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On the tip-splitting instability of viscous fingers
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The instabilities of Saffman–Taylor viscous fingers are revisited experimentally in the
standard linear channel as well as in wedges of angle θ0. The local destabilization of
a finger occurs by a splitting of its tip and results in the formation of two branches
separated by a fjord. It is shown that, in a first approximation, the central line of a
fjord follows a curve normal to the successive profiles of stable fingers. These normal
curves are computed analytically for the Saffman–Taylor finger in a linear cell and
numerically for the wedges. The length of a fjord is critically sensitive to the position
of the initial destabilization of the finger. The nearer to the tip it occurs, the longer
the fjord will be. Assuming a uniform spatial distribution of the disturbances in the
central part of the finger front it is possible to predict the size distribution of the lateral
branches. In the linear channel the probability of branches larger than the channel
width is negligible. For wedges of increasing angle the probability of large secondary
branches increases. Finally, for wedges with θ0 larger than approximately 90◦ infinite
fjords separating two long-lived structures are observed. Our experimental results also
suggest a generalization of the definition of virtual cells. With this new definition it
is possible to show that the increasing complexity of the patterns corresponds to a
hierarchy of virtual cells of various sizes.

1. Introduction
Saffman–Taylor fingering has become an archetype for systems in which growth

occurs in a Laplacian field. As initially demonstrated by Paterson (1984) it is, in
that respect, similar to the growth of aggregates produced by the model of diffusion-
limited aggregation (DLA) due to Witten & Sander (1981, 1983). In both systems
there is spontaneous formation of a ramified pattern which grows, essentially, at the
protruding extremities. Rauseo, Barnes & Maher (1987), Couder (1988), and May &
Maher (1989) checked experimentally that the fractal properties of large Saffman–
Taylor patterns are similar to those of DLA aggregates. One of the basic questions
about the fractal regime of growth is that structures of all sizes are constantly
generated by the instability. How does this occur in viscous fingering? This will be
the central question we will be concerned with in this article.

We shall now present the Saffman–Taylor problem and a few of the main classical
results. This instability occurs in a Hele-Shaw cell when a very viscous fluid (e.g. oil)
is displaced by a fluid of low viscosity (e.g. air). In this situation, a plane interface
between the two fluids is unstable on a scale given by

lc = πb

√
γ

µV
, (1)

where µ is the viscosity of the oil, γ the interfacial tension, b the thickness of the cell
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and V the velocity of the front. This scale is obtained as the most unstable wavelength
given by the linear stability analysis of Chuoke, Van Meurs & Van der Pol (1959) for
the initial destabilization of a plane front.

For our present purpose an interesting feature of viscous fingering is that a whole
range of behaviour can be observed which depends on the confinement of the system.
Here we will investigate patterns grown in well-known confined geometries. These
are the linear channel due to Saffman & Taylor (1958) and the sector-shaped cells
introduced by Thomé et al. (1989). In both geometries two types of structures are
known:

(i) When the effect of the confinement is important (lc of the order of the cell
width), stable fingers propagate in these channels. These solutions are now well
documented. The analytical expressions for both their shape and their selection
process are known.

(ii) When the confinement is weak (lc small compared to the cell size), the curved
fronts are not stable and for very weak confinements the structure observed becomes
fractal.

In linear channels the usual control parameter is B given by

B =
γ

12µV

(
b

W

)2

= 8.45× 10−3

(
lc

W

)2

, (2)

where V is the velocity of the Saffman–Taylor finger. B is thus proportional to
the square of the ratio of the capillary length lc in the tip region to the width of
the channel W . This parameter is a measure of the confinement, which is reduced
when B decreases. For moderate values of B a stable curved front, the classical
Saffman–Taylor finger, is observed to propagate steadily in the cell. As B decreases it
tends to occupy a fraction λ = 0.5 of the channel’s width. Neglecting surface tension,
Saffman & Taylor found a family of possible analytical shapes for the interface,
parameterized by their width λ. The selection of the actual finger was solved in
numerical investigations by McLean & Saffman (1981) and Vanden-Broeck (1983)
and understood analytically by Combescot et al. (1986, 1988), Hong & Langer (1986),
and Shraiman (1986). In these works, it was shown that taking surface tension into
account there is, at a given B, selection of a discrete set of solutions labelled n = 0,
n = 1, n = 3 . . .. The width λ of all these solutions tends to 0.5 when B tends to
zero. The solution n = 0 of smallest λ at a given B was shown (by Bensimon, Pelcé
& Shraiman 1987; Tanveer 1987; and Kessler, Koplik & Levine 1988) to be linearly
stable down to B = 0. However, experimentally, the finger is unstable at small B as
shown by Tabeling, Zocchi & Libchaber (1987) and Kopf-Sill & Homsy (1988).

This selection of the solution λ = 0.5 by surface tension acting at the tip is strongly
supported by experiments. For instance it has been shown (Rabaud, Couder & Gerard
1988) that a local disturbance at the tip is sufficient to change the selection mode and
to give rise to anomalous narrow fingers. Similarly, the experiments described below
which are done in sector-shaped cells (Thomé et al. 1989) show a shift of the selected
λ. This effect has been quantitatively interpreted as due to the effect of surface tension
(Ben Amar et al. 1991). For this reason recent results due to Mineev-Weinstein (1998)
and Aldushin & Matkowitch (1999) are surprising. These authors provide criteria
that single out a steadily propagating finger of width λ = 0.5 from the continuum
of steady finger solutions found by Saffman & Taylor. The relation between these
new results and the classical ones on the effect of surface tension is not yet clear and
remains a subject of debate.
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In a sector-shaped cell, the viscous finger moves between two lateral walls forming
an angle θ0. We are mainly interested here in the cases where the front moves in a
divergent direction (θ0 > 0). Thomé et al. (1989) observed experimentally that viscous
fingering in a wedge gives rise to self-similar fingers which undergo a selection process
analogous with that observed in the linear geometry. The parameter controlling the
growth can be defined, by analogy with the linear channel, as B = 8.45×10−3(lc/θ0rT )2

where rT is the distance from the tip to the apex and WT (r) = θ0rT is the channel
width in the region of the tip. The finger width is defined as λ = θb/θ0, θb being the
angular width of the finger. For each angle, in the absence of surface tension, a family
of self-similar analytical fingers is found (Ben Amar 1991) again parameterized by
λ. The selection of the solution in the presence of isotropic surface tension has been
investigated both numerically and analytically (Ben Amar et al. 1991 and Combescot
& Ben Amar 1991). As in the linear cell, there is selection of a discrete set of solutions
and the observed finger corresponds to the solution of smallest λ. Compared to the
set selected for θ0 = 0, these solutions have widths λ shifted to larger values. The
larger the angle the larger the shift. A remarkable feature is that these solutions do
not exist for all B values: at a finite value Bth(θ0), the levels n = 0 and n = 1 merge,
so that there are no stable solutions for B < Bth(θ0).

