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ABSTRACT

Le Goff, M., Henry, B. and Daly, L., 1992. Practical method for drawing a VGP path. Phys. Earth Planet. Inter., 70:

201-204.

A statistical method is proposed for the smoothing of polar wander paths and for giving their confidence limits by the
mean of successive ellipses. The method is fully parametrical and is based on the relations between the inertia matrix and
the parameters of the Fisher distribution, from which a bivariate form is deduced. An elementary tensorial calculation gives
the parameters of the confidence ellipse around a vectorial weighted mean, for any unimodal set of vectors. This model can
also be used for other statistical tests, wherever the rotational symmetry hypothesis is not consistent (i.e. the fold test).

1. Introduction

Drawing a polar wander path requires the
determination of the averaged direction of a
weighted sum of vectorial means derived from
Fisher’s spherical distribution. Several methods
have already been proposed (Van Alstine and De
Boer, 1979; Thompson and Clark, 1981; Harrison
and Lindh, 1982; Irving and Irving, 1982). The
new one, developed by Le Goff (1990), is elabo-
rated around a bivariate extension of the Fisher
distribution. The parameters of this model are
estimated directly from the terms of the inertia
tensor which can be associated to any vectorial
set. All of these vectorial sets can be of miscella-
neous kinds: unit vectors, weighted vectors,
weighted Fisher means or inertia tensors. We
may thus easily introduce many types of weight-
ing for any chronological spherical path, and pro-
pose this ‘Fisher-like’ model as a test for the
rotational symmetry hypothesis.

After analysis of the mathematical model, some
examples of the practical use of the method are
given.

2. Mathematical model

The mathematical development is done in geo-
graphical spherical coordinates (colatitude  and
longitude ¢) in an orthonormal system (Ox, Oy,
0z).

(1) As for paleomagnetic data, the basic as-
sumption is a strong concentration around the
mean direction (8,, ¢,) of N vectors (6, ¢,)
bearing a unit mass m; at their end.

First, let us consider that the dispersion fol-
lows the Fisherian probability model around the
Oz axis (6, =0): F(Q, ) =[k/47m sh(k)]
exp(x cos 8) (Fisher, 1953). With z = cos 0,
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x=sin 6 cos ¢ and y =sin 0 sin ¢, the inertia
tensor, which here is diagonal, can be written:

N - lez - inyi - inzi
D=| - inyi N - Z)’iz - Zy,'Zi
- inzi - Zyizi N - Zzzz
0

0 (1)

A 0

=|0 B
0 0 C
where A+ B+ C=2N and 4 =B.

Using the approximations 6 =sin # and 1 —
8%/2 = cos 6, the relations between the diagonal
terms (A, B, C) of D (1) and the estimator k =
N/(N — X cos 6,) of the Fisher concentration pa-

rameter « (Fisher, 1953; Mardia, 1972; Watson,
1983) can be established:

2N
“=1vx
and
kN
A=B=m (2)

By many samplings, the validity limits of the
relations of eqn. (2) have been proved at 3%
departure for k > 8 and at 0.5% for k > 30 when-
ever N > 10.

In a second step, all the terms of the tensor /,
in the general case of a mean direction (paleo-
pole) of latitude A and longitude ¢, are deter-
mined by application of the following rotation R.

sin Acos ¢ sinAsing —cose
R= —sin ¢ cos ¢ 0
cOos A cos ¢ COS A sin ¢ sin A
and
I=R'DR (3)

(2) The problem of the weighted summation
of several populations, each characterized by a
tensor /;, can thus be solved as a tensorial addi-
tion (J, = Zw;l), w; being the weight given to the
jth population. The minimal eigen direction
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(A ins, ®Pmin) Of I is then a good estimator of the
mean direction of this new population (Watson,
1983), but the tensor has now lost its rotational
symmetry (A, # B,).

(3) Let the diagonal tensor of I, be D,, the
eigen directions of which being Ox, Oy, Oz, and
keep the hypothesis of small scattering around
Oz (8, = 0). Remember that, now, N, = Lw; and,
for reading clarity, the subscript t will be removed
(N=N, A=A,,...). Let us apply the Gauss dis-
tribution in the (Ox, Oy) projection plane of the
end of the (fictive) vectors (8;, ¢;, m, = 1) repre-
senting the new non-rotational population:

2 2
27o,0, 2007 2oy

1 x2 y2
G0, 0,,0)=z———exp— |55+ 57

4

It appears that the variances of eqn. (4) o2 =
Tx?/N and ¢} =ZLy?/N are already expressed
in the tensor D (1): A=N—-Xx?=N{1-0o2).
Since A + B = 2N, this leads to the relations

1 (B+4)
k=T c o)
1 (B+4)
=T Cra-B) ®)

which give, as a function of the eigenvalues
(A, B, C) of the inertia tensor, the parameters
k, and k,, reciprocal of the variances in the
plane.

