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Slip deficit and temporal clustering 
along the Dead Sea fault from 
paleoseismological investigations
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Temporal distribution of earthquakes is key to seismic hazard assessment. However, for most fault 
systems shortness of large earthquake catalogues makes this assessment difficult. Its unique long 
earthquake record makes the Dead Sea fault (DSF) exceptional to test earthquake behaviour models. 
A paleoseismological trench along the southern section of the DSF, revealed twelve surface-rupturing 
earthquakes during the last 8000 years, of which many correlate with past earthquakes reported in 
historical chronicles. These data allowed us building a rupture scenario for this area, which includes 
timing and rupture length for all significant earthquakes during the last two millenaries. Extending this 
rupture scenario to the entire DSF south of Lebanon, we were able to confirm the temporal-clustering 
hypothesis. Using rupture length and scaling laws, we have estimated average co-seismic slip for each 
past earthquake. The cumulated slip was then balanced with long-term tectonic loading to estimate 
the slip deficit for this part of DSF over the last 1600 years. The seismic-slip budget shows that the slip 
deficit is similarly high along the fault with a minimum of 2 meters, which suggests that an earthquake 
cluster might happen over the entire region in the near future.

Successions of intense periods of seismic activity rupturing significant length of a fault followed by longer peri-
ods of seismic quiescence have been documented along several strike-slip faults1–6, suggesting that temporal 
clustering of earthquakes might be a common behaviour for major strike-slip faults. Testing this assumption, 
however, has long been hampered by the lack of consistent earthquake time series for long-enough fault sections. 
Moreover, temporal clustering remains a critical issue for seismic hazard models that only started to be addressed 
in the most recent modelling attempts.

The DSF, a 1200 km-long continental strike-slip fault, is the tectonic boundary between the Arabian plate and 
the Sinai micro-plate in the eastern Mediterranean region7,8 (Fig. 1). Previous works, based on geological data and 
reassessment of historical records, have hinted at seismic temporal clustering along some sections of the Dead 
Sea fault6,9,10. Recently, the occurrence of the Mw 7.3 earthquake in the Gulf of Aqaba in 1995, the only large event 
along the entire Dead Sea fault for more than 200 years11,12, revived the question of the possible onset of a new 
earthquake series during the upcoming decades.

The DSF area has long been inhabited and it provides a unique historical archive including numerous earth-
quake testimonies13–17. In several places these archives have been complemented by paleoseismological inves-
tigations to better locate past earthquakes and to expand earthquake catalogues in time18–24. However, the 180 
km-long southernmost section of the DSF on shore, named the Wadi Araba fault, remains less well known due to 
a lower population density. Hence, we opened a trench in the Wadi Araba to close the gap of paleoseismological 
data (Fig. 1). These new data were then integrated with the corpus of data already available to propose an earth-
quake catalogue including timing and rupture length for significant earthquakes for at least the last 1600 years, 
for the area from southern Lebanon to the Gulf of Aqaba.

This new dataset allowed us, using seismological scaling laws25, to estimate average co-seismic deformation 
accommodated by earthquakes during the last 1600 years. It was then compared to regional tectonic strain accu-
mulation, in order to assess the current slip deficit along the different fault sections. Finally, to better evaluate the 
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seismic hazard associated with this fault, which lies close to several major cities such as Jerusalem, Amman or 
Damascus, we tentatively computed probabilities of occurrence of M > 7 earthquakes for different time periods, 
using simplified assumptions about earthquake recurrence.

Paleoseismological Observations
The Wadi Araba fault section is mostly linear with two noticeable fault jogs, the Yotvata playa, which is an exten-
sional relay zone, and the compressional bend located at the Jabal al-Risha. They are located respectively about 
30 km and 100 km north of the city of Aqaba (Fig. 2). At Jabal al-Risha, the fault strike changes from N17E south-
ward to N12E northward over 20 km, producing a low relief that locally blocks westward-flowing drainages26.

