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Abstract We present an automatic P- and S-wave onset-picking algorithm, using
kurtosis-derived characteristic functions (CF) and eigenvalue decompositions on
three-component seismic data. We modified the kurtosis CF (Saragiotis et al., 2002)
to improve pick precision by computing the CF over several frequency bandwidths,
window sizes, and smoothing parameters. Once phases are picked, our algorithm
determines the onset type (P or S) using polarization parameters, removes bad picks
using a clustering procedure and the signal-to-noise ratio (SNR) and assigns a pick
quality index based on the SNR.

We tested our algorithm on data from two different networks: (1) a 30-station,
100 × 100 km array of mostly onland wideband seismometers in a subduction context
and (2) a four-station, 7 × 4 km array of ocean-bottom seismometers over a midocean
ridgevolcano.We compared picks from the automatic algorithmwithmanual and short-
term average/long-term average (STA/LTA)-based automatic picks on subsets of each
dataset. For the larger array, the automatic algorithm resulted in more locations than
manual picking (133 versus 93 locations out of 163 total events detected), picking
as many P onsets and twice as many S onsets as with manual picking or the STA/
LTA algorithm. The difference between manual and automatic pick times for P-wave
onsets was 0:01� 0:08 s overall, compared with −0:18� 0:19 s using the STA/LTA
picker. For S-wave onsets, the difference was −0:09� 0:23 s, which is comparable to
the STA/LTA picker, but our picker provided nearly twice as many picks. The pick ac-
curacy was constant over the range of event magnitudes (0.7–3.7Ml). For the smaller
array, the time difference between our algorithm and manual picks is 0:04� 0:17 s for
Pwaves and 0:07� 0:08 s for Swaves.Misfit between the automatic andmanual picks
is significantly lower using our procedure than using the STA/LTA algorithm.

Introduction

Earthquake hypocenter locations are needed to map
existing faults and to document their activity, both of which
are of prime importance in defining hazards and forecasting
events. The number of seismic stations around the world is
rapidly growing, which should provide much more detailed
information about seismically active regions, but only if seis-
mic events can be accurately and uniformly picked on each
station. Automatic picking procedures (APP) are needed to
handle the larger datasets and they must be reliable, precise,
and capable of distinguishing different phase onsets and
adapting to different site and/or instrument characteristics.
Compared with manual picking, APP save time and should
be more consistent, because manual picks can differ between
analysts (Freedman, 1966; Zeiler and Velasco, 2009).

In seismology, the most commonly used event detection
algorithm is the short-term average/long-term average
(STA/LTA) detector proposed by Allen (1982), which is based
on the ratio of the two averages calculated on sliding

windows over the trace. This algorithm is rapid and remains
useful for detecting events in continuous databases, but it
generally gives significantly different results from manual
picking (Saragiotis et al., 2002). The STA/LTA algorithm can
be applied to raw traces or to derived traces function called
characteristic functions (CF). Baer and Kradolfer (1987) im-
proved the STA/LTA by introducing the envelope function as
the CF and by using a dynamic threshold to detect signals
buried in noise.

Takanami and Kitigawa (1993), Sleeman and van Eck
(1999), and Leonard and Kennett (1999) proposed another
approach for automatic picking, derived from auto-regressive
(AR) methods. These methods involve calculating AR mod-
els for two stationary segments. These two models will be
most different, when one contains only seismic noise and
the others mostly signal. The Akaike Information Criterion
(AIC; Akaike, 1974), which indicates the unreliability of
the model fit, is then used to precisely pick the onset. These
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methods have not been applied to many datasets, because
the calculations are computationally expensive and because
some arrivals are not necessarily associated with im-
portant changes in their frequency content and so are not
detected.

Saragiotis et al. (2002) was one of the first to apply
higher order statistical functions to seismic traces, introduc-
ing the skewness and the kurtosis functions to phase picking.
Küperkoch et al. (2010) added the AIC to Saragiotis’method
and developed a quality-weighting scheme for picks. Both
methods provide better accuracy than the STA/LTA and the
Baer and Kradolfer (1987) methods.

Nippress et al. (2010) introduced the concept of tandem
automatic pickers by combining either the STA/LTA or the
predominant period time-domain estimation method (Tpd)
(Hildyard et al., 2008) with the kurtosis characteristic func-
tion developed by Saragiotis. Improvement of picking accu-
racy is significant, but a parameter optimization step is
required for each station prior to automatic picking.

