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ABSTRACT: A 3D cellular automation is disclosed that enables modelling the dynamics of bedform. The
overall mechanism can be regarded as a Markov chain, a discrete system with a finite number of configurations
and probabilities of transition between them. Physical processes such as erosion, deposition and transport are
modelled at the elementary scale by nearest neighbour interactions.At larger length scales, topographic structures
arise from internal relationships based upon these short range interactions. This article focuses on crescentic
barchan dunes that are used as a benchmark for our numerical model of bedforms. Length and time scales of
isolated barchan dunes are studied in order to constrain the parameters of the model. Then we discuss pattern
selection and the evolution of a population of dunes over a wide range of initial and boundary conditions. We
eventually show that our model can be generalized to bedforms through the increase of the sand availability.

1 INTRODUCTION

There is a considerable variation within bedforms as
they locally depend on the topography, the sediment
load, and the flow. Such variability might be expressed
by different relationships between erosion and deposi-
tion rates and the fluid velocity field. While empirical
relationships estimate these quantities for a given bed
under particular conditions, theoretical relationships
simplify the turbulence problem to make easier the
description of the sediment capacity of the flow. In
both cases, it remains extremely difficult to tackle
the impact of the size distribution of sediment par-
ticles. Despite these limitations, the study of aeolian
dunes has significantly filled the gap between observa-
tions and models (Bagnold 1941; Pye and Tsoar 1990;
Lancaster 1995).

Under dry conditions, the transport of sand grains
by the wind involves similar physical mechanisms than
sediment transport in liquids. However the absence
of cohesion, dissolution and sedimentation limits the
number of relations between fluid and solid ingredi-
ents. Then, in order to investigate couplings between
wind and topography, it is sufficient to formalize the
wind velocity field with respect to the surface pro-
file as well as the erosion and deposition responses
to shear stress (Jackson and Hunt 1975; Hunt et al.
1988; Weng et al. 1991). In this framework, the prin-
ciple of mass conservation is commonly ensured by a
continuity equation for the height profile

where q is defined as a volumic sand flux per unit of
time and per unit of length perpendicularly to the wind
direction. The capacity of transport takes therefore the
form of a saturated sand flux qs, and the only param-
eters are those which are relevant for the magnitude
of qs according to the topography (Kroy et al. 2002a;
Andreotti et al. 2002). Schematically, for a strong
enough wind, deposition dominates if q approaches
qs (i.e ∂xq < 0), else erosion occurs (i.e ∂xq > 0). In all
cases, there are different ways the grains can be put
into movement. First, they can be dragged, lifted and
accelerated by the excess shear stress exerted by the
fluid on the surface.This corresponds to saltation. Sec-
ond, they can be released by impacts of falling grains
and crawl on the surface. This corresponds to repta-
tion. These two transport modes are obviously related
to one another, essentially because saltation implies
an irregular hopping process through the retroaction
of transported grains on wind velocity.

In this paper, we concentrate on the formation and
the evolution of crescentic barchans dunes as a bench-
mark for a new model of sediment transport. Barchan
dunes are isolated structures with horns extending
downwind on both sides of an sand pile characterized
by a slip face and a windward face (Fig. 1). Saltation
and reptation are active on the windward face and the
slope angle may vary from 10◦ to 15◦; the slip face
is not submitted to the dominant wind and its geom-
etry is controlled by avalanches of grains reaching
the dune crest. The angle of repose of the sand being
approximately of 30◦, the dune profile is asymmet-
ric in the direction of the wind. Barchans dunes have
been observed in different geophysical environments
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Figure 1. (a) Comparison between crescentic barchan dunes
in air and water, in desert and laboratory experiments respec-
tively (courtesy of Physical Review Letters, Hersen et al.
(2002)). (b) Tranverse view of a barchan dune in Morocco
(picture taken by B. Andreotti).

on Earth (arid desert, icecap, deep water), on Mars,
but also in laboratory experiments (Fig. 1). They are
propagating downwind, and independent relationships
can be deduced from their dimensions, volumes and
velocities. Overall, the aim of this paper is to compare
the predictions of our model with these relationships.

