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3D Instability of Miscible Displacements in a Hele-Shaw Cell
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We study the downward miscible displacement of a fluid by a lighter and less viscous one in the gap
of a Hele-Shaw cell. For sufficiently large velocities, a well-defined interface separates the two fluids.
As long as the velocity or the viscosity ratio are below a critical value, the interface has the shape of
a tongue symmetric across the gap. For viscosity ratios larger than a critical value, estimated at 1.5,
there exists a critical velocity, above which the interface becomes unstable, leading to a new 3D pattern
involving regularly spaced fingers of wavelength about 5 times the cell thickness. We delineate the
stability diagram. [S0031-9007(97)04791-1]

PACS numbers: 47.20.Gv, 47.20.Bp, 83.85.Pt

A key issue in interface dynamics is the understandindgeatures along the gap have on the overall pattern.
of pattern selection. Of particular interest is the patterrDepending on the velocity and viscosity rafib (M =
selection related to the 2D Saffman-Taylor finger (ST)n/n, > 1, where 5, and 7, denote the dynamical
[1], the selection rule of which has raised a great amountiscosities of initial and injected fluid, respectively), two
of interest [1-5]. ST dynamics govern a variety of new regimes are identified. Faf < M. (whereM, =
seemingly different physical phenomena, such as viscouk5), or for velocities below a critical whei > M., the
fingering [2], directional solidification [3], or thermal interface shape across the gap< b is tonguelike, but is
plume [4]. We recall that the well-studied ST finger invariant in theW direction (namely, this is a stable 2D
results from the displacement of a viscous fluid byregime). However, foM > M. and a velocity exceeding
an immiscible, less viscous one in a Hele-Shaw celk critical value, which depends oM, a 3D fingering
(consisting of two parallel plates X W, separated by pattern develops (unstable 3D regime) involving fingers
a small gapb). In this immiscible displacement problem, regularly spaced along th& direction. Neither the
the interface in the gap consists of a nearly hemisphericaxistence of the specific threshald., nor the fingering
meniscus, which completely spans the cell gap at th@attern can be obtained from high Ca limit of the 2D
edges of the finger [6], provided that the capillary numbelST fingering [1,11]. We focus on the salient features of
(Ca= mgq/v, with n the viscosity,y the surface tension, the experimental results and on a simplified analysis to
andgq the fluid velocity) is sufficiently small. The patterns estimate the critical velocity.
resulting from the balance between capillary and viscous The vertical Hele-Shaw cell consists of two parallel
forces are by necessity quasi-2D (namely, in th&x W plates of length. = 80 cm and widthWw = 10 cm, sepa-
plane). The removal of surface tension, which makesated by a uniform spacer which ensures a gap of thickness
the coexistence of the fluids across the gap possibld, = 1 or 1.92 mm (Fig. 1). We denote the coordinate
provides the opportunity to obtain 3D patterns, alsoaxes as:,y,z (with x oriented in the direction of gravity).
extending across the gap. The existence of such patterifge use silicone oils as miscible fluids, which allow us to
has an interest of its own, as well as in connectioncover three decades in the viscosity rakih with a density
to the 2D selection rule discussed above. 3D patternsontrast ranging from 1% to 10%. The molecular diffusiv-
can be achieved using two miscible fluids, provided thaity D,,, measured for each pair of fluids using the deviation
the displacement velocity (i.e., the Peclet number=Pe of a laser beam [12], ranges from 512.5 X 107 cn?/s.
gb/D,,, whereD,, is the molecular diffusion coefficient) These surprisingly low values have also been confirmed by
is sufficiently large for diffusion effects to be negligible conducting Taylor dispersion [13] measurements in the cell
[7,8], so that a sharp fluid interface can be defined. So far(in the low flow regime where transverse molecular dif-
only two specific experiments have addressed miscibléusion and advection by the flow are equally important in
displacements in a Hele-Shaw cell: gravity-driven flowmixing the fluids). To obtain an initially flat horizontal in-
in a rectangular geometry [9] and viscous fingering interface (inthév X b plane), the cellis partially filled from
a horizontal radial geometry (Paterson [10]). Howeverthe bottom with the heavier and more viscous fluid. Then,
promising Paterson’s flower pattern might have been, hithe second fluid is introduced from the top. A stabilizing
pioneering work was surprisingly not resumed even fordensity difference yields a flat interface. As this procedure
the simple geometry of a rectangular cell. takes a few minutes to complete, diffusion causes the ini-

This Letter presents experimental results of miscibletial interface to extend somewhat (by about 0.1 mm) in the
displacements in a vertical planar Hele-Shaw cell in theL direction. Subsequently, the displacing fluid is injected
high Pe regime and emphasizes the role that displacemeat a constant flow rate, which fixes the average velocity
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3D regime, consisting of fingers regularly spaced along
the W direction (Fig. 2), is observed. Assuming that
the fluid interface is symmetric across the gap, the 3D
shape of the fingers can be obtained from the:, y)
measurements. These develop along the primary flow
direction, have a constant quasirectangular cross section,
and are separated by a tiny layer of invaded fluid. It is
interesting to note that their shape in thex W plane

is reminiscent of 2D directional solidification patterns [3].
Their width along theW direction, A, and their thickness
along the gaps, were measured for the two cell gaps
and for viscosity ratiogM varying from 3 to 300. They
were found to be nearly independent ldf and to scale