We present a new algorithm for automatically picking
onsets based on the kurtosis method. We focus on picking
accuracy and on the simplicity of implementation, by elimi-
nating operator-intensive phases. We pay particular attention
to automatically identifying both S and P waves, because
combined S and P picks can significantly improve hypocen-
ter locations (Gomberg et al., 1990). The steps of the method
are (1) computation of the kurtosis CF for each component,
(2) modification of the CF to improve pick accuracy, (3) dif-
ferentiation between S and P waves using the wavefield
polarization, (4) estimation of the quality index using the
signal-to-noise ratio (SNR), (5) rejection of erroneous picks
using clustering and distribution analysis, and (6) calculation
of the signal amplitude. Each step has only a few variable
parameters, simplifying the algorithm’s use.

The algorithm relies on three-component data in stage 3,
to differentiate P and S waves and to reject surface waves
and noise spikes. Many present-day networks use three-
component seismic sensors, but we also show a case in which
we modified the algorithm to identify P and S waves using
single component data.

We applied our scheme to a network of 30 wideband
seismometers in the Vanuatu region, where a large number
of earthquakes are generated by the subduction of the
Australian Plate under the North Fiji basin (Pelletier et al.,
1998). We also applied the automatic picker to a network of
four short-period ocean-bottom seismometers (OBS) de-
ployed in the Azores region to study micro seismicity in the
vicinity of the mid-Atlantic ridge (MAR) in the framework of
the monitoring of the mid-Atlantic ridge (MoMAR) project
(Colaço et al., 2011; Crawford et al., 2013). In both cases,
we compared automatic and manually picked onsets to test
the quality of the automatic picker and the efficiency of the
quality index assignment, and we compared the performance
of our picker with that of an STA/LTA picker.

Mathematical Background

Kurtosis

The kurtosis is a statistical value characterizing the
shape of a given distribution. It is a positive scalar defined
as the standardized fourth moment about the mean. Using a
probabilistic notation, the kurtosis K is

EQ-TARGET;temp:intralink-;df1;313;647K≡
E��X − μ�4�

fE��X − μ�2�g2 �
m4

σ4
; �1�

in which X is a random variable, E is the expectation oper-
ator, μ is the mean, m4 is the fourth central moment, and σ is
the standard deviation. When considering a numerical signal
of n samples, represented as x � fx1; x2;…; xng, the discre-
tized form of equation (1) is

EQ-TARGET;temp:intralink-;df2;313;546K �
1
n

Pn�1
i�1 �xi − �x�4

�1n
Pn�1

i�1 �xi − �x�2�2 ; �2�

in which �x is the mean over the n samples.
The kurtosis is 3 for a normal (Gaussian) distribution

(DeCarlo, 1997) and generally increases for a non-Gaussian
distribution. Seismic-wave onsets temporarily generate a
non-Gaussian wavefield that rapidly increases the kurtosis,
which we can use to accurately pick the onset times.

Polarization Analysis

The polarization of wave onsets depends on the wave
type (e.g., surface or body waves) and orientation. We de-
scribe here two polarization parameters that can be used to
distinguish between P and Swaves, surface waves, and noise.
Three-component data are required to calculate these param-
eters: we assume the data are composed of three orthogonal
ground-motion recordings corresponding to the east, north,
and vertical components (respectively noted X, Y, and Z).

The first step is to compute the 3 × 3 covariance matrix
over the three components using an N-samples sliding
window.

EQ-TARGET;temp:intralink-;df3;313;268C �
Cov�X;X� Cov�X; Y� Cov�X; Z�
Cov�Y; X� Cov�Y; Y� Cov�Y; Z�
Cov�Z; X� Cov�Z; Y� Cov�Z; Z�

0
@

1
A; �3�

in which the covariance between X and Y is defined as

EQ-TARGET;temp:intralink-;df4;313;208Cov�X; Y� � 1

N

XN
i�1

xiyi: �4�

The next step is the principal component analysis using
eigenvalue decomposition. We search for the eigenvalues
�λ1; λ2; λ3� associated with the unit eigenvectors �U1; U2;
U3� that satisfy

EQ-TARGET;temp:intralink-;df5;313;120C × Ui≡λiUii∈�1; 2; 3�: �5�

Because the covariance matrix in equation (3) is sym-
metric and composed of real elements, the eigenvalues are
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real and the eigenvectors form an orthogonal base. We
organize eigenvalues so that λ1 ≥ λ2 ≥ λ3. λiUi are called
the principal axes of the polarization ellipsoid.

We can now calculate two polarization parameters: the
degree of rectilinearity (Jurkevics, 1988) and the dip of maxi-
mum polarization (Vidale, 1986). The first polarization
parameter, the degree of rectilinearity, is defined as

EQ-TARGET;temp:intralink-;df6;55;366Rec≡1 −
�
λ2 � λ3
2λ1

�
: �6�

For example, Rec � 0 for circular polarization �λ1 �
λ2 � λ3�, and Rec � 1 for rectilinear polarization (λ1 � 1

and λ2 � λ3 � 0). P and S waves are body waves, so their
degree of rectilinearity is close to 1.