Multiplying the numerator and denominator of
eqn. (4) by exp(k, cos® ¢ +k, sin’ ¢) and using
x=0cos ¢, y=20sin ¢, and (1 — 82/2) = cos 6,
we may write:

P(0, k,, k)
V (kk,)

T2 exp(k, cos’ ¢ +k, sin® ¢)

Xexp(k, cos? ¢ +k, sin® ¢) cos 0 (6)

which is a particular form of Fisher statistic where
k is a function of ¢.

(4) These developments lead us to propose a
bivariate probability function which can be seen
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as the unimodal form of the Bingham distribution
(Onstott, 1980):

P(0, k., k)

=Cl ey exp[(xx cos? ¢+, sin? @) cos 0]
(7)

The successive eqns. (1)-(7) clearly show that
K, and «, may be estimated, in the usual case of
small scattering, by k, and k, of the formulae of
eqn. (5). In the general case of any dispersion on
the sphere, the theory of this probability function
has yet to be elaborated to define the best esti-
mators of its parameters, and the exact confi-
dence surface around the mean direction. For
paleomagnetic usage, Le Goff (1990), after inte-
grating C(k,, ,), showed and verified by numer-
ical calculations, using formulae similar to that of
the Fisher case, that the following relations are
well adapted for the computation of the 95%

* % *\[
2 B0
* y o]
6
* W50 A
N * 180
N *
(a) )

Fig. 1. (a) Definition of Q (eqn. (9)). (b) Successive 95%
confidence ellipses showing the polar wander path between
130 and 200 Ma for the North American continent, obtained
with the Harrison and Lindh (1982) selection. The 27 VGP
(*), intercepted by a 30 Ma sliding window, are weighted by
their age incertitude interval combined with the authors’
weighting factor.
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confidence ellipse axes around the mean direc-
tion:

(x) =2 ()
ags(x) = —
(ke Zwy)
and
140
ags(¥) = 7~V (") (8)

‘[(kyzijj)

The orientation of the ellipse, with respect to the
meridian crossing the mean direction, is given,
from the eigen directions of /,, by the angle ()
(Fig. 1(a)):

Pint ~ Pmin sin /\im
O=———""_Arccos———,
| Pint — Pmin I cos Amin
with A, like that |, — @min | <7 (9)

3. Recapitulation of the practical method for the
calculation of the parameters of a weighted
sum of Fisherian distributions

Let us consider a set of Fisherian distributions,
like VGP, known by five parameters: the latitude
A;, the longitude ¢;, the concentration parameter
k;, the number of samples or sites N, (Nj =1if
this number is not an element of weighting) and
the statistical weight w; for this jth distribution
(for the apparent polar wander path (APWP), w;
can be in a function of the age uncertainty):

1) A4 7» B;, C; of the tensor D, are calculated
using eqn. (2).

(2) The relations of eqn. (3) allow R;, R/ and
I,=R/D,R; to be obtained; then the weighted
tensor is /= Xw;l,.

(3) The mean direction (A, ¢,;,) and the
other eigen directions are calculated by diagonal-
ization of /,. The terms A,, B, and C, are known.

(4) k, and k, are obtained by eqn. (5), then
aos(x) and ay(y) by eqn. (8) and finally the
angle ) by eqn. (9).

In the case of a set of unit vectors (i.e. magne-
tization directions), a tensor / (not diagonal) can
be calculated by eqn. (1) and only steps (3) and
(4) are to be followed.



204
4. Applications

In addition to the application for drawing a
paleomagnetic apparent polar wander path such
as in Fig. 1(b), drawn using the Harrison and
Lindh data (1982), this bivariate unimodal distri-
bution is a new easy tool for other directional
tests. Care should be taken in the use of this
method, by keeping in mind the initial assump-
tion of small scattering, and above all that the use
of tensorial calculations can cause axis reversals.
Nevertheless, in the case where both reversed

and normal directions are present, the use of this .

tensorial method is the best way to supply to-
gether the mean direction (Onstott, 1980; Fisher
et al.,, 1987) and the ‘Fisher-like’ precision pa-
rameters without the need for tables or factors of
conversion.

As in the comparison of two dispersions, the
table of variance ratios (k,/k ) for a set of N
samples, Fyn_1yxn-1) €an be used, to test the
significance level of the rotational symmetry hy-
pothesis.
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Fig. 2. Example of unfolding: the in situ confidence ellipse is
elongated perpendicularly to the fold mean axis whereas,
after unfolding, the rotational asymmetry is not significant.
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Figure 2 shows the unfolding of 27 remanent
magnetic directions of a Permian formation of
Saint-Affrique (Diego Orozco, 1990). The distri-
bution of the in situ directions was elongated
perpendicularly to the fold mean axis with &, /k,
= 4.1 (Fs, 5, = 1.6), which is significantly non-ro-
tationally symmetric. After dip correction, k,/k,
= 1.3, which means that the rotational symmetry
can not be rejected. The use of this method, in
conjunction with a correlative fold test (Enkin,
1990; McFadden, 1990), provides valuable infor-
mation on the completion or not of a dip correc-
tion.
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