Following Nishimori and Ouchi (1993a) and
Werner (1995), our numerical approach is dedicated to
the analysis of emergence mechanisms in geomorphol-
ogy. An emergence mechanism is met when one phe-
nomenon leads to another, not in a direct cause/effect
relationship, but in a manner that involves pattern
of interactions between the elements of a system
over time. In other words, an emergent macroscopic
behavior can not be anticipated from the analysis of
the constituent parts of the system alone, but can
only result from their capacity to produce complex
behaviours as a collective, through their mutual and
repeated interactions. Such a complexity is an intrin-
sic property of cellular automata. Based on a discrete
structure and a finite number of states at an elementary
scale, cellular automata (CA) are systems that evolve
on a network according to local interaction rules.
These rules determine how each element responds to
information transmitted from other elements along the
network connections. Most of the time, these con-
nections are simplified to include only interactions at
a microscopic scale between nearest neighbors. CA
are useful tools in physics, geophysics and biology to
analyze pattern formation because their output match
very well what we observe in nature without being
dependent on a complete description of small scale
processes. Thus, the origin of macroscopic behaviors
as well as the emergence mechanism itself may be
analyzed from a limited set of parameters. We exploit
this property to implement a model conceptual enough
to be applied on different types of geomorphological
environments from aeolian dunes to river beds.

2 THE MODEL

Sediment transport is modelled by a Markov chain, a
stochastic process characterized by a finite number of
configurations evolving from one another according
to a set of actions with different transition rates.

2.1 Length and time scales

A three-dimensional regular lattice models an interface
between a turbulent fluid (air or water) and a layer of
erodible sediment lying on a solid flat bedrock. This
interface is subject to a so-called fluid action constant
in magnitude and direction. An elementary cell has the
shape of a parallelepiped, with 90◦ angles, a square
base of length l and a height h. We focus on sedi-
ment flux rather than on individual particle motions
and h is therefore equal to ld , the distance for a grain
to accelerate up to the average fluid velocity:

where ρs, ρf and d are the grain density, the fluid
density and the characteristic length scale of a grain
respectively.The choice for such a length scale is moti-
vated by observations in desert area and laboratory
experiments (Bagnold 1941; Hersen et al. 2002) as
well as by analytical results together with numerical
simulations (Kroy et al. 2002b; Andreotti et al. 2002).
The aspect ratio η = h/l corresponds to an upper limit
of the slope angle θ upward in the direction of the flow
(η = tan(θ) < 1). Finally, the characteristic time scale
τ is determined from the dimensions of an elementary
cell and an arbitrary volumic sediment flux Q (see
Eq. 1):

2.2 The discrete dynamic

Erosion does not affect the underlying solid bedrock
and, at the bottom of the system, a layer of stable cells
forms a flat surface where the transport of particles can
create a topography. Then, we consider 4 states, 2 solid
and 2 fluid. This is the minimum number of states nec-
essary to implement retroaction mechanisms between
a topography and a flow (Tab. 1). The two solid states,
grains (G) and mobilized grains (M ), allow to imple-
ment the action of fluid shear velocity on the surface.
The two fluid states, fluid (F) and excess shear stress
(S), allow to implement the action of topography on
the flow pattern.

The indices (i, j, k), i ∈ [1, L], j ∈ [1, L], k ∈ [1, H ]
label the Cartesian coordinates and the cell ci,j,k is
either
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Table 1. 4 different states: 2 solid, 2 fluid. This is the min-
imum number of states to explore feedback mechanisms
between circulation patterns and evolving topography.

Action of fluid shear
stress on topography grains (G)

mobilized grains (M )

Action of topography
on fluid motions fluid (F)

Excess shear stress (S)

Figure 2. First neighbors in a regular rectangular paral-
lelepiped mesh and the transition rates associated with a
ci,j,k -cell.

• Grains (G): a G-cell represents a volume of sedi-
ment of uniform particle size.

• Mobilized Grains (M ): a M -cell represents a volume
of sediment transported by the fluid. Transportation
of grains involves two transport modes related to
one another: saltation and reptation. Here we do not
differentiate between those modes.

• Fluid (F): a F-cell represents a volume of fluid
where the velocity is under a threshold of erosion.
Furthermore, particles can not be transported and
F-cells are agent of deposition.

• Excess Shear Stress (S): a S-cell represents a vol-
ume of fluid where the shear stress exerted by the
flow is above a threshold of erosion. S-cell are agent
of erosion and transport by saltation and reptation.