The second polarization parameter, the dip of maximum
polarization, is defined as

EQ-TARGET;temp:intralink-;df7;55;250Dip≡ tan−1
�

U1�3������������������������������������
U1�2�2 �U1�1�2

p
�
: �7�

Possible values range from −90° to �90°. A horizontal
maximum polarization vector has dip � 0°.

The Characteristic Function

We describe here the steps we follow to create the final
CF used in the APP. The goal of this CF is to allow accurate
and precise picking of all onsets on a section of the trace. We
consider a single seismic trace represented by x � fx1;
x2;…; xng. The CF is calculated over a sliding window
on the signal: let T be the size, in seconds, of this window.
The number of samples in the windows is therefore N �

�T=Δt� � 1, in which Δt is the sample interval. The central
moment of order d at sample k can be written as (Küperkoch
et al., 2010)

EQ-TARGET;temp:intralink-;df8;313;414md�k� �
1

N

XN
i�1

�xk−i�1 − �xk�d with kϵ�1;…; n�; �8�

in which �xk represents the mean of the signal from sample
(k − N � 1) to k. We see here the dependency of the central
moment on the size of the windowN: the biggerN is, the less
sensitive the central moment is to transient variations within
the trace.

To reduce computation time, we transform the signal
into a zero-mean process, which reduces equation (9) to

EQ-TARGET;temp:intralink-;df9;313;284md�k�≃ 1

N

XN
i�1

�xk−i�1�d � �xd�k�: �9�

We then define the first kurtosis CF at sample k as

EQ-TARGET;temp:intralink-;df10;313;223F1�k� �
�x4�k�

��x2�k��2
: �10�

When the sliding window integrates the first samples
of a seismic phase onset, the change in the signal distribu-
tion from Gaussian to non-Gaussian causes F1 to increase
(Fig. 1).

The best alignment with manual picks is obtained when
the automatic pick corresponds to the very beginning of this
increase, before its maximum value. Because no simple
mathematical tools exist to directly detect this change of
behavior, we apply a succession of transformations to the
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Figure 1. Example of a kurtosis characteristic function calculated on a seismic trace. In this example, a 5 s window is used. (a) Seismic
trace (filtered between 3 and 45 Hz for clarity). The horizontal bars indicate the three kurtosis windows examined below. (b) Kurtosis and
histograms of sample distributions for the three kurtosis windows. The solid line shows the best-fitting Gaussian curve, and dashed lines show
the outer bounds of sample values. (c) The resulting kurtosis characteristic function.
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initial CF in order to isolate the initial onset and to identify
the strongest onsets (Fig. 2).

The first transformation essentially cleans the initial CF
of all strictly negative gradients (Fig. 2c), because only
positive gradients characterize the transition from noise to
a coherent signal. The transformation is

EQ-TARGET;temp:intralink-;df11;55;390

F2�k� 1� � F2�k� � δ�k� × dF1�k�

with

8>>>><
>>>>:

F2�1� � F1�1�
dF1�i� � F1�i� 1� − F1�i�
δ�i� � 1 if dF1�i� ≥ 0

δ�i� � 0 else

:

�11�
The second transformation removes a linear trend from

F2, so that the first and last values equal zero (Fig. 2d). In this
way, the onsets become local minima of the CF. The trans-
formation is
EQ-TARGET;temp:intralink-;df12;55;228

F3�k� � F2�k� − �a · �k − 1� � b�

with
�
a � F2�n�−F2�1�

n−1

b � F2�1�
: �12�

The final transformation makes the amplitude of the
minima amplitude scale with the total change in the kurtosis
that follows, so that the greatest minima correspond to the
greatest onset strengths (Fig. 2e). The transformation pushes
the CF values down by the amplitude of the next maximum
and sets remaining positive values to zero:

EQ-TARGET;temp:intralink-;df13;55;98T�k� � F3�k� −Mi�1 if kϵ�si; si�1� �13�
and

EQ-TARGET;temp:intralink-;df14;313;733F4�k� � T�k� if T�k� < 0; 0 otherwise; �14�
in which fM1;M2;…;Mmg are the local maxima of F3, lo-
cated at samples fs1; s2;…; smg.

Picking minima on F4 gives a good first estimate of
phase onsets, but the picker accuracy is considerably im-
proved by adding two intermediate stages: (1) averaging
of F3 over multiple window lengths and frequency band-
widths; and (2) sequential onset picking—from long-to-short
time scales, using smoothing windows on F4.

