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S U M M A R Y
A Bayesian hierarchical modelling is proposed for the different sources of scatter occurring in
archaeomagnetism, which follows the natural hierarchical sampling process implemented by
laboratories in field. A comparison is made with the stratified statistics commonly used up to
now. The Bayesian statistics corrects the disturbance resulting from the variability in the number
of specimens taken from each sample or site. There is no need to publish results at sample
level if a descending hierarchy is verified. In this case, often verified by archaeomagnetic data,
only results at site level are useful for geomagnetic reference curve building. Typically, a study
with at least 20 samples will give an α95i 5 per cent close to the optimal α95i for a fixed site
number mi and if errors are random with zero mean (no systematic errors). The precision on
the curve itself is essentially controlled, through hierarchical elliptic statistics, by the number
of reference points per window and by dating errors, rather than by the confidence angles α95i j

at site level (if a descending hierarchy). The Bayesian elliptic distribution proposed reveals the
influence of the window width. The moving average technique is well adapted to numerous
and very well dated data evenly distributed along time. It is not a global functional approach,
but a (linear) local one.

Key words: archaeomagnetism, geomagnetic secular variation, remanent magnetization,
statistical methods.

1 I N T RO D U C T I O N

Archaeomagnetic dating utilizes the property of some materials to record information about the Earth’s magnetic field (EMF). This fossilized
magnetic information, remanent magnetism, is acquired, for example, by heating materials to high temperatures. Typically, archaeomagnetic
data relate to the direction (inclination, I, and declination, D) and intensity (denoted F for magnetic field) and so a single archaeomagnetic
record is three-dimensional. These three components of the EMF vary according to geographical location (latitude and longitude) and through
time.

It is now well established that if sufficient archaeological sites in a given area of a given archaeological period are available, then local
secular variation curves can be built for each of the three EMF variables. If these curves are known accurately, it is possible to date in the
same geographical region other sites in which magnetization has been measured.

The knowledge of the variations of the geomagnetic field in the archaeological past has increased in recent years by new data sets. A
revised long Bulgarian data set, comprising both directional and intensity archaeomagnetic determinations (Kovacheva 1997), enabled the
geomagnetic field in Bulgaria to be estimated over the last eight millennia, but with some gaps, e.g. at approximately 2000 BC and 3500 BC.
Daly and Le Goff’s (1996) analysis of palaeosecular directional variations was restricted to the last 2000 yr, for which most data were available.
Recent work on the direction variations have been made in Germany (respectively, Schnepp et al. 2003, 2004), in Hungary (Márton 2003), in
France over the first millennium BC (Gallet et al. 2002), in Belgium (Hus & Geeraerts 1998), in USA (Labelle & Eighmy 1997), and also on
the intensity variations in France over the past 2000 yr (Chauvin et al. 2000; Genevey & Gallet 2002) and in the Eastern Mediterranean over
the past 8000 yr (Genevey et al. 2003).
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The biggest disadvantage of archaeomagnetic data is that they are generally unevenly distributed in time and space. It is difficult to
obtain a long sequence of numerous, well-dated data for a given region because it is reliant on the discovery of suitably dated archaeological
remains. In addition, the determination of the past field directions is not always accompanied by its intensity and vice versa. Moreover, different
sampling and measurement procedures have been adopted by different laboratories, resulting in different measurement errors. However, the
fundamental errors relate to the reliability of the dates of the reference sites.

The main aim of this paper is to model the sampling process using a Bayesian hierarchical framework, in both the bivariate and univariate
case, i.e. intensity, and to evaluate the statistical characteristics of the moving average technique. The second section of this paper consists of a
detailed analysis of the different sources of scatter occurring at the different levels of the sampling and measurement process. In Section 3, the
classical statistics used and their application within the stratification framework are considered. Then, a new statistical approach is proposed,
based on the Bayesian hierarchical statistics, which is applied to directional as well as intensity data. The hierarchical statistics and parameter
estimation are presented in Section 4 and the consequences for the sampling strategy are discussed. Plotting the curves, in the context of the
moving average technique, and drawing confidence intervals are described in Section 5. Some numerical examples and applications to French
and Bulgarian databases for the last 2000 yr are shown in Section 6.

2 S A M P L I N G M E T H O D S A N D A N A LY S I S O F T H E E R RO R S E N C O U N T E R E D

2.1 Sampling in field

Generally, the ancient magnetic field is estimated at a given place and time from a number of contemporaneous archaeological baked clay
sites (kilns, ovens. . . , called structures in archaeology). Different sampling strategies can be distinguished as follows.

(i) Between 10 and 30 independently oriented samples in situ (so-called blocks) are taken. The sample size varies in general between 300
and 2000 cm3. The measurements are made in the large inductometers (Paris in France, Dourbes in Belgium).

(ii) The samples can be cut into one or several cubic or cylindrical specimens that are measured in cryogenic, spinner or astatic magnetometers
(Rennes in France, Sofia in Bulgaria).

(iii) 6 to 12 small oriented samples (ca. 1–20 cm3) are taken, that are not subsampled (cut into specimens). Such small samples can also be
obtained from drilling in situ, using the palaeomagnetic technique. This sampling strategy characterizes US, Canadian as well as UK methods
(UK, Tarling 1983; USA, Eighmy 1990). In this case, specimen and sample are synonymous.

The quality of each strategy depends on the number but also on the size of the samples and/or specimens because of magnetic hetero-
geneities.

2.2 Hierarchical sampling levels and associated errors

The hierarchical sampling process is naturally implemented in archaeomagnetism as well as in palaeomagnetism. The common idea is to
realize a sampling strategy that takes into account the heterogeneity of the magnetisation at the different levels for a given time. Thus, different
sampling levels called specimens, samples and sites (Tarling 1983) can be identified. This equates to the concept of hierarchy in Bayesian
statistics (Barnett 1982; Lindley 1990; Howson & Urbach 1993; Droesbeke et al. 2002). Adding the measurement, field and curve levels
defines six hierarchical levels, which relate to the unknown geomagnetic curve. Each level is denoted by an index, that is: m for measurement,
l for specimen, k for sample, j for site, i for field (at a given time), but there is no index for curve (Fig. 1 and Table 1).

(i) Measurement hierarchical level (ijklm)
A single value Y ijklm of the studied magnetic parameter (inclination, declination, intensity), is determined at a given step of a demagnetising
process or an intensity experiment.

(ii) Specimen hierarchical level (ijkl)
A specimen is subsampled from an independently oriented sample, i.e. by cutting or drilling. Consequently, specimens have a common system
of field marks. For a particular specimen, characterized by the index ijkl, the measured value Y ijklm is assumed to belong to a probability
distribution with unknown mean Yijkl and unknown variance σ 2

ijkl. This variance results from the different sources of scatter as follows.

E1: errors in the measurement process (measurement noise, problems of positioning in magnetometers and demagnetisers, etc.).
E2: errors in physical and statistical interpretation (separation of the TRMs after demagnetisation, determination of the slope in Arai
diagrams. . .).

These errors can be assumed randomly (Gaussian) distributed. No systematic error is expected (unless a calibration problem occurs).
The realization of dijkl measurements (or determinations) allows an empirical mean Yijkl and an empirical variance S2

ijkl to be determined
for the specimen.

(iii) Sample hierarchical level (ijk)
A sample is a (small or large) block of burnt clay taken from a site, or a fragment of brick or pottery in case of displaced materials (Lanos
et al. 1999). It describes a material: a piece of clay taken following the precise conditions of orientation or a core drilled directly from the site
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Oriented baked clay blocks
sampled at a site

(in this case a potter's kiln).
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Figure 1. (a) Example of archaeomagnetic sampling in field (roman potter’s Kiln, Angers, Saint-Laud station, France, M. Mortreau, INRAP, 2000), and
examples of sample aand specimens, (b) Sampling levels scheme used by archaeomagnetic laboratories, (c) hierarchical modelling of error sources at five
levels: measurement (ijklm), specimen (ijkl), sample (ijk), site or structure (ij) and field (window i).

(as usual with palaeomagnetic sampling). It possesses only one orientation mark generally obtained using magnetic and sun compasses. In
the coring case, for very short cores, or in the English technique, specimen is equivalent to sample and the two levels are merged.

The unknown mean Yijkl at specimen level is assumed to belong to a probability distribution having an unknown mean value Yijk and an
unknown variance σ 2

ijk . This variance between the specimens from the same sample results from different sources of scatter as follows.

E3: cutting errors (in the case of subsampling), transfer errors of reference field marks.
E4: errors of heterogeneities resulting from differences in magnetic minerals concentration or from mineralogical transformations.
E5: errors of magnetic anisotropy, demagnetising fields (Lanos 1987), or cooling rate (Chauvin et al. 2000).
If the specimen is the sample, then the source of scatter, E3, does not occur. These errors can be assumed randomly distributed, except for
error E5, which is generally systematic. To avoid the transfer of this systematic error to an upper level, corrections have to be performed.
The observation of nijk specimens allows an empirical mean Yijk and an empirical variance S2

ijk to be determined for the sample.
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Table 1. Variables used according to the sampling levels defined in the hierarchical modelling.

Sampling level Sources Unknown variates Observations Squared
of scatter errors

Mean Variance Number Empirical mean Empirical variance

Measurement ijklm Yijklm

Specimen ijkl E1, E2 Yijkl σ 2
ijkl dijkl Yijkl S2

ijkl e2
i jkl = σ 2

i jkl
di jkl

measurements

Sample ijk E3, E4, E5 Yijk σ 2
ijk nijk Yijk S2

ijk
1

Ui jk
=

(
ni jk∑
l=1

1
σ 2

i jk+e2
i jkl

)−1

specimens

Site (structure) ij E4, E5, E6, E7 Yij σ 2
i j rij samples Yij S2

i j
1

Vi j
=

(
ri j∑

k=1

1
σ 2

i j + 1
Ui jk

)−1

Field (window) i E8, E9, tij σ 2
ti mi sites Yi S2

i Bivariate case: � i (eq. 43)
E10, E11 Yi = g(ti) σ 2

i weighted by Pij Univariate case (eq. A3.6):

1
Wi

=
(

mi∑
j=1

Pi j

σ 2
ti g′2

i +σ 2
i + 1

Vi j

)−1

Curve g(t) n time knots Interpolated envelope

(iv) Site (or structure) hierarchical level (ij)

A site (or structure: furnace, oven, burnt earth or wall) or also a homogeneous set of displaced material (tiles, bricks, pottery), is a ‘volume
of material that can be considered to have been magnetized at the same time’ (Tarling 1983). A site ij possesses an unknown mean valueYij.
The common characteristic is the geomagnetic field elements, at a given date tij, which are supposed to be locally homogeneous.

The unknown mean Yijk at sample level is assumed to belong to a probability distribution having the unknown mean value Yij and an
unknown variance σ 2

i j . This variance between the samples from one site results from different sources of scatter as follows.

E4: errors of heterogeneities due to differences in magnetic minerals concentration or to mineralogical transformations.
E5: errors of magnetic anisotropy, demagnetising fields or cooling rate.
E6: sampling errors in the field, i.e. orientation errors in the horizontal plane and azimuth.
E7: internal dislocations in a site, as a result of possible differential movements (subsidence, tree roots, seismic activity, solifluction,
etc.)
These errors can be assumed randomly distributed, except for error E5 like in sample level. The observation of r i j samples allows an
empirical mean Yij and an empirical variance S2

i j to be determined for the site.

(v) Field (or window) hierarchical level (i)

This is the unknown value of the geomagnetic parameter of interest g(ti) (replacing the expected notation Yi) and as a function of time ti. The
common characteristic here is the time ti common for all the sites having the same date or belonging to the same time window with centre
ti [time expressed in the calendar (solar or sidereal) date system]. The ideal situation for estimating g(ti) would be to take mi dated sites at a
precise time ti. In practice, sites are taken that date to a given window. In other words, one takes field estimations belonging to different times
tij in order to estimate the field at the centre of the time window. This temporal reduction is one of the specific characteristics of the moving
average technique. This field level is also a locality or region level (Tarling 1983): sites are sought for the same time and as near as possible
to the locality where the secular variation curve is to be constructed (using a geographical correction).

The unknown mean Yij at site level is assumed to belong to a probability distribution having an unknown mean value g(tij) and an unknown
variance σ 2

i . This variance between the sites for the same time tij results from different sources of scatter as follows.

E8: tilt errors of entire site (sliding, tilting, earthquakes effects).
E9: homogeneous magnetic perturbations at the scale of a site, owing to environmental effects (metallic masses, lightning, magnetic
anomalies. . . ).
E10: divergence of the local magnetic field from the dipole model used to calculate the geographical correction (non-dipole component
effect).

These errors cannot be assumed to be randomly distributed. If errors E8 or E9 can be random from site to site, it is not inevitably the
case for errors E10.

The unknown time tij in the window is assumed to belong to a probability distribution having mean time ti (the centre of the window)
and unknown variance σ 2

ti . This variance results from the following.
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E11: dating errors (from archaeology, history, or other chronometric methods), modelled through a weight Pij, which measures the
contribution of the site to the window.
E12: the window width; we use sites of different times tij along the curve.
The observation of mi sites allows an empirical mean Yi and an empirical variance S2

i to be determined for the field at time ti.

(vi) Curve level

The final goal of the archaeomagnetic studies is to reconstruct temporal variation curves of I , D and F. Moving average technique are
most often used to construct reference curves from time-series. A useful method for constructing these is the moving (or sliding) window
(Dirichlet type), which can overlap each other, depending on the time step h = t i+1 − ti and the width L chosen for the window. The total
number of different windows corresponding to knots ti is n, the number of sites in each window is mi and the number of different reference
points in the database is N . The results can be presented, for example, with a time step of either 25 yr (Daly & Le Goff 1996; Kovacheva
et al. 1998), or 100 yr (Kovacheva & Toshkov 1994; Marton 1996). Batt (1997) proposed a mixing of 25- and 50-yr steps for British data, as
Sternberg (1989) did for American data. In the examples treated in this paper, 25-yr steps will be considered.

The different variables of the hierarchical modelling are summarized in Table 1.