NG , NM , NF , NS are the number of G-cells, M -cells,
F-cells, S-cells respectively, and

We do not consider long range interaction like other
discrete approaches (Nishimori and Ouchi 1993b;
Bishop et al. 2002), we only consider interactions
between two neighboring cells with a common side
(Von Neumann neighborhood, Fig. 2). These doublets

of neighboring cells are noted (ci,j,k , ci±1, j,k ), (ci, j,k ,
ci, j±1,k ) and (ci, j,k , ci, j,k±1). As detailed below, a cell
may change states only if it shares an edge with a neigh-
boring cell in a different state. In addition, we make
a distinction between the orientation of the doublets
according to gravity and the direction of the flow. This
choice yields the lowest number of possible configu-
rations and transitions while allowing for modelling
of the physical processes involved in the formation of
bedforms.

The whole process is defined in terms of a Pois-
son process with stationary transition rates between
the various possible states of the doublets of neigh-
boring cells. Given a transition from state u to v, the
probability distribution of the waiting time until the
next transition is an exponential distribution with rate
parameter λv

u. Then the probability that a pair of neigh-
boring cells in state u undergoes a transition toward
the state v in the infinitesimal time interval dt is λv

udt.
The practical way we proceed in the numerical simu-
lations is detailed in appendix. The main point is that
at each iteration three random numbers determine the
time step, the doublet which undergoes a transition
and the transition kind itself. Therefore the model pos-
sesses the Markov property as the next configuration
(i.e. the future) is independent of the previous con-
figurations (i.e. the past), given the knowledge of the
present configuration. This probabilistic approach and
the physical processes represented by different set of
transitions distinguish our model from classical CA
(Narteau et al. 2001).

2.3 The physical processes

Each of the physical processes that we will now
describe corresponds to a set of transitions. A tran-
sition of a given set cannot be considered in isolation
because only combined and repeated actions are capa-
ble of reproducing these processes. For the same
reason, transition rates are determined by reference
to characteristic times representative of the given
physical processes.

2.3.1 Fluid flow
At a given altitude above a flat surface, the velocity
field might be considered constant in magnitude and
direction, and the velocity profile is known to increase
according to a logarithmic function (Landau and
Lifshitz 1963). This is not the case above a rough
surface, over which a flow might produce an highly tur-
bulent circulation especially when it involves erosion,
deposition and transport. Here, we adopt simplifying
assumptions to limit the scope of the model on fluid
velocity above topography.

As the streamlimes approach an obstacle, they con-
verge and the velocity increases; after this obstacle, the
streamlines diverge and the velocity decreases. Such
observations are put into practical effect through the
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Figure 3. Transition rates of the permutation between a
S-cell located in ci, j,k and a F-cell located in ci±1, j,k , ci, j±1,k ,
ci, j,k±1.

motions of S-cells in an ocean of F-cell by considering
the following transitions:

Each of these transition can be characterized by a vec-
tor according to the orientation of the doublet and the
magnitude of the transition rate (Fig. 3). The resulting
vector, i.e. the sum of the six vectors, determines the
direction of the flow as well as the intensity of the tur-
bulent diffusion. λw being an estimate of the turbulent
diffusion, we takeλ

j−1
w = λ

j+1
w = λk−1

w = λk+1
w = λw and

λi+1
w > λw > λi−1

w . As a consequence, the flow is going
eastward (Fig. 3). On the other hand, the velocity of this
flow cannot be determined only by the transition prop-
erties, but, as explained below, it can be approached
through the proportion of S-cells in the fluid.

2.3.2 Erosion
Grains are lifted and dragged by the shear stress
applied by the moving fluid and set in motions in
the direction of the flow. This erosion process, which
does not discriminate between saltation and reptation,
involves two types of transition:

Practically, S-cells in contact with G-cells produce M -
cells upward and in the direction of the flow. These
transitions are the only source of transport in the
model. Taking the sediment flux Q as a control param-
eter, the magnitude of the transition rate λs is derived
directly from τ (see Eq. 3).

2.3.3 Transport
If the fluid velocity is high, grains already in motion
can be transported upward and in the direction of the
flow. Such a transportation involves two transitions
based on the permutation of M -cells in contact with
S-cells:

The magnitude of this sediment transport is propor-
tional to Q and, by convention, the transition rates is
taken equal to λs.

