐segment cascading rupture that included a supershear rupture on the
central Aragonese Fault. While limited resolution prevents detailed analysis of the final rupture phase, back‐
projection results from multiple global arrays, testing several hypocenter locations, effectively constrain the
initiation phase of this debated event, suggesting that the rupture originated on the northern Arnona Fault. Data‐
constrained dynamic simulations successfully reproduce the multi‐segment cascading rupture, with synthetics
demonstrating good alignment with moment rate functions from previous studies and observed teleseismic
waveforms. The simulations capture the occurrence of a supershear rupture on the optimally prestressed Ara-
gonese Fault, in agreement with the back‐projection observations and surface‐wave analysis of Rayleigh waves.
The occurrence of such a supershear rupture significantly amplifies seismic hazard in the coastal communities of
the narrow gulf, concentrating energy within the Mach cone and resulting in prolonged, intensified ground
shaking. The 1995 earthquake only partially ruptured the Gulf of Aqaba fault system, increasing Coulomb failure
stress on most of the unbroken Arnona Fault, which likely has remained dormant since 1588. This stress accu-
mulation could accelerate a future rupture on this vulnerable segment, with the potential for a supershear rupture
significantly amplifying the seismic hazard in nearby coastal communities, including the rapidly developing
NEOM area.
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Data Availability Statement
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github.com/SeisSol/SeisSol. Input files required to reproduce the dynamic simulation can be downloaded from
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