To test how this compressional bend might impact earthquake propagation along the Wadi Araba fault, we 
dug a trench 20 m long and 2.5 m deep at a site called Taybeh (30°22′40.71″N, 35°16′30.84″E). At that site, the 
topography associated with the compressional bend traps fine sediments while diverting the Wadi Musa, which is 
flowing westward from the Jordanian plateau (Fig. S1). The main active strike-slip fault runs across the distal part 
of the Wadi Musa alluvial fan where the fault location is only indicated by small push-ups popping up through 
the surface of the fan.

Three trench walls were excavated (one wall facing south, and two peels facing north) that are summarized 
hereafter (full description of stratigraphy and evidence for individual earthquake identification are provided as 
electronic sup.). The stratigraphy exposed in the trench is quite diverse. Four main units can be distinguished 
(Figs 1a,b; S2 and S3). The lower unit consists of coarse alluvial deposits. Nested channels including gravels to 
fine sand characterize the middle unit. The upper section of the trench is composed of a 1 m-thick succession of 
distinct laminated sandy layers. Lastly, a massive reddish sandy unit is popping up through the trench stratigra-
phy between marks 3 and 9, which is interpreted as a small push-up, based on strong similarity in material and 
appearance with the observed push-up located a hundred meters south of our trench (Fig. S1). Moreover, this 
unit is affected by numerous fractures defining a positive flower structures consistent with compressional defor-
mation. Stratigraphic relations suggest that the top part of the push-up was eroded with subsequent deposition of 
sediments on top of it. At marks 9 and 7, some of these younger sediments show signs of apparent normal faulting 
that necessarily post-date the emplacement of the push-up, emphasizing the changing nature of small-scale ver-
tical deformations along major strike-slip ruptures during successive earthquakes.

Figure 1. (a) Detailed log of the southern wall of the trench. Units are differentiated according to facies. White 
dots indicate locations of 14 C samples collected from both walls (the samples collected from the northern 
wall are represented at a stratigraphically and structurally equivalent location on the southern wall log). (b) 
Simplified stratigraphic section of the trench, only the four main units are represented, in dark brown the 
unstratified unit associated to push-up, in light brown the coarse alluvial unit, in white the channelized unit, and 
in yellow the succession of flat sandy layers. Inset map shows the Levantine area with the entire Dead Sea fault, 
tectonic features are derived from Garfunkel et al.54, the red square highlights the Wadi Araba and correspond 
to the location of Fig. 2, the site of Taybeh is marked (T). Figure was generated with Adobe illustrator CS6 
(http://www.adobe.com/fr/products/illustrator.html).

http://www.adobe.com/fr/products/illustrator.html
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Although, deformation is visible throughout most of the trench, it is more pronounced around mark 17, where 
deformation is mostly characterized by normal displacement and cracks, while evidence of strike-slip motion 
remains elusive.

We identified event horizons based on offset layers and consistent groups of cracks (a minimum of 4 dif-
ferent cracks in that case) ending at the same stratigraphic level27. However, the central push-up disrupts the 
general stratigraphy, making it difficult to unambiguously establish the lateral continuity of these event horizons 
between the eastern and the western part of the trench. Therefore we also had to rely on 14C dating of charcoals 
to strengthen the stratigraphic sequence across the trench. Thirty-two charcoals distributed over the three trench 
walls were dated by accelerator mass spectrometry (Tablesup1; Fig. S4). The chronological sequence was then 
refined using a-priori information derived from stratigraphic relationship of 14C samples, following a Bayesian 
analysis approach in Oxcal28.

Eventually, the Taybeh trench displays a 8000-year-long sedimentological record, without major sedimen-
tary hiatus. The dates of the seismic events span from the 7th millenary BC to the 18th century AD (Figs 3a; 
S5; Tablesup 1). Detailed description about specific association between earthquakes observed in the trench 
and historical events is found in the supplementary materials, and here after correlations are only summarized. 
Among the 12 identified events, the oldest three cannot be associated with specific historical earthquakes due to 
loosely-constrained ages and scarce to nonexistent testimonies. However, we correlate the next 8 earthquakes 