The first stage addresses a common problem of auto-
matic pickers: their accuracy and reliability depend on the
frequency bandwidth used to filter the data and the size of
the sliding window used to compute the CF. We do not know
a priori the frequency of the event onsets, and this frequency
may change between events. Using only one frequency-
window pair, we may lose important information in the
signal and introduce frequency-dependent artifacts. To avoid
this problem, we compute F3 over p different frequency
bands (parameter BW, Tables 1 and 2) and l different sliding
windows (parameter WS, Tables 1 and 2) and then calculate
the average function (F′

3) over the l × p resulting CFs. This
average function reduces artifacts associated with the indi-
vidual window lengths and frequency bands and gives a
much clearer pick of the phase onsets (Fig. 3).

The second stage helps to identify the first arrival in
complicated or emergent onsets. In these cases, an onset cre-
ates several closely grouped minima on F4 rather than one
big minimum. This is particularly common for emergent
arrivals, whose kurtosis increases progressively before reach-
ing its maximum value. To accurately identify the first mini-
mum in the group we adopt a long-to-short time-scale
approach. We apply several smoothing windows to F′

3, then
compute F4 for each smoothed function. The set of smooth-
ing windows is user defined, but the longest window should
not exceed the minimum separation between P and S onsets.
We detect all onsets on the smoothest F4, then pick the clos-
est onsets on the next smoothest version of F4, and repeat
until we pick the corresponding onsets on the least smoothed
version of F4. Figure 4 shows functions F′

3 and F4 for differ-
ent smoothing parameters when zooming on an onset. This
stage significantly improves the picking reliability and
allows our algorithm to be applied to a wide range of non-
impulsive onsets.

P–S Characterization

Once we have created the CF that best allows us to pick
the onsets on a single trace, we need to determine whether
those onsets correspond to surface waves or body waves or if
they are not seismic waves at all. If the onsets correspond to
body waves, we must differentiate P and S onsets. We as-
sume the rays arrive at the stations with a small incidence
angle to the vertical axis, meaning the P waves will have
mostly vertical motions and the S waves mostly horizontal
motions. This assumption will be true on most stations if
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Figure 2. The stages involved in calculating the characteristic
function for picking offsets: (a) filtered zero-mean Z seismogram
displaying two strong onsets; (b) F1, kurtosis; (c) F2, removal of
all negative slopes; (d) F3, linear correction; and (e) F4, pushing
down all values by the amplitude of the following maximum, then
removing all positive values.
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the network geometry is adequate and can be verified for
each station a posteriori, after hypocenter inversion. We
compute the dip and rectilinearity using a sliding window
of size Wpol (Tables 1 and 2) on the three components
X, Y, and Z. Further details about how to correctly choose

the polarization window size are given at the end of this sec-
tion. We then define the dip–rectilinearity function as

EQ-TARGET;temp:intralink-;df15;313;376DR�k�≡Rec�k� × sign�α × sin��Dip�k��� − Rec�k��; �15�

in which the parameter α (Tables 1 and 2) is a user-defined
weighting factor between 1 and 2 that depends on the clarity
of the dip and rectilinearity: a value of 2 would be appropri-
ate for perfectly polarized data, and 1 corresponds to poorly
polarized data. The rectilinearity parameter helps to separate
body waves (Rec�k� close to 1) from background noise and
surface waves, whereas the dip parameter distinguishes be-
tween P and S waves. P waves have high dip values due to
their polarization along the near-vertical incidence ray
(sin�jDip�k�j� is close to 1). In contrast, S waves are polar-
ized horizontally (SH and SV), and sin�jDip�k�j� is close to 0.
In a perfect case, we could take α � 2, and DR�k� will be 1
for Pwaves and 1 for Swaves. Practically, because the waves
are not perfectly linearly polarized and the incidence is not
exactly vertical, we have to choose a smaller α and define
two thresholds, TP and TS (Tables 1 and 2), with 0 < TP <
1 and TS ≈ −TP. The onset is declared P if the average of the
window centered on the pick is greater than zero and
DR > TP somewhere in the window. The onset is declared
S if the average of the window centered on the pick is less
than zero and DR < TS somewhere in the window. If neither
case is satisfied, the pick is rejected (Fig. 5).

