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We study experimentally and theoretically the downward vertical displacement of one
miscible fluid by another lighter one in the gap of a Hele-Shaw cell at sufficiently
high velocities for diffusive effects to be negligible. Under certain conditions on the
viscosity ratio, M, and the normalized flow rate, U, this results in the formation of
a two-dimensional tongue of the injected fluid, which is symmetric with respect to
the midplane. Thresholds in flow rate and viscosity ratio exist above which the two-
dimensional flow destabilizes, giving rise to a three-dimensional pattern. We describe
in detail the two-dimensional regime using a kinematic wave theory similar to Yang
& Yortsos (1997) and we delineate in the (M,U)-plane three different domains,
characterized respectively by the absence of a shock, the presence of an internal
shock and the presence of a frontal shock. Theoretical and experimental results are
compared and found to be in good agreement for the first two domains, but not for
the third domain, where the frontal shock is not of the contact type. An analogous
treatment is also applied to the case of axisymmetric displacement in a cylindrical
tube.

1. Introduction
Fluid flow and fluid displacements in a Hele-Shaw cell (of length L, width W

and thickness b, with L > W � b) have been the subject of many theoretical and
experimental investigations in the past (McCloud & Maher 1995 and references
therein). Under single-phase viscous flow conditions, the transverse averaging of the
flow variables across the gap of the cell leads to Darcy’s law, where the velocity is
proportional to the pressure gradient. The resulting analogy to flows in homogeneous
porous media (Homsy 1987) and, more generally, to two-dimensional potential flows
has been extensively exploited. Of particular interest has been the viscous fingering
instability that takes place when a less viscous fluid displaces a more viscous one in
an immiscible displacement. Under conditions such that a well-defined meniscus in
the gap (the L × b plane) separates the two fluids, the fully developed state is the
well-known Saffman–Taylor finger in the L ×W plane (Saffman & Taylor 1958).
The geometrical characteristics of this finger have been well described using a two-
dimensional potential flow approach. The two-dimensional approach is valid only
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Figure 1. (a) Sketch of the two-dimensional regime mixing zone between two miscible fluids in a
Hele-Shaw cell. (b) A typical measured concentration profile C(x). (c) Sketch of the interface in
the gap of the Hele-Shaw cell. The relative thickness β(x) of the tongue of fluid 2 is equal to the
z-averaged concentration C(x).

when capillary forces across the gap are large enough (compared to viscous or buoy-
ancy) to ensure the complete separation of the immiscible fluids: then, the meniscus
spans the gap and at sufficiently small capillary numbers it has a semi-spherical
shape (see also Park & Homsy 1984). At sufficiently high flow rates, however, where
capillarity is small, the interface separating the two immiscible fluids does not span
the gap, and may develop within the gap itself (Tabeling, Zocchi & Libchaber 1987).
Then, the potential flow approach is invalid and must be re-examined. Understanding
the finger shape across the gap as a function of the capillary number has been the
subject of very few studies, since the classical paper by Bretherton (1961) on the
motion of long bubbles in tubes, most notable being that of Park & Homsy (1984)
and of Reinelt & Saffman (1985).

An analogous problem exists in the case of miscible displacement. Surprisingly,
only a few experiments have addressed miscible displacements in a Hele-Shaw cell.
In rectilinear displacement in a vertical cell, Wooding (1969) studied the gravitational
instability between miscible fluids. Zimmerman & Homsy (1991) and Manickam &
Homsy (1995) simulated numerically miscible displacements in the same geometry,
assuming potential flow in the plane of the cell. The characteristics of miscible dis-
placements in a Hele-Shaw cell at high flow rates, where viscous forces dominate,
were investigated by a number of workers in recent numerical studies (Chen &
Meiburg 1996; Yang 1995; Rakotomalala, Salin & Watzky 1997). These authors
focused on the numerical solution of the two-dimensional problem, namely in the gap
of a Hele-Shaw cell or in the axisymmetric geometry of a cylindrical tube. From the
variety of techniques used, it was shown that in these geometries, miscible displace-
ment is described by an advancing front with a well-defined interface, propagating
symmetrically in the middle of the gap or of the tube (figure 1), provided that the
flow velocity is large enough for diffusive effects to be negligible. The existence of
a sharp interface in a tube was confirmed in experiments by Petitjeans & Max-
worthy (1996). Miscible displacement experiments in a Hele-Shaw cell at high rates
were conducted by Lajeunesse et al. (1997), where the downward displacement of a
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miscible fluid by a lighter and less viscous one was studied. It was found that at suf-
ficiently high rates, the interface between the fluids propagated as a two-dimensional
symmetric tongue across the gap, as long as the velocity was below a threshold or
the viscosity ratio M was less than ∼ 1.5. For M larger than 1.5, there exists a velocity
threshold above which this regime becomes unstable and leads to a three-dimensional
fingering pattern, similar to that reported by Paterson (1985) but much different from
the Saffman–Taylor finger. More recently, Snyder & Tait (1998) focused on a similar
viscous instability during horizontal miscible displacement in different devices, and
obtained results in qualitative agreement with Paterson (1985).