Figure 2. Topographic map of the Wadi Araba from SRTM3 (pixel size, ~90 m) with lateral extent of historical 
earthquakes based on events identified in trenches and in historical accounts. Locations of the 1068 AD, 1212 
AD, 363 AD events not identified in the Taybeh trench are from Klinger et al.24. The Wadi Araba fault segments 
were reproduce after Le Béon et al.46. The Jabal al-Risha compressional jog and the Yotvata extensional jog 
appear to act like stopping/initiation points for many ruptures, although larger earthquakes seem to be able to 
break through. WM: Wadi Musa. Figure was generated with Adobe illustrator CS6 (http://www.adobe.com/fr/
products/illustrator.html).

http://www.adobe.com/fr/products/illustrator.html
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with historical events: The correlation for events E8 to E6 remains relatively uncertain due to the lack of historical 
reports, nevertheless we suggest that event E8 is associated with the mid 8th century BC event, event E7 with the 
mid 4th century BC event and event E6 as the mid 2nd century BC event. From event E5, association between our 
observations and historical catalogues is stronger and only these events will be used in the following part of this 
work: E5 is associated with the 31 BC event and E4 with the 114 AD event. We correlate E3 with the 8th century 
AD crisis, E3bis with the 1293 AD event and E2 with the 1458 AD event (Fig. S5). The most recent event is dated 
around the 18th century AD, a time when no major earthquake is documented in the area. Hence, we assume 
that it is a smaller-magnitude earthquake, such as Mw5 to Mw6 event. Indeed, Liu-Zeng et al.29 showed that 
under favorable conditions surface rupture of local moderate-magnitude earthquakes could be preserved in the 
stratigraphy.

Earthquake rupture length in the Wadi Araba
Trenches provide local information on ground-rupturing earthquakes. Hence, combining several trenches helps 
determining the rupture length of past events, which is a proxy for the earthquake magnitude25. To establish the 
rupture length of past earthquakes for the Wadi Araba fault, we combined direct evidence of ruptures at our new 
site of Taybeh, with evidence from the site of Qatar24, about 30 km north of the city of Aqaba, and from the site of 
Tilah21, located just south of the Dead Sea basin (Fig. 2). These data were complemented by information regarding 
historical destructions16, including in Aqaba and Petra30 and by observation of seismites in the Dead Sea basin31. 
Moreover, as earthquake ruptures tend to initiate or end at major jogs32,33, at first order fault segmentation based 
on such geometrical asperities provided a template for potential ruptures scenarios.

In the following, we detail observations and our assessment of rupture length for three events, 31 BC, 114 AD 
and 1458 AD, characteristic of the different cases we encountered. A full description of the same process for all 
events considered in our study can be found in supplementary materials.

Two events are observed only in the Taybeh trench and are hardly reported in local historical chronicles, the 
31 BC and the 114 AD events, making determination of rupture length difficult. The 31 BC event is documented 
in our trench and recognized at several places in seismites of the Dead Sea, with larger deformation in the south-
ern part of the basin31. Damage was reported in the area around Jerusalem, although the severity of the damage 
remains arguable16. Hence, we favored a rupture of the northern segment of the Wadi Araba fault ending in the 
Dead Sea. The 114 AD event is even less documented. Some damage is reported in Petra and along the road from 
Petra to the Mediterranean sea16 that are possibly associated with an earthquake. The timing of a limited group 
of cracks in the Taybeh trench is also consistent with these reports, which would confirm the occurrence of an 
earthquake at that time. However the scarcity of evidence indicates that, if it did occur, it was probably a moderate 
magnitude event. Hence, we assume that it ruptured partially the central segment of the Wadi Araba fault, as it is 
not found at the Qatar site24.

For better documented events, we firstly consider the sites where a surface rupture associated with the event is 
visible to determine a minimum lateral extent of the rupture. We then use the historical data to refine the limits of 
the rupture. For example the 1458 AD earthquake is recognized both in Taybeh and in Qatar24, indicating that the 
rupture was at least 65 km long. It did not seem to have extended further southward as no damage was reported in 
Aqaba. To the north, an event with an overlapping age is found in the seismites of the Dead Sea31 and damage is 
documented in several places in the south of the Dead Sea. However, this event seems to be absent from the pale-
oseismological record at the site of Tilah21, suggesting that it did not rupture up to the Dead Sea and was limited 
to the central part of Wadi Araba.