Table 1
Description of Parameters Used in the APP

Step Parameter Description Comments

SNR-based trace selection Nb (s) SNR prewindow Long enough to represent preonset noise energy
Na (s) SNR postwindow Long enough to cover onset energy
Wc (s) New analysis window Section of the trace that contains the P–S onsets
vc (−) Maximum number of desired onsets If (number of onsets in Wc) > vc then the trace is

rejected, usually ≤2
TSNR (%) SNR threshold (% of max SNR) 20%, normally do not change
SNRmin (−) Minimum SNR to accept pick ≥1, generally less than 5

CF construction BW (Hz) F3 Frequency band Usually two: 1) full useful data bandwidth
and 2) bandwidth of typical arrivals

WS (s) F3 Window lengths Several equally spaced up to average P–S delay
Ns (samples) Smoothing window lengths From 1 to just below the average P–S delay divided

by the sampling rate, spaced closely enough to not
jump onsets between smoothing windows

Polarization analysis TP (−) P threshold Between 0.5 and 1: the higher the numbers the more
selective the analysis

TS (−) S threshold Approximately −TP

Wpol (s) Window length for polarization analysis 4-seconds, normally do not change
α (−) DR calculation weighting factor Between 1 and 2: higher is more selective

Pick quality analysis P0; P1; P2; P3 (−) P-SNR ratios for pick weight numbers 10 ≤ P0 ≤ 15 (higher is more selective),
P3 � SNRmin, P1 and P2 evenly spaced between

Mf (−) (S-SNR ratios)/(P-SNR ratios) 1.25, normally do not change
Clustering rejection WP (s) P clusters cutoff Greater than largest typical Δt between P-phase

arrivals across network
WS (s) S clusters cutoff Approximately 1.7 times WP

Amplitude calculation APS (s) P–S window length Typical P–S time in dataset
A0 (s) Onset window length Typical length of energy envelope after onsets

Table 2
APP Parameter Values for the Vanuatu and MAR Datasets

Parameter Vanuatu MAR

Nb (s) 2 0.5
Na (s) 2 0.5
Wc (s) 30 15
vc (−) 2 2

TSNR (%) 20 20
SNRmin (−) 5 3
BW (Hz) [3–18] and [3–45] [5–30] and [3–18]
WS (s) 2, 4, and 6 0.5, 1, and 1.2

Ns (samples) 1, 2, 3, 6, 8, 10, 20,
40, 50, 70, and 80

1, 2, 3, 6, 8, 10,
20, 40, and 50

TP (−) 0.4 /
TS (−) −0.4 /
Wpol (s) 4 /
α (−) 1.3 /

P0; P1; P2; P3 (−) (15, 11, 7, SNRmin) (11, 8, 5, SNRmin)
Mf (−) 1.25 1.25
WP (s) 10 2
WS (s) 30 3
APS (s) 10 5
A0 (s) 10 5
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We performed several tests on the polarization window
size to identify the best configuration. Figure 6 shows the
influence of the window size on the rectilinearity parameter.
The longer the window is, the smoother the rectilinearity
function and the easier it is to characterize the waveform type
(Fig. 6c,d), but a window longer than the P–S delay will
smear the effects of these two arrival types. To find the op-
timal value, we calculated the noise level for different win-
dow sizes (Fig. 6e). The noise level for a specific window

length is obtained by computing what portion of the rectili-
nearity signal is above the threshold before the arrival onset.
This noise level decreases with increasing window sizes until
reaching a constant value of 0.2 for windows longer than 3T
(Fig. 6e), in which T is the longest period of energy in the
onset (3 Hz for Vanuatu data). For reliable polarization char-
acterizations, we use windows longer than 3T but shorter
than the most P–S delays.

Automatic Picking Procedure

We describe here the entire event extraction and auto-
matic picking procedure, starting with raw continuous seis-
mic traces and ending with a catalog of picked phase times
and amplitudes for each event at each station.

Before running the APP, we extract record sections with
a high probability of containing an event from the continuous
database. Many standard routines exist for this phase: we
used SEISAN’s CONDET routine (Havskov and Ottemöller,
2010), which is based on an STA/LTA detection algorithm run
on the vertical channel of each station and which extracts a
record for each case that has more than a threshold number of
stations trigger in a specified time interval. We generally
extract a longer window than is strictly necessary, because
the first step of the APP will optimize the window length.

The first step of the APP is to reduce the size of the
analysis window to an optimal length (parameter Wc,
Tables 1 and 2). This speeds up subsequent processing and
helps to avoid mispicks by reducing the chance of having
multiple events in one window. The algorithm calculates a
simplified version of F4 (equation 15) for all traces on all
stations, picks the biggest onset on each trace, and detects the
region of maximum pick density using a clustering analysis.
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Figure 3. Illustration of the multiple window length stage:
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All subsequent analysis will be performed on theWc-second
window centered on this region.