2.3.4 Deposition
When the fluid velocity is not high enough to main-
tain particles in suspension, deposition occurs. This
deposition of fluid-borne grains is enhanced by topo-
graphic obstacles and occurs faster on slopes of exist-
ing structures. This process involves the following
transitions

where G-cells are created from M -cells if they are
not in contact with S-cells. a > 1 and, for the sake of
simplicity, we assume that the deposition rate is equal
to λs, the erosion rate.

2.3.5 Diffusion
Horizontal diffusion disperses the grains and flattens
the topography. This process involve the following
permutations between G-cells and F-cells:

where λd = λi−1
d = λi+1

d = λ
j−1
d = λ

j+1
d is the inverse of

a characteristic time for diffusion.
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2.3.6 Gravity
Sand grains fall under their own weight and exert
pressure on all the other grains. Gravity prevents fur-
ther motions and leads to deposition.We attribute the
following transition to these gravitational processes:

They include downward permutations between G-cells
and fluid-states as well as depositions of M -cells
located under solid-states. λg is determined from the
Stokes velocity and it is generally few orders of
magnitude larger than all the other transition rates.

3 NUMERICAL SIMULATIONS

The model involves 20 transitions characterized by a
limited number of independent transition rates. Before
we present the results of the numerical simulations,
different aspects of the model can be addressed when
looking at all the transitions together. First, the conser-
vation of mass is ensured by the constant number of
solid cells (NG + NM = cte). Second, S-cells are per-
sistent in all transitions (NS = cte) in such a way as to
ensure the fluid forcing.As a consequence, we are deal-
ing with an open system which relies on the balance
between erosion and deposition to ensure the conser-
vation of momentum at a macroscopic scale. For this
reason, the proportion of S-cells in the fluid has to be
low, β = NS /NF << 1, and the fluid velocity can only
be derived from β.

Table 2 shows all the model parameters and their
numerical values for all the simulations presented
in this work. In this case τ ≈ 3.5 day and ld /τ ≈
0.13 m.day−1. Initial conditions and boundary condi-
tions are essential aspects of the long-term develop-
ment of topography and we focus here on two different
set of conditions in order to analyze the evolution of
some physical quantities as well as different properties
of pattern formation.

3.1 Evolution of a conical bump

First we are interested in stationary patterns and we
analyze the evolution of a conical bump of sediment
in a corridor (Fig. 4): L = 200, H = 40, β = 0.15 and
two walls facing each other form a corridor L/2 wide
parallel to the flow; the cone has a base radius of

Table 2. Parameters of the model and their values.

ld 0.44 m
� 11.3◦
Q 100 m2·yr−1

λsτ 6
λwτ 6
λdτ 0.06
λgτ 6000
a 10

Figure 4. Model for a conical pile of sediment in a corri-
dor. Three layer of cells are represented without the aspect
ratio: (a) a horizontal layer just above the flat bedrock, (b) a
vertical layer parallel to the flow, (c) a vertical layer perpen-
dicular to the flow. In each figures, black lines indicate layer
intersections.

45 and a half summit angle equal to �. In addi-
tion, we consider asymmetric boundary conditions in
the direction perpendicular to the flow in order to
satisfy simultaneously mass conservation and a homo-
geneous injection of material. Practically, each G-cell
ejected from the system in the direction of the flow is
reinjected randomly through the opposite boundary.

Under such conditions, the distribution of S-cells
rapidly changes on both sides of the obstacle as they
abandon slopes oriented in the direction of the flow and
accumulate on the slopes oriented against the direction
of the flow.Where the density of S-cell increases, shear
stress is higher and erosion and transport dominate (see
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the location of M -cells in Fig. 5). On opposite slopes,
where the density of S-cell decreases, fluid velocity is
lower and deposition is more likely to occur. Then a
flux of sediment results from the motion of grains (i.e.
M -cells) from one side to another of the sediment pile
and the symmetry of the cone shape is broken (Fig. 5).
Interestingly, the slope is smaller on the face oriented
against the direction of the flow than on the opposite
face. The height of the cone varies and, where it is
lower, particles propagate more rapidly in the direc-
tion of the flow. This produces horns of both sides on
the cones (Fig. 5).As this evolution proceeds the struc-
ture moves in the direction of the flow and converges
toward a stationary state which is commonly describes
as a crescentic shape barchan dune.