Eventually, combining the new constrains brought by the Taybeh trench with data already available, we refined 
the regional historical catalogue of seismicity, possibly confirming the existence of the 114 AD earthquake, and we 
estimated rupture length for most past earthquakes along the Wadi Araba fault during the last 2000 yrs (Fig. 2).

Slip deficit assessment and implication for seismic hazard
To test the hypothesis of temporal clustering along the southern DSF, we expanded the earthquake catalogue for 
the area from southern Lebanon to the Gulf of Aqaba based on published literature (literature review in supple-
mentary mat.) (Fig. 3a). As for the Wadi Araba fault, based on location of major jogs and bends we defined nine 
segments along the southern DSF, which are from south to north: three segments in the Wadi Araba, the Lisan 
peninsula segment, the Jericho segment, two segments in the Jordan valley, the Jordan Gorge segment and the 
Hula basin segment (Fig. 3d).

Then, historical earthquakes were systematically associated with one or several fault segments in a pattern that 
ensures consistency with available paleoseismological data21–24,34,35 and archaeological data13,36,37, as it was done 
for the Wadi Araba. Figure 3a summarizes the distribution of Mw >6.5/7 earthquakes on the Dead Sea fault, 
including rupture length. It also includes a few lower-magnitude events, such as the 1834 event, which are poorly 
described despite being quite recent. The proposed catalogue does not cover the same time period for all fault 
sections, because different paleoseismological records do not span the same time period. Moreover, historical 
records are uneven and usually scarcer in less densely populated areas.

Overall, our catalogue shows that the seismic activity of the DSF is not regular through time. Short periods, 
lasting one to two centuries, during which the entire fault ruptures in a succession of earthquakes, alternate with 
longer periods of roughly 350–400 years with very limited seismic activity. Two periods of such intense activity 
can be recognized during the 8th and the 12th–13th centuries AD. A third period might also be identified during 
the 4th century, although ruptures along the Wadi Araba are missing, either because they were not recognized or 
that they did not happened (Fig. 3a). During each earthquake cluster the entire fault eventually ruptures, although 
the spatial distribution of earthquakes seems to be random and does not follow any obvious neighboring-segment 
triggering pattern. Limited data availability makes it difficult to assess the extension of a similar pattern of tempo-
ral clustering further north, in Lebanon and Syria. However, historical and paleoseismological data suggest that 
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Figure 3. (a) Historical earthquakes distribution in space and time, each horizontal bar corresponds to an 
approximate earthquake location along the Dead Sea fault, dashed lines are used for uncertain locations or 
lateral limits. The vertical bars correspond to the time interval associated to the paleoearthquakes at Taybeh, 
obtained after a Bayesian modeling in Oxcal. For Qatar the time intervals are from Klinger et al.24, for the Jordan 
Gorge the ages are from Marco et al.5 and from Wechsler et al.40. The blue crosses represent the earthquakes 
visible in the different trenches. (b) Accumulated displacement (red) from tectonic loading and cumulated 
released slip (blue) due to major earthquakes from 350AD to 2015AD along DSF, between the Gulf of Aqaba 
and the Hula basin. For all earthquakes two scenarios are considered, the dark blue line shows the released 
displacement linked to a maximum lateral extent, the light blue line shows the released displacement linked to 
a minimum lateral extent. The slip deficit is written in meter for all the sections and for the two scenarios. (c) 
Probability of M ≥ 6.5/7 earthquakes for the next 50 and 80 years (respectively red and orange) calculated with 
the ‘empirical’ method of Savage52. (d) Simplified structural map of the southern Dead Sea fault, the studied 
branches are highlighted in red, the sites of previous paleoseismological studies in the area are shown, Q: Qatar, 
Ti: Tilah, JV: Jordan valley. The topography is from SRTM3 and the faults geometries are derived from Le Béon 
et al.26. Figure was generated with Adobe illustrator CS6 (http://www.adobe.com/fr/products/illustrator.html).

http://www.adobe.com/fr/products/illustrator.html
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the period of the 12th to 13th centuries AD, at least, was also a period of intense seismic activity along the northern 
section of the DSF19,38,39, pointing out that temporal clustering might dominate the seismic activity along the 
entire DSF.