The algorithm now processes each station separately. It
first analyzes the onset’s SNR using the following expression
for pseudoenergy:

EQ-TARGET;temp:intralink-;df16;55;111Energy � X2 � Y2 � Z2; �16�
in which X, Y, and Z are the three components of the signal.
The SNR at sample k is defined as

EQ-TARGET;temp:intralink-;df17;313;171SNR�k�≡20 × log
�
Energyk → k� Na

Energyk − Nb → k

�
: �17�

The numerator represents the mean energy from k to
k� Na, and the denominator represents the mean energy
from k − Nb to k. Na and Nb (Tables 1 and 2) are user de-
fined and generally equal: Nb must be long enough to cor-
rectly represent the noise level before the onset, and Na must
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be long enough to correctly represent the onset energy and to
avoid assigning high SNR to spikes. We estimate how well
the onsets exceed the noise level by counting the number of
times that the SNR function passes 20% (parameter TSNR,
Tables 1 and 2) of the maximum SNR. If this number exceeds
a user-defined value vc (usually 2, for P and S arrivals;
Tables 1 and 2), the signal is rejected.

If the signal passes the above test, the algorithm picks up
to two onsets using our CF. If the SNR value for either onset is
below the user-defined threshold SNRmin (Tables 1 and 2),
the corresponding pick is rejected. Finally, we apply the
P–S characterization procedure to the remaining onset(s) to
classify them as P or S onsets or to reject them.

The APP then assigns a quality index to P- and S-wave
onset picks based on their SNR. The indexes go from 0
(excellent quality pick) to 4 (rejected pick). These indexes
are important because they define the weight of each pick
in the inversion process used to calculate hypocenters. In
order to give the P onsets a higher priority in the inversion,
we set the SNR thresholds for Swaves to 1.25 (parameterMf,
Tables 1 and 2) times the P-arrival SNR thresholds (param-
eters P0, P1, P2, and P3, Tables 1 and 2). This parameter
depends mainly on the confidence we have in the P or S pick-
ing, but we find the value of 1.25 gives good results for land-
based seismological datasets.

Once onsets are picked and characterized for each
station, the APP applies a second rejection method, based
on the distribution of onset times. This method is composed
of two successive stages: elimination of strong outliers using
clustering criteria, followed by removal of remaining outliers
using statistical criteria. In the first stage, for each event, the
APP sorts P-onset times in ascending order and creates clus-
ters using the following definition: two consecutive onsets
belong to the same cluster if and only if they are separated
by less than a user-defined time lapse WP (Tables 1 and 2).
The APP rejects all onsets that do not belong to the biggest
cluster (note if WP is too big, only one cluster will be gen-
erated and no picks will be rejected). In the second stage, the
APP calculates the median time of the remaining P onsets and
the offset of each onset from this median, then rejects picks
with offsets more than three standard deviations away from
the median. It then applies the same method to S onsets
(using a different time lapse [parameter WS, Tables 1 and 2]
in the clustering analysis). Finally, it applies only the second
stage to P–S delays (both P and S onsets are rejected in the
case of P–S delay outliers). This rejection method is appro-
priate for networks that are approximately uniformly distrib-
uted (the pick distributions follow a Gaussian law): a
network with one site far away from the rest would have that
site’s arrivals systematically rejected.

The final stage of the APP is to measure the amplitude
and period of the peak arrival signal. The APP converts
counts to displacement (using the seismometer plus digitizer
transfer function) and applies a Wood–Anderson filter to all
traces. The amplitude is the maximum from any channel for
each station. The P and S offsets and the parameters A0 and

APS (Tables 1 and 2) define the window in which to search
for the maximum. If both P and S onsets are picked, the
maximum amplitude is evaluated between the P pick and
A0 seconds after the S pick; if only S is picked, the amplitude
is evaluated between APS seconds before and A0 seconds
after the S pick; and, if only P is picked, the amplitude is
evaluated between the P pick and APS � A0 seconds after the
P pick. The amplitude and its period are entered into the
catalog so that the hypocenter inversion can estimate local
magnitudes.

For each extracted event, the algorithm saves all infor-
mation (station names, components, onset times, quality
indexes, and maximum amplitudes and their periods) in a
Nordic-format catalog file (Havskov and Ottemöller, 2010).
This catalog file, plus a velocity model, can then be fed into
one of many software codes to calculate event hypocenters
and magnitudes.

Application to the Vanuatu Dataset

We tested our method using data from a seismological
network covering part of the Vanuatu subduction zone. The
data were acquired in 2008–2009 as part of the Arc-Vanuatu
experiment (see Data and Resources). The Vanuatu subduc-
tion zone is one of the most active seismic areas in the world,
with more than 37 events of magnitude Mw ≥7 since 1973
(U.S. Geological Survey). The network was composed of 20
wideband seismometers onshore and 10 ocean-bottom seis-
mometers. The data rate was 100 samples=s, the aperture was
100 × 100 km, and the average distance between instru-
ments was approximately 20 km; however, due to field con-
straints and the total absence of road access in the central part
of the islands, the network is not as regular as one would

Figure 7. The seismic network geometries for Vanuatu (main
map) and MAR (upper-right inset) datasets. The length and depth
scales are the same for the two maps. The Vanuatu network is com-
posed of 10 OBSs (circles) and 20 land stations (triangles). The
MAR network is composed of four OBSs. The color version of this
figure is available only in the electronic edition.
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wish (Fig. 7). More than 100 events were detected per day; to
cover a representative sample of local events, we chose all
events from one day, and the only criterion we used is that
the chosen day must have a good spatial distribution of
events. We chose events from 1 June 2008, for which the
event detector extracted 163 events.