Fig. 6 shows the evolution of the dimension of such
a barchan dune over long time. Width, length and
height reach a stable value despite important variations
inherent to our discrete approach. Stronger fluctua-
tions of the length result from unstable behaviors along
the horns where the density of G-cells is lower. The
emergence and persistence of a stationary crescentic
shape (see contours in Fig. 6) demonstrate that erosion
and deposition can balance each other under specific
(unrealistic?) conditions. However, from a theoretical
point of view, this is a chance to analyze different
physical quantities under a statistically-stable regime.

As the flux of grains on the crest and in the horns
stabilize as well, the barchan dune reaches a constant
velocity of v = 0.18 ld /τ (Fig. 7). In more conventional
units, v = 8.25 m.yr−1 for an height of H ≈ 10.2 m.
Over short time, the barchan tends to accelerate with
respect to a loss of volume associated to a redistribu-
tion of grains in the entire system (see contour plots
in Fig. 7). This relationship between the volume of the
dune and its velocity is of primary importance in dune
fields because it results inevitably in dune interaction
patterns.

3.2 Evolution of randomly distributed sediment

We are now interested by these patterns of interaction
between dunes and we analyze the evolution of homo-
geneously distributed sediment in a corridor (Fig. 8).
As before, L = 200, H = 40, β = 0.15, and two walls
facing each other form a corridor L/2 wide parallel
to the flow; on two layers just above the flat bedrock,
G-cells are randomly distributed with the probability
p = 0.65. In addition we consider periodic boundary
conditions.

Over short time, grains form clusters which deform
in the direction of the flow (Fig. 9). These clus-
ters coalesce to produce elongated structures that
start to modify significantly the density of S-cells in
their neighborhood. All these structures propagates at
different velocity according to their geometry and vol-
ume. Smaller structures being faster, they merge with
larger ones which in turn decelerate. Thus, a set of

Figure 5. Evolution of a conical bump over short time. Each
figure is obtained by smoothing the topography obtained from
G-cells. Dots are the M -cells. They are essentially located on
the slope oriented against the direction of the flow.
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Figure 6. Evolution of the width, the length and the height
of the conical bump in a logarithmic scale over long time.
Note that the dimensions of the barchan stabilize. The
inset shows the stationary crescentic shape where the height
between level-lines is 1.5 ld .

Figure 7. Position of the sediment pile with respect to time
(solid line) in (a) linear and (b) logarithmic scales. Over
long time, the velocity of the barchan is constant (dotted
lines: y ∼ 0.03x). Over short time, the sediment pile accel-
erates during the transition from a conical shape to a barchan
shape. It corresponds to a loss of volume associated with the
redistribution of grain escaping from the horns (see contour
plots).

Figure 8. Model for randomly distributed sediment in a
corridor. Three layer of cells are represented without aspect
ratio: (a) a horizontal layer just above the flat bedrock
where G-cells are randomly distributed with the probability
p = 0.65, (b) a vertical layer parallel to the flow, (c) a vertical
layer perpendicular to the flow. In each figures, black lines
indicate layer intersections.

crescentic barchan dunes emerge. Each of them is sim-
ilar to the one describe in the previous section but their
interaction make their respective evolution much more
complicated. Finally, in this particular simulation, the
last configuration of dunes (i.e t/τ = 1187) is not sub-
ject to strong changes and the set of dunes of similar
size is extremely resilient. The main reason for such a
behavior is the small size of the system and the peri-
odic boundary conditions which impose that all dunes
propagate within their own shadow.

Nevertheless, the formation and the evolution of
dune fields provides the opportunity to compare model
predictions to field measurements. To reduce signif-
icantly finite size effect, model statistics have been
computed on much larger systems with L = 103 and
H = 102, with similar initial conditions than in Fig. 8
but without walls.

Structural properties are estimated from the out-
put of the model at one point in time. For barchans
observed in arid deserts and in the numerical simula-
tions, Fig. 10 shows the relationships between width
and length, Fig. 11 shows the relationships between
width and height. These two independent morpho-
logical relationships are well fit by lines and there
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Figure 9. Evolution of homogeneously distributed sedi-
ment over long time. Figure are obtained by smoothing the
topography obtained from G-cells. Dots are the M -cells.