Using the assumed rupture length of each earthquake presented in the catalogue, we can estimate the average 
coseismic displacement accommodated by these earthquakes. We compared this displacement with the accumu-
lated slip due to tectonic loading. Since the seismic activity seems clustered, we needed to consider several seismic 
cycles to average out slip variability. Hence, we included the longest possible time period where we consider we 
have a complete catalogue of significant earthquakes for the entire fault, starting back in the 4th century AD. This 
time window comprises at least 3 seismic crises, i.e. several significant earthquakes for each fault section, and it 
should be representative of the fault behaviour, including short-term variability. We assumed, as an initial condi-
tion, that just after the seismic crisis of the 4th century AD, most of the stress had been released everywhere along 
the fault. For the three segments that did not rupture during the 4th century AD crisis, the Lisan peninsula and 
northern parts of Wadi Araba, we extended the time period to the closest earthquakes before the 4th century AD, 
respectively in 31 BC and 114 AD.

The total co-seismic displacement was computed by summing up average displacement associated to each 
earthquake. The latter was obtained by combining the hypothesized rupture length for each earthquake in the 
catalogue with the empirical law relating the surface rupture length (L) to the average displacement (AD) for 
strike-slip earthquakes: log(AD) =−1.7 + 1.04 log(L)25. In the computation we considered two extreme scenarios, 
corresponding respectively to the maximum and minimum released co-seismic displacement. In the first one, 
for each earthquake, we use the maximal value for the rupture length that would still be consistent with all the 
observations. For example, for the 8th century seismic crisis, in the Wadi Araba we considered one single rupture, 
about 210 km-long, rupturing the entire Wadi Araba. Conversely, in the second scenario we assigned the shortest 
possible rupture length to each earthquake. Therefore, in the case of the 8th century crisis we considered a series 
of three smaller-magnitude events, one on each segment (60 km long in average). In addition, for the second 
scenario, specifically for the Jordan Gorge section, we used direct measurements of earthquake displacements 
instead of modeled values, based on 3D paleoseismic observation40. These displacements are smaller than values 
derived from scaling laws25. Part of this difference might be explained by the trench location at the end of the 
fault section. Direct offset observations are also available in the Wadi Araba21,41, at Tilah an aquaduc is offset by 
1.6 ± 0.4 m21 and a water reservoir by 2.2 ± 0.5 m41,42. These values are consistent with values predicted by scaling 
laws25. When available, we include earthquake magnitude. For our area, only the magnitude Mw ~6.3 of the 1927 
AD event was recorded43. The magnitude Mw ~6.3 is smaller than the magnitude that would be derived from the 
scaling laws using the rupture length associated to the 1927 event. Hence, in our lower slip scenario we use a slip 
value consistent with the Mw ~6.3 magnitude, rather than slip directly modeled from rupture length. Eventually, 
despite the length of the host faults, we considered for the computation that the 1068 AD, 1113/1117 AD event 
and 1834 AD event were of smaller magnitude, around 6.5–6.9, because the historical reports for these events are 
vague and suggest limited damage. In general taking into account measured values of displacement participates 
to lower the stress released per event.

We acknowledge that the segmentation we use and the fact that all events rupturing the same section of 
fault have the same rupture length are oversimplification. However, a sensitivity test shows that for our average 
fault-section length of 60 km, a variation of 20% of the rupture length would lead to an average change in slip 
of about 0.24 m, which is not very significant when considering the total cumulative slip. Indeed, because inter-
pretation of historical data in some cases remains arguable, alternative scenarios for lateral extent of historical 
earthquakes, that would affect the distribution of cumulative slip to some extent, could never be totally ruled out 
(see alternative scenarios in sup. mat.). We favore here a scenario that is consistent with all available data and that 
minimizes assumptions.