The objective of this paper is to analyse and characterize the two-dimensional
regime, namely the pattern in the gap before the onset of the three-dimensional
instability. Miscible displacement experiments are conducted in a Hele-Shaw cell
in the presence of gravity. These are described in § 2. The displacements occur at
a constant flow velocity q, at sufficiently high Péclet numbers (Pe = qb/Dm � 1,
where Dm is the molecular diffusion coefficient), so that a well-defined interface
between the miscible fluids is possible. The experimental self-similar concentration
profiles are analysed theoretically by extending the theory of Yang (1995) to include
buoyancy effects (§ 3). The theory predicts three different kinds of interface shapes,
corresponding to three different domains in the (M,U)-plane, where

M = η1/η2 (1.1)

is the viscosity ratio between displaced (subscript 1) and displacing fluids (subscript
2), and U is a normalized flow rate

U =
12η1q

b2∆ρg
(1.2)

expressing the ratio between viscous and buoyancy forces, where ∆ρ = ρ1 − ρ2 is the
density difference between the fluids. The boundaries between the three domains are
derived in § 3, and theory and experiments are compared in § 4. For completeness,
an analogous effort is also reported for the problem of miscible displacement in a
cylindrical tube (§ 5).

2. Experimental
Miscible displacement experiments were performed in a vertical Hele-Shaw cell

(figure 1), consisting of two transparent glass plates of length L = 80 cm, width
W = 10 cm, and two different gap thicknesses b = 0.96 or 1.92 mm. The glass plates
were separated by a uniform spacer, ensuring a constant gap thickness, and were thick
enough to avoid bending of the plates. We used silicon oils as miscible fluids, the
viscosities of which, measured with a viscometer, varied in the range 2 to 500 mPa s,
while the density contrast ∆ρ/(ρ1 + ρ2) varied in the range 0.5% to 5%. Consequently,
two decades in the viscosity ratio, M = η1/η2, were covered in these experiments. The
molecular diffusivity, Dm, measured for each pair of fluids using the deviation of a
laser beam (Sommerfeld 1954), ranged from 5 to 12 ×10−7 cm2 s−1.

To obtain an initially flat horizontal interface, the cell was first partially filled
from the bottom with the heavier and more viscous fluid. Then, the second fluid was
introduced at the top. A stabilizing density difference was necessary to achieve the
initial condition of a flat interface. This procedure took a few minutes to complete.
Due to diffusion, the initial interface extended somewhat (about 0.1 mm) in the x-
direction (which is the direction of the gravity vector). Subsequently, the displacing
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fluid was injected at a constant flow rate, sufficiently large (Pe = qb/Dm > 104) to
avoid fluid mixing by diffusion and to lead to a well-defined interface between the
fluids. To ascertain that the fluids did not mix, we monitored the motion of the
interface after abruptly terminating the injection. It was found that under the action
of gravity, the interface flattened and returned to an almost sharp shape. In this high
Péclet number regime, therefore, the notion of an interface is relevant. On the other
hand, important diffusive mixing (visible on our concentration profiles) did occur for
lower flow rates (e.g. Pe < 103), in which case the analysis to follow does not apply.
The movement of the interface was visualized using a blue dye (organol blue), added
to the injected fluid. This dye is appropriate for tracking the interface as its diffusion
coefficient in silicon oils is close to the diffusion coefficients of the oils.

In the experiments, the main quantity of interest is the transverse average concen-
tration profile, C(x, y, t) =

∫ b
0
C(x, y, z, t) dz/b, where z is the coordinate in the gap

and y is the coordinate along the lateral dimension, which was determined as follows.
A uniform incident white light, perpendicular to the cell was emitted by a light source
behind the cell. The image received in front of the cell was recorded with a CCD
camera, connected to a computer. The received intensity, I(x, y), is related to the dye
concentration, therefore to the injected fluid concentration, through the Beer–Lambert
law

I(x, y) = I0(x, y)e−αbC(x,y) (2.1)

where I0 is the initial intensity and α is the attenuation coefficient. Because the video
device digitizes the intensity in 256 grey levels, Ng , however, expression (2.1) must be
rewritten in terms of grey levels,

Ng(x, y) = N∞ + (N0(x, y)−N∞)e−αbC(x,y) (2.2)

where N0(x, y) is the grey level for the cell filled with the initial fluid, measured for
each experiment. α is a constant specific to the coloured fluid and N∞ is the grey
level for the cell filled with an opaque fluid. These two numbers are estimated by a
least-squares fit to data obtained from fixed concentration mixtures of the two fluids,
as illustrated in figure 2, where the measured data are reported along with estimated
error bars. Under conditions of a two-dimensional regime, where the flow does not
vary along the y-direction, we have the ability to average over a relatively large
rectangular window, which results in a considerable reduction of the noise. In these
experiments, the overall accuracy of the concentration measurement was estimated
to be of the order of 4 × 10−2 to 8 × 10−2, while the spatial resolution varied in the
range 20 to 40 pixel per cm.