Traditionally, two terms are used in the literature to describe the destabilization
of viscous fingers: tip splitting and side branching. In fact, in all isotropic Saffman–
Taylor fingers the destabilization occurs in the front part of the finger so that here
we will always call it tip splitting; the term ‘side branching’ should be reserved for
the lateral destabilization which is a characteristic of anisotropic growth (dendritic
crystal or anomalous Saffman–Taylor fingering, see Couder 1991). For these specific
patterns the front part of the structure is parabolic, scaled on lc and stable at all
velocities. The instability grows progressively (see e.g. Rabaud et al. 1988) along the
sides of the finger and becomes visible only far downstream of the tip.

In the limit of very weak confinement (very small values of B), the two length scales
lc and W are very far apart and a complex structure is observed which is fractal
for the scales between lc and W (Arnéodo et al. 1989). It was shown in that work
that if ensemble averages were performed on many fractal patterns obtained in the
same channel, the region having a large mean occupancy had the shape and width of
the Saffman–Taylor stable solution. This property is valid for both Saffman–Taylor
fingering and DLA. It is strictly true for the growth in a linear channel. In the wedges
the width of the stable finger is recovered but not the shape; the ensemble average
shows a tendency to split (Levine & Tu 1992; Arnéodo et al. 1996). In the case of
DLA Brenner, Levine & Tu (1991) proposed a modified version of the mean field
equations where most of these results are recovered.

Finally, the most widely investigated geometry for fractal growth is the axisym-
metric configuration. Patterns of this type can be obtained from the Saffman–Taylor
instability when the viscous fingers grow in the radial geometry introduced by Bataille
(1968) and Paterson (1981). In this case the initial growth around the injection hole
is circular until the front becomes deformed and a few indentations (usually five of
them) form. Though the position of these indentations is not predetermined, they are
correlated as they are separated by a distance of the order of lc. At these points,
which we will call ‘stop points’, the front curvature is reversed and the growth stops.
After this initial destabilization the front forms fingers, each of them growing radially
between two stop points and separated from its neighbours by ‘fjords’ (zones inside
which the oil remains motionless). It was shown by Thomé et al. (1989) that these
fingers grow as if enclosed between virtual walls defining wedge-shaped cells. As they
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Figure 1. Schematic of the experimental set-up.

continue growing, the fingers in each of these virtual cells destabilize and tend to
form complex ‘trees’. However, even when the growth has formed a fractal object,
the initial breaking of the symmetry appears to persist and to be at the origin of the
formation of large independent trees.

The article is organized as follows. After describing (in § 2) the experimental set-up,
we present the various results in the following sections. Section 3 is devoted to the
measurement of the instability thresholds and their comparison to theory. In § 4 it is
shown that the shape of the fjords separating the branches can be predicted from the
initial position of the disturbance. Furthermore, these fjords can be used to define
virtual cells and to predict the shape and stability of the branches. In § 5, using the
distribution of the possible disturbances of the finger, we predict the fjord length
distribution. Finally, in § 6, we make an attempt to generalize the concept of virtual
cells to the description of complex patterns and to see how deterministic the pattern
can be. Section 7 is the conclusion.

2. Experimental set-up
The instability of viscous fingers was investigated in a linear cell, in seven different

wedges and in the circular geometry. All the wedge-shaped cells were made using
only three pairs of glass plates. All the plates had a thickness of 1.2 cm, large enough
to avoid flexion at the pressures we used. The first pair of plates was wedge shaped
with angles θ0 < 80◦. They were clamped together, separated from each other by
sheets of Mylar of thickness 0.35 and 0.48 mm. These Mylar sheets served as spacers
to fix the thickness of the cell. They also formed the lateral walls and were cut so as
to impose the chosen geometry. The lateral walls were all designed in order that the
resulting shape of the cell be a sector of a circle of angle θ0 and of radius 57 cm, the
air being injected exactly at the centre of the circle. The second pair of plates was
used to obtain cells of larger angles (up to 180◦). These had a smaller radius of 24 cm.
Finally the last pair of glass plates, circular and of radius 24 cm, was used for radial
fingering experiments.

Our experiments all used air to force oil out of the cell. We used four kinds of
Rhodorsil Silicon oils: R47V10, R47V20, R47V100 and R47V500, having dynamical
viscosity respectively 8.7, 19.9, 106.4 and 496 cP. Air was injected at the centre of the
sector with a constant pressure defined by the hydrostatic pressure imposed by two
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communicating vessels (figure 1). The first vessel, filled with oil in contact with the
atmospheric pressure P0, was connected to a second vessel partially filled with the air
to be injected in the cell. The air pressure was therefore controlled by the difference
h between the two levels of oil. The diameter of the vessels was large enough so that
the variation of h was very small for the duration of an experiment.

With a constant-pressure injection, the interface local velocity has to be deduced
from Darcy’s law and is therefore non-trivially related to the distance r from the cell’s
centre. The finger is observed to slow down slightly at the beginning of its growth
and to accelerate when it approaches the extremity of the cell. But in most of the cell
the finger velocity can be, to a good approximation, taken as constant. This implies
that in a wedge the parameter B decreases constantly during the growth.

Images of the pattern growth, recorded on video tapes by means of a CCD camera,
were digitized using a Scion frame grabber connected to a computer and allowing
us to acquire up to 25 images per second. We used the digitized images to measure
the finger velocity and width and to analyse the finger shapes. From the velocity and
width, we deduced B and λ. The digitized images were also used to compare the
shape of the lateral branches to those predicted by the model (to be developed in § 4).