2.3 Directional and intensity statistics

The problem is to assign a function to the probability distributions occurring at the different levels (Tarling 1983, p. 125). It is common
to characterize the variance of archaeomagnetic (palaeomagnetic) directions using the Fisher (1953) distribution (Appendix A1) and the
variance of intensity using the normal distribution. A recent justification of the use of Fisher statistics for archaeomagnetic data can be found
in Love & Constable (2003), who represent the variance σ 2 of palaeomagnetic vectors, at a particular site and of a particular polarity, by a
probability density function in a Cartesian three-space of orthogonal magnetic field components consisting of a single (unimodal) non-zero
mean symmetrical Gaussian function. In the geophysically relevant limit of small relative dispersion σ/F µ (Fµ being the total mean field
intensity), they demonstrate that the directional distribution of the off-axis angle approaches a Fisherian distribution and that the intensity
distribution (of Rayleigh–Rician type) approaches a normal distribution. Consequently, this paper adopts these probability distributions. It
has been shown that, if the relative dispersion σ/Fµ < 25 per cent, i.e. the Fisher concentration factor K is higher than 15 (which is almost
always the case in archaeomagnetism), then the approximation is excellent.

3 F RO M H I E R A RC H I C A L S A M P L I N G T O H I E R A RC H I C A L M O D E L L I N G

Assuming that the random variables are independent at each level, then increasing the number of observations in a particular level results in
a more precise estimation of the mean at this level. Up to now, the natural statistical approach is to implement the stratified statistics (defined
below) and to modify it heuristically by weightings in order to force it to become hierarchical. Before presenting the hierarchical modelling
in detail, it is informative to overview the stratification approach.

3.1 Before hierarchy: the stratified statistics

3.1.1 The stratification approach

For simplicity, and without loss of generality, the problem at site and field levels will be considered with Yijk as properties of a sample. In

the stratification approach, all observations of Yijk are supposed to be independent and normally distributed as N (gi ,
σ 2

i
Wi j

). The factor Wij is
a weighting factor, which can take different forms according to the problem of interest. The joint probability density of the observations (or
likelihood L) is proportional to

L
[
Yi j1, · · · , Yi j(ri j ), . . . , Yi(mi )(ri j )

] ∝ exp

[
− 1

2σ 2
i

mi∑
j=1

ri j∑
k=1

Wi j (Yi jk − gi )
2

]
, (1)

where rij is the number of samples and mi the number of sites. Using the maximum likelihood estimation (MLE) technique, the unknown field
parameter gi can then be estimated by the stratified mean ĝi = Yi , defined by

Y i = 1∑
j,k Wi j

∑
j,k

Wi j Yi jk . (2)

This mean, at field level, can be expressed as a mean of the weighted means defined at site levels, the weights being proportional to the
number of samples observed at each site level:

Yi = 1∑
j Wi j ri j

mi∑
j=1

Wi jri j Yi j , (3)
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where

Yi j = 1

ri j

ri j∑
k=1

Yi jk . (4)

The stratified variance S2
i is defined by

S2
i = 1∑

j,k Wi j

∑
j,k

Wi j (Yi jk − Yi )
2. (5)

This field-level variance can be expressed as the sum of the weighted variance of the means defined at field level and the weighted mean
of the variances observed at site level:

S2
i = 1∑

j Wi j ri j

∑mi
j=1 Wi jri j

(
Yi j − Yi

)2

︸ ︷︷ ︸
weighted variance of means

+ 1∑
j Wi j ri j

∑mi
j=1 Wi jri j S2

i j︸ ︷︷ ︸
weighted mean of variances

, (6)

where

S2
i j = 1

ri j

ri j∑
k=1

(Yi jk − Yi j )
2. (7)

The unbiased quadratic error of the estimation of gi will be given by

e2
gi = S2∗

i

/ ∑
j

Wi j ri j , with S2∗
i =

∑
j Wi j ri j( ∑
j ri j

) − 1
S2

i . (8)

3.1.2 The Le Goff bivariate statistics (1992)

The bivariate approach, proposed by Le Goff (1990), Le Goff et al. (1992) and Daly & Le Goff (1996), consists of calculating a confidence
ellipse around the mean direction from a set of site directions (ij). Each site is characterized by a mean direction (Iij, Dij) and a Fisher
concentration parameter Kij obtained from rij samples. The mean directions of mi sites are assumed distributed as an elliptic bivariate statistic
around a mean direction (Ii, Di), with concentration parameters Kx and Ky and orientation �.

The concentration parameter Kij can also be described via an inertia tensor E[Tijk] (Appendix A2, eq. A2.2), where the notation E[. . .]
designates the mathematical expectation. The tensor is weighted by a factor WTij = Pij, function of the dating error E11 and given by
eq. (28) below. A rotation Rij, function of (λ = − Iij, φ = Dij) (eq. A1.6) is applied. The Le Goff’s global weighted inertia is defined
by

Ti
R = 1

WT i

mi∑
j=1

WT i j RT
i j ( E[Ti jk])Ri j . (9)

According to Appendix A2, the Le Goff method is a stratification approach, but not exactly the same as in the previous section. Indeed,
it uses the weight WTij = Pij instead of WTij = Pijrij, as in eqs (3) and (6), which puts the emphasis on the means of the sites offering many
samples. Some long calculations show that an estimate of the two global concentration parameters KR

x and KR
y (eqs A2.11 to A2.14), which

characterize the shape of the global dispersion ellipse, are very well approximated (within a few ‰) by:

1

K R
x

≈ 1

Kx
+ 1

Pi

mi∑
j=1

Pi j
1

Ki j
, (10)

1

K R
y

≈ 1

Ky
+ 1

Pi

mi∑
j=1

Pi j
1

Ki j
, (11)

where Pi = ∑mi
j=1 Pi j .

An approximate weighted mean direction can be obtained from eq. (A2.16) and the concentration parameters Kx and Ky can be approxi-
mated by eq. (A2.17), using the change of coordinate system described in Appendix A1.

Eqs (10) and (11) are equivalent to variances and are equal to the sum of the weighted variance of the mean directions of the sites and
of the weighted mean of the variances at site levels, as in eq. (6).
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The elliptic confidence angles proposed by Le Goff et al. (1992) are:

α95x = tβF

/√√√√(∑
j

Pi j ri j

)
K R

x , (12)

α95y = tβF

/√√√√(∑
j

Pi j ri j

)
K R

y . (13)

The marginal errors of inclination and declination are given by:

eYI i = tβ/2

√√√√ 1( ∑
j Pi j ri j

)
[

cos2�

K R
x

+ sin2�

K R
y

]
,

eYDi = tβ/2

√√√√ 1( ∑
j Pi j ri j

)
[

cos2�

K R
y

+ sin2�

K R
x

]
, (14)

where t β/2 is the Student coefficient.
These errors will be very small because of the contribution of all

∑
j ri j samples, assumed to be independent, as in eq. (8). This observation

constitutes the essential difference between the stratified approach and the hierarchical approach, although WTij = Pij.

3.1.3 The classical weighted univariate statistics

The univariate statistics currently used in the palaeomagnetic and archaeomagnetic literature, performed on variates I , D or F separately (here
generically noted as X ), is also fundamentally based on a stratified approach. The estimate of the geomagnetic parameter gi of interest is given
by the formula

ĝi = Xi = 1

Wi

mi∑
j=1

Wi j Xi j , with Wi =
mi∑
j=1

Wi j (15)

where the weighting factor is

Wi j = Pi jκ
∗
i j (Sternberg 1989), (16)

Wi j = Pi j

α2
95i j

(Kovacheva & Toshkov 1994; Kovacheva et al. 1998), (17)

Wi j = Pi j

α95i j
(Batt 1997), (18)

and where α95i j = 2.45 /
√

ri jκ
∗
i j (κ∗

i j is defined in Appendix A1).
The factor Pij is related to dating error E11 and is given by eq. (28). Assuming that the variates Xij have a Gaussian distribution, then the

confidence interval for g(ti) is given by the Student t-distribution:

p(ĝi − eXi
≤ gi ≤ ĝi + eXi

) = 1 − β, (19)

where the unbiased weighted error is

eXi
= tβ/2

√
S2∗

i

mi
, with S2∗

i =
(

mi

mi − 1

)
1

Wi

mi∑
j=1

Wi j (Xi j − ĝi )
2
. (20)

This statistical approach considers only the last (field) level. Contrary to eqs (12) to (14), the estimation error decreases with mi, not with∑
j ri j . Unfortunately, there is no theoretical justification for the form of the expression of the weight Wij in eqs (15) to (18). Moreover, this

estimation is very sensitive to the values of κ∗
i j or α95i j and a very high precision for a particular site (ij) will strongly draw the estimate ĝ(t i )

towards the observation Yij at this site. This statistics is also very sensitive to dating errors Pij.

3.2 The hierarchical modelling

The previous section suggests that a hierarchical statistical model of the experimental errors would be more robust. This modelling can be
implemented using the Bayesian statistics (Buck et al. 1991; Droesbeke et al. 2002), which relates posterior and predictive (marginal) densities
to likelihood and prior densities. Here, hierarchical priors are considered and defined on hyperparameters Yijkl, Yijk , Yij and tij (Table 1).

C© 2005 RAS, GJI, 160, 440–476



Hierarchical modelling of archaeomagnetic data 447

The Fisher statistics (Appendix A1) can be approximated by a bivariate Gaussian statistics in the tangential plane normal to the polar mean
direction of a given level in the hierarchical modelling. This very good approximation allows the analytic calculations to be easily performed in
the hierarchical framework. For this purpose, the coordinate system needs to be changed using an appropriate rotation described in Appendix A1,
to obtain directions near the geographical equatorial plane. In the new coordinate system, the variables Y • (the black point is for indices) are
vectors with new components of inclination and declination (Y I•, Y D•). Considering the hierarchical sampling in Section 2.2 and the relevant
directional statistics in Section 2.3, the following probability densities can be defined.

3.2.1 Observation at measurement level

Each observation corresponds to an elementary measurement Yijklm.

3.2.2 Density of the observation at specimen level

The measurements Yijklm are assumed independent and normally distributed with an unknown mean value (hyperparameter) Yijkl and unknown
intermeasurement variance σ 2

ijkl at specimen level:

p(Yi jklm |Yi jkl ) = 1

2πσ 2
i jkl

exp

[
− 1

2σ 2
i jkl

(
Yi jklm − Yi jkl

)T
(Yi jklm − Yi jkl )

]
. (21)

The notation T is for the transposition.

3.2.3 Prior density at sample level

The unknown mean Yijkl of a specimen ijkl is assumed normally distributed with an unknown mean (hyperparameter) Yijk and unknown
interspecimen variance σ 2

ijk at sample level:

p(Yi jkl |Yi jk) = 1

2πσ 2
i jk

exp

[
− 1

2σ 2
i jk

(Yi jkl − Yi jk)T (Yi jkl − Yi jk)

]
. (22)

3.2.4 Prior density at site level

The unknown mean Yijk of a sample ijk is normally distributed with an unknown mean value (hyperparameter) Yij and variance σ 2
i j at site

level:

p(Yi jk |Yi j ) = 1

2πσ 2
i j

exp

[
− 1

2σ 2
i j

(Yi jk − Yi j )
T (Yi jk − Yi j )

]
. (23)

3.2.5 Prior densities at field level

3.2.5.1 Prior density on Yij. The unknown mean Yij of a site ij is normally distributed with an unknown mean vector Yg(tij) and variance σ 2
i

at a field level:

p(Yi j |Yg(ti j )) = 1

2πσ 2
i

exp

[
− 1

2σ 2
i

(Yi j − Yg(ti j ))
T (Yi j − Yg(ti j ))

]
. (24)

The unknown mean vector value Yg(tij) corresponds to the value of the geomagnetic field parameter at time tij. The aim of the work is to
estimate the geomagnetic field at time ti, the centre of the window i. This poses the problem in reducing the variables from Yg(tij) to Yg(ti).

(a) A first rough approach is to assume that the variates Yg (tij) are normally distributed with respect to Yg (ti), without any correlation
between the components [YgI (t), YgD(t)]. This case is most often not realistic because these components are expected to be dependent on
time.
(b) In order to take into account the correlation between the two components with respect to time, the second approach consists of
approximating Yg to a linear function in the window, using the Taylor expansion of the first order:

YgI (ti j ) ≈ YgI (ti ) + (ti j − ti )Y ′
gI (ti ),

YgD(ti j ) ≈ YgD(ti ) + (ti j − ti )Y ′
gD(ti ), (25)

where Y ′
g (ti) is the first derivative of curve Yg at time ti. This approximation is valid provided that the window width is never too large

compared with the local variations of the curve . Then, the density (eq. 24) becomes

p(Yi j |Yg(ti ), ti j ) = 1

2πσ 2
i

exp

[
− 1

2σ 2
i

(Yi j − Yg(ti ) - (ti j − ti )Y
′
g(ti ))

T (Yi j − Yg(ti ) − (ti j − ti )Y
′
g(ti ))

]
. (26)
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3.2.5.2 Prior density on time tij.

(a) If all the tij are equal to a known and precise time ti (Pij = 1), then Yij ∼ N (Yg (ti), σ 2
i ). The field Yg(ti) can be directly estimated as

a mean value of the mi studied sites corresponding to the time ti. However, this case is very rare: it is difficult to obtain many reference
sites having exactly the same date, within the same geographic zone.
(b) Most often, the times tij are not well known. In other words, they are somewhere in the interval [ti − L/2, ti + L/2], without any
more information. In this case, the unknown times tij are modelled as a normal prior density about the centre ti, as suggested by Véges
(1970) and applied by Marton (1996):

p(ti j |Yg(ti )) = p(ti j ) = 1

σti

√
2π

exp

(
− 1

2σ 2
ti

(ti j − ti )
2

)
, (27)

where the time variance σ 2
ti depends on the window width. This says that the times tij are near the centre ti, thus ensuring the validity of

the Taylor approximation in eq. (25). This model takes into account the lack of information about where the times are inside the window
(through variance σ 2

ti ).

3.2.5.3 Accounting the dating errors. The precision of the date attributed to the site by history, archaeology or chronometric methods, will be
taken into account through the weight Pij. To determine this weight, the idea of Sternberg (1989) is basically used here. It is calculated as a
function of the contribution of the dating interval [t i j1, t i j2] to the window [ti − L/2, ti + L/2]. The weight is proportional to the overlap of
the age range of site ij within the given window i:

Pi j = d([ti j1, ti j2] ∩ [ti − L/2, ti + L/2])/(ti j2 − ti j1), (28)

where the distance d([x , y]) = |x − y|. In the specific case when tij = ti, then Pij = 1.
When the distance h separating the times ti is chosen exactly equal to the width of the window L, then

∑n
i=1

∑mi
j=1 Pi j = N , the total

number of reference sites. This configuration has been chosen for example in Kovacheva & Toshkov (1994) and Márton (1996): window
length and step size are 100 yr.