Before applying the APP, the frequency content of the
seismogram should be evaluated, which will help to choose
the set of frequency bandwidths used for the CF calculations.
Figure 8 shows the spectrogram of a typical Vanuatu trace
containing P and S onsets. The onset energy is concentrated
between 3 and 18 Hz, which we used as our tightest fre-
quency bounds (Table 2).

We were able to manually pick 99 of the 163 extracted
events. Of these, 93 were locatable using the HYPOCEN-
TER inversion program (Lienert et al., 1986; Lienert and
Havskov, 1995). Our APP returned 133 locatable events,
including all 93 events located using the manual picks.

Manual picking provided 1094 P and 507 S onsets,
whereas the APP provided 1007 P and 1002 S onsets. The
automatic picker thus identified many more S onsets than the
human operator, and about the same number of P onsets.
However, the onsets picked were not always the same:
720 (66%) of the manual P onsets were picked automatically,
as were 390 (77%) of the manual S onsets.

To evaluate the accuracy of the automatic picker, we an-
alyze the time differences between the automatic and manual
picks (Fig. 9). For P onsets, the median difference is 0:01�
0:08 s (using the 68% interval as the variance; using the 95%
interval, the variance would be �0:40 s). The small median
and symmetrical variance distribution of time differences in-
dicate there is little or no systematic shift with respect to
manual picks. The kurtosis is known for its small systematic
shifts compared with other metrics such as the skewness
(Küperkoch et al., 2010), which is one of the reasons we
chose it for onset picking.

For S onsets, the median difference is −0:09� 0:23 s
(�0:61 s for the 95% interval). The decrease in accuracy

compared with P-wave picking is explained by the fact that
S waves are generally emergent and buried in the P coda.
The distribution shows a small trend to negative residuals,
indicating that automatic picks are slightly ahead of manual
picks. This may be because the kurtosis identifies the distri-
bution change associated with an emergent onset before it is
visible to the human eye.

We also applied an automatic STA/LTA picker to the data
(LTAwindow � 10 s, STAwindow � 1 s). The STA/LTA
picker made 1220P and 635 S picks: 674 (62%) of themanual
P onsets were picked, as were 307 (61%) of the manual S
picks. The STA/LTA picker provided more P and less S onsets
than our APP. For P onsets (Fig. 10a), the median difference
between the STA/LTA and manual picks is −0:18� 0:19 s
(�15:60 s for the 95% interval). The systematic offset is
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much larger than with our picking algorithm, and there are
many more outliers, as indicated by the very large values
for the 95% interval (in a Gaussian distribution, the time to
the 95% interval would be twice that to the 68% interval).
Outliers are mainly due to noise spikes that were picked by
the STA/LTA picker. The comparison is not completely fair:
our APP has stages dedicated to rejecting bad picks, whereas
the STA/LTA picker does not. However, our APP is closer to
manual picks evenwhen we use metrics that ignore large mis-
picks. For example, 46%of the comparedP picksmade by our
APP are less than 0.1 s from the manual picks, compared with
only 8% using the STA/LTA method. For S onsets (Fig. 10b),
the median difference between the STA/LTA picks andmanual
picks is −0:06� 0:29 s (�12:56 s for the 95% interval): the

systematic offset is comparable to that for our automatic
picker, but there are 38% less picks, and there are many more
outliers. Using our APP, 22% of the common S picks are less
than 0.1 seconds from the manual picks, compared with 9%
using the STA/LTA method.

Figure 11 shows a typical example of manual and auto-
matic picks for one event on traces from five network sta-
tions. The time differences between automatic and manual
picks are smaller using our picker than using the STA/LTA
picker, both for high SNR (P onsets, Fig. 11a) and small
SNR (S onsets, Fig. 11b).

Figure 12 compares hypocenters calculated using onset
times provided by the three different picking methods. The
APP hypocenters are much closer to the manual hypocenters
(Fig. 12a,b) than are the STA/LTA hypocenters (Fig. 12c,d).