3. Threshold of destabilization of fingers
3.1. Measurement of the threshold of destabilization of fingers

Figures 2 and 3 show the typical evolution of a Saffman–Taylor finger in the case
of a small and a large angle respectively. At the initial stages of the growth, stable
curved fronts are observed, characterized by a monotonic curvature along the whole
front (figure 2a). If the parameter B is kept constant (corresponding to a velocity
decreasing as r−2), a strict self-similar growth would be observed. In our experiments
however, the front velocity is constant so that B decreases constantly because of the
increase of the local width. The experimental results of Thomé et al. (1989) suggest
that the finger adapts ‘adiabatically’ to the evolution of the local parameter B defined
in the tip region.

As a result of the decrease of B the finger is observed to destabilize as shown on
figures 2(b) and 3(a). This occurs presumably when B reaches the value at which the
theory predicts that the level n = 0 vanishes (figure 4) (Ben Amar et al. 1991).

To test this hypothesis, we first checked that the relative finger width λ (θ0) at
destabilization coincides with the limit width of the level n = 0. As already observed
by Ben Amar et al. (1991) the results, given on figure 5(a), are in good agreement
with the theoretical predictions.

We then measured the local value Bex at which this instability occurs. The exact
location of the finger destabilization being difficult to determine exactly, we chose to
measure Bex at the radial position where one can distinguish a flattening at the finger
tip. For each angular sector, we performed between 20 and 40 measurements of Bex,
varying the injection pressure and therefore the interface velocity (which is measured
using digitized images). The value of Bex and the error bar were estimated from this
set of measurements. The measured values of Bex are compared to the theoretical pre-
dictions Bth of Ben Amar et al. (1991) as a function of the cell angle θ0 on figure 5(b).

3.2. On the non-dimensional width of the finger at the destabilization

These results can be presented in a different way. The parameter B, although useful,
does not give an intuitive feeling for the experimental situation of the finger front for
at least two reasons. First, it compares the square of a length scale characterizing the
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(a)

(b)

Figure 2. (a) A stable Saffman–Taylor finger in a sector-shaped cell of angle θ0 = 30◦. (b) Super-
position of four successive photographs of its destabilization. On the last picture the secondary
branch has stopped growing. The tip-splitting instability is imperfect.

cell with the square of the length scale of the destabilization. Secondly it is preceded
by a very small prefactor. As the Saffman–Taylor finger grows, its tip becomes wider
and looks more and more similar to a plane front. With such an argument, one
would expect that a finger destabilizes, in a first approximation, as a plane front on a
characteristic scale on the order of lc. For this reason we thought it useful to introduce
a new parameter ω defined as the ratio of the finger width at the tip approximated
by λWT to the capillary length scale:

ω(θ) = λWT/lc. (3)

It is related to B by

ω(θ) = λ(8.45× 10−3/B)0.5. (4)

From the theoretical values of λ and Bth(θ0) calculated by Ben Amar et al. (1991), we
calculated the theoretical value ωth at the onset of destabilization. The corresponding
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(a) (b)

Figure 3. (a) Superposition of three successive photographs of the destabilization of a
Saffman–Taylor finger in a sector-shaped cell of angle θ0 = 100◦. (b) The corresponding devel-
oped pattern. The two branches generated by the instability keep growing independently and form
two large-scale structures. The tip-splitting instability is perfect.
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Figure 4. The coalescence of the two lower branches (n = 0 and n = 1) of the discrete set of
solution as obtained numerically for three wedges of angle θ0 = 60◦, 70◦ and 80◦ respectively.

curve, plotted on figure 6, diverges when θ0 decreases so that ωth(0) = ∞. From our
experimental measurements we can also deduce the value ωex of ω at the onset of
destabilization. These values are compared to the theoretical predictions on figure 6.

We can now use figures 5(b) and 6 to discuss the theoretical results in physical
terms and to compare theory and experiment.

For the linear channel, the theory predicts the linear stability of the Saffman–Taylor
finger up to ω = ∞ (or down to B = 0). In fact, the strong curvature at the finger tip
in this particular geometry has a stabilizing effect because the disturbances do not
have time to grow. They are advected away from the unstable front region towards the
rear of the finger where the normal velocity (and therefore the perturbation growth
rate) vanishes. This process was investigated numerically by Park & Homsy (1985)
and De Gregoria & Schwartz (1986).

However, experimentally, as observed by Tabeling et al. (1987), the fingers become
unstable above a threshold of the order of ωex(0) = 4 (or B = 1.4 × 10−4). This dif-
ference between theory and experiment can be ascribed to a nonlinear destabilization
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Figure 5. (a) The relative finger width λ at the onset of destabilization as a function of the cell
angle θ0. The curves correspond to the theoretical predictions of Ben Amar et al. (1991) and the
dots to our measurements. (b) The value of the parameter B at which the finger destabilizes as a
function of the cell angle θ0.
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Figure 6. Finger tip width normalized to the capillary length ω at the onset of destabilization as a
function of the cell angle θ0. The curve shows the theoretical predictions of Ben Amar et al. (1991)
and the dots our measurements.

of the finger triggered by small but finite disturbances due to the imperfections of
the cell. The initial amplitude of the perturbation is an important parameter in the
competition between the growth time and the advection time as demonstrated by
Bensimon (1986). The values we found experimentally were in agreement with those
of Tabeling et al.; they correspond to the natural disturbances in a cell with clean
glass plates. If noise is added, smaller values of ωex(0) are found.

In divergent wedges the tip is flatter and the advection weaker so that the stabilizing
effect of curvature decreases rapidly with the increase of the angle. For wedges of
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angle θ0 > 60◦, an asymptotic value of approximately ωmax = 2 is reached. In other
words, for large wedges, as soon as the width of the finger becomes of the order of
2lc, it becomes unstable. This gives an intuitive understanding of the existence of the
theoretically computed loops and of the limit they impose on the finger stability. For
these wedges the agreement between experiment and theory is good (figures 5b and
6) with however a slight systematic shift towards larger values of the experimental
measurements ωex. This can be ascribed to the fact that theory predicts the exact
moment of the finger destabilization whereas experimentally one has to wait for the
perturbation to be large enough to distinguish a finite flattening in the finger profile.