3.2.6 Joint density of the observations: hierarchical likelihood of order four

To pass from the measurement to the reference curve, dijkl measurements can be performed for one specimen to estimate the unknown mean
value Yijkl, for fixed values of Yijk , Yij and Yg(tij), and nijk different specimens can be taken from a sample to estimate the unknown mean value
Yijk , for fixed values of Yij and Yg(tij). After that, rij different samples from a site can be taken to estimate the value Yij, for a fixed value of
Yg(tij). At the end, one can take mi sites in a window i to estimate Yg(ti) (Fig. 1b). Thus, there can be dijkl measurements in specimen ijkl, nijk

specimens in sample ijk, rij samples in a site ij and mi sites with their dating ranges belonging (totally or partially) to the time window [ti −
L/2, ti + L/2].

Assuming that all the observations are independent at each of the levels described above, the hierarchical joint density Li, or likelihood
of order 4, of the observations Yijklm and the unknown variates (hyperparameters) Yijkl, Yijk , Yij and tij, can be written for fixed Yg(ti). This
likelihood relates the observation density in eq. (21) and the prior hierarchical specifications in eqs (22), (23), (26) and (27):

Li =
mi∏
j=1

[∫∫
Li j p (Yi j |Yg(ti ), ti j )p (ti j ) dYi j dti j

]Pi j

, (29)

where

Li j =
ri j∏

k=1

∫
Li jkp(Yi jk |Yi j ) dYi jk, (29a)

Li jk =
ni jk∏
l=1

∫
Li jklp (Yi jkl |Yi jk) dYi jkl , (29b)

Li jkl =
di jkl∏
m=1

p (Yi jklm |Yi jkl ). (29c)

The field Yg(ti) is estimated by MLE, after elimination of the hyperparameters by integration and definition of appropriate empirical
variables.

4 H I E R A RC H I C A L S TAT I S T I C S

The following discussion deals with the direction of the magnetic field. Results for intensity (univariate case) are given in detail in
Appendix A3.
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4.1 Definition of the empirical variables and elimination of the hyperparameters

The aim of the calculation is to estimate the vector Yg(ti) starting from the observations (elementary measurements) YIijklm, by maximizing the
joint density Li in eq. (29).

(i) At a specimen level, the likelihood is given by eq. (29c).
The empirical means and variances are defined by

YIi jkl = 1

di jkl

di jkl∑
m=1

YIi jklm YDi jkl = 1

di jkl

di jkl∑
m=1

YDi jklm

S2
I i jkl = 1

di jkl

di jkl∑
m=1

(YIi jklm − YIi jkl )
2 S2

Di jkl = 1

di jkl

di jkl∑
m=1

(YDi jklm − YDi jkl )
2.

(30)

The symbol bar above letters Y designates an empirical mean operation. These empirical determinations generally result from specific statistical
treatments of the selected set of dijkl elementary measurements (principal component analysis, in the case of demagnetisation, and regression
analysis applied to an Arai diagram in the case of intensity). It can also result from only one measurement, that is Yijkl = Y ijklm. Replacing in
eq. (29c), the following equality can be written

di jk∑
m=1

1

σ 2
i jkl

(
(YIi jklm − YIi jkl )

2 + (YDi jklm − YDi jkl )
2
) = di jkl

σ 2
i jkl

(
(YIi jkl − YIi jkl )

2 + (YDi jkl − YDi jkl )
2 + S2

I i jkl + S2
Di jkl

)
. (31)

According to Cochran’s theorem (Dudewicz & Mishra 1988), the empirical mean vector Yijkl is normally distributed with a sampling squared

error
σ 2

i jkl

di jkl
, and the variables

di jkl S2
I i jkl

σ 2
i jkl

and
di jkl S2

Di jkl

σ 2
i jkl

are χ 2 distributed with (dijkl − 1) degrees of freedom.

(ii) At a sample level, the likelihood is defined by eq. (29b). The hyperparameter (vector) Yijkl, being unknown, can be eliminated through an
integration between −∞ and +∞. The probability density function of Yijkl with respect to the true sample mean Yijk is given by the following
integration:

p(Yi jkl |Yi jk) =
∫ +∞

−∞

√
di jkl

2πσi jkσi jkl
exp

(
−1

2

(
di jkl

σ 2
i jkl

(Yi jkl − Yi jkl )
T

(Yi jkl − Yi jkl ) + 1

σ 2
i jk

(Yi jkl − Yi jk)T (Yi jkl − Yi jk)

))
dYi jkl

= 1√
2π

(
σ 2

i jk + σ 2
i jkl

di jkl

) exp


−1

2


 1

σ 2
i jk + σ 2

i jkl

di jkl

(Yi jkl − Yi jk)T (Yi jkl − Yi jk)





 . (32)

The Bayesian hierarchical predictive variance (Droesbeke et al. 2002) here is equal to

1

Ui jkl
= σ 2

i jk + σ 2
i jkl

di jkl
.

The empirical means and variances are defined by

YIi jk = 1

Ui jk

ni jk∑
l=1

Ui jklYI i jkl YDi jk = 1

Ui jk

ni jk∑
l=1

Ui jklYDi jkl

S2
I i jk = 1

Ui jk

ni jk∑
l=1

Ui jkl (YIi jkl − YIi jk)2 S2
Di jk = 1

Ui jk

ni jk∑
l=1

Ui jkl (YDi jkl − YDi jk)2. (33)

Hence, according to Cochran’s theorem, the empirical mean vector Yijk is normally distributed with a squared error

1

Ui jk
= 1∑

l Ui jkl
= 1∑

l
1

σ 2
i jk+

σ2
i jkl

di jkl

, (34)

and the empirical variables UijkS2
Iijk and UijkS2

Dijk are χ2 distributed with (nijk − 1) degrees of freedom.

Assuming that the errors e2
i jkl = σ 2

i jkl

di jkl
are of the same order of magnitude from specimen to specimen, they can be replaced by

e2
msi jk

= 1

ni jk

ni jk∑
l=1

e2
i jkl , (35)

hence 1
Ui jk

= σ 2
i jk+σ 2

msi jk

ni jk
.

(iii) At a site level, the likelihood is defined by eq. (29a). The hyperparameter (vector) Yijk , being unknown, can be eliminated through an
integration between −∞ and +∞. The Bayesian hierarchical predictive variance here is equal to 1

Vi jk
= σ 2

i j + 1
Ui jk

.
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The empirical means and variances are defined by

YIi j = 1

Vi j

ri j∑
k=1

Vi jkYI i jk YDi j = 1

Vi j

ri j∑
k=1

Vi jkYDi jk

S2
I i j = 1

V i j

ri j∑
k=1

V i jk(YIi jk − YIi j )
2 S2

Di j = 1

V i j

ri j∑
k=1

V i jk(YDi jk − YDi j )
2
,

(36)

Hence, according to Cochran’s theorem, the empirical mean vector Yij is normally distributed with squared error

1

Vi j
= 1∑ri j

k=1 Vi jk

= 1∑ri j
k=1

1
σ 2

i j + 1
Ui jk

= 1∑ri j
k=1

1

σ 2
i j +

σ2
i jk +e2

msi jk
ni jk

, (37)

and the empirical variables VijS2
Iij and VijS2

Dij are χ2 distributed with (rij − 1) degrees of freedom.
(iv) Finally, at a field level, the likelihood is defined by eq. (29). The hyperparameters (vector) Yij and tij, being unknown, can also be

eliminated by an integration between −∞ and +∞. The weighting factor Pij measures the contribution of each site to the window and can
be taken into account in the inverse squared errors defined below in eq. (40). This approach leads to the (more complicated) definition of the
last set of empirical variables.
The empirical means are

YIi = 1

WIi W Di − W 2
I Di

mi∑
j=1

(WDi WIi j − WI Di WI Di j )YIi j + (WI Di WDi j − W Di WI Di j )YDi j ,

YDi = 1

WIi W Di − W 2
I Di

mi∑
j=1

(WI Di WIi j − WIi WI Di j )YIi j + (WIi WDi j − W I Di WI Di j )YDi j ,
(38)

and the empirical variances and covariance are

S2
I i = 1

W Ii

mi∑
j=1

W Ii j (YIi j − YIi )
2
,

S2
Di = 1

W Di

mi∑
j=1

W Di j (YDi j − YDi )
2
,

SI Di = 1

W I Di

mi∑
j=1

W I Di j (YIi j − YIi )(YDi j − YDi ),
(39)

where the weights WIij, WDij and WIDij are defined by

WIi =
mi∑
j=1

WIi j =
mi∑
j=1

Pi j(
1 − ρ2

i j

)
BIi j

,

WDi =
mi∑
j=1

WDi j =
mi∑
j=1

Pi j(
1 − ρ2

i j

)
BDi j

,

WI Di =
mi∑
j=1

WI Di j =
mi∑
j=1

Pi jρi j(
1 − ρ2

i j

)√
BIi j BDi j

,
(40)

and where the Bayesian hierarchical variances BIij and BDij are

BIi j = σ 2
ti g

′2
I + σ 2

i + 1

Vi j
, BDi j = σ 2

ti g
′2
D + σ 2

i + 1

Vi j
.

The function g′ is the derivative of g. The correlation factor ρ i j , which depends on time distribution and slope of the curve in the window is
given by

ρi j = σ 2
ti g

′
I g′

D√
BIi j BDi j

. (41)

4.2 Probability density function of the direction

The normal joint density of vector Yi, conditional to Yg(ti), is obtained by

p(Yi |Yg(ti )) = 1

2π
|�i |− 1

2 exp

(
−1

2
(Yi − Yg(ti ))

T �−1
i (Yi − Yg(ti ))

)
, (42)
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where the squared error matrix is defined by eqs (40):

�i = 1

WIi WDi − W 2
I Di

(
WDi WI Di

WI Di WIi

)
. (43)

The Bayesian hierarchical approach leads to the matrix � i , which defines the squared error on the mean vector Yi, and is itself a
combination of squared errors (also called sampling variances) and variances resulting from the sources of scatter, in a similar way to eq. (34)
for sample levels or eq. (37) for site levels. Their expressions are analogous to a harmonic mean.

The probability density function of the empirical variances S2
I i , S2

Di, S2
IDi, defined in eqs (39), is a Wishart distribution W (mi − 1, � i )

(Anderson 1984):

p(Si ) = |Si |
mi −4

2

2mi −1
√

π�
( mi −2

2

)
�

( mi −1
2

) |�i |
mi −1

2

exp

[
−1

2
trace

(
�−1

i Si

)]
, (44)

where Si is the empirical variance–covariance matrix

Si =
(

S2
I i SI Di

SI Di S2
Di

)
. (45)

4.3 Hierarchical elliptic statistics

From eq. (42), the probability density function in the tangential plane to the sphere is

p(Yi |Yg(ti )) =
√

WIi WDi − W 2
I Di

2π
exp

[
− 1

2

[
WIi (YIi − YgI )2 − 2WI Di (YIi − YgI )(YDi − YgD) + WDi (YDi − YgD)2

]]
. (46)

The equivalent function on the sphere is defined by a change of variable:

YIi − YgI = δ cos ϕ,

YDi − YgD = δ sin ϕ,

where δ is approximately the off-axis error angle from the mean direction (YIi, YDi) and ϕ is the azimuth direction. The Jacobian becomes δ

and

p(δ, ϕ) =
√

WIi WDi − W 2
I Di

2π
exp

[
−1

2

[
WIi cos2ϕ − WI Di sin(2ϕ) + WDi sin2ϕ

]
δ2

]
× δ. (47)

This is the density in the eigenvector coordinate system after diagonalization. The eigenvalues are

Kex = 1

cos(2�)

[
WIi cos2� − WDi sin2�

]
,

Key = 1

cos(2�)

[
WDi cos2� − WIi sin2�

]
,

(48)

where � is the angle between the direction of the principal axis of the ellipse in the tangential plane and the geographical meridian passing
through the mean direction:

if WIDi = 0, then

� = 0;

else

if WDi − WIi = 0, then � = π/4,

if WDi − WIi > 0, then � = 0.5 arctan

[
2WI Di

WDi − WIi

]
,

if WDi − WIi < 0, then � = 0.5 arctan

[
2WI Di

WDi − WIi

]
+ WI Di

|WI Di |
π

2
. (49)

After diagonalization, and making the approximation cos δ ≈ 1 − δ2

2 and sin δ ≈ δ, then the probability density function of the error
angle δ and the azimuth ϕ is defined as

p(δ, ϕ) ≈
√

Kex Key

2π
exp

[[
Kex cos2(ϕ − �) + Keysin2(ϕ − �)

]
(cos δ − 1)

] × sin δ. (50)
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It is possible to define a probability density function for the distribution of an off-axis angle θ by introducing the two Bayesian elliptic
concentration factors:

Kx = Kex/mi , Ky = Key/mi , (51)

p(θ, ϕ) =
√

Kx Ky

4π sh
[
Kx cos2(ϕ − �) + Kysin2(ϕ − �)

] exp
[[

Kx cos2(ϕ − �) + Kysin2(ϕ − �)
]

cos θ
] × sin θ. (52)

This result is similar to that proposed by Le Goff (1990) and Le Goff et al. (1992). The new contribution here is that the concentration
factors are clearly related to the sampling errors. The elliptic distribution observed reveals the influence of the window width. The sites
attributed to the window, and so contributing to the calculation of Yg(ti), in fact belong to different parts of the curve inside the window.
Consequently, the elliptical nature of the distribution describes the bias effect resulting from the reduction of the data to time ti: the principal
axis of the ellipse will be tangential to a great circle in the considered window i. As such, this statistics represents a regression on the sphere and
the elliptic tendency of the directions (Iij, Dij) will increase when the data are widely distributed in time, provided that the linear approximation
in eq. (25) holds. This implicit approximation of Yg by straight lines in each window results in an important smoothing effect. The wider
the window, the larger the smoothing effect on Yg. Conversely, if the width of the window is reduced, this approximation becomes more
reasonable. At the same time, the number of sites mi falling in the window will diminish, resulting in less precision of the estimation of Yg(ti)
(also mentioned by Sternberg 1989; Batt 1997). Thus, the question is the choice of the ideal window width. In the present approach, there is
no theoretical argument that permits the determination of an optimal window width.