A snapshot of a typical transversely averaged concentration profile C(x, y, t) is
shown in figure 1, along with a sketch of the experiment. In this particular experiment,
the transversely averaged concentration is independent of the lateral coordinate y,
and in the remainder we will denote it simply as C(x, t). These data were analysed
as follows. The concentration profile C(x, t) is measured at regular time intervals ∆t
(figure 3a). From this set of data, the velocity of propagation of each concentration
can be extracted, by recording the location x versus time t of each concentration level
(50 levels corresponding to increments of 0.02 were selected). The resulting curves
(figure 3b) were found to be linear, indicating that any given concentration C travels
at a constant velocity, V (C) = (∂x/∂t)C , which is the slope of the corresponding
straight line. This behaviour is suggestive of a kinematic wave and is to be described
in detail below. The values for C(x, t) and V (C) so obtained were next compared to
the theoretical predictions. In particular, C vs. V diagrams were constructed.
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Figure 2. The light intensity Ng received by the camera vs. bC for two values of the gap b of the
cell: b = 1.92 mm (crosses), 0.96 mm (circles). The solid line is a least-squares fit to the data, using
equation (2.2).
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Figure 3. Experimental measurement of the concentration velocity V (C). (a) Typical concentration
profiles at regular time intervals. (b) The location x of a given concentration C , plotted vs. time,
gives a straight line, the slope of which is V (C). The straight lines shown correspond to C = 0.2,
0.4, 0.6 and 0.8.

Under the conditions of a two-dimensional regime, two types of concentration
profiles were observed. For values of M lower than a threshold MT , where MT ∼ 1.5,
and high enough values of the normalized flow rate U, self-spreading profiles were
obtained (figure 4a). We will denote these as corresponding to case 1. A decrease in
U resulted in profiles involving an internal shock across two concentration values Cm

and CM (0 < Cm < CM). This shock was preceded by an advancing, self-spreading
foot (0 < C < Cm), the tip of which moved at a constant (q-normalized) velocity
V (0) = 1.5, while the shock itself travelled at a velocity VS < 1.5 (figure 4b). We
will denote these profiles as belonging to case 2. Such an advancing foot was also
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Figure 4. Experimental velocity profiles (left) and concentration profiles at regular time intervals
(right), for M = 0.22 < MT ∼ 1.5, and (a) U = 0.53, (b) U = 0.21. The decrease of the flow
rate allows the passage from case 1 (self-spreading, (a)) to case 2 (shock between Cm > 0 and CM ,
with a velocity VS < 1.5, (b)).

observed experimentally by Petitjeans & Maxworthy (1996) and numerically by Chen
& Meiburg (1996).

For M > MT profiles pertaining to case 2 were still observed, provided that
the velocities were sufficiently low. When the flow rates exceeded an M-dependent
threshold value UT (M), a three-dimensional instability appeared (case 3). In this case,
the concentration pattern exhibited a three-dimensional structure, consisting of a series
of three-dimensional fingers regularly spaced in the y-direction and separated by a
tiny slice of initial fluid, as already reported in Lajeunesse et al. (1997). The observed
width of the fingers is close to that measured for non-buoyant miscible displacements
in a Hele-Shaw cell, by Paterson (1985) in a radial geometry (∼ 4b), and by Snyder
& Tait (1998) in a rectilinear flow geometry (∼ 2b). It is also compatible with the
radius of curvature (∼ 2.5b) of the anomalous Saffman–Taylor fingers measured by
Rabaud, Couder & Gérard (1988) in their immiscible displacement experiments, in
the limit of high capillary numbers.

Figure 5 illustrates the evolution of the profiles of case 2, for M > MT , as a
function of U: as U increases, the extent of the foot decreases, while the shock
velocity increases. At a velocity, to be denoted by U23(M), the internal shock velocity
becomes 1.5 and the preceding foot disappears (to within experimental accuracy),
and the internal shock now becomes a frontal shock. Following a further increase
in U, there is a transition region, to be discussed below, where the flow regime is
still two-dimensional, and contains a frontal shock of velocity approximately equal to
1.5. As discussed above, at a critical velocity UT > U23, the two-dimensional regime
destabilizes to the three-dimensional regime (case 3). Thus, we find experimentally
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Figure 5. Experimental velocity profiles (left) and concentration profiles at regular time intervals
(right), for M = 10.5 > MT , and (a) U = 0.58, (b) U = 0.70, and (c) U = 1.20 < UT = 1.62. As
U is increased and approaches the three-dimensional instability threshold UT , the shock velocity
increases, whereas the extent of the preceding foot decreases.

that the onset of the transition towards the three-dimensional instability possibly
corresponds, in the two-dimensional regime, to conditions such that the shock velocity
exceeds 1.5, after the disappearance of the preceding foot. A theoretical analysis of
the two-dimensional profiles is proposed in the following section.

3. Theory
To analyse the two-dimensional regime (cases 1 and 2), in which the self-similar

experimental profiles have features of kinematic waves, we will make use of the
approach of Yang & Yortsos (1997) (see also Yang 1995). These authors addressed
the problem of describing the two-dimensional shape of the interface between two
miscible Newtonian fluids flowing between two parallel plates or in a cylindrical
tube, in the absence of buoyancy and at large values of the Péclet number Pe. They



306 E. Lajeunesse, J. Martin, N. Rakotomalala, D. Salin and Y. C. Yortsos

proposed an asymptotic method in the combined limits of infinitely large Pe and
infinitely long plates (or infinitely long tube), compared to the spacing between the
plates (or the tube radius). In this section, we summarize their approach and extend
their model to the case of the Hele-Shaw cell, by taking into account buoyancy
effects. For reasons related to the experimental procedure (see previous section), we
will restrict our analysis to the gravity stabilized case (where a lighter fluid is injected
from the top).