We now evaluate the reliability of the quality indexes
assigned by our picking method. We compare automatically
and manually assigned quality indexes, then look at how the
time differences between automatic and manual picks change
as a function of the quality index. Figure 13 shows a histo-
gram of manual quality indexes subtracted from automatic
quality indexes, for both P and S onsets. If the analyst and
the algorithm assigned the same quality index to every pick,
the histogram would be a single bar at 0. Instead, the histo-
grams are distributed on an approximately Gaussian shape
and their centers are offset from zero: the automatically
assigned P-onset quality indexes are slightly negative and
the S-onset quality indexes are slightly positive when com-
pared with the manual values. The offset is deliberate and
comes from our choice of SNR thresholds and Mf (Table 2);
we want the hypocenter location routine to give more weight
to P- than to S-wave onsets, and we had to slightly improve
the P qualities to avoid rejecting S onsets. The user can as-
sign his or her own values to obtain the desired center points
by changing the SNR values andMf. The distribution around
the central value is not perfect (assuming all of the manual
quality indexes were perfectly assigned), but 85% of
the P picks and 75% of the S picks are within 1 of the central
value.

We now look at the relationship between the picking
accuracy of our algorithm and the automatically assigned
quality indexes. For both P and S residuals, the standard
deviation tends to increase for bigger quality indexes
(Fig. 14), which is consistent with these bigger numbers cor-
responding to lower pick certainty. The differences are not as
large as we might expect if we consider that an increase of
1 in the weight number is generally treated as a factor of 2
decrease in the pick time certainty, but we are comparing
between picks and not against true arrival times. The rela-
tively small differences between the residuals as a function
of quality index probably indicate the APP onset estimates
are consistent with the manual estimates. Table 3 summarizes
the distribution of residuals and their variances as a function
of the quality indexes.

We also evaluate the relationship between picking accu-
racy and earthquake local magnitudes (calculated from our

−200

−100

0

100 VAVUN  Z

−200

0

200

400 VBUTM  Z

−100

0

100 VIRHO  Z

−500

0

500 VTAMB  Z

19 19.5 20 20.5 21 21.5 22 22.5 23
−400

−200

0

200
VTURT  Z

Time [s]

−100

0

100 VAVUN  E

−4

−2

0

2

4
VBUTM  E

−200

−100

0

100 VIRHO  E

−500

0

500 VTAMB  E

31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36

−500

0

500 VTURT  E

Time [s]

(b)
S

kSm

S
k

S
m

S
s

S
k

Sk SmSs

Sk Ss

(a)
PmPs Pk

PmPs Pk

PmPs Pk

PmPs Pk

PmPs Pk

Figure 11. Comparison between automatic picks (kurtosis-
derived and STA/LTA pickers) and manual picks for P and S waves
for one event of the Vanuatu project. Notations k, s, and m stand for
kurtosis, STA/LTA, and manual picks. We selected five stations from
our set of 30 stations. All traces shown are filtered between 3 and
45 Hz. (a) P onsets are shown on the Z component, and (b) S onsets
are shown on the east component.

10 C. Baillard, W. C. Crawford, V. Ballu, C. Hibert, and A. Mangeney



automatic amplitude estimates). Figure 15a shows the distri-
bution of local magnitudes of the events we used. The events
magnitudes are between 0.7 and 3.7, with half of the events
below magnitude 1.9. There is no clear correlation between
magnitudes and the residuals or their variances (Fig. 15b–e),
indicating that the automatic picker’s accuracy (relative to
manual picking) is independent of the event magnitude.

Application to the Mid-Atlantic
Ridge Dataset

We next tested our method on a very different dataset:
four ocean-bottom seismometers around a seafloor volcano
(Fig. 7 inset). The network had an aperture of 7 km, the sen-
sors had a fourth channel (H) for pressure data (measured by
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Figure 12. Map and profile views showing hypocenters resulting from automatic (kurtosis-derived and STA/LTA) and manual picking for
the Vanuatu region. Triangles, stations; circles, hypocenters derived from manual picking; and crosses, hypocenters derived from automatic
picking. (a,b) Map and profile view (using P–P′ projection) comparing hypocenters localized using manual and kurtosis-derived picks.
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a hydrophone), and the seismometer data were short period
(4.5 Hz corner frequency). The events within the network
had magnitudes from −1:2 to 1.5 and depths from 2 to
3.5 km beneath the seafloor (Crawford et al., 2013). As op-

posed to the Vanuatu data, MAR P onsets do not have a clear
signature in the frequency domain (Fig. 16).

We automatically picked one month of data (February
2011) that had been manually picked. These data are particu-
larly difficult to analyze automatically for several reasons:
(1) P onsets were generally much less energetic than S onsets
and were clear only on the H component; (2) sea-surface
reflected P waves arrived between the P and S onsets, com-
plicating pick selection and identification; (3) some compo-
nents were unusable, so we could not apply the polarity
approach; (4) the small number