In parallel, we computed the accumulated strain due to tectonic loading over the same time period for each 
fault section. Comparison of geologic and geodetic slip rates along the DSF shows that the slip rate is steady over 
the Holocene44–46. Hence, for our calculation we used the geodetic rates published for the different fault sections, 
which are consistent in the limit of uncertainties all along the fault: For the Wadi Araba and the Lisan peninsula 
segments we used respectively a slip rate of 4.7 ± 0.7 mm/yr, and 5.5 ± 0.3 mm/yr47, for the Jordan valley we used 
a rate of 4.7 ± 0.5 mm/yr48, and for the Jordan Gorge and the Hula basin segments we used a rate of 4.1 ± 0.8 mm/
yr49. On the northern segment of the Jordan valley Hamiel et al.49 suggest that 10% of the seismic moment is 
released by a 1.5 km-thick surface creeping layer, which contributes to reduce the accumulated constraint. For 
this segment we calculate an equivalent slip rate of 3.7 mm/yr, which includes the reduction of accumulated seis-
mic moment.

When we compare the cumulative deformation accommodated by earthquakes with the tectonic strain accu-
mulated over the same period, we found that there is a significant deficit of seismically released strain for most 
fault sections, even when one considers the scenario with the maximum rupture length for each event, i.e. the 
largest magnitude and slip per event (Fig. 3b). In this maximum scenario, on average about 2 meters of slip deficit 
accumulated during the last 1600 years all along the fault, which would correspond to a magnitude Mw 7.3 event 
on each section to fully release the current accumulated slip. However, the amount of slip to be released might be 
lower in this area, if one considers the extremely low level of current microseismicity in the Wadi Araba50 as the 
signature of very large earthquakes rupturing deeper than classical seismogenic crust and associated with very 
large slip51. The alternative scenario, involving smaller-magnitude earthquakes, implies a more significant slip 
deficit, around 5 m for most of the fault sections (Fig. 3b), which should translate either in a flurry of magnitude 
7+ events or in much larger magnitude events (>7.5), which have never been reported yet south of Lebanon.

In both scenarios, even if the seismic history of each section differs, it is worth notice that the difference 
between the accumulated and the released slip appears to be relatively uniform along the entire fault, which 
argues in favor of earthquake temporal clustering along the Dead Sea fault.
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Even if all the sections present a similar slip deficit, each segment underwent a different seismic history, which 
influences the likelihood of an earthquake to occur on each specific segment. Hence, in order to specify the areas 
where seismic hazard is higher, we computed a probability of earthquake occurrence on each segment following 
the probabilistic scheme proposed by Savage52,53 (complete description in the supplements). This model considers 
that the conditional probability of a future event can be estimated from the observed recurrence interval alone. 
However, these probabilities should be considered as indicative and only first-order calculations, as such model 
does not consider temporal clustering and all segments are considered independently for the computation.

Our model counts the number of inter-event periods that are shorter than the prediction window (time 
between the last event and the targeted date for probability calculation) and uses it to establish a probability of 
earthquake occurrence. The probabilistic model is Manichean, which introduces a bias for the interpretation 
of the probability; if the observed recurrence time is close but slightly longer than the prediction window, the 
probability will be rather low. Conversely, if the observed recurrence time is slightly shorter than the prediction 
window, then the probability will increase significantly. This is the case for example for the central Wadi Araba 
segment, where the probability of occurrence of an earthquake is substantially (30%) larger for the next 80 years 
than for the next 50 years (Fig. 3c). Hence, we consider that the entire confidence interval for the probability is 
more representative than the nominal probability to assess seismic hazard along the DSF. The probabilities of 
earthquakes along the southern DSF for the next 50 years and 80 years are relatively high everywhere, generally 
higher than 50%. This is in accord with the homogenously high-slip deficit presented previously and it supports 
the possibility to have clustering or single large ruptures on the DSF.

The new paleoseismological site of Taybeh enriches the data about the seismic history of the DSF. Moreover, 
we were able to estimate a slip deficit for the southern part of the fault, which has a critical implication for the 
assessment of seismic hazard. Indeed independently of any specific scenario considered, all the sections between 
Aqaba and South Lebanon present a similar slip deficit, which is quite large, at least 2 m, associated to a homo-
geneously high probability of earthquake occurrence. The irregular seismic activity presented by the earthquake 
catalogue and the fact that the fault presents a homogeneous slip deficit everywhere support the assumption of 
temporal clustering.
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