4.4 Hierarchical Fisher statistics

In the context of Fisherian statistics, an equivalent Bayesian concentration factor can be defined as

1

K B
= 1

2

(
1

Kx
+ 1

Ky

)
= mi

2

(
WIi + WDi

WIi WDi − W 2
I Di

)
. (53)

Replacing Kx and Ky by KB, the probability density function of θ and ϕ becomes

p(θ, ϕ) ≈ K B

4π sinh K B
exp (K B cos θ ) × sin θ, (54)

which defines the polar hierarchical Fisher statistics.
In the specific case of sites having the same date ti, e.g. Pij = 1 and σ 2

ti = 0, then WIDi = 0 and the Bayesian concentration factor KB in
(53) will be explicitly expressed as KB0:

1

K B0
= mi

2

(
1

WIi
+ 1

WDi

)
= mi∑mi

j=1
1

σ 2
i + 1∑ri j

k=1
1

σ2
i j +

σ2
i jk +e2

msi jk
ni jk

, (55)

which defines how to combine different Bayesian Fisherian subpopulations.
Considering the very good approximation of the Fisher statistics to a bivariate Gaussian one, provided that concentration factor is large

enough (Appendix A1), the variances σ 2
i , σ 2

i j and σ 2
ijk at the different levels can be replaced by the Fisher concentration factors 1/Ki, 1/Kij

and 1/Kijk , respectively.

4.5 Estimation of the directional parameters

The unknown variances σ 2
i , σ 2

i j , σ 2
ijk and σ 2

ijkl, and the function Yg(ti) at time ti will be determined in the context of the theory of parameter
estimation by maximum likelihood, called MLE (Dudewicz & Mishra 1988; Tassi 1992), and adapted to the hierarchical statistics. In the
following, the notation ˆ is for an estimate and ∗ is that corrected for bias. In particular, S2∗

i jkl = di jkl

di jkl −1 S2
i jkl , S2∗

i jk = ni jk

ni jk−1 S2
i jk, S2∗

i j = ri j

ri j −1 S2
i j

and S2∗
i = mi

mi −1 S2
i . Moreover, the unbiased empirical concentration factors κ∗

ijkl, κ∗
ijk , κ∗

i j and κ∗
i are used as defined in eq. (A1.5).

4.5.1 The general solution

(i) At a specimen level, an unbiased estimation of the intermeasurement variance σ 2
ijkl will be given by

σ̂ 2
i jkl = S2∗

I i jkl + S2∗
Di jkl

2
= 1

κ∗
i jkl

(56)
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and the mean squared error at the specimen level can be calculated:

e2
msi jk

= 1

ni jk

ni jk∑
l=1

σ 2
i jkl

di jkl
.

(ii) At a sample level, an unbiased estimation of the interspecimen variance σ 2
ijk will be given by:

∧︷ ︸︸ ︷
σ 2

i jk + e2
msi jk

= S2∗
I i jk+S2∗

Di jk

2 , hence the
Bayesian solution:

σ̂ 2
i jk = 1̂

Ki jk
= max

(
0,

S2∗
I i jk + S2∗

Di jk

2
− e2

msi jk

)
≈ max

(
0,

1

κ∗
i jk

− e2
msi jk

)
. (57)

(iii) At site level, the intersample variance σ 2
i j is deduced from the estimation of the squared error:

1̂

Vi j
= 1̂∑ri j

k=1
1

σ 2
i j +

σ̂2
i jk +e2

msi jk
ni jk

= 1

ri j

(
S2∗

I i j + S2∗
Di j

2

)
≈ 1

ri jκ
∗
i j

. (58)

The estimate σ̂ 2
i j of σ 2

i j is obtained by the bisection method (Press et al. 1997). If there is no positive solution, then the intersample variance

estimate is set equal to zero. This variance estimated, zero or not, is used to recalculate the squared error 1̂
Vi j

in eq. (58) and the mean values

YIij and YDij in eq. (36).
(iv) At field level, following Anderson (1984), the maximum likelihood unbiased estimation of the geomagnetic field Yg(ti) is given by the

empirical means,

ŶgI (ti ) = YIi , ŶgD(ti ) = YDi , (59)

and the terms of the squared error matrix � i in eq. (43) is estimated from the empirical matrix Si in eq. (45):

�̂i = Si

mi − 1
= S∗

i

mi
,

that is,

ŴDi

WIi WDi − W 2
I Di

= S2∗
I i

mi
,

ŴI i

WIi WDi − W 2
I Di

= S2∗
Di

mi
,

ŴI Di

WIi WDi − W 2
I Di

= S∗
I Di

mi
. (60)

Eq. (60) forms a non-linear system of three equations of which the resolution in the Bayesian context allows the variables x 1 = σ ti g′
I ,

x 2 = σ ti g′
D and x 3 = σ 2

i to be estimated.
Let be x 1 = x 2 = x 3 = 0 and Wi = ∑mi

j=1 Pi j Vi j , where Vij is given by eq. (58).

(a) If ( 1
Wi

− S2∗
I i

mi
≥ 0) and ( 1

Wi
− S2∗

Di
mi

≥ 0) then the solution x 1 = x 2 = x 3 = 0 is confirmed. These solutions correspond to Fig. 2 H3c
(σ 2

i = 0, σ 2
ti g′2

I = 0, σ 2
ti g′2

D = 0).

(b) If ( 1
Wi

− S2∗
I i

mi
≥ 0) and ( 1

Wi
− S2∗

Di
mi

< 0) then x 1 = x 3 = 0 and x 2 is the solution of (
∑mi

j=1
1

σ 2
ti g′2

D+ 1
Vi j

)−1 − S2∗
Di

mi
= 0, solved by the bisection

method. These solutions correspond to Fig. 2 H3b (σ 2
i = 0, σ 2

ti g′2
I = 0, σ 2

ti g′2
D = 0).

(c) If ( 1
Wi

− S2∗
I i

mi
< 0) and ( 1

Wi
− S2∗

Di
mi

≥ 0) then x 2 = x 3 = 0 and x 1 is solution of (
∑mi

j=1
1

σ 2
ti g′2

I + 1
Vi j

)
−1 − S2∗

I i
mi

= 0, solved by the bisection

method. These solutions correspond to Fig. 2 H3a (σ 2
i = 0, σ 2

ti g′2
I = 0, σ 2

ti g′2
D = 0).

(d) If ( 1
Wi

− S2∗
I i

mi
< 0) and 1

Wi
− S2∗

Di
mi

< 0) then σ 2
ti g′2

I + σ 2
i = 0 and σ 2

ti g′2
D + σ 2

i = 0. The variable x 3 is first assumed equal to zero and
there are always two solutions x 1 and x 2 obtained from the system of two equations:

WDi

WIi WDi − W 2
I Di

= S2∗
I i

mi

WIi

WIi WDi − W 2
I Di

= S2∗
Di

mi

solved by the Newton–Raphson method with backtrack searching (Press et al. 1997).

(d1) If the difference ( WI Di

WI i WDi −W 2
I Di

)2 − (
S∗

I Di
mi

)
2 ≤ 0 , then x 3 = 0 and x 1 and x 2 are kept. These solutions correspond to Fig. 2 H2 (σ 2

i = 0,

σ 2
ti g′2

I = 0, σ 2
ti g′2

D = 0).
(d2) If the difference is positive, it means that |x 1| and |x 2| are too high. This implies that x 3 is strictly positive. The three variables are then

deduced by the resolution of the three equations in eq. (60) using the Newton–Raphson method with backtrack searching. These solutions
correspond to Fig. 2 H1 (σ 2

i = 0, σ 2
ti g′2

I = 0, σ 2
ti g′2

D = 0).

Finally, knowing the three variances, the variance–covariance matrix �̂i in eq. (43), the mean vector Yi in eq. (38) and the Bayesian
concentration factor in eq. (53) can be calculated.

The field direction estimate ĝI (ti ) and ĝD(ti ) in the geographic coordinate system is deduced from ŶgI (ti ) = YIi and ŶgD(ti ) = YDi , using
the inverse of rotation matrix in eq. (A1.6).
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Case H3c

Case H2 

Case H3b

Case H3a 

Case H1 

Figure 2. Hierarchical variances at field level (boxes represent the tangential plane to the sphere for the time window considered, with inclination upwards
and declination perpendicular): each circle represents the mean direction determined for a given site with its confidence cone α95i j , the principal axis of the
ellipse is shown by a line. (H1) all the variances are different from zero (see example in Table 5 and Fig. 4a), (H2) only intersite variance σ̂ 2

i j is zero, (H3a)

intersite variance σ̂ 2
i j as well as declination curve variance σ 2

ti g′2
D are zero but inclination curve variance σ 2

ti g′2
I is not zero, (H3b) intersite variance as well as

inclination curve variance are zero but declination curve variance is not zero, (H3c) all the intersite and curve variances are zero: the dispersion between the
directions of sites is explained only by the high α95i j observed on each site (see example in Table 6 and Fig. 4b).

4.5.2 Particular solution when the data are concentrated at time ti

In the specific case where all the directions are of the same precise date ti, that is Pij = 1 and σ 2
ti = 0, the correlation becomes ρ i j = 0

(WIDij = 0). Some drastic simplifications occur in the exact solution, leading to

ŶgI (ti ) = YIi = 1

W i

mi∑
j=1

Wi j YI i j and ŶgD(ti ) = Y Di = 1

Wi

mi∑
j=1

Wi j YDi j , (61)

where Wi = ∑mi
j=1 Wi j .

The weighting factors WIij and WDij in eq. (40) become equal to Wij so that

1

Wi
= 1∑mi

j=1 Wi j
= 1∑mi

j=1
1

σ 2
i + 1

Vi j

= 1

mi K B0
(62)

(cf. eq. 55). From eq. (60),

1̂

Wi
= 1

mi

(
S2∗

I i + S2∗
Di

2

)
≈ 1

miκ
∗
i

. (63)

Hence the exact Bayesian solution for σ 2
i is obtained with the bisection method.
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Table 2. Values of the different confidence coefficients t β (Fisher, bivariate
normal, elliptic, Student) having the probability β = 0.05 to be exceeded for
increasing numbers mi.

mi t βF Fisher t βN WIDi = 0 t β H ellipse t β/2 Student

2 6.16 24.50 ∞ 12.71
3 3.73 6.40 28.25 4.30
4 3.21 4.36 7.55 3.18
5 2.99 3.67 5.05 2.78
6 2.86 3.36 4.17 2.57
7 2.79 3.17 3.73 2.45
8 2.73 3.04 3.46 2.37
9 2.70 2.95 3.29 2.31
10 2.67 2.88 3.17 2.26
30 2.51 2.57 2.63 2.05
100 2.47 2.49 2.50 1.99
∞ 2.45 2.45 2.45 1.96

The Bayesian geomagnetic field estimate simplifies to

ŶgI (ti ) = YIi = 1

W i

mi∑
j=1

1

σ 2
i + 1

Vi j

YI i j and ŶgD(ti ) = YDi = 1

Wi

mi∑
j=1

1

σ 2
i + 1

Vi j

YDi j . (64)

Thus, the Bayesian mean appears to be tempered by the intersite variance σ 2
i . The Bayesian approach brings out a solution to the problem

of weighting the archaeomagnetic or palaeomagnetic data, and in particular allows for solving some contradictions, outlined in Section 3.1.3,
concerning the intuitive classical weighting techniques. The relationships between the mean observations, the variances resulting from the
sources of scatter and the sampling errors are clearly established. Consequently, some important information can be obtained on the sampling
numbers needed (Section 4.6).

4.5.3 Descending hierarchy

If the estimates σ̂ 2
i jk and σ̂ 2

i j are strictly positive in eqs (57) and (58), then there is a descending hierarchy. That is, squared errors at a given
level are less than the variance (resulting from sources of scatter) at an upper level. Consequently, at site level, we have

1̂

Vi j
= 1

ri jκ
∗
i j

= α2
95i j

2.452 . (65)

Such a situation can be achieved using enough measurements and/or specimens in the analyses. This seems to be often verified in practice.
This important situation justifies the results at sample and lower levels not being published.

4.5.4 Comparison with stratification approach

The hierarchical mean calculation can be compared with the stratification approach described in Section 3.1 in two cases.

(a) If the descending hierarchy is not verified at a field level, that is dispersion between sites is small in comparison with intrasite dispersions,
then the estimations are σ 2

i = 0, σ 2
ti g

′2
I = 0 and σ 2

ti g
′2
D = 0 (Fig. 2 H3C) and eq. (59) becomes of the form

ŶgI (ti ) = YIi = 1

W i

mi∑
j=1

Pi j

α2
95i j

YI i j = 1

Wi

mi∑
j=1

Pi jri jκ
∗
i j YI i j .

This is equivalent to Kovacheva’s eqs (15) and (17) in Section 3.1.3. Consequently, this statistics is well adapted to bad data.
(b) If all the α2

95i j are equal or zero, then eq. (59) becomes always of the form

ŶgI (ti ) = YIi = 1

W i

mi∑
j=1

Pi j YI i j .

This is equivalent to the Le Goff statistics in eq. (A2.16). This last statistics is well adapted to homogeneous data (bad or not).

4.6 Estimation of the sampling numbers

The main idea that appears here is that the precision on geomagnetic secular variation curves is essentially controlled by the number mi of
sites and, more generally, the errors in archaeomagnetism (as well as in palaeomagnetism) are dominated by errors in age (Tarling & Dobson
1995) through the weighting Pij and variance σ 2

ti .
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Figure 3. Hierarchy versus stratification at sample and specimen levels: the data from Tables 3 and 4 are plotted in stereographic projection. Different symbols
indicate the specimens from each independently oriented sample. Comparison is shown between the α95i j calculated over the total number of specimens
measured (given with different symbols for each independently oriented sample: thin circle) in the stratification context, and over the number of the samples in
the hierarchical context (after grouping of the specimens for each sample: thick circle).