4. Shape of the fjords
4.1. Study of the shape of the central line of the fjords

The flat, which is the first visible sign of a finger’s destabilization, rapidly becomes
an indentation, in the centre of which the interface stops moving (figures 2b and 3a).
This local inversion of curvature thus marks the beginning of the splitting of the
initial finger in two branches. These two branches are separated by a region, which
we will call a fjord, in which the oil remains blocked (figures 2b and 3).

Investigating the later evolution of this splitting instability, we observed that this
process can lead to two different kinds of long-term behaviour. In the first case,
observed for all angles θ0 < 70◦ (including the linear channel), the instability fails to
create two independent long-lived structures. One of the branches, which we will call
the secondary branch, is ejected from the side of the finger and stops growing (figure
2b). The other branch, which we will call main branch, widens increasingly and will
tend to become unstable again. In the following, this process will be referred to as
‘imperfect tip splitting’. In the second case, observed in cells of large angles (θ0 > 90◦),
both branches keep growing independently (figures 3a and b) and form long-lived
structures. We will refer to this latter case as ‘perfect tip splitting’.

The transition between these two kind of behaviour occurs in the intermediate
range 70◦ < θ0 < 90◦, where both perfect and imperfect tip splitting can be observed.
It is worth noting that this transition zone corresponds approximately to the range
where the parameter ω reaches its limiting value ωth = 2.

The possibility of the existence of a critical angle in Laplacian growth has already
been discussed, especially in the context of DLA (Argoul et al. 1990; Arnéodo et
al. 1989). These theoretical studies suggested the existence of a five-fold symmetry,
corresponding to the critical angle θc = 4π/5 = 144◦. More recently, Kessler et al.
(1998) also found theoretically the existence of a critical angle θc = 120◦–140◦. Their
study predicts that for angles larger than θc, two branches can coexist and form
long-lived structures. Our experiments seem to confirm the existence of such a critical
angle but with a value smaller than that predicted by Kessler et al. We must note
that the value of this angle is probably underestimated in our experiments because
the patterns we studied were not very large and what we estimated to be long-lived
structures may still have stopped if we could have let the pattern grow larger.

4.2. A model for the shape of the central line of the fjords

To put these observations on a more quantitative footing it turns out that it is more
appropriate to study the shape of the fjords instead of that of the secondary branches.
In fact perfect tip splitting always corresponds to radial fjords with their axis passing
through the cell’s apex (figure 3). On the other hand, in the imperfect tip splitting
case, the fjords observed are curved. Their initial axis is always somewhat divergent
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from the cell’s axis (figure 2b) and with time this axis rotates progressively further
away from the cell’s axis until the side finger stops growing.

In order to understand this evolution, we propose an interpretation based on the
two following hypotheses:

(i) The destabilization of the Saffman–Taylor front occurs by the amplification
of a motionless disturbance, i.e. one having no intrinsic propagation. Its only motion
is due to its advection along the curved profile, a kinematic effect pointed out by
Zel’dovich (1980) (see also Pelcé 1988).

(ii) The formation of an indentation in the interface, being very local, only affects
the nearest of these isobars. The further ones remain undisturbed and tend to stabilize
an envelope of the structure similar in shape to the stable finger. In other words, the
structure formed of the main branch and the lateral branch retains a memory of the
previous stable structure.

With these two hypotheses, the evolution of the fjords separating the two branches
can be predicted from the evolution of the finger had it remained stable. More
precisely, we shall show that the shape of the fjord is similar to the trajectory of a
point of the interface that would be on a stable Saffman–Taylor finger. This trajectory
is particularly easy to determine as it is given by the curves normal to the successive
finger profiles.

4.2.1. Case of the linear channel

We first consider a stable finger moving in a linear cell with a velocity U relative to
the laboratory frame. The x-axis corresponds to the cell’s axis. The origin is chosen
so that the coordinates of the tip at a given time t are x = Ut and y = 0. With these
conventions, the shape of the stable finger at a given time t found by Saffman &
Taylor in the absence of surface tension is

x−Ut = f(y) =
W (1− λ)

π
ln [cos (πy/λW )]. (5)

Computing the components of the normal vector, we get

nx =
1√

1 + (df/dy)2
, ny =

−df/dy√
1 + (df/dy)2

. (6)

A small displacement dl = (dx, dy) of a particle advected with the interface must be
parallel to the normal direction. This implies

dx =
nx

ny
dy =

λ

(1− λ)
dy

tan (πy/λW )
. (7)

Integrating equation (7), we find that the trajectory of a disturbance initially located
at the point (xs, ys) is described when 0 < ys < λ by the equation

x− xs =
Wλ2

π(1− λ) ln

[
sin (πy/λW )

sin (πys/λW )

]
. (8)

In the particular case where ys = 0, the trajectory is the straight line y = 0.
The trajectories corresponding to two different starting points on a finger of width

λ = 0.5 are plotted on figure 7(a). The fjord length lf is larger when its starting point
is closer to the finger tip, a property that had already been noticed by Kopf-Sill &
Homsy (1988). However, in both cases, the fjord axis bends progressively until the
perturbation is finally convected to the side of the finger, where it stops moving. This
fact is more evident on figure 7(b) which shows the normal trajectories starting from
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initial points located at regular intervals along the finger profile. The fjord length lf
diverges when its starting point reaches the finger tip. However, all the trajectories
are finally convected to the finger side except that issuing from the finger tip itself.
This latter trajectory is singular, being a straight line parallel to the wall.

Finally, it is worth noting that all the normal curves (but the one issuing from the
finger tip) are parts of identical curves simply translated along the cell’s axis. This
property is a consequence of the translational invariance of the Saffman–Taylor finger
in linear geometry. It is worth noting that these curves have exactly the same shape as
the finger itself but translated a distance y = λ/2 along the y-axis. To our knowledge,
this property of Saffman–Taylor fingers had remained unnoticed up to now.