Figure 10. Relationships between barchan width and length
in arid deserts (gray ◦) and in the model (black x ). Field
measurements are averaged by ranges of height. Predic-
tions of the model represent individual dune. The solid line
(y = 1.40x − 1.27) and the dashed line (y = 1.39x − 6.5) fit
the synthetic and the real data respectively (Andreotti et al.
(2002) compiled observations from Finkel (1959), Hastenrath
(1967), Hastenrath (1987)).

Figure 11. Relationships between barchan width and height
in arid deserts (gray ◦) and in the model (black x). Field
measurements are averaged by ranges of height. Predic-
tions of the model represent individual dune. The solid line
(y = 0.13x − 1.01) and dashed line (y = 0.14x − 2.1) fit the
real and the synthetic data respectively (Andreotti et al.
(2002) compiled observations from Finkel (1959), Hastenrath
(1967), Hastenrath (1987)).
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Figure 12. Relationships between barchan width and veloc-
ity in arid deserts (gray symbols), and in the model (black x).
Field measurements are averaged by ranges of height. Predic-
tions of the model represent individual dune. The line fits the
synthetic data and follows v = 1.25/(H + 5.5). The diamond
symbol is for the barchan dune shown in Fig. 5. (Andreotti
et al. (2002) compiled observations from Finkel (1959) (*),
Hastenrath (1967) (◦), Hastenrath (1987) (◦), Slattery (1990)
(square), and Long and Sharp (1964) (+)).

are good agreements between synthetic data and field
measurements.

In the model, the dune measured in Figs. 10 and 11
are studied over long time (	t/τ = 335) to approximate
their average velocity v. Fig. 12 shows the relation-
ship between height and velocity for numerical and
observed barchan dunes. One more time, the output of
the model and the natural data are in good agreement
and it is possible to fit both set of measurements with

where Q1 is a volumic sand flux and H0 a characteris-
tic height. Here, we have Q1 = 7l2

d ·τ−1 and H0 = 4.0ld .
In more conventional units, Q1 = 140 m2·yr−1 and
H0 = 1.7 m.

4 DISCUSSION AND CONCLUSION

Under specific conditions, our model reproduces cres-
centic barchan dune patterns that compare well with
observations. Firm morphological and velocity con-
straints are satisfied and validate the predictions of our
model based on short scales interactions. Flux mea-
surements have now to be investigate as we are aware
that a full understanding of dune dynamics should

include estimation of transport capacity on different
parts of the topography.

In the last decades, different scientists have explored
a variety of CA approach in order to model dune
patterns under dry conditions (Nishimori and Ouchi
1993a; Werner 1995; Nishimori et al. 1999). Models
are based on a characteristic saltation length and on
rules involving long range interactions. In all cases,
despite a stochastic ingredient, the trajectory of an ele-
mentary volume of grains is given from the present
configuration of cells, and the rules do not allow to
dissociate between transport and erosion-deposition
processes. In addition, there is no treatment of aero-
dynamics effect. Here, we present a CA approach in
which erosion and deposition locally depend on flow
patterns that are affected in turn by the surface pro-
file. Such an innovation will allow to concentrate on
relationships between shear stress and topography and
to characterize turbulent flow patterns on an evolving
surface (Wiggs 2001). This goal can be achieved by
considering more realistic small scale interactions for
the dynamic of S-cells.

In this preliminary work, the transport is simpli-
fied to the extreme in order to concentrate on the
first requirement of this kind of models, the formation
and the development of realistic structural patterns.
Nevertheless, we have shown that anisotropic motions
of S-cells and an evolving topography are enough to
reproduce the existence of a shadow zone downwind,
the concentration of shear stress on the windward face,
and, as said above, dynamical properties of barchan
dune fields. Such qualitative features of physical fluid
behaviour have now to be replaced by more quantita-
tive analysis. In the field of turbulence, it is common to
analyze fluid dynamics from particle collisions (Frisch
et al. 1986). This lattice gas method converts dis-
crete motions into physically meaningful quantities
and dispenses with the need to solve the Navier-Stokes
equations. The discrete nature of our system offers
the opportunity to develop such a lattice gas method
based, as the actual model, on short range interactions
between a finite number of states. As a result of a
more generalized set of transitions (i.e. erosion, depo-
sition and transport occurring in all direction), realistic
structures and fluid circulations might appear together.