4.6.1 The number of samples and specimens needed in archaeomagnetic studies

The effects of the magnitudes of nijk and rij are evaluated in the simple case when the variances are of the same order at each level, that is
σ 2

i jk = σ 2
i j = σ 2

i = σ 2 = 1
K and when the errors e2

msi jk
are small. In order to make the discussion easier, σ 2

ti g′2
I and σ 2

ti g′2
D are approximated

in eq. (40) by

σ 2
Ci = 1

κCi
= σ 2

ti g
′2
I + σ 2

ti g
′2
D

2
and Pi j by Pi = 1

mi

mi∑
j=1

Pi j ,

and taking the same number of specimens nijk = ni from each sample and the same number of samples rij = ri from each site. Then, the
Bayesian concentration factor from eq. (53) becomes

1

K B
≈ 1

Pi

{
1

KCi
+ 1

K

(
1 + 1

ri
+ 1

ri ni

)}
. (66)

This clearly relates the Bayesian concentration factor KB to the sampling numbers and to the dating errors. If ni and rj tend to infinity
(measuring the entire site!) and if all the dating ranges tend to zero, then the maximum value K for the Bayesian concentration factor will be
attained.

The number of samples ri such that the confidence angle α95i = tβF (mi )/
√

mi K B is near the optimum confidence cone α95i(optim.) =
tβF (mi )/

√
mi K , at percentage p = α95i −α95i(optim.)

α95i(optim.)
, is given by

ri = 1[
Pi (1 + p)2 − (1 + Di )

](
1 + 1

ni

)
, (67)

where the factor Di = K
KCi

is introduced.
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Table 3. Kovachevo site: measured declinations and inclinations listed for specimens and the corresponding Fisherian sample mean. At
the bottom, a comparison between the results of Fisher statistics and bivariate Gaussian statistics with stratification and with hierarchy
is given. In the latter case, the calculation was performed using a rotation (Appendix A1) in order to approximate Fisher statistics by
Gaussian bivariate statistics. The results confirm the very good Gaussian bivariate approximation.

Kovatchevo site (Bulgaria)

40 specimens 10 samples
Field Field
number Dijkl (◦) Iijkl (◦) number Dijk (◦) Iijk (◦)

Ko2a 0.9 69.7 Ko2 358.5 70
Ko2b 356.1 70.4

Ko4a 5.7 67.6
Ko4b 0.1 69.3 Ko4 1.9 68.4
Ko4c 0.1 68.4

Ko5a 342.9 62.4
Ko5b 347.5 58.3
Ko5c 347.1 59.7
Ko5d 345 59.3 Ko5 345 59.7
Ko5e 343.8 60.7
Ko5f 345.3 59
Ko5g 343.5 58.7

Ko6a 350.4 61.2
Ko6b 348.7 61.7
Ko6c 347.5 61.5 Ko6 349 61.3
Ko6d 349.4 60.5
Ko6e 349.1 61.6

Ko7a 354.1 62.1
Ko7b 354.1 61.8
Ko7c 352.4 61.4 Ko7 352.8 61.1
Ko7d 350.5 58.7
Ko7e 352.8 61.7

Ko8a 338.4 66.8 Ko8 342.8 65.6
Ko8b 347.2 64.3

Ko9a 347.4 64.4
Ko9b 346 66.2
Ko9c 349.4 64.2 Ko9 348.1 64.5
Ko9d 348.6 64.1
Ko9e 349.2 63.4

Ko10a 0.9 63.2
Ko10b 0.9 63.2 Ko10 359.6 63.1
Ko10c 357.1 62.9

Ko13a 353.7 61.7
Ko13b 353.1 62.4
Ko13c 354 63.3 Ko13 355.7 63.1
Ko13d 358.1 63.8
Ko13e 356.8 63.8
Ko13f 358.4 63.9

Ko14a 8.3 62.7 Ko14 6.2 60.4
Ko14b 4.1 58

Stratification Hierarchy

Fisher statistics

Ii j = 63.11 Di j = −7.79 Ii j = 63.93 Di j = −6.19

κ∗
i j = 344.69 α95i j = 1.22 κ∗

i j = 280.64 α95i j = 2.88

Gaussian statistics (using rotation: λ = − 63.106, φ = − 7.786)

Ii j = 63.11 Di j = −7.78 Ii j = 63.93 Di j = −6.19

S2∗
I i j +S2∗

Di j
2 = 344.16 α95i j = 1.22

S2∗
I i j +S2∗

Di j
2 = 278.72 α95i j = 2.89
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Figure 4. Examples of hierarchy versus stratification at field level. (a) Exact elliptic bivariate statistics (bold circle) and Le Goff statistics (grey circle) from
Table 5. This corresponds to case H1 in Fig. 2. (b) Exact elliptic bivariate statistics (bold circle) and Le Goff statistics (grey circle) from Table 6. This corresponds
to case H3c in Fig. 2. The hierarchical confidence ellipse is always larger than that with stratification.

In the case of ni = 1 and dates at ti (no dating error), that is Pij = 1 and σ 2
ti = 0, Di = 0 and Pi = 1, then ri = 10 samples are needed for

obtaining the precision p = 10 per cent and ri = 20 samples for obtaining the precison p = 5 per cent (of course, the number of samples needed
will increase with the dating factor Pi). This analysis gives the range of the number of samples needed in palaeomagnetic and archaeomagnetic
studies, provided that the variances at the different levels resulting from the sources of scatter are of the same order (this assumption is in fact
very wide). This assessment is higher than that of 6 to 12 samples proposed by Tarling (1983, p. 140).

Moreover, considering sampling strategy where the entire, large sample is measured, that is ni is like infinity (measurement strategy in
Paris for instance), and sampling strategy with one specimen measured per sample, i.e. ni = 1 (measurement strategy in Rennes), then at least
twice as many samples need to be taken with the second strategy than with the first one in order to obtain the same estimation of 1/KB.

4.6.2 Post-selection of sites having small α95i j

Considering the case when samples are entirely measured, that is nijk = ∞, and when the sites are dated at the same time ti (Pij = 1 and σ 2
ti =

0), then, from eq. (55), the Bayesian estimation error on the mean direction of the magnetic field is

α95i = tβF√
mi K B0

= tβF√∑mi
j=1

1
1

Ki
+ 1

ri j Ki j

. (68)

This error will always decrease or remain constant with the increase of the number of sites mi, whatever the squared errors 1
ri j Ki j

∝ α2
95i j

at a site level are. This means that a post-selection of the weaker α2
95i j in a database never improves the precision of the geomagnetic estimate.

Provided that the errors resulting from the sources of scatter are random, there is no justification in eliminating bad α2
95i j from a database.

The Bayesian calculation automatically does this. However, if a very bad α2
95i j is confirmed to be associated with systematic error, then the

variance 1
Ki

will become high and the Bayesian error cone α2
95i will increase. Consequently, in this specific case of systematic error, the datum

has to be corrected or excluded from the database.
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Table 4. Madretz site (see caption of Table 3).

Madretz site (Bulgaria)

37 specimens 13 samples
Field Field
number Dijkl (◦) Iijkl (◦) number Dijk (◦) Iijk (◦)

M2a 341.1 45.5 M2 349.4 49.9
M2b 357.7 54.3

M3a 350.2 52.7
M3b 349.7 52.1 M3 350.1 51
M3c 350.3 48.3

M4a 349.7 49.7
M4b 349.3 46.6 M4 353.5 48.1
M4c 4.3 50.9
M4d 350.8 45.7

M5a 348.2 52.6
M5b 355.3 53.1 M5 348.8 51.4
M5c 341.8 53.1
M5d 349.9 46.7

M6a 341.7 51.9
M6b 350.3 53 M6 347.9 50.6
M6c 351.7 47

M7a 350.9 60.5
M7b 346.3 56.7
M7c 1.1 62.9 M7 348.6 55.2
M7d 344.3 51.3
M7e 340.5 44.6

M8a 353.7 54.9
M8b 1.9 55.5 M8 357.6 54.3
M8c 356.4 52.6

M9a 358.1 51.5 M9 356.9 50
M9b 355.7 48.5

M10a 334.2 50
M10b 340.9 50.5 M10 341.7 51.2
M10c 351.4 53.2

M11a 352.8 51.2
M11b 352.8 48.5 M11 354.7 50.8
M11c 357 52.6
M11d 358.1 51.2

M13 356.3 47.1 M13 356.3 47.1

M14 341.2 49.5 M14 341.2 49.5

M16a 340.1 57 M16 342.4 55.8
M16b 344.7 54.6

Stratification Hierarchy

Fisher statistics

Ii j = 51.76 Di j = −9.86 Ii j = 51.39 Di j = −10.09
κ∗

i j = 189.80 α95i j = 1.71 κ∗
i j = 341.19 α95i j = 2.24

Gaussian statistics (using rotation: λ = − 51.757, φ = − 9.855)

Ii j = 51.76 Di j = −9.86 Ii j = 51.39 Di j = −10.09

S2∗
I i j +S2∗

Di j
2 = 189.32 α95i j = 1.71

S2∗
I i j +S2∗

Di j
2 = 340.54 α95i j = 2.25
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Table 5. Six reference points taken from the Bulgarian database (Kovacheva 1997), from window ti = 5400 BC ± 50 yr, without geographical correction. The
field direction estimates ĝI (ti ) and ĝD(ti ) in the geographic coordinate system were calculated from the polar estimates ŶgI (ti ) = YI i and ŶgD(ti ) = YDi , using
the inverse of the rotation matrix in eq. (A1.6), with a rotation (λ, φ) = (−57.966, − 1.243). Errors eĝI and eĝD were calculated from eqs (90) and (91). (a)
t i j1 and t i j2, date interval; rij, number of samples; Iij, empirical mean inclination; Dij, empirical mean declination; κ∗

i j , unbiased Bayesian concentration factor

(eq. A1.5); Pij, weight for dating error (eq. 28); α95i j , Fisher confidence cone at 95 per cent; YIij, YDij, polar inclination and declination after polar rotation. (b)
S2∗

I i , S2∗
Di, S∗

ID, empirical variances and covariance; σ̂ 2
i , intersite variance estimate; σ̂ti g′

I , σ̂ti g′
D , curve variance estimates for inclination and declination;

Kx, Ky, elliptic concentration factors along the maximal and minimal axes; �, orientation angle of the principal axis of the error ellipse with respect to the
meridian passing through the mean direction; α95x , α95y , elliptic confidence cones; KB, equivalent Fisher concentration factor (eq. 53). (c) Directional results
in the geographical coordinate system, Ii = ĝI , Di = ĝD ; error estimates of inclination and declination, eĝI , eĝD .

(a) Raw data

No. t i j1 t i j2 rij Iij Dij κ∗
i j Pij α95i j YIij YDij

19 −5420 −5220 17 53.40 5.70 113 0.350 3.20 −4.353 4.145

13 −5470 −5370 11 54.53 −1.06 285 0.800 2.50 −3.436 0.106

5 −5490 −5390 24 61.12 −6.50 160 0.600 2.26 3.253 −2.540

10 −5520 −5420 29 59.90 4.13 209 0.300 1.80 2.041 2.693

262 −5530 −5430 28 59.90 −6.20 194 0.200 1.90 5.869 −1.445

261 −5590 −5410 10 63.80 −4.50 180 0.222 3.30 2.025 −2.485

Polar rotation: λ = − 57.966, φ = − 1.243

(b) Bivariate results in polar coordinate system (YI , YD)

S2∗
I i S2∗

Di S∗
ID σ̂ 2

i σ̂ti g′
I σ̂ti g′

D Kx Ky � α95x α95y K or KB

LeGoff 98.800 158.949 153.001 2.090 1.648 121.856
Statistics

Approxim. 13.004 5.570 −5.181 98.296 159.012 152.830 2.095 1.647 121.491
Le Goff

Bayesian 14.505 6.421 -4.761 0.756 -0.947 2.047 196.472 778.340 155.165 6.953 3.493 313.746
bivariate

(c) Bivariate and univariate results in geographical coordinate system (I , D)

Ii = ĝI Di = ĝD err ĝI err ĝD

LeGoff Statistics 57.964 −1.252 1.605 2.636

Approximate Le Goff 57.966 −1.242

Bayesian bivariate 58.022 −1.317 3.998 5.022

Kovacheva’s calculation 58.368 −1.687 3.671 5.172

Sternberg’s calculation 57.508 −1.588 3.998 4.488

Batt’s calculation 58.118 −1.651 3.914 5.128

4.6.3 Case of the common specimen = sample method

In sampling techniques used in the US, Canada, UK, Belgium or Paris, specimens and samples are identical. This means that there is no
subsampling. From a statistical point of view, the analysis passes from the specimen level to the field level by σ 2

ijk = 0 and nijk = 1 (the
specimen is the sample). The squared error at site level in eq. (37) becomes

1

Vi j
= 1∑ri j

k=1
1

σ 2
i j +e2

msi jk

≈
σ 2

i j + e2
msi j

ri j
, (69)

where the mean squared error e2
msi jk

in eq. (35) becomes e2
msi j

= 1
ri j

∑ri j
k=1

σ 2
i jk(l=1)

di jk(l=1)
.
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Table 6. Five synthetic points well grouped with low κ∗
i j . This example is taken from Bucur’s (1994) database, at ti = − 75 ± 120 yr, with geographical

correction (VGP correction), but with all Pij = 1 and κ∗
i j divided by 10 for didactic reasons. See caption of Table 5.

(a) Raw data

No. t i j1 t i j2 rij Iij Dij κ∗
i j Pij α95i j YIij YDij

358 −120 −80 45 65.96 −2.58 182.5 1.000 1.55 −1.233 0.932

307 −100 −80 11 67.28 −2.87 169.6 1.000 3.25 0.082 0.772

308 −100 −50 10 67.88 −8.33 93.1 1.000 4.60 0.706 −1.303

306 −80 −40 14 66.31 −4.01 179.7 1.000 2.80 −0.898 0.345

4 −40 −40 8 68.54 −6.91 162.9 1.000 3.88 1.342 −0.747

Polar rotation: λ = −67.210 φ = −4.869

(b) Bivariate results in polar coordinate system (YI , YD)

S2∗
I i S2∗

Di S∗
ID σ̂ 2

i σ̂ti g′
I σ̂ti g′

D Kx Ky � α95x α95y K or KB

LeGoff Statistics 138.565 146.725 138.515 1.271 1.235 142.528

Approxim. Le Goff 0.927 0.768 −0.664 138.394 146.659 138.410 1.272 1.236 142.407

Bayesian bivariate 0.913 0.571 0.0 0.0 0.0 0.0 2965.62 2965.62 0.0 2.375 2.375 2965.62

(c) Bivariate and univariate results in geographical coordinate system (I , D)

Ii = ĝI Di = ĝD errĝI errĝD

LeGoff Statistics 67.207 −4.858 1.004 2.584

Approximate Le Goff 67.210 −4.869

Bayesian bivariate 66.542 -3.551 1.306 3.281

Kovacheva’s calculation 66.533 −3.601 1.185 2.420

Sternberg’s calculation 67.084 −4.543 1.353 2.916

Batt’s calculation 66.863 −4.240 1.329 2.910

5 F RO M H I E R A RC H I C A L S TAT I S T I C S T O M OV I N G AV E R A G E T E C H N I Q U E

A knowledge of the estimation precision of the curves is essential for dating purposes (Lanos et al. 1999) as well as for the time varying
spherical harmonic analyses in geomagnetism (Hongre et al. 1998). In this section, the confidence (or error) ellipses, cones and intervals are
determined on the geomagnetic parameters of interest (direction, or marginal parameter: inclination or declination) and the plotting technique
of the curves is described. The case of intensity is treated in Appendix A3.