4.2.2. Case of the wedges

In the case of wedges, the successive profiles are self-similar. Although their ana-
lytical expression is known (Ben Amar 1991), it is given in terms of hyper-geometric
functions which are difficult to manipulate. For this reason we chose to compute
numerically the normal trajectories using the following procedure. For each angle θ0,
we get the profile of the finger having the limit width λθ as obtained by numerical
simulation. This profile was interpolated using the cubic spline method in order to get
a large number N of points on the interface. A starting point being chosen on this
profile, we computed the normal vector coordinates at this initial point. The finger
was then propagated by one step. Because of the interface auto-similarity, this was
simply done by expanding the finger by a factor (1 + ε). The new position of the par-
ticle was given by the intersection of the normal with the new profile. This procedure
was iterated as many times as needed. The precision of this calculus depends both
on the number N of points at the interface and on the expansion factor ε. The unit
of length being given by the finger length, we obtained good results with N = 50 000
and ε = 0.01. The N points were not set uniformly on the interface. Their density was
increased in the vicinity of the tip where the trajectories lengths change more rapidly.
As in the linear case, the point stops moving when it has been convected to the side
of the finger where the advection velocity is zero.

The trajectories corresponding to two different starting points on a finger of width
λ = 0.815 in a wedge of angle θ0 = 60◦ are plotted on figure 8(a). Figure 8(b) shows
a set of trajectories originating from equidistant points along the finger profile. The
fjord length diverges to infinity when the starting points get closer to the tip. As in
the case of the linear geometry, all the trajectories but one correspond to a rejection
on the side of the finger. The exception is the trajectory originating from the tip,
which is a straight line along the axis of symmetry of the cell.

It is also worth noting that all the trajectories can be deduced from one another by
applying a scaling factor. This property is a direct consequence of the self-similarity
of Saffman–Taylor fingers in wedges.

4.3. Comparison of the central line of the fjords to the shape of the normal curves

In order to compare the experimentally observed fjords to the calculated trajectories
we used video tape recordings of the finger evolution. For the second hypothesis of
§ 4.2 to be valid we must start from undisturbed fingers and observe their destabil-
ization.

In a linear channel however, ω remains constant during the growth of a finger.
Therefore a given experiment leads either to a stable or to an unstable finger. This is
the reason why in the case of linear channels we limited ourselves to weakly unstable
fingers where the finger remains close to a stable one. A more general investigation is
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Figure 7. (a) Trajectories of two points A and B of a finger profile of width λ = 0.5 in a linear
cell. (b) Set of trajectories issued from equidistant points along a Saffman–Taylor finger front.

possible in wedges. The reason is that if the finger velocity is constant the growth in
this geometry is always stable near the apex. We simply let this stable finger grow. As
W increases B decreases and we observe the finger’s first destabilization. Rewinding
the tape we seek the first image where an indentation is observed in the finger tip
region. We then use the theoretical array of normal curves in the wedge of angle θ0 (of
the type shown on figures 7b and 8b). We adjust the figure scale so that the theoretical
finger fits the experimental one at the stage where it destabilizes. We then choose
the normal curve having its starting point in the centre of the indentation. If our
hypotheses are justified this curve should give the central line of the fjord observed
later. The results of such fits are displayed on figure 9 for the linear channel case and
figures 10, 11 and 12 for wedges of angle respectively θ0 = 30◦, 60◦, and 100◦.

The prediction, though not perfect, is a good enough approximation. In particular
in all the cases where the secondary branch has stopped growing (figures 9 and 10)
it is observed to be neatly enclosed inside the curved trajectory. This means that
knowing the origin of a disturbance it is possible to predict where the secondary
branch will stop. This characteristic is at the origin of the generalization of the virtual
walls presented in the next paragraph.

The experimental results depart from what is expected in two ways. For the linear
channel and the wedges of small angles the observed fjords appear less bent than
predicted (figures 9 and 10). The main reason for this is that when the trajectory
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Figure 8. (a) Trajectories of two points A and B of a finger profile of width λ = 0.815 in a
sector-shaped cell of angle θ0 = 60◦. (b) Set of trajectories issued from equidistant points along a
stable finger of length rT = 1.

bends towards the wall the secondary finger simply stops growing so that the part of
the fjord corresponding to the most lateral part of the trajectory remains virtual.

A second limitation is observed for very unstable fingers in linear channels. It is
known (Arnéodo et al. 1989) that their ensemble average statistically reproduces the
shape of the stable finger. However one given realization can have an envelope that
departs from that shape. In particular, a given finger can grow for some time on one
side of the channel. Evidently, in all these cases the fjords cannot be compared to
the normal trajectories to the symmetrical finger. However, as we will see, the length
repartition of the weakly unstable fingers retains statistical validity for the branches
of very unstable fingers.

4.4. Generalization of the notion of virtual wall and application to the description of
the secondary branches

The shape of the fjords being known, the next question which arises concerns the
shape of the two branches growing on each side of the fjord. Let us recall that, in
the case of a circular cell, the destabilization of an initial circular front leads to the
formation of five or six fingers growing between radial fjords. Thomé et al. (1989)
observed experimentally that these fingers grow as if enclosed in virtual wedge-shaped
cells, the walls of which correspond to the central line of the fjords.
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Figure 9. In a linear channel the typical instability observed near the instability threshold is a very
imperfect tip splitting. The photograph is taken when the secondary branch has stopped growing.
The dashed line is the normal curved passing through the point of initial destabilization.

Figure 10. The dynamics of an imperfect tip splitting in a wedge of angle θ0 = 30◦. The figure
shows the superposition of four successive profiles. The flattening corresponding to the initial
destabilization is seen on the second profile. On the fourth profile the resulting secondary finger
has stopped to grow. The dashed line is the normal curve passing through the point of initial
destabilization.

The destabilization of fingers in wedges is very similar to the first destabilization
in circular cells: stop points form leading to the formation of fjords in which the
fluid remains motionless. For this reason, we tried to generalize the procedure and to
identify the central lines of the fjord with a virtual wall. Each of the two branches
resulting from a splitting instability therefore grows as if confined between a real wall
(one of the cell wall) and a virtual wall (the fjord) (figures 9 to 12).