This model has been developed to be applied to dif-
ferent type of systems, in particular for the analysis of
bedform. Fig. 13 shows a snapshot of a model simula-
tion similar to the one presented on Fig. 8 but with 10
times more sediment (i.e. G-cells). There is no indi-
vidual structures and larger structures perpendicular to
the flow develop. These structures exhibit similarities
with bars in river. The bar dynamic and the subsequent
morphology of river will be studied by going further
in this direction.

More generally, our model can also be adapted to
different types of geometry and boundary conditions.
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Figure 13. A snapshot of a model simulation with more sediment. This figure is obtained by smoothing the topography
obtained from G-cells. Dots are the M -cells.

In order to compare the predictions of the model
with classical observations of physical geography, it
is possible to concentrate on

1. the impact of the variability of wind direction as
well as the impact of sediment availability (com-
pare Figs. 9 and 13).The primary objective will be to
reproduce different types of dune (e.g. linear dunes,
star dunes) and to locate them in a phase diagram.
Another objective could be to estimate the orienta-
tion of dune crests according to the magnitude of the
wind fluctuation in order to analyze dune attractor
trajectories (Anderson 1996) and defect behaviors
(Werner and Kocurek 1997).

2. the role of vegetation on erosion and deposition
rates, and the effect of a vegetal cover on structural
and dynamical dune patterns.

3. the interaction between dune patterns and structures
related to human activity (e.g. accumulation of sand
around constructions).

Note that in all cases there are reciprocal applica-
tions in the analysis of bedforms underwater.

In geomorphology, as in many domains in sci-
ence, description in terms of differential equations
have limits that can be related to a lack of theoretical
backgrounds, the role of heterogeneities and numeri-
cal limitations. Then, CA approach can be described
as an alternative which focus on self organization and
the emergence of structure without taking into account
all the diversity of the small scale physical processes.
Through our model, we try to provide a link between
classical CA methods and continuum mechanics in
such the way that we will be able to constrain struc-
tural complexity of geophysical system by a set of
well-defined physical quantities. We believe that the
discontinuous nature of our model and the feedback
mechanisms between different types of states will
allow this system to move between different basins
of attractions and therefore capture in detail some
of the more distinctive features of the evolution of
bedforms.
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APPENDIX

Here we present in more detail how we combine a
Poisson process with a Markov chain with station-
ary transition rates. The algorithm is schematically
describe in Fig. 14.

As said above, we consider only first neighbors
interactions and transition of doublets of cells in a
D-dimensional parallelepipedic mesh. Overall, all tran-
sitions and doublets are independent of one another.
Each cell can be in one of Ns states. Then, the number
of different doublets is

and the number of doublets in a L × W × H mesh is

For a given configuration at time t, we first deter-
mine ni the number of doublets in state i:

A transition of doublet from state i to j is modelled
by a Poisson process with a rate parameter λ

j
i . Then,

the occurrence of such a transition in a population of
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Figure 14. The algorithm of the model. ni is the number of
doublets in state i, π

j
i the rate parameter of the transition of

doublet from state i to j, and π the rate parameter of the entire
system. To respect the Markov property, only one doublet of
cells is changed at each iteration. The time step, the transition
type and the doublet are successively chosen according to
the present configuration of the system and three random
numbers.

doublets i follows also a Poisson process with rate
parameter

Generalized to all doublets and transitions, the total
transition rate in the entire system is

At each iteration, only one doublet makes a tran-
sition from one state to another. The time step 	t
is therefore variable, randomly chosen according to
the magnitude of π. Practically, we draw at random
a value R1 between 0 and 1, and we consider that the
characteristic time necessary for a transition to occur is

During this time step, the type of transition is also
randomly chosen with respect to a weighted probabil-
ity determined from the π

j
i -values

Numerically, we define a cumulative step function
ranging from 0 to 1, where jumps are proportional
to the P j

i -values. Then we draw at random a value
R2 between 0 and 1. This value falls within a jump
of the cumulative step function which determines in
turn the type of transition to occur. Thus, transition
with the highest rates have more chance to be selected
but transitions with small rates may also occur. These
rare events are an essential ingredient of the modelling
developed in this paper.

Finally, when the transition from i to j is selected,
we draw at random an integer between 1 and ni. Thus
we identify the doublet which makes a transition.
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