5.1 Confidence interval for the mean direction

From eqs (42) and (60), it is possible to define a confidence ellipse for the vector Yg(ti) by considering the quantity:

T 2 = mi (Yi − Yg(ti ))
T

S∗
i

−1(Yi − Yg(ti )). (70)

T 2 is Hotelling distributed (Anderson 1984) and, in the specific case of two dimensions (here inclination YIi and declination YDi), then
mi −2

2(mi −1) T 2 is F(2, mi − 2) (Fisher) distributed, that is

p(T 2) = (mi − 2)

2(mi − 1)
(
1 + 1

mi −1 T 2
)mi /2 . (71)
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Figure 5. Bucur’s database (1994): 119 well dated reference points (labelled PC in Table 1, Bucur 1994). The raw mean directions (inclination, declination)
are plotted with α95i j confidence cones, between 200 BC and AD 1900.

The cumulative distribution is given by

p
(
0 ≤ T 2 ≤ t2

β H

) = 1 −
(

1 + 1

mi − 1
t2
β H

)− mi −2
2

. (72)

If β is the probability of being outside the confidence region, then it is possible to determine t β H such that p(0 ≤ T 2 ≤ t2
β H ) = 1 − β:

t2
β H = (mi − 1)

[
β−2/(mi −2) − 1

]
. (73)

These results permit a confidence ellipse to be defined in the tangential plane to the sphere by making the following change of variables:

YIi − gI = δ cos ϕ,

YDi − gD = δ sin ϕ.

Letting

bϕ = ŴI i cos2ϕ − 2ŴI Di sin ϕ cos ϕ + ŴDi sin2ϕ, (74)

then T 2 = δ2bϕ , where δ characterizes the size of the error ellipse and bϕ characterizes the shape of the ellipse. The off-set error angle δβ of
the ellipse at (1 − β) confidence level will be given by

δβ = tβ H
1√
bϕ

, (75)

where

tβ H =
√

(mi − 1)
[
β−2/(mi −2) − 1

] ≈
mi →∞

√
−2 ln(β). (76)

δβ depends on the angle ϕ which describes the ellipse.
From eqs (48) and (51), the confidence ellipse centred on the mean direction will be characterized by the angles

α95i x = tβ H /
√

mi Kx = tβ H /

√
1

cos(2�)

[
WIi cos2� − WDi sin2�

]
, (77)

α95iy = tβ H /
√

mi Ky = tβ H /

√
1

cos(2�)

[
WDi cos2� − WIi sin2�

]
, (78)

defined according to the principal axes (x , y) of the error ellipse.

5.1.1 Particular case: the data are concentrated at time ti

In the specific case where all the directions are of the same precise date ti, that is Pij = 1 and σ 2
ti = 0, then WIDi = 0. Hence the variate T2 is

distributed as the sum of two Student–Fisher variates squared. The probability density function is
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Figure 6. Bucur’s database, hierarchical bivariate statistics: overlapping windows of width 100 yr plotted at 25-yr steps with at least three reference points per
window. (a) Stereographic diagram (inclination declination) with ellipse at the 95 per cent confidence level, (b) marginal inclination curve with error band at
95 per cent, (c) marginal declination curve with error band at 95 per cent.

p(T 2) = 2
�2

( mi
2

)
�2

( mi −1
2

) [2(mi − 1)]mi −1
∞∑

n=0

( mi
2

)
n

(
1
2

)
n

(1)nn!
.

T 22n

[2(mi − 1) + T 2]mi +2n , (79)

where (x)0 = 1 and (x)n = �(x + 1)/�(x), �(x) being the gamma function.
It is possible to define a (1 − β) confidence size δβ by integrating with respect to T 2. This size will be equivalent to α95 (Fisher statistics)

when mi is large enough. Finally, the t βN coefficient, factor of the error 1/
√

bϕ can be calculated. This gives the size of the confidence cone
about the mean direction, at a 95 per cent confidence level, with respect to the number mi of sites. For comparison, Table 2 gives the coefficients
for the three bivariate cases, which are the Fisher statistics (t βF ), the bivariate normal distribution (t βN ) and the Hotelling distribution (t β H ),
and for Student t-distribution (t β/2).
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Figure 7. Bucur’s database, stratified bivariate statistics (Le Goff’s method): overlapping windows of width 100 yr plotted at 25-yr steps with at least three
reference points per window. (a) Stereographic diagram (inclination declination) with ellipse at 95 per cent confidence level, (b) and (c) marginal inclination
and declination curves, with corresponding confidence bands.

Recall that t βF for Fisher (1953) statistics is given by

tβF =
√

2(mi − 1)
[
β−1/(mi −1) − 1

] ≈
mi →∞

√
−2 ln(β), (80)

bϕ = 1√
mi K B0

, (81)
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where K B0 is defined in eq. (55). The Fisher confidence cone is thus given by
α95i = tβF/

√
mi K B0. (82)

5.1.2 Marginal confidence intervals

The marginal distribution of YIi and YDi can be expressed explicitly as

p(YIi/YgI (ti )) = 1√
2π

√
WIi WDi − W 2

I Di

WDi
e− 1

2

(
WIi WDi − W 2

I Di

WDi

)
(YIi − YgI (ti ))

2
, (83)

p(YDi/YgD(ti )) = 1√
2π

√
WIi WDi − W 2

I Di

WIi
e− 1

2

(
WIi WDi − W 2

I Di

WIi

)
(YDi − YgD(ti ))

2
. (84)

The confidence intervals for inclination and declination can be defined from the marginal probability density functions. For inclination

for example, the ratio
YI i −YgI (ti )√

WDi
WI i WDi −W 2

I Di

estimated by
YI i −ŶgI (ti)

SI i√
mi −1

, named the Student ratio, follows the Student t-distribution with mi − 1 degrees

of freedom. We have

p(ŶgI (ti ) − eYI i
≤ YgI (ti ) ≤ ŶgI (ti ) + eYI i

) = 1 − β, (85)

where

eYI i
= tβ/2

√
WDi

WIi WDi − W 2
I Di

. (86)

The Student coefficients t β/2 are given in Table 2. When mi becomes large (≥ 30), this ratio tends to the normal distribution. Then
t β/2 = 1.96 can be taken to define a confidence interval of 95 per cent for YgI (ti). However, when mi becomes small, typically less than 10, t β/2

must be taken from the table of Student distribution. The marginal errors on inclination and declination can be clearly related to the elliptic
parameters Kx, Ky and � as

eYI i
= tβ/2

√
WDi

WIi WDi − W 2
I Di

= tβ/2

√
1

mi

[
cos2�

Kx
+ sin2�

Ky

]
, (87)

eYDi
= tβ/2

√
WIi

WIi WDi − W 2
I Di

= tβ/2

√
1

mi

[
cos2�

Ky
+ sin2�

Kx

]
. (88)

More specifically, if WIDi = 0, then the error expressions become

eYI i0
= eYDi0

= eYi0
= tβ/2

√
1

Wi
, (89)

which defines error of the means given by eqs (61) and (62).
Returning to the geographical coordinate system, and in the limits of remarks on concentration factors in Appendix A1.1, the marginal

errors of inclination and declination can be defined as

eĝI = eYi0
, (90)

eĝD = eYi0
/cosĝI . (91)

5.2 Plotting the curves: interpolation, fitting and smoothing

For plotting the curve on a stereographic diagram for inclination–declination, an interpolation by piecewise great circles between regularly
distributed time knots ti is made and confidence ellipses are drawn. The successive ellipses draw a band on the sphere representative of the
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confidence of the mean direction path. For the marginal or univariate cases, an interpolation by a natural cubic spline with continuous first
derivative is applied to the estimated points g(ti) and also to the confidence envelope. The continuous second derivative constraint (that is
an interpolating natural cubic spline) is not used here because, when the number of sites mi is not high, it can lead to unrealistic wiggled
interpolation curves.

The moving average technique comes back to a linear regression, which is drastically dependent on width of the window. However,
there is no obvious argument to choose the optimal width, or to vary it. The width of 100 yr used for the different examples below is only
heuristic! Moreover, using large windows poses some serious problems. The moving average operation constitutes a linear filter: it suppresses
components presenting some certain forms and lets others pass. If a signal has a periodic component of period T , then a moving average
with window width equal to T will filter this periodic component. If c(t) is a linear time function, this will go through the moving average
filter without change. However, if c(t) is any function, then the gravity centres produced by the moving average will lie in the concavity of
the curve. If there are some reversals of trend and if the curve is dissymmetric, then the reversals of the filtered series will be advanced or
delayed. However, if the signal possesses some random fluctuations ε(t), then a moving average operator will divide the variance of ε (t) by
T , hence an attenuation, a smoothing of fluctuations will occur. This is one reason for the use of this technique. However, variates become
highly correlated after that and this correlation can generate some periodic movements absent in the original series, especially when moving
average operation is repeated.

It is emphasized that the moving average treatment does not constitute a global functional estimation of Yg, although it is bivariate by
considering inclination and declination simultaneously. If the physical connection between the geomagnetic elements through time is taken
into account, an additional hypothesis about the global nature of Yg should be introduced into the statistical approach. This question of the
preliminary choice of the function Yg of type (e.g.) penalized spline has been discussed elsewhere (Jupp & Kent 1987; Tsunakawa 1992;
Green & Silverman 1994; Lanos 2001, 2004). Here, the moving average technique assures only a point estimate of the field at each time ti,
not a functional one.

The moving average needs numerous and time-even data. Otherwise, in order to compensate this default, it is tempting to enlarge the
width of the window in order to fill the gaps, thus increasing previous drawbacks. A solution would be to match the width of the window to
the density of points over time. This is possible, but must be in the context of the functional approach mentioned above.

6 A P P L I C AT I O N S

The following examples aim to show the implementation of the hierarchical calculations on true data and to compare the results with those
given by the stratified statistics.

6.1 Examples at sample and site levels

Fig. 3 shows the results of the Fisher statistics and its Gaussian approximation applied to two sites studied in Bulgaria, in the contexts of
stratification and hierarchy, respectively.

The Kovatchevo site (Fig. 3a and Table 3) has inclination and declination for 10 samples derived from 40 specimens coming from the
remains of an ancient fire. The two circles of confidence α95i j were calculated using stratification and hierarchy procedures. As expected,
mean declinations and inclinations do not agree because the number of specimens per sample is not the same. The average result based on
specimens is drawn towards the direction of the samples with greater number of specimens measured. Here, the empirical Fisher concentration
factor κ∗

i j is larger in the case of stratification than in the case of hierarchy (κ∗
i j stratification = 345; κ∗

i j hierarchy = 281).
The Madretz site (Fig. 3b and Table 4) has inclination and declination for 13 samples derived from 37 specimens. As in the previous

example, the mean inclination and declination are closer to the sample direction with the greater number of measured specimens in the case
of stratification. However here, κ∗

i j remains smaller in the case of stratification (κ∗
i j stratification = 190, κ∗

i j hierarchy = 341).
The hierarchy model corrects the distortion coming from the variability in the numbers of specimen from sample to sample. If hierarchical

modelling had not been made, the samples having many specimens would have induced a bias in the mean value.

6.2 Examples at a field level

The following two examples aim to show the effect of hierarchy modelling onto error ellipses obtained at field level.
The first example (Fig. 4a) comprises six reference sites taken from the Bulgarian database (Kovacheva 1997), with overlapping window

t i = 5400 BC ± 50 yr. Site inclination values are taken without geographical correction (the complete statistical results for the different
statistics discussed in the paper are given in Table 5: cf. Sections 2 and 3).

The second example (Fig. 4b) comprises five synthetic sites well grouped with low κ∗
i j . This example is taken from Bucur’s (1994)

database, at ti = −75 ± 120 yr, with geographical correction (virtual geomagnetic pole correction), but with all Pij = 1 and κ∗
i j divided by 10

for didactic reasons. The statistical results are given in Table 6.
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Figure 8. Kovacheva’s database (1997), from 200 BC to AD 1900. Curves obtained with overlapping windows of width 100 yr plotted at 25-yr steps: (a)
marginal inclination curve, (b) marginal declination curve, (c) univariate inclination curve obtained with in situ sites and sets of bricks, (d) univariate intensity
curve. All the curves are with 95 per cent confidence bands.

Mean estimates are not so different, within approximately 1◦. The essential difference lies in the error estimates on the parameters. Larger
errors obtained with the Bayesian statistics are easily explained by the fact that it was the number of sites that was used in the calculation of
the confidence ellipses, instead of the number of samples.

6.3 Examples at a curve level

6.3.1 What is necessary in archaeomagnetic databases?

In the published databases, the necessary parameters are conventionally given at a site level. This means that the measurement squared errors
e2

ijkl and interspecimen variances σ 2
ijk are not given. Thus, it is implicitly supposed that squared errors between specimens are lower than

intersamples variances, that is, the descending hierarchy scheme described in Section 4.5.3 was verified. Usually the Fisherian statistics were
used to obtain the site direction (Iij, Dij). The confidence angle α95i j and the empirical concentration parameter κ∗

i j are given. In order to
compute the statistics, we need the following.

(i) For the site of reference ij.
t i j1, t i j2: time interval attributed to the point of reference (afterwards the centred time tij is defined).
rij: the number of samples contributing to the statistics. The number of samples shown in Kovacheva (1997) is the number of independently
oriented samples and not the total number of specimens measured. Often this is not the case, which can artificially diminish the calculated
α95i j , as was shown in Section 6.1 (Figs 3a and b).