FIG. 1. Left: The 80 cmx 10 cm Hele-Shaw cell. Right: with b as follows:
The average concentration across the gap = 1 mm). A=G+1b and 7= (0.5* 0.1)b. 1)

and the Pe number. A blue dye with diffusion coefficientThis value of A is found to be comparable to the
close to that of the fluids is added to the injected fluid forlower limit A = 45 obtained by Paterson [10] in his
visualization purposes. The average concentration acrosadial experiments. However, his results actually pertain
the gapC(x,y,t) = ]0 c(x,y,z,1) dz/b is measured us- to the rather disordered pattern obtained tat> U.,,

ing an optical video system. Figure 1 is a sketch of thewvhich consists of less regular fingers, some of which
cell and of a typical stable concentration profile in the ex-predominate and screen the others.

periment. The average concentration profile, y, r) is The critical velocity U. was measured for the two
constructed from thé. X W video picture (Fig. 1, left), cell thicknesses using several fluids in order to get
using a calibration method which leads to an overall accudifferent types of variations ofAp and n; with M. It
racy of the order of a few percent. was found that for Pe> 10%, the experimental values

Experiments, with fluids of different viscosities, and  of U.(M) all collapsed into a single curve (Fig. 3), thus
densitiesp, were performed at different flow rateg,suf-  validating the velocity scaling used. This curve exhibits
ficiently high to satisfy Pe> 10*. In this regime, advec- an interesting behavior at lowd values. For example,
tion by the flow is predominant over diffusive mixing and whereasU.(2.4) = 18, it was not possible to reach the
the interface between the two fluids remains well define®D regime forM = 2.2, even with the attempted velocity
[7,8]. Then, the main control parameters in the experi-of 125 (arrow in Fig. 3). This suggests the existence of a
ments are the viscosity rati®/, and the normalized ve- viscosity ratio threshold, in the vicinity of 2, below which
locity U = ¢/U,, where U, = (p; — p2)gh*/12m; is  no 3D fingering occurs. This new result differs from
the characteristic gravitational velocity. Thul, ex- the immiscible fluids case, where the viscous fingering
presses the ratio between viscous effects and buoyancy.threshold isM = 1 [1-3,5].

The experiment shown in Fig. M = 5.8, U = 0.85) To interpret the behavior found, an obvious first ap-
is typical of the stable 2D regime; the concentrationproach would be to consider the classical linear stability
profile is invariant along th&V direction, and the fluid for a Hele-Shaw cell [1], in the absence of surface ten-
interface has a symmetric tonguelike shape in the crossion and diffusion. Under these conditions and assuming
sectionL X b. As we can only measure the averagethat single-phase fluids fill the gap on opposite sides of
concentration across the gap, an experimental way tthe interface, this analysis leads to the critical flow rate
ascertain that the fluids do not mix by diffusion is to
interrupt injection. This results in the shrinking of the
concentration profile, and the return, under the action of
gravity, to an almost flat interface in th& X b plane.
We conclude that the fluids do not mix by diffusion and
that the measured average concentra€ois the relative
amount of the injected fluid 2 in the gap. From the
numerical simulations [7,8], we can further assume that
the injected fluid is confined in the middle of the gap.

Therefore, the flow pattern consists of a symmetric 2D P =2
tongue developing in the gap of the cell across the 10 b
direction.

When the viscosity ratio and the flow rate exceedriG. 2. 3D viscous fingering. The mean wavelength of the
certain thresholdd/, and U.(M), however, an unstable series of fingers is 5 times the gap thicknbss
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FIG. 3. Stability diagram: reduced velocity versus viscosity 0 x (cm) 29 L (cm) 20

ratio M (log-log scale). Circles and squares correspond,

respectively, to the cell thickneds =1 and 1.92 mm. The FIG. 4. Typical experimental (left) and calculated (right)

dashed and full curves are theoretical. The arrow correspondsncentration profiles, plotted at regular time intervals.

to the lower-bound velocity below which it was not possible to(@) M = 1.1 <M., U =32, At=1s, (b)M =58> M,,

observe the 3D fingering. U=08<U, At=40s; (c)M =58, U=255>U,,
Ar =30s.