3.1. Formulation

Consider the downward miscible displacement along the vertical x-axis of a Hele-
Shaw cell, of fluid 1 by fluid 2, at a constant injection rate q. We assume that the
invading fluid forms a symmetric tongue across the gap, invariant along the width
W and characterized by its relative thickness β(x, t), which here is equal to C(x, t)
(figure 1). We are interested in calculating the long time evolution of the shape of
this tongue.

We proceed by writing a mass balance for fluid 2, averaged across the gap b (along
the z-axis). Then,

∂C(x, t)

∂t
+
∂qF(x, t)

∂x
= 0 (3.1)

where C(x, t) and F(x, t) are the transverse average of the local concentration C(x, z, t),
and the q-normalized flux function of fluid 2, respectively, namely

C(x, t) =
1

b

∫ +b/2

−b/2
C(x, z, t) dz, (3.2)

F(x, t) =
1

qb

∫ +b/2

−b/2
C(x, z, t)u(x, z, t) dz, (3.3)

where u is the velocity component in the x-direction. As in Yang & Yortsos (1997)
we make the following hypotheses.

(H1): Pe = qb/Dm � 1. The injection rate q is sufficiently large to prevent diffusive
mixing of the fluids. It follows that C(x, z, t) = 0 for |z| > 1

2
bβ(x, t) and C(x, z, t) = 1

for |z| < 1
2bβ(x, t).

(H2): ∂bβ/∂x � 1. The tongue is developed over a length l � b, leading to a
quasi-parallel flow condition (v � u, where v is the transverse velocity component)
(figure 6).

(H3): qb2/νl � 1. The fluids are sufficiently viscous so that the unsteady term in
the Stokes equation can be neglected (quasi-stationary flow).

Under the above hypotheses, a kinematic wave theory, in which the flux function
F is expressed in terms of C , can be developed. For this, we first note that in view of
(H1), equations (3.2) and (3.3) become

C(x, t) = β(x, t), (3.4)

F(x, t) =
2

qb

∫ +bβ/2

0

u(x, z, t) dz. (3.5)

The velocity component u obeys the Stokes equation

0 = −dP

dx
+ ηi

d2u

dz2
+ ρig (3.6)
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Figure 6. The fluid configuration in the gap of the cell under the quasi-parallel flow hypothesis,
and the corresponding parabolic velocity profile in each fluid.

where i = 2 for |z| < 1
2
bβ and i = 1 otherwise. The resulting velocity profile is a

parabola within each fluid (figure 6), and satisfies no-slip boundary conditions at the
solid walls (fluid 1), and velocity and viscous stress continuity at the fluid interface
z = ±bβ/2. Given that the local pressure gradient dP/dx is the same for both fluids,
it can be eliminated by using the condition of a constant injection rate. Thus, u
depends only on the variables z and C , and can be obtained in a straightforward
fashion. Substituting the expression so obtained for u in (3.5) leads to the flux function
F in terms of C only. After several calculations, one obtains

F(C) =
C

2

[(2M − 3)C
2

+ 3]

[1 + (M − 1)C
3
]

+
C

2
(1− C3

)

4U

[(4M − 3)C + 3]

[1 + (M − 1)C
3
]

(3.7)

where the viscosity ratio M and the normalized flow rate U (defined in (1.1) and (1.2))
are the control parameters. Then, the conservation equation (3.1) takes the form of a
quasi-linear hyperbolic equation

∂C(x, t)

∂t
+ q

∂F(C(x, t))

∂x
= 0 (3.8)

which can be analysed using kinematic wave theory (Whitham 1974; Jeffrey 1976;
Yang & Yortsos 1997).

3.2. Kinematic wave theory

The hyperbolic equation (3.8) has the well-known property that the normalized
velocity of each concentration C (each point of the interface (x, β(x, t)) in our case)
is only C-dependent

V (C) ≡ 1

q

(
∂x

∂t

)
C

=
dF

dC
. (3.9)

This relation holds under the assumption that C(x, t) is differentiable. The time
evolution of a general differentiable profile, C(x, t), depends on the shape of F(C)
(figure 7). For a monotonically varying profile, which is the case of interest to this
paper, two possibilities exist.

(i) d2F/dC
2
6 0 for 0 6 C 6 1.

Here, V (C) is a monotonically decreasing function, such that the smaller the concen-
tration, the larger its velocity. The leading part of the interface travels faster than the
trailing, yielding a continuous, self-spreading concentration profile (figure 7a).

(ii) d2F/dC
2
> 0 for C1 6 C 6 C2 and d2F/dC

2
6 0 otherwise.
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Figure 7. Left: flux function F(C): the slope of the dotted straight line between Cm and
CM gives the shock velocity VS ; the arrows indicate the points at which this line is tangent
to the curve. Right: C vs. the concentration velocity V (full line) and dF/dC (dotted line).
(a) d2F/dC

2
6 0 in the whole concentration range. Then, V = dF/dC decreases monotonically

with C (domain 1). (b) d2F/dC
2
> 0 in the range [C1, C2]. Geometric construction of a contact

shock with a velocity VS , between Cm and CM , ensuring that V (C) is a decreasing continuous
function of C and satisfying the overall mass conservation of fluid 2 (domain 2). (c) d2F/dC

2
> 0

in the range [C1, C2]. Geometric construction of a contact shock between 0 and CM with a velocity
VS > 1.5, (domain 3). (d) Same flux curve as for (c). Geometric construction of a possible shock
with a velocity VS < 1.5, between Cm > 0 and CM , in the absence of continuity for V (C).

Here, on the other hand, V (C) increases between C1 and C2. In this range, larger
concentrations travel faster than smaller ones, eventually passing them. This would
lead to an unphysical triple-valued solution for C , unless equation (3.9) loses its
validity in the range [C1, C2], and C(x, t) ceases to be differentiable. Then, the multi-
valued solution must be replaced by an (internal) shock (a concentration step, figure
7b) between two concentrations Cm and CM such that

Cm 6 C1 and CM > C2. (3.10)
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As the profile is no longer differentiable in this region, the velocity of the shock is
given by the global relation of conservation of fluid 2 across the shock region:

VS (Cm, CM) =
F(Cm)− F(CM)

Cm − CM

. (3.11)

In this case, V (C) is equal to dF/dC for C 6 Cm and C > CM , and to the constant
value VS for Cm 6 C 6 CM . Furthermore, V (C) has to be a decreasing function of C
to cope with the unphysical situation mentioned above, which reads

dF

dC
(CM) 6

F(Cm)− F(CM)

Cm − CM

6
dF

dC
(Cm). (3.12)

The shock-delineating concentrations Cm and CM can be calculated if one assumes
that V (C) is continuous (contact internal shock). In this case, Cm and CM are given
by the relations

F(Cm)− F(CM)

Cm − CM

=
dF

dC
(Cm) =

dF

dC
(CM). (3.13)

The geometric construction for the determination of Cm, CM and VS (Cm, CM) from
the flux curve is sketched on the left of figure 7(b): the dotted straight line joining the
points corresponding to Cm and CM on the flux curve has a slope equal to the shock
velocity VS . Then, equation (3.13) is satisfied when this line is tangent to the curve at
both Cm and CM . On the right of figure 7(b), V (C) is equal to dF/dC below Cm and
above CM (equation (3.9)), while in-between (shock) the shock velocity V (C) = VS is
such that the shaded areas enclosed by the dotted lines are equal (equation (3.11)).

In the particular case where no solutions (Cm, CM) of (3.13) can be found in the
range [0, 1], the contact shock is given by (0, CM) (or (Cm, 1)), which solve part of
equation (3.13), namely without the term (dF/dC)(Cm) (or (dF/dC)(CM)). The shock
velocity is then greater than (dF/dC)(0) (or smaller than (dF/dC)(1)), as illustrated
in figure 7(c); in this case, the dotted straight line is not tangent to the flux curve
at Cm = 0 (or CM = 1). We must also mention that the contact shock is not the
only acceptable solution, as V (C) does not need to be continuous: any shock with a
velocity given by (3.11) and fulfilling the conditions (3.10) and (3.12) can be a physical
solution. An example of the geometric construction of such a solution is given in
figure 7(d), for the same flux curve as in figure 7(c). In the particular case when the
shock is not of the contact type and has a concentration at the leading edge equal to
zero, we will denote this as a frontal shock.

Consider, now, the application to our problem. An analysis of the properties of
the flux function given by equation (3.7) shows that three different domains can be
defined in the (M,U)-plane, corresponding to three possible types of profiles.

Domain 1: no shock occurs and the entire profile is self-spreading (figure 7a). Here,
the velocity of the leading edge, V (0) = (dF/dC)(0), is equal to V0 = 1.5.

Domain 2: the profile includes a contact internal shock travelling at a velocity
VS < V0 along with a foot preceding the shock (figure 7b). Here, the shock occurs
in the range [Cm, CM], with Cm > 0, outside which the profile is self-spreading. The
velocity of the leading edge of the foot advancing ahead of the shock is V0.

Domain 3: the profile includes a shock travelling at a velocity VS > V0 (figure 7c).
Now, Cm = 0 (there is no leading foot), and the profile is self-spreading for C > CM .
Here, we need to make a further distinction: frontal shocks of the contact type are
predicted by the theory to travel in this region with a velocity VS > V0; however,
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Figure 8. The boundaries U12(M) and U23(M), derived from equation (3.7), delineate in the
(M,U)-plane the domains 1, 2 and 3. Mmax

1 = 2.25 and Mmin
3 = 1.5 are the upper limit for domain

1 and the lower limit for domain 3, respectively.

other shocks (not of the contact type) are also possible, provided that they satisfy
shock condition (3.11). In the case where Cm = 0, these would be frontal shocks. In
either case, their velocity is less than that of the corresponding contact shock. Such
frontal shocks were identified in the two-dimensional numerical experiments of Chen
& Meiburg (1996) and Rakotomalala et al. (1997) and were discussed in Yang &
Yortsos (1997). They also appear in our experiments in this region, see below.

Note that, whatever the values of M and U, (dF/dC)(0) remains equal to V0 = 1.5,
which represents the maximum Poiseuille velocity in single-phase flow between two
parallel plates.

The three domains are depicted in the (M,U)-plane of figure 8. The boundary,
U = U23(M), between domains 2 and 3, is determined by requiring that the self-
spreading foot at the front of the concentration profile disappears (at which point
the contact-shock velocity is equal to V0) . This boundary has a surprisingly simple
analytical form

U23 =
8M3

(2M − 3)2(4M − 3)
and M > Mmin

3 , (3.14)

with

Mmin
3 = 1.5. (3.15)

The value C23 of CM at this transition is

C23 =
2M − 3

4M − 3
. (3.16)

The boundary, U = U12(M), between domains 1 and 2 is determined by requiring a
single inflection point on the flux curve (at which point the C(V ) profile for the first
time acquires a divergent derivative). One can show numerically that the necessary
condition for the existence of domain 1 is M 6Mmax

1 with Mmax
1 = 2.25. We note that
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the boundary U12(M) has the same asymptotic limit at large U as U23(M), which is
M = Mmin

3 = 1.5. Thus, our analysis recovers the non-buoyant case (U → ∞) studied
by Yang & Yortsos (1997), where domain 2 does not exist. Note also that for M
values in the interval [Mmin

3 ,Mmax
1 ], the curve U12(M) is double-valued. Thus, for a

given value of M in this range, a continuous increase of the flow rate U allows one
to successively explore domain 2, then domain 1, and then domain 2 again, before
the transition to domain 3 at U = U23(M).

In the following section, the kinematic wave theory will be compared to experi-
mental results. Before we proceed, however, the following remarks are appropriate.

3.3. Remarks

Under the conditions of domain 1, the assumption of a local quasi-parallel flow (H2)
is being satisfied increasingly better as time elapses. On the other hand, the same
assumption will lose validity in the vicinity of the sharp front (shock) under conditions
for the validity of domains 2 and 3. In this region, the continuity of the fluid velocity
across the shock requires a transition zone of finite length lS (lS > 0), where both
velocity components must be kept. The length lS has to be of the order of b, and
must remain constant as the shock propagates (stationary travelling front). Indeed,
if lS happened to be much larger than b, hypothesis (H2) would again be fulfilled,
leading to a subsequent sharpening of this zone, according to the above. The velocity
field in the transition zone should be governed by the full Stokes equations in two
dimensions, and approach asymptotically the uni-directional, parallel velocity fields,
upstream and downstream of the front. In general, therefore, the values of Cm and
CM satisfying the above conditions may differ from those corresponding to a contact
shock (see also Yang & Yortsos 1997), yielding a non-continuous V (C). Moreover,
as no prediction is given for the concentration profile in the transition zone across
the shock, the profile does not necessarily vary monotonically in this region (e.g. this
may be the origin of the features on the right of figure 5). What is necessary, from
the study of the flux curve, is that, whatever the actual values of Cm and CM , the
shock velocity cannot be greater than V0 = 1.5 in domain 2. What is not necessary,
is the existence of a leading foot in domain 2, and the condition VS > V0 in the
experimental profiles pertaining to domain 3.

In summary, the kinematic wave approach rigorously predicts the long-time evolu-
tion of self-spreading profiles, delineates the domain where these profiles can occur
(boundary U12(M)), and provides the flow rate below which the shock velocity cannot
be greater than V0 (boundary U23(M)).

4. Comparison between theory and experiments
Typical experimental profiles are compared to the theoretical ones in figure 9. As

expected, the self-spreading profiles (case 1, figure 9a) are well reproduced by the
theory. The agreement still holds for the two-dimensional profiles with an internal
contact shock (case 2), obtained either at M < Mmax

1 (figure 9b) or M > Mmax
1 (figure

9c). In fact, all the experiments pertaining to cases 1 and 2 were found to compare well
both qualitatively and quantitatively, with the corresponding profiles in the domains
1 and 2.

Figure 10 shows theoretical and experimental results for the shock velocity and the
shock limiting concentrations for M = 10.5 > Mmin

3 , where the experiments probe
domains 2 and 3. Also reported in the figure are the theoretical threshold for a
frontal shock, U23, and the experimental threshold for instability, UT , respectively.
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Figure 9. Comparison between experimental (symbols) and theoretical (solid lines) velocity pro-
files for (a) M = 0.22, U = 0.53 > U12 = 0.39, (b) U = 0.21 < U12, and (c) M = 12.2 and
U = 0.31 < U23 = 0.69.

The agreement between experiments and theory is quite satisfactory for U < U23.
In particular, the existence of an internal contact shock between the two limiting
concentrations 0 < Cm < CM is well recovered in the experiments. In addition, the
self-spreading foot at the leading edge of the interface was found to move with the
expected velocity V (0) = V0 = 1.5. For U > U23, a deviation of the experimental
values of VS , CM and Cm from the theoretical ones, obtained under the assumption
of a contact shock is observed, however. The measured values of VS remain close to
1.5, the corresponding CM are larger than the calculated ones, whereas Cm values
greater than zero are still observed. In other words, case 2 profiles were obtained in
the calculated domain 3. This discrepancy supports the contention that such shocks
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Figure 10. Comparison between experimental (dots) and theoretical predictions (solid lines) for the
variations of (a) VS , (b) CM and (c) Cm, vs. U, for M = 10.5. The dashed vertical lines indicate
the theoretical U23 = 0.73 and experimental UT = 1.62, the dashed horizontal lines indicate the
calculated V0 = 1.5 and C23 = 0.46.

are not any more of the contact type (figure 7d). These features were common to all
experiments performed at M > MT : the experimental profiles obtained at U 6 U23

were satisfactorily described by the theory (domain 2), whereas a two-dimensional
regime not involving contact shocks (with VS ' 1.5) was observed in a limited range
of flow rates, U23 < U < UT , above which the three-dimensional instability occurred.
Hence, U23(M) must be interpreted as serving as a lower bound to the transition
observed at U = UT .

The main findings of this work are displayed in the (M,U)-plane of figure 11, where
the symbols denote experiments, while the solid lines are theoretical boundaries. Filled
symbols represent the experimental results which were quantitatively described by the
theory. In particular, the experiments at M = 2 (where Mmin

3 < M < Mmax
1 ) explored

successively domains 2, 1 and 2 again, for increasing flow rates, as predicted from
the theory. Figure 11 shows that the kinematic wave theory provides a quantitative
description for the entire field M < Mmin

3 or U < U23, under the assumptions of low
Reynolds and high Péclet numbers (which define, for each pair of fluids, a range of
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Figure 11. Classification, in the (M,U)-plane, of the main results obtained in the Hele-Shaw cell.
Filled symbols indicate experiments described quantitatively by the theory (circles: self-spreading
profiles, triangles: profiles with a shock travelling at VS < 1.5). Open triangles show the cases of
disagreement between measured two-dimensional profiles and theory, and open squares correspond
to the observation of three-dimensional patterns. The lines are the theoretical boundaries U12(M)
and U23(M) delineating domains 1, 2 and 3, and the star corresponds to the simulation by Chen &
Meiburg (1996).

validity for U, that increases with νL/Dmb). The parameters used by Chen & Meiburg
(1996) to simulate their ‘unsteady’ regime (similar to our case 2 profiles), fall in domain
2 (star in figure 11). Open squares represent experiments where the three-dimensional
patterns were observed, invalidating the kinematic wave description. Below these
points and above U23, the zone containing open triangles corresponds to the range of
flow rates where the two-dimensional measured profiles disagree with the theoretical
predictions based on a contact shock. Although the curve U23(M) is only a lower
bound to the experimental curve UT , our on-going investigation suggests that the
M-threshold for the onset of the instability, MT , does correspond to the theoretical
value Mmin

3 = 1.5. We also mention that the experimental values UT (M) may actually
constitute an upper bound to the true threshold, given that the cell has a finite length
(L = 80 cm), and that it is possible that instabilities could take a time longer than
∼ L/q to develop for flow rates in the range [U23, UT ].

5. Displacement in a vertical tube
An analogous experimental and theoretical effort was made to study miscible

displacement at high rates in a long vertical tube. The previous kinematic approach
was used to analyse this displacement as well. Consider the downward vertical miscible
displacement of fluid 1 by a fluid 2 at a constant injection rate q in a cylindrical
tube of radius R, with its axis oriented along the vertical x-direction. Owing to the
symmetry of the problem, the invading fluid forms an axisymmetric finger described
by its relative radius β(x, t). The flow can then be treated by the same two-dimensional
approach and under the same hypotheses as in the previous case of parallel plates.
Now, the average concentration C(x, t) is related to β(x, t) through

C(x, t) = β2(x, t) (5.1)
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Figure 12. Calculated domains 1, 2 and 3 for displacement in a tube. Mmax
1 = 3.6 and Mmin

3 = 2
are the upper limit for domain 1 and the lower limit for domain 3, respectively. Symbols indicate
experiments found in quantitative agreement (filled) or disagreement (open) with theoretical predic-
tions (circles: self-spreading profiles, triangles: profiles with a shock travelling at VS < 2, squares:
profiles with a shock travelling at VS > 2). The stars correspond to the simulations by Chen &
Meiburg (1996).

and the flux function F(C) reads

F(C) = C
(M − 2)C + 2

1 + (M − 1)C
2

+
C

2

U

(1− C)[4−M + (4 + 3M)C]

1 + (M − 1)C
2

+
2C

2

U
lnC, (5.2)

where the normalized flow velocity U is given by

U =
8η1q

R2∆ρg
. (5.3)

Application of the kinematic wave theory shows that the concentration C = 0 travels
at the normalized velocity V (0) = (dF/dC)(0) = V0 = 2, which is the maximum
Poiseuille velocity for fluid flow in a tube.

Working exactly as before, we find that there exist three different domains in the
(M,U)-plane: domain 1 contains self-spreading profiles in the absence of a shock,
domain 2 consists of profiles with an internal shock of the contact type, travelling
at VS < V0, and self-spreading segments ahead of and behind the shock, while
domain 3 corresponds to profiles with a frontal, contact shock of velocity VS > V0.
The boundaries U12(M) and U23(M), separating these domains, are displayed in the
(M,U)-plane of figure 12. This diagram is very similar to that for the Hele-Shaw
problem, except that Mmin

3 = 2 and Mmax
1 = 3.6. Many of the features identified in

the previous analysis hold here as well.
In order to test the theoretical predictions, a few miscible displacement experiments

were conducted using the same procedure as described in the Hele-Shaw cell case.
A vertical cylindrical tube of length of 1 m and radius R = 6 mm, made of PMMA,
was used. Figure 13 shows snapshots of the displacement at different times for a
particular experiment corresponding to domain 2. For quantitative purposes, the
cross-sectionally averaged concentration, C(x, t), was measured using an analogous
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Figure 13. Snapshots of miscible displacement in a vertical tube for M = 57 and
U = 0.57 < U23(M) = 0.77 (domain 2), at different time intervals.

experimental apparatus as in the Hele-Shaw cell problem. Now, the transmitted light
intensity satisfies the relation

I(x, y) = I0(x, y)e−αb
√
C(x,t)/π. (5.4)

As in the Hele-Shaw cell case, it was found that the experiments were satisfactorily
described by the theory in domains 1 and 2, whereas the agreement was not as good
for M and U values corresponding to domain 3.

This is illustrated in figure 14 (see also figure 12), which shows typical experimental
and calculated velocity profiles V (C) for M = 23.9 > Mmin

3 and for two flow rates,
below and above U23(23.9) = 0.86, respectively. On 14(a), it is seen that, as predicted
for domain 2, the distance between the trailing shock and the leading tip increases
with time. This is consistent with the observations of Petitjeans & Maxworthy (1996),
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Figure 14. Comparison between experimental (symbols) and theoretical (solid line) velocity profiles
in a tube for M = 23.9, U = 0.15 < U23 = 0.86 (a) and U = 1.23 > U23 (b). The profiles are given

as functions of β =
√
C .

who also reported such a growing tip in their experiments in a tube performed at a
constant pressure drop. Although their results cannot be directly compared to our
theoretical predictions (which are valid for a constant injection rate), it is most likely
that the regime they termed ‘unsteady’ falls in domain 2 of our experiments, where the
profile includes a leading self-spreading foot. The agreement with the theory (based
on contact shocks) becomes poorer for the case where the profile is in domain 3
(U > U23(M), figure 14b), however. The variation of the shock velocity, VS , and the
normalized radius, βM , corresponding to the upper limiting value CM of the shock,
is shown in figure 15 as a function of U for M = 23.9. Here, the experimental value
for the shock strength is larger, while its velocity is smaller, than expected from the
theory (of course, the theory does predict the correct velocity, VS , given the correct
shock strength). In particular, it appears that in the region U23 < U < UT , the front
velocity remains close to V0. This disagreement is analogous to the case in the Hele-
Shaw cell and was also noted in the non-buoyant case (Chen & Meiburg 1996; Yang
& Yortsos 1997; Rakotomalala et al. 1997). The notable difference is that, here, an
axisymmetric two-dimensional finger is obtained in the entire domain 3, as opposed
to the Hele-Shaw cell case, where a three-dimensional pattern emerges at U > UT .

The experimental results for the displacement in the tube are also summarized
in the (M,U)-plane of figure 12. As in the case of the Hele-Shaw cell, quantitative
agreement (filled symbols) was found between experimental profiles and kinematic
wave predictions in both domains 1 and 2. The unsteady regime in a tube reported by
Chen & Meiburg (1996) falls again in domain 2 (stars). The open symbols correspond
to domain 3 and the two cases where the experiments deviate from the theoretical
predictions: profiles with a tiny foot and VS < V0 in domain 3 (open triangles) and
profiles exhibiting the qualitative features of domain 3, but with a shock velocity
still lower than the expected one (open squares at higher flow rates). Further work is
being conducted to understand this deviation.

6. Conclusions
In this paper, we studied the vertical displacement, at a constant injection rate q,

of a viscous fluid by another miscible fluid (with the light fluid injected on top of
the heavier one) in the gap of a Hele-Shaw cell or in a tube, and in the high Péclet
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Figure 15. Comparison between experimental (circles) and theoretical (solid line) shock velocity
VS (U) (a) and the corresponding reduced radius βM(U) (b), in a tube, for M = 23.9. The theoretical
values at U23 are indicated by dashed lines.

number regime. The developing tongue was found to be invariant along the width of
the Hele-Shaw cell for all rates if the viscosity ratio is sufficiently small, M < MT , and
for rates satisfying the condition U < UT (M), if M > MT . The tongue was always
axisymmetric in the experiments in the cylindrical tube. We described the shape
of these two-dimensional interfaces, by including buoyancy effects in the kinematic
wave approach of Yang & Yortsos (1997). The agreement with the experiments is
good, provided that M < Mmin

3 or U < U23(M), where Mmin
3 = 1.5 and U23(M) is

analytically expressed in the case of a Hele-Shaw cell, and Mmin
3 = 2 and U23(M)

has to be numerically computed in the case of a tube. In particular, two types of
concentration profiles (tongue shapes) observed in the experiments, and separated in
the (M,U)-plane by a boundary U12(M), are well reproduced by the two-dimensional
analysis: self-spreading profiles, and profiles involving an internal shock propagating
at a velocity VS < V0, where V0 is the maximum Poiseuille velocity for single-phase
flow (V0 = 1.5 in the cell and 2 in the tube). In the latter case, the shock is preceded by
a self-spreading foot already observed in tube experiments by Petitjeans & Maxworthy
(1996), and in simulations of miscible flows in a tube and in a Hele-Shaw cell by Chen
& Meiburg (1996). On the other hand, for U > U23(M), the theoretical profiles derived
from the kinematic wave theory (under the assumption of a contact shock) do not
correctly describe the experimental observations: while the theory predicts a contact
shock without a preceding tip, travelling at VS > V0, the measured tongue is wider
and slower than predicted, while the front velocity is close to V0. In the Hele-Shaw
cell case, the two-dimensional flow pattern destabilizes for sufficiently high flow rates,
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giving rise to a three-dimensional fingering instability. The experimental threshold
UT (M) is higher than U23(M), although the threshold MT is comparable to Mmin

3 .
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