(ii) For the direction (inclination and declination expressed in degrees).
YIij, YDij: values of the inclination and the declination, after geographical correction via the VGP model in order to transfer all the measurements
to the same reference site.
κ∗

i j : concentration factor, related to the confidence angle (in degrees): α95i j = 140 /
√

ri jκ
∗
i j
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Figure 8. (Continued.)

Many sites in the AD period (Burlatskaya 1986; Kovacheva 1997) are only represented by average inclination YIij results obtained from
bricks. In Kovacheva (1997), these results are associated with the standard deviation SIij of the population (without correction for bias) and
not with the standard error of the mean, which is SI i j/

√
ri j . Then, the equivalent concentration factor can be defined as κ∗

i j = ri j −1

ri j S2
I i j

, provided

that inclinations are not near the pole.
(iii) For the intensity (expressed in µT ).

Fij: value of the intensity F after latitudinal correction.
SFij: value of the observed dispersion, not corrected for bias (1 standard deviation).

6.3.2 The calculated curves for France

An application of the algorithms described in Sections 4 and 5 is shown for the French and Bulgarian data. The 119 French data points, labelled
PC in Bucur (1994), are plotted on a stereogram in Fig. 5. The curve obtained using the Bayesian hierarchical statistics (with a minimum
of three reference points per window with 100 yr width, at every 25-yr step, with error date weighting according to eq. (28) is given in
Fig. 6(a) with ellipses at the 95 per cent confidence level. The corresponding marginal inclination and declination curves are shown in
Figs 6(b) and (c). Curves obtained with Le Goff’s stratification statistics are plotted in Figs 7(a), (b) and (c). The mean curves are globally
similar (as outlined in Section 6.2), but the 95 per cent confidence ellipses are very different for the two treatments.

6.3.3 The calculated curves for Bulgaria

The marginal curves for Bulgaria (Kovacheva 1997), in the Bayesian hierarchical bivariate case with window width of 100 yr, are given in
Fig. 8(a) for inclination and in Fig. 8(b) for declination, between 200 BC and AD 1900, for comparison with France (only inclination and
declination data from kilns and hearths were used). The inclination curve (Fig. 8c) has been obtained in the Bayesian univariate case,
considering only inclination values from in situ sites and sets of bricks (Kovacheva 1997). The intensity curve, also computed in the Bayesian
univariate case (Appendix A3), is shown in Fig. 8(d). A 100-yr window was chosen in order to get enough points mi in each window, otherwise
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error bands on the Bayesian hierarchical curves would become very large. However, this enlargement of width leads to undesirable strong
smoothing effects.

Whatever the statistical approach, stratified or hierarchical, the compromise between fitting and smoothing remains difficult to realize
with the moving average technique when the number of reference points is small.

7 G E N E R A L C O N C L U S I O N

A re-examination of sampling procedures led to the introduction of a Bayesian hierarchical model for archaeomagnetic experimental errors,
using the natural hierarchical sampling process commonly implemented by laboratories in the field. The common idea in archaeomagnetism,
as in palaeomagnetism, is to realize a hierarchical sampling that is representative of the heterogeneity of the magnetization in the site and that
permits a check on the presence of possible systematic errors. The main conclusions are as follows.

(i) Calculations in the hierarchical context avoid the disturbance resulting from variability in the number of specimens taken from each
sample and in the number of samples taken from each site. The weighting factors used for calculating the mean geomagnetic field direction
(or intensity) are rather complicated in the case of dating errors, but they are fundamentally based on a combination of a variance resulting
from sources of scatter at field level and a squared error resulting from sampling errors at the lower levels.

(ii) The fact that the results at sample and lower levels are not published in the literature implicitly implies that the average of the
interspecimen squared errors are always less than or equal to the intersample variance in a site. This is the hypothesis of descending hierarchy,
which often seems to be verified in practice.

(iii) Typically, a study of at least 20 samples will give an α95i 5 per cent close to the optimal α95i for a fixed site number mi and if errors at
the different levels are random with zero mean (no systematic errors).

(iv) The precision of the curve itself is essentially controlled by the number mi of reference points per window and by dating errors Pij,
more than by α95i j , if the descending hierarchy is verified.

(v) Error bands of curves never increase with bad data, that is with sites having large α95i j , in the context of random errors. Accordingly,
it is recommended that published databases should always contain all the observed data without any prior selection. From a statistical point
of view, it is much more preferable to do only posterior selections, for example when systematic errors are detected.

(vi) The Bayesian elliptic distribution proposed here is clearly related to the window width. As a result of dating uncertainties, sites
attributed to a window, and so contributing to the field estimation, in fact belong to different time parts of the curve. Consequently, the
principal axis of the ellipse will be, theoretically, tangential to a great circle, thus defining a local regression on the sphere.

Finally, the moving average technique is well adapted to numerous and very well dated data evenly distributed over time, i.e. without gaps.
In this ideal case, the window width can be as small as possible and the present statistical analysis becomes operational. This encourages the
acquisition of much more data at a site level in order to increase significantly the size of the archaeomagnetic data sets, that is, at least 10 sites
for every step (e.g. 10 or 20 yr, depending on the time resolution needed). In practice, this is certainly very optimistic because archaeomagnetic
data remain generally unevenly distributed in time, with large dating errors. On this basis, an other approach has been developed (Schnepp
et al. 2003; Lanos 2004) that puts some prior knowledge on the global nature of the curve to be estimated. This more sophisticated approach
allows the window width to be automatically adapted to the density of points along time, making the points movable inside the dating ranges,
and can take into account some qualitative information such as any stratigraphic constraints provided by archaeology.
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à l’archéomagnétisme, in Datation, XXIe rencontres internationales
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Michel, V., éditions APDCA, Antibes, France, pp. 113–139.
Lanos, Ph., 2004. Bayesian inference of calibration curves : application to

archaeomagnetism, in Tools for constructing chronologies: crossing dis-
ciplinary boundaries, Vol. 177, pp. 43–82, eds Buck, C. & Millard, A.,
Springer-Verlag, London.

Lanos, Ph., Kovacheva, M. & Chauvin, A., 1999. Archaeomagnetism,
methodology and applications: implementation and practice of the ar-
chaeomagnetic method in France and Bulgaria, European J. Archaeology,
2(3), 365–392.

Le Goff, M., 1990. Lissage et limites d’incertitude des courbes de migration
polaire: ponderation des donnees et extension bivariate de la statistique
de Fisher, C. R. Acad. Sci. Paris, 311(II), 1991–1198.

Le Goff, M., Henry, B. & Daly, L., 1992. Practical method for drawing a
VGP path, Phys. Earth. planet. Int., 70, 201–204.

Lindley, D.V., 1990. The 1988 Wald memorial lectures: the present position
in Bayesian statistics, Statistical Science, 5(1), 44–89.

Love, J.J. & Constable, C.G., 2003. Gaussian statistics for paleomagnetic
vectors, Geophys. J. Int., 152, 515–565.

McFadden, P.L. & Reid, A.B., 1982. Analysis of palaeomagnetic inclination
data, Geophys. J. R. astr. Soc., 69, 307–319.

Márton, P., 1996. Archaeomagnetic directions: the Hungarian calibration
curve, in, Palaeomagnetism and Tectonics of the Mediterranean Region,
Vol. 105, pp. 385–399, eds Morris, A. & Tarling, D., Geological Society,
London.

Márton, P., 2003. Recent achievements in archaeomagnetism in Hungary,
Geophys. J. Int., 153, 675–690.

Press, H.P., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1997. Nu-
merical Recipes in C, the art of scientific computing, 2nd edn, Cambridge
University Press, Cambridge, p. 994.

Schnepp, E., Pucher, R., Goedicke, C., Manzano, A., Müller, U. & Lanos, Ph.,
2003. Paleomagnetic directions and Thermoluminescence dating from a
bread oven-floor sequence in Lübeck (Germany): a record of 450 years of
geomagnetic secular variation, J. geophys. Res., 108, 53–66.

Schnepp, E., Pucher, R., Reinders, J., Hambach, U., Soffel, H.C. & Hedley,
I., 2004. A German catalogue of archaeomagnetic data, Geophys. J. Int.,
157, 64–78.

Sternberg, R., 1989. Secular variation of the Archaeomagnetic Direction in
the American Southwest, AD750–1425, J. geophys. Res., 94, 527–546.

Tarling, D., 1983. Paleomagnetism, Chapman and Hall, London and New
York, p. 379.

Tarling, D. & Dobson, M., 1995. Archaeomagnetism: An Error Assessment
of burnt Material Observations in the British Directional Database, J.
Geomag. Geoelectr., 47, 5–18.
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A P P E N D I X A 1

A1.1 Fisher statistics

The formulae are presented at field level (i). Let the mean direction (Iij, Dij) observed at site level be Fisher distributed (Fisher 1953; Fisher
et al. 1987) around the mean direction (Ii, Di), then the probability density function of Iij and Dij will be given by

p(Ii j , Di j ) = Ki

4π sinhKi

[
eKi [cos Ii j cos Ii cos(Di j −Di )+sin Ii j sin Ii ]

]
cos Ii j , (A1.1)
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where Ki is the concentration factor. The marginal probability density functions of Iij and Dij are approximately Gaussian provided that Ki is
large enough and that the mean direction is not too near the geographical pole (Aitken & Hawley 1967; McFadden & Reid 1982; Westphal
& Gurevitch 1996). Typically, for Ki > 50, the mean inclination Ii has to be <70◦. Thus, it is possible to define the two marginal variances
σ 2

I i = 1
Ki

and σ 2
Di = 1

Ki cos2 Ii
and the approximate density:

p (Ii j , Di j ) ≈ 1

2πσI iσDi
e

− 1
2

[(
Ii j −Ii
σI i

)2
+

(
Di j −Di

σDi

)2
]
. (A1.2)

A1.1.1 Estimation

The mean direction (Ii, Di) is estimated from observation of mi sites with directions (Iij, Dij):

Îi = arcsin (zi/Ri ), D̂i = arctan(yi/xi ), (A1.3)

where the mean components are

xi = 1

mi

mi∑
j=1

xi j yi = 1

mi

mi∑
j=1

yi j zi = 1

mi

mi∑
j=1

zi j

xi j = cos Ii j cos Di j yi j = cos Ii j sin Di j zi j = sin Ii j

and where the resultant mean length R̄i is given by R̄i = √
x̄2

i + ȳ2
i + z̄2

i .
The Fisher statistics defines a confidence cone (or error cone) about the estimated mean direction ( Îi , D̂i ), at (1 − β) = 95 per cent level,

in radians, as

α95i = tβF (mi )/
√

mi Ki , (A1.4)

where tβF (x) = √
2(x − 1)[β−1/(x−1) − 1] for x ≥ 2 (Fisher 1953). t βF ≈ 2.45 when x tends to infinity (in fact, this value is nearly achieved

for x > 10; see Table 2). The unbiased (hence symbol ∗) estimation κ∗
i of the concentration factor Ki is given by

κ∗
i =

(
mi − 1

mi

)
1

1 − R̄i

. (A1.5)

A1.2 Gaussian bivariate statistics

The Fisher statistics can be approximated by a bivariate Gaussian statistics in the tangential plane normal to the polar mean direction of a
given level in the hierarchical modelling (here the field level is considered). For this purpose, the coordinate system needs to be changed using
an appropriate rotation (λ = − IR, φ = DR) where IR is as near as possible to Ii, to obtain directions (YIij, YDij) near the geographical equatorial
plane.

Using the rotation (Fisher et al. 1987, p. 32),

R =


 cos λ cos φ cos λ sin φ − sin λ

− sin φ cos φ 0
sin λ cos φ sin λ sin φ cos λ


 , (A1.6)

the new coordinates are


x E
i j

yE
i j

zE
i j


 = R




xi j = cos Ii j cos Di j

yi j = cos Ii j sin Di j

zi j = sin Ii j


 and




x E
i

yE
i

zE
i


 = R




xi = cos Ii cos Di

yi = cos Ii sin Di

zi = sin Ii


 =




0

0

1


 .

The new site direction is

YIi j = arcsin
(
zE

i j

)
, YDi j = arctan

(
yE

i j

/
x E

i j

)
.

In the same way, the polar mean direction becomes (YIi, YDi).
This rotation to the equatorial plane leads to very small differences (YIij − YIi) and (YDij − YDi) provided that the concentration factor

Ki is large enough, more than 50 (half-angle of dispersion cone less than 20◦) and direction (IR, DR) is near to (Ii, Di). In practice, the mean
direction (IR, DR) is deduced from the Fisher statistics applied to site directions (Iij, Dij), weighted by a dating factor Pij (eq. 28).

Consequently, eq. (A1.1) leads to the probability density function

p (YIi j , YDi j ) = Ki

4π sinhKi

[
eKi [cos YI i j cos YI i cos(YDi j −YDi )+sin YI i j sin YI i ]

]
cos YIi j . (A1.7)
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Letting the polar angles,

θi j = arccos[cos YIi j cos YIi cos(YDi j − YDi ) + sin YIi j sin YIi ], (A1.8)

ϕi j = arccos[cos YIi j sin(YDi − YDi j )/|sin θi j |] − π

2
, (A1.9)

with the condition

if (tan YIi j − tan YIi cos(YDi j − YDi ) ≤ 0) then ϕi j becomes ((YDi j − YDi )/|YDi j − YDi |)π − ϕi j . (A1.10)

The probability density function of (θ i j , ϕ i j ) is given by

p(θi j , ϕi j ) = Ki

4π sinhKi

[
eKi cos θi j

]
sin θi j . (A1.11)

If (YIij − YIi) and (YDij − YDi) are small, then the approximations of (θ i j , ϕ i j ) are

θi j ≈ (YIi j − YIi )
2 + (YDi j − YDi )

2, tan ϕi j ≈ (YDi j − YDi )

(YIi j − YIi )
,

that is,

YIi j − YIi ≈ θi j cos ϕi j , YDi j − YDi ≈ θi j sin ϕi j . (A1.12)

Accordingly, the probability density function of (YIij, YDij) is approximately

p (YIi j , YDi j ) ≈ 1

2πσ 2
i

e
− 1

2

[(
YI i j −YI i

σi

)2
+

(
YDi j −YDi

σi

)2
]

with σ 2
i = 1

Ki
, (A1.13)

which defines a Gaussian bivariate statistics (in the tangential plane to the sphere perpendicular to the polar mean direction, in the new
coordinate system). The new variables (YIij, YDij) can be considered as independent Gaussian random variables. The Bayesian calculations in
the paper are made using a rotation R with (λ = −IR, φ = DR) = (− Îi , D̂i ) (eq. A1.3). At the end, we go back to the geographical coordinate
system using the inverse of the matrix (A1.6).