_ b (pi=pr)g . . .
9e = T3 -y, - 1he corresponding normalized critical of this front spread as in case (a). In particular, there
velocity is thenU. = M /(M — 1) (Fig. 3, dashed line), exists a self-spreading tip ahead of the front. Case (c) is
which has a viscosity thresholgif, = 1. In the pres- gimjlar to case (b), except that the range of concentrations
ence of a film of the displaced fluid left behind, as isf constant velocity extends down © = 0: the time-

the case in our experiment, a better approach is to use edpreading tip at the leading edge of the profile in case (b)
fective densities and viscosities (averaged across the gag)ag disappeared.

as considered by Saffman and Taylor [1] in their Appen- The existence of these different profile features sug-
dix. Although leading to a higher value @f., however, gests that an analysis of the 2D profile may be useful in
these calculations still yield the same viscosity threshol roviding estimates of the critical valugg. andU,, with-
(M. = 1), whatever the valu¢l — C) of the film frac- oyt doing the complete 3D stability analysis. To do this,
tion. It is obvious that the conventional 2D approach canye follow the recent approach of Yang and Yortsos (YY)
not account for the experimentally observed thresholds fo[8]_ YY addressed analytically the 2D problem of the
the case of miscible fluids, where the critical viscosity ra-interface shape between two miscible fluids flowing be-
tio found is certainly greater than 1. It appears that &yeen two parallel plates, in the absence of buoyancy and
more complex process actually occurs, in which the progyitfysion (Pe— ). In parallel flow, the velocity profile
file along the gap must be considered. To gain an insighis of the Haagen-Poiseuille type, from which the authors
we will consider the features of the 2D base state, namelyjerived a first-order hyperbolic equation involving the
a tongue advancing symmetrically in the gap. flux function £)/(C). The solution to this equation leads
This 2D interface can be experimentally obtained fromyg self-similar concentration profiles [14] consisting either
the profileC(x). Because of the symmetry.along the gap,qof self-spreading ones, wite(C) = £4,(C) [as in case
C(x) also represents half the shape of this tongue. Thes); or a combination of self-spreading and iso-velocity
plots on the left-hand side of Fig. 4 show three typicalportions, denoted as shocks [as in case (b)]. Notably, YY
profiles C(x) measured fo < M. (a), M > M. and  found that a shock appears onlyM = 1.5. Here, we
U < U, (b),andM > M. andU > U, (c). Note thatin extended these calculations by also introducing buoyancy.
the latter case, the flow pattern is not invariant along therps |eads to a normalized flux function which depends on
W direction (where now a 3D instability develops), andpoth o7 and/. The right-hand-side plots of Fig. 4 show

hereC(x) is measured along the middle of a finger. In all yrofiles calculated using this approach, and corresponding
cases, the concentration profile is found to be self-similagy the experiments in the left of Fig. 4. Fof < 1.5 (a),

[C(x,1) = C(x/1)], which implies that each concentration {he calculated self-spreading profile is in good quantita-
travels at its own velocity (C) = (%)C tive agreement with the experiments. Fgr> 1.5 and
However, different features characterize each of théJ smaller than a critical value (b), the calculated pro-
three cases. In case (a), every point of the profile spreadie exhibits a shock betwee@; and C,, traveling with
in time (the profile is self-spreading) andC) decreases a normalized shock velocity;. The calculations repro-
monotonically withC. In case (b), there is in addition duce well the experimentally observed tiny tip between
a region of intermediate concentratiofts< C; = C =  C = 0 andCy, which corresponds to a self-spreading be-
C>), which propagate at the same velocity (sharp portiorhavior. Furthermore, the normalized tip front velocity,
in the profile). Concentrations upstream and downstrear, (the zero concentration velocity), derived from the
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calculations isV; = 1.5U [8] and fits well the experi- velocity[U.(M)] and the viscosity ratiM,. = 1.5), a 3D
mental values. The theoretical analysis predicts th&l as pattern develops as a series of periodic fingers (Witk
increases, the shock velocity; also increases, while at 5b) of a regular cross sectiof=5b X 0.5b). Simple
the same time the extent of the small tip decreases arafguments based on the parallel flow analysis of Yang
ultimately vanishes at the critical flow rate correspondingand Yortsos [8] lead to an analytical description of the 2D
toVy, =V, = 1.5U.. Thus,U, determines the transition regime. Using this approach and an experimental profile
between cases (b) and (c), and therefore, we believe, theiterion (namelyV, = 1.5U.) allows us to determine the
onset of the 3D instability. From the analysis (the detailsonset of instability, in agreement with the experiments.

of which will be presented in a separate publication), we The effect of the higher dimensionality of flow (3D vs

obtain the following analytical expression for.: 2D) on the critical thresholds for instability, as well as
M3 the properties of the patterns obtained, is quite interesting
U. = QM — 3)2(aM — 3)° (2)  and should affect a broad class of processes which share
) ) -’ ) ) ] the same mechanisms, such as solidification. How the
This expression shows a critical viscosity ralQ = 1.5, jncrease in dimensionality affects the pattern selection

in better agreement with the experimental threshild 16 (which in 2D has attracted significant attention) is
than'th_e valueM,. = 1 given by the ST analysis. The also important and needs further study.
predictions of Eg. (2) forU. are plotted as a full line  \ye are indebted to Professor M. Rabaud, Professor

in Fig. 3. They are in generally good agreement withy ¢ vortsos, and to G. Trinchero and P. Watzky for
our data, although somewhat lower. We believe thatstimulating discussions.
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