The simplest situation corresponds to the perfect tip splitting observed for large
wedges θ0 > 90◦ (figure 12). In this case the virtual wall is radial and divides the
initial cell into two parts. Each of the two branches grows in a virtual divergent
wedge of angle θ0/2. As they keep growing, both secondary branches will become
progressively wider until they destabilize again (figure 12). During this destabilization
the fjord axis retains its shape.
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Figure 11. Case of a very large fjord formed in a wedge of angle θ0 = 60◦. Comparison between
the calculated trajectory (dashed line) and the experimentally observed fjord. Note that the fit is
good even though the secondary branches themselves undergo secondary destabilizations. On this
image, the secondary branch has not yet stopped growing.

Figure 12. Comparison between the calculated trajectory (dashed line) and the experimental
observed fjord for a perfect tip-splitting in a wedge of angle θ0 = 100◦.

In narrow cells (θ0 < 70◦), as stated above, no perfect splitting is observed. Instead
an imperfect splitting occurs forming a curved fjord (figures 9 to 11). The fjord being
curved, each branch grows in virtual channels one of the lateral walls of which is
curved. This type of channel has never been investigated so that the evolution of a
finger in such a cell cannot be precisely predicted. However, the growth in normal
wedges is mainly sensitive to the structure of the boundaries in the region of the tip. It
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is thus possible, in a first approximation, to replace a curved wall by the straight wall
tangent to it in the region where the growth occurs. In this approximation, at a given
time, the two branches resulting from a tip splitting both move in two virtual wedges.
The tip splitting being imperfect, these two virtual cells are however very different
(figures 9 to 11). Due to the curvature of the virtual wall, the wider cell becomes more
divergent. As a result, the main branch widens increasingly and will tend to become
unstable again. In contrast, the narrower cell becomes more convergent (with θ0 < 0)
and heads into a dead end because it moves towards the wall of the real cell. As a
result, the corresponding finger becomes narrower and stops growing (figures 9 and
10) roughly when it reaches the envelope of the stable structure of the initial cell (well
before it would have collided with the cell wall).

5. The size distribution of the fjords and of the secondary branches
With these assumptions the shapes of the main and secondary branches can be

interpreted well if the position of the initial disturbance is known. The length of a
fjord being critically sensitive to the position of the initial dip, there is a direct link
between this length and the structure of the stable finger tip. As a result the tip-
splitting process appears, by itself, to be able to generate fjords and side branches of
all sizes. However, at this stage it does not explain why perfect tip splitting dominates
at large angles whereas only imperfect tip splitting is observed at small angles. In
this section, we will examine in more detail the length lf of a trajectory (and thus
of a fjord) as a function of the position s(xs, ys) of its starting point. Assuming a
homogeneous distribution of the starting points and taking into account the effect
of the width of the perturbation as compared to the finger width, it is possible to
predict the fjord size distribution. We will thus reach a qualitative understanding of
the transition from imperfect to perfect tip splitting.

5.1. Fjord size distribution in linear channels

Let us first consider the case of the linear cell. Taking advantage of the symmetry of the
finger, the following calculations were performed on half of the profile. The probability
distribution function f(lf) of the trajectories of size lf is related to the probability
distribution function g(ys) of the transverse position of the starting point by

f(lf) dlf = g(ys) dys. (9)

Let us assume that the main source of destabilization of the fingers comes from point-
like defects of the glass plates homogeneously distributed across the channel width.
In that case, the disturbances impinging on the interface have a constant density
in the direction transverse to the cell. For these reasons, we will assume a constant
probability distribution function for the transverse position of the disturbance g(ys)
and calculate f(lf) from the equation

f(lf) = g(ys)

∣∣∣∣dysdlf

∣∣∣∣ . (10)

In the case of the linear geometry, the length of a trajectory originating from a point
at the interface of ordinate ys is

lf =

∫ λW/2

ys

√
1 + (dx/dy)2 dy, (11)



The tip-splitting instability of viscous fingers 141

8

6

4

2

0
0.01 0.1 1.02 5 2 5

(a)

f (l f)

lf /W

0.8

0.6

0.4

0.2

0
0.1 1 10.02 5 2 5

(b)

f (l f)

lf /W

2

2

Figure 13. (a) Probability distribution function of the fjord lengths in the linear geometry (θ0 = 0◦);
boxes, experimental results; dotted line, homogeneous distribution of all the defects (equation (13));
continuous line, disturbances in the central band only (equation (14)). (b) Probability distribution
function of the fjords lengths in a wedge (θ0 = 45◦). Boxes: experimental results. The continuous
line is the distribution computed numerically.

where lf is normalized with respect to the cell width and x and y are linked by
equation (8). Integrating this equation in the case of a finger of width λ = 0.5, we get

lf(ys) = −W
2π

ln [tan (πys/W )], (12)

so that the probability distribution function of having a fjord of length lf is

f(lf) =
4

W
sin [2 tan−1(e−2πlf/W )]. (13)

In order to obtain an experimental distribution, we performed measurements of
the fjord lengths in a linear cell in repeated experiments. The resulting histogram
corresponding to 150 independent runs provides the probability distribution function
shown on figure 13(a). The agreement between the experimental distribution and
the predicted one (dotted line on figure 13a) is reasonably good for long branches.
However, the number of small branches is greatly overestimated. In fact, one observes
experimentally the existence of a kind of cut-off length of the order of 0.05W , below
which the probability of observing branches becomes very small.

The existence of this cut-off length can be understood qualitatively in the following
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Figure 14. (a) Schematic of the possible positions of the wavepacket of a disturbance and of its
evolution in the linear channel. Because of the necessary extent of the wavepacket the disturbances
located in the two grey bands are not efficient in destabilizing of the finger. (b) The same schematic
for a large-angle wedge.

way. The initial perturbation is likely to be point-like. However, due to surface tension
the resulting observed disturbance of the front appears as a wavepacket, formed of
an indentation separating two bumps (figure 14a). The wavelength of this wavepacket
is roughly of the order of the local capillary length scale. In the tip region this local
length is always close to the value lc associated with the finger tip velocity. The bumps
are the precursors of the main and secondary branch while the indentation is that
of the fjord. Because of the bumps, the fjord starting point cannot be located far
back on the finger side. This implies the existence of a forbidden zone on the stable
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Saffman–Taylor finger from where no fjord can start as schematized on figure 14(a).
Secondary branches corresponding to fjords which would start from this forbidden
zone are therefore never observed. This simple image can be made more precise. As
seen in § 3, the finger width, λW , in linear cells is of the order of 4lc at the onset of
destabilization (ωmax ∼ 4). The wavepacket width being of the order of lc, the range
of possible starting points for the fjord is relatively important, depending on the
position of the perturbation on the finger.

The complete analysis would be complex because it is necessary to take into
account the stretching due to the kinematics of the front as analysed by Zel’dovich
(1980) as well as the shift of the local unstable wavelength due to the decrease of
the local normal velocity as shown by Caroli, Caroli & Roulet (1987) in the case of
dendritic crystals. We will limit ourselves here to a qualitative argument. In a first
approximation the three parts of the wavepacket, labelled a, b, c on figure 14(a)
are advected along normal lines. It can be seen that the stretching by the advection
decreases going from a to c. If the bump c is located too far on the side of the finger
its length will very rapidly be too short to correspond to one of the locally amplified
wavelengths. This is experimentally observed: when a disturbance occurs too far from
the finger’s axis it fails to generate a lateral branch because part c of the wavepacket
is not amplified.

Experimentally, the cut-off length is observed to correspond to a fjord starting point
located 0.5lc from the finger side. In other words, the forbidden zone corresponds to
points of ordinate |ys| > 3λW/8. A contrario all the disturbances having their centre
located nearer to the finger axis generate a splitting. This effect can be taken into
account by assuming a constant probability distribution function for the transverse
position of the disturbance g(ys) in the interval |ys| < 3λW/8. This leads to the
following expression for the secondary branch size probability distribution function:

f(lf) =
16

3W
sin [2 tan−1 (e−2πlf/W )] for lf > l0,

f(lf) = 0 for lf < l0,

 (14)

where l0 is the length of a branch originating from a point of ordinate |ys| = 3λW/8,
given by

l0 = −W
2π

ln

[
tan

(
3λπ

8

)]
. (15)

This distribution is shown (continuous line) on figure 13(a) and gives a good fit to
the experimental p.d.f. An interesting result is that the probability of having fjords
larger than the cell width W is very small. In particular, though perfect tip splitting
does not seem a priori to be excluded, their probability is negligible.

Two remarks can be made.
It should be noted that the derivation of the size of the forbidden zone relies on

the observation that ωex(0) = 4 (or B = 1.4 × 10−4) at the onset of destabilization.
However, as already mentioned, the value of B and therefore of ω at the onset of
destabilization in a linear cell depends on the noise level in the particular experiment
(Bensimon 1986 and Tabeling et al. 1987). As a result, the size of the forbidden zone
and the resulting fjord size p.d.f. should also depend on the noise level. This was not
investigated.

As stated in § 4.3 the strongly unstable fingers can be asymmetrical. In this case
the side branches growing on the side where the cell is wider can be slightly longer.
Statistically however, the distribution found above retains its validity.
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5.2. Fjord size distribution in wedges

As in the case of the linear channel, we also performed repeated measurements of
the secondary branch length in wedges of varying angles. Figure 13(b) displays the
resulting probability distribution function obtained by 200 independent measurements
in a wedge of angle θ0 = 45◦. There is again a cut-off length at small scales which is
now of order W . The probability of observing branches smaller than that is very small.

Considering, as above, the disturbance as a wavepacket formed of two protrusions
separated by an indentation and having a total length of the order of 1.5lc, the finger
destabilization in wedges is schematized on figure 14(b). It can be noted that in
wedges of large angle, λ being very large, the front of the finger is not very different
from an arc of a circle so that its local velocity does not vary much over the whole
front part. As a result the local capillary length lc can be considered as constant. The
experimentally observed cut-off length for θ0 = 45◦ corresponds to a fjord starting
point located 0.75lc from the finger side. In other words, the width of each of the
forbidden zones is of the order of 0.75lc. This observation, confirmed by another series
of experiments in angular sectors of angle 30◦ and 60◦, confirms that the perturbation
width is of the order of 1.5lc. Note that in the sector geometry, the value of ω at the
onset of destabilization and therefore the size of the forbidden zone do not depend
on the noise level.

In the case of wedges, the initial disturbance of the finger is characterized by its
angular position θs. The distribution of the trajectory lengths f(lf) is related to the
distribution of positions of the initial disturbance g(θs) by

f(lf) = g(θs)

∣∣∣∣dθsdlf

∣∣∣∣ . (16)

Assuming a constant angular distribution g(θs) of the disturbances outside the for-
bidden region, we calculated numerically the fjord size distribution. The computed
fjord size distribution function is compared to the experimental histogram in figure
13(b). Taking into account the simplicity of our model, the agreement is rather good.
Figure 13(b) shows that for θ0 = 45◦ the most probable size for the branches is of the
order of W and thus much larger than in the linear case.

The observation that the perturbation width is of the order of 1.5lc is an inter-
esting result. As noted in § 3, the finger width at the destabilization normalized by
the capillary length, ωmax(θ0), decreases when the sector angle θ0 increases. For an-
gles θ0 larger than 60◦, ωmax(θ0) becomes on the order of 2. Therefore a disturbing
wavepacket of width on the order of 1.5lc has to hold onto a finger tip, the width
of which tends towards 2lc at large angles. As a result, the indentation and therefore
the fjord starting point become more and more confined to the vicinity of the finger
tip. This effect enhances the probability of long branches and could therefore give a
physical meaning to the transition from imperfect to perfect tip splitting which occurs
between θ0 = 60◦ and θ0 = 90◦. This analysis, however, does not lead to a precise
value of a critical angle for the transition from imperfect to perfect tip splitting.

6. Description of complex patterns
6.1. Application of the notion of virtual wall

Until now, we have only considered the first destabilization of a Saffman–Taylor finger.
The secondary branches issuing from the destabilization can themselves destabilize,
creating a second generation of branches and so on. We can now try to generalize
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Figure 15. A complex pattern obtained in a θ0 = 80◦ cell, showing a hierarchy of virtual cells. The
finger enclosed between W2 and W4 has stopped growing. The finger located and between W3 and
W5 has practically stopped. The structures between W1 and W3 and between W4 and W5 are still
growing.

the previous results to the next generations of branching. Figure 15 shows a complex
pattern observed in a wedge of angle θ0 = 80◦.

The first destabilization occurs at point A in the real cell composed of real walls,
labelled W1 and W2 on figure 15. This is an imperfect tip splitting which gives rise to
a fjord labelled W3. The shape of W3 is fitted very well by the theoretical calculated
curve shown on figure 15 computed in the usual way (for a wedge of angle θ0 = 80◦).

As discussed in § 4.4, the fjord central line W3 forms a virtual wall. We can now
consider the secondary branch growing confined between walls W2 and W3. In the
region where this finger destabilizes, the virtual cell formed by W2 and W3 can be
approximated by a normal wedge of angle θ′0 = 40◦. In this approximation it is
possible to predict the radial position of B, the point where the finger destabilizes
and to fit the shape of the resulting new fjord W4.

This process can be repeated with the finger growing between the two virtual walls
W3 and W4. It splits in C and forms a new fjord W5. The shape of W5 can be
predicted by approximating the virtual cell formed by W3 and W4 by a wedge of
angle θ′′0 = 30◦. This procedure could be generalized to the description of all splittings
but the situation becomes more and more intricate so that the shapes of the virtual
cells are more and more complex, having for instance more than two curved walls.

6.2. Reproducibility of complex patterns

Several observations led us to think that if identical initial destabilizations were
obtained there was a sort of length of persistence. In other words, after a reproducible
first branching the evolution of the pattern became deterministic for some time. In
order to test this idea we performed a series of experiments aimed at testing the
reproducibility of the successive branchings when the first one was fixed. For this
purpose, instead of letting the finger destabilize spontaneously, the first instability is
artificially triggered by a local perturbation in the cell. This was obtained by placing
a finite protrusion on one of the lateral walls (see figure 16). The disturbance was
placed a little nearer to the apex than the position of spontaneous destabilization
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Figure 16. Four patterns obtained in identical experimental conditions in a θ0 = 60◦ cell. The first
tip splitting has been triggered by the bump in the lateral wall visible on the photographs.

of the finger at the chosen velocity. Passing in front of this protrusion, the finger
becomes asymmetric and its destabilization is biased: a lateral branch is formed on the
opposite side of the disturbance. The next branch appears on the other side and this
process repeats itself. We present as an example on figure 16 the patterns obtained
in four different realizations for the same conditions in a 60◦ cell. The pattern is
surprisingly reproducible. The whole behaviour of the finger looks oscillatory though
the periodicity is still not very well determined. If the conditions of injection are
maintained strictly identical the pattern formed by the first four or five side branches
form in a deterministic way. Note that this kind of oscillating pattern also observed
by Park & Homsy (1985) is not a direct consequence of the lateral disturbance as we
also observed it to occur spontaneously.

7. Discussion and conclusion
We can now revisit the axisymmetric growth in the radial geometry. Figure 17 shows

two patterns corresponding to different stages of the growth. On figure 17(a) are shown
the first two stages of destabilization. The walls formed during the destabilization of
order zero are radial and they appear to extend to infinity. Indeed, on figure 17(b) a
well-developed pattern is observed to remain separated in the sectors defined initially.
This means that as the structure expands, the ‘memory’ of the initial disturbance is
kept. The pressure field being Laplacian, the scale on which it is disturbed in the
radial direction is of the same order of magnitude as the scale of the disturbances of
the interface in the azimuthal direction. The azimuthal disturbances of largest scales
always correspond to the division into sectors which occurred initially. For this reason
they are the disturbances which disturb the furthest isobars. As the structures grow,
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(a) (b)

Figure 17. Two patterns obtained in a circular geometry, showing the role of the virtual cells
(a) at an early stage of the growth and (b) for a more developed pattern.

isobars located further and further away will be affected. These isobars thus retain
the memory of the initial destabilization and their disturbance is what maintains
the growth in sectors in the long term. However, most of the destabilizations that
will occur later will fail to create radial splits. Instead they will generate fjords of
different length with a shape given by advection on the mean profile of the finger in
the initial wedge. In turn these structures will destabilize and form new fjords. The
problem is then that most of the third-order or fourth-order wedges become more
and more distorted compared to the known straight wedges so that the fits become
less convincing.

In the confined cases it is interesting to note that the instability of the tip is able
to generate the structures of all sizes needed for the build-up of the fractal structure.
In reverse it has the same limits. For instance, in linear cells it is well known that the
fractal range of scales is bound by lc and W ; the tip instability produces branches
similarly bound. This can be understood as follows: the screening off is responsible
for the upper bound on the size of the secondary structures. This screening off is also
responsible for the stable finger shape.

There is an interesting correspondence between the present work and recent the-
oretical approaches to unsteady patterns by Tanveer (1991), Elezgaray (1998) and
Kessler et al. (1998). In their work they use conformal transform techniques and show
that the formation of successive fjords in the real cell correspond to singularities of
the complex plane moving from infinity towards the unit circle. It would be interesting
to see whether or not their approach could lead to a generalization of our results.

We can note that it should also be possible to extend this type of analysis to
other situations. For instance in the directional growth of crystals there is a regime
often called the seaweed morphology (Ihle & Müller-Krumbhaar 1994). In this type
of growth (which occurs in isotropic conditions when the imposed gradient is weak)
large cells are formed, each of them being unstable and having imperfect splitting.
The shape of the observed fjords appears to be curves normal to the cells profiles.
This is also observed in the growth of eutectics (Akamatsu & Faivre 1999). Similarly,
during the growth of sponges and stony corals there are steady regimes forming
column-shaped colonies (see Kaandorp 1993 and references therein). The individual
coralites appear oriented along the normal curves to the outer profile. The normal
profiles are then clearly visible on cross-sections of these structures.



148 E. Lajeunesse and Y. Couder

We thank Martine Ben Amar, Juan Elezgaray and Stéphane Douady for helpful
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