A P P E N D I X A 2

A2.1 The bivariate Le Goff (1992) statistics

The bivariate approach proposed by Le Goff (1990), Le Goff et al. (1992) and Daly & Le Goff (1996), consists of calculating a confidence
ellipse around the mean direction using the inertia tensor concept.

A2.1.1 Fisherian statistics

Each sample is characterized by an inclination Iijk and a declination Dijk , assumed to be Fisher distributed around the mean direction (Iij, Dij)
and with concentration parameter Kij. The associated inertia tensor Tijk is defined by

Ti jk =


 1 − x2

i jk −xi jk yi jk −xi jk zi jk

−xi jk yi jk 1 − y2
i jk −yi jk zi jk

−xi jk zi jk −yi jk zi jk 1 − z2
i jk


 , (A2.1)

where

xi jk = cos θi jk cos ϕi jk, yi jk = cos θi jk sin ϕi jk, zi jk = sin θi jk .

Variables θ ijk , ϕ ijk are defined by eqs (A1.8) to (A1.10), replacing indices (ij) by (ijk), indices (i) by (ij), Y I• by I • and Y D• by D•.
The expected inertia tensor E[Tijk], which is diagonal, is very well approximated by

E[Ti jk] ≈




1 − 1
Ki j

(
1 − 1

Ki j

)
0 0

0 1 − 1
Ki j

(
1 − 1

Ki j

)
0

0 0 2
Ki j

(
1 − 1

Ki j

)

 ≈




Ki j

1+Ki j
0 0

0
Ki j

1+Ki j
0

0 0 2
1+Ki j


 , (A2.2)

provided that Kij is large enough (>50). The trace of the inertia tensor is equal to 2.
The empirical mean tensor for rij samples is defined by

Ti j = 1

ri j

ri j∑
k=1

Ti jk (A2.3)
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and can be diagonalized as Ti j
d
. Using the moment method estimation (MME; Watson 1983), the expected inertia tensor E[Tijk] is estimated

by Ti j
d
. Then, the unknown concentration parameter Kij (assumed large) of the distribution can be given by

K̂i j = (
Ti j

d

max + Ti j
d

int

)/
Ti j

d

min = ri j + ∑
k cos2 θi jk

ri j − ∑
k cos2 θi jk

. (A2.4)

A2.1.2 Bivariate statistics

Each site is characterized by an inclination Iij and a declination Dij, assumed to be distributed as the bivariate elliptic statistics defined by Le
Goff et al. (1992), eq. (52) in this paper, around the mean direction (Ii, Di), and with concentration parameters Kx and Ky and orientation �.
The associated inertia tensor Tij is defined by

Ti j =


 1 − x2

i j −xi j yi j −xi j zi j

−xi j yi j 1 − y2
i j −yi j zi j

−xi j zi j −yi j zi j 1 − z2
i j


 , (A2.5)

where

xi j = cos θi j cos ϕi j , yi j = cos θi j sin ϕi j , zi j = sin θi j .

Variables θ i j , ϕ i j are defined by eqs (A1.8) to (A1.10), replacing Y I• by I • and Y D• by D•.
It can be shown that the expected inertia tensor E[Tij] is very well approximated by

E[Ti j ] ≈




1 −
(

cos2�

Kx
+ sin2�

Ky

)
−

(
1

Kx
− 1

Ky

)
sin 2�

2 0

−
(

1
Kx

− 1
Ky

)
sin 2�

2 1 −
(

sin2�

Kx
+ cos2�

Ky

)
0

0 0 1
Kx

+ 1
Ky


 . (A2.6)

Using the MME, the empirical mean tensor for mi sites,

Ti = 1

WT i

mi∑
j=1

WT i j Ti j , (A2.7)

can be related to the unknown concentration parameters Kx and Ky of the expected inertia. If one poses Kx < Ky, the diagonalization of the
expected inertia tensor and of the empirical mean tensor gives

E[Ti j ]
d ≈




1 − 1
Kx

0 0

0 1 − 1
Ky

0

0 0 1
Kx

+ 1
Ky


 =̂Ti

d =




Ti
d

int 0 0

0 Ti
d

max 0

0 0 Ti
d

min


 , (A2.8)

where the symbol =̂ means estimated by. Hence, the estimation of Kx and Ky:

K̂x = 2
/(

T i
d

max − T i
d

int + T i
d

min

)
,

K̂ y = 2
/(

T i
d

int − T i
d

max + T i
d

min

) . (A2.9)

The diagonal terms Timax
d , Tiint

d and Timin
d are the maximal, intermediary and minimal inertia terms expressed in the eigenvector basis.

The two estimates in eq. (A2.9) give results very closed to those obtained with Le Goff’s formulae (1992, p. 202).

A2.1.3 Mixture of Fisherian and bivariate statistics

Le Goff et al. (1992) define a global tensor T i
R that mixes directions (ijk) from different Fisherian populations (ij), which are distributed as

an elliptic bivariate statistics around a mean direction (Ii, Di). This tensor is obtained using a rotation Rij, function of λ = θ i j and φ = ϕ i j

(eq. A1.6) and applied to each expected tensor E[Tijk] weighted by a coefficient WTij (in practice the dating error Pij):

Ti
R = 1

WT i

mi∑
j=1

WT i j RT
i j (E[Ti jk])Ri j . (A2.10)

The mean direction (Ii, Di) of the magnetic field within time window ti is determined using a diagonalization procedure applied to Ti
R. It

corresponds to the minimal inertia axis. Considering that the mean directions of the sites (ij) are elliptic bivariate distributions, the expected
global tensor Eθi j ,ϕi j [T i

R] is expressed by

E
[
Ti

R] = E[Ti j ] − 1

WT i

mi∑
j=1

WT i j
1

Ki j
I + 1

WT i

mi∑
j=1

WT i j
3

Ki j
E

[
Vi j

]
, (A2.11)
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where I is the identity matrix and Vij = I − Tij. If Kij, Kx and Ky are large, the diagonalized global tensor can be very well approximated by

E[Ti
R
]d ≈ E[Ti j ]

d − 1

WT i

mi∑
j=1

WT i j
1

Ki j
I, (A2.12)

that is,

E[Ti
R
]d ≈




1 − 1
Kx

− 1
WT i

∑
WT i j

1
Ki j

0 0

0 1 − 1
Kx

− 1
WT i

∑
WT i j

1
Ki j

0

0 0 1
Kx

+ 1
Kx

− 1
WT i

∑
WT i j

1
Ki j


 . (A2.13)

The trace of E[ Ti
R]d is equal to 2− ( 1

WT i

∑
WT i j

3
Ki j

), not far from 2 provided that Kij is large. Consequently, an estimate of the two global

concentration parameters KR
x and KR

y are given by the following very good approximations (within a few ‰):

1
K R

x
≈ 1

Kx
+ 1

WT i

mi∑
j=1

WT i j
1

Ki j
,

1
K R

y
≈ 1

Ky
+ 1

WT i

mi∑
j=1

WT i j
1

Ki j
.

(A2.14)

Eq. (A2.14) is equivalent to variances and equal to the sum of the weighted variance of the mean directions of the sites and of the
mean of the weighted intersample variances. These expressions operate as a weighted combination of intersite and intrasite variances, which
corresponds to the stratification statistical approach.

The expected global tensor E[Ti
R]d can be estimated by the diagonalized empirical global tensor TRd

i , following the same procedure as
in eqs (A2.8) and (A2.9). The global mean direction corresponds to the minimal inertia axis.

The orientation � of the ellipse is obtained from Le Goff’s formula (1992, p. 203). It can also be obtained from eqs (A1.8) to (A1.10)
simplified as

� = arccos [cos Iint sin(Dmin − Dint)] − π

2
,

with the condition

if Iint ≤ 0 then � becomes ((Dint − Dmin)/|Dint − Dmin|)π − �, (A2.15)

where (I min, Dmin) is the direction of minimal inertia axis and (I int, D int) the direction of intermediary inertia axis (e.g. Kx < Ky).

A2.1.4 Approximate estimation of Le Goff’s parameters

Using the rotation described in Appendix A1.2, that is (λ = −IR, φ = DR) = (− Îi , D̂i ), the inclination Iij and declination Dij obtained for a
site can be transformed to YIij and YDij. Assuming that weightings Pij and concentration parameters Kij are respectively of the same order, the
minimal inertia axis in the new coordinate system can be very well approximated by the weighted arithmetic mean:

YI min ≈ YIi = 1

Pi

mi∑
j=1

Pi j YI i j , YD min ≈ YDi = 1

Pi

mi∑
j=1

Pi j YDi j . (A2.16)

Applying the inverse rotation (eq. A1.6), the mean direction is obtained in the geographical coordinate system. This approximate direction
is very close to the mean direction given by the minimal inertia axis of Ti

R (see numerical examples in Tables 5 and 6, Section 6.2).
Using the fact that the inertia tensor is related to the variance tensor, the two concentration parameters Kx and Ky can be given by the

following very good approximations (within a few ‰):

1

Kx
≈ 1

cos 2�a

[
S2

I i cos2�a − S2
Di sin2�a

]
,

1

Ky
≈ 1

cos 2�a

[
S2

Di cos2�a − S2
I i sin2�a

] , (A2.17)

where

�a = 0.5 arctan

[
2 SI Di

S2
I i − S2

Di

]
(A2.18)
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and

S2
I i = 1

Pi

mi∑
j=1

Pi j (YIi j − YIi )
2,

S2
Di = 1

Pi

mi∑
j=1

Pi j (YDi j − YDi )
2,

SI Di = 1

Pi

mi∑
j=1

Pi j (YIi j − YIi )(YDi j − YDi ),

Pi =
mi∑
j=1

Pi j . (A2.19)

On the other part, the approximate Fisher concentration factor is estimated from eq. (A1.5) by K̂i j = κ∗
i j .

Eqs (A2.16) to (A2.19) lead to results very close to those obtained directly via the inertia tensor (Tables 5 and 6). Of course, if weightings
Pij and concentration parameters Kij are very different from site to site, the full tensorial approach is needed.

A P P E N D I X A 3

A3.1 Probability density function of the intensity

Following the same approach as in Section 4, the distribution of the empirical mean intensity Fi at field level is a hierarchical Gaussian
statistics around the unknown intensity gi = gFi of the magnetic field, univariate, analogue to eq. (42):

p(Fi |gFi ) =
√

mi

σB Fi

√
2π

exp

[
−1

2
mi

(
Fi − gFi

σB Fi

)2]
, (A3.1)

where σ 2
BFi is the Bayesian variance, which characterizes the dispersion of the empirical mean intensity around the true (unknown) mean

intensity. This variance appears as the inverse of a harmonic mean of variances σ 2
Fi, σ 2

Fij and σ 2
Fijk , which are defined at field, site and sample

levels, respectively:

σ 2
B Fi = mi

WFi
= mi∑mi

j=1
Pi j

σ 2
ti g′2

Fi +σ 2
Fi + 1∑ri j

k=1
1

σ 2
Fi j +

σ2
Fi jk +e2

ms Fi jk
ni jk

. (A3.2)

A3.2 Estimation of the intensity parameters

(i) At specimen level, an unbiased estimation of the intermeasurement variance σ 2
Fijkl will be given by

σ̂ 2
Fi jkl = S2∗

Fi jkl , (A3.3)

where

S2∗
Fi jkl = 1

di jkl − 1

di jkl∑
m=1

(Fi jklm − Fi jkl )
2

and Fi jkl = 1

di jkl

di jkl∑
m=1

Fi jklm,

and a mean squared error at specimen level can be calculated:

e2
msi jk

= 1

ni jk

ni jk∑
l=1

σ 2
Fi jkl

di jkl
.

(ii) At sample level, an unbiased estimation of the interspecimen variance σ 2
Fijk will be given by

∧︷ ︸︸ ︷
σ 2

Fi jk + e2
msi jk

= S2∗
Fi jk, hence the Bayesian solution: σ̂ 2

Fi jk = max
(
0, S2∗

Fi jk − e2
msi jk

)
, (A3.4)

where

S2∗
Fi jk = 1

ni jk − 1

ni jk∑
l=1

(Fi jkl − Fi jk)
2

and Fi jk = 1

ni jk

ni jk∑
l=1

Fi jkl .

(iii) At site level, the intersample variance σ 2
Fij is deduced from

1̂

VFi j
= 1̂∑ri j

k=1 VFi jk

= 1̂∑ri j
k=1

1

σ 2
Fi j +

σ̂2
Fi jk +e2

msi jk
ni jk

= S2∗
Fi j

ri j
, (A3.5)
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where

S2∗
Fi j =

(
ri j

ri j − 1

)
1

VFi j

ri j∑
k=1

VFi jk(Fi jk − Fi j )
2

and Fi j = 1

VFi j

ri j∑
k=1

VFi jk Fi jk .

(iv) At field level, the intersite total variance (σ 2
Fi + σ 2

ti g′2
Fi) is deduced from

1̂

WFi
= 1̂∑mi

j=1 WFi j
= 1̂∑mi

j=1
Pi j

σ 2
ti g′2

Fi +σ 2
Fi + 1̂

VFi j

= S2∗
Fi

mi
, (A3.6)

where

S2∗
Fi =

(
mi

mi − 1

)
1

WFi

mi∑
j=1

WFi j (Fi j − Fi )
2

and ĝF (ti ) = Fi = 1

WFi

mi∑
j=1

WFi j Fi j .

The Bayesian resolution of eqs (A3.5) and (A3.6) is carried out by the bisection method. If all the sites are of the same time ti, then σ 2
ti = 0

and the intersite variance σ 2
Fi can be estimated.

A3.3 Confidence interval for the intensity

The confidence interval for intensity is determined using the Student t-distribution of Fi −ĝF (ti)
SFi√
mi −1

. We have

p(ĝF (ti ) − eYFi
≤ gF (ti ) ≤ ĝF (ti ) + eYFi

) = 1 − β, (A3.7)

where

eYFi
= tβ/2

√
1̂

WFi
= tβ/2

√
σ̂ 2

BFi

mi
. (A3.8)

The Student coefficients t β/2 are given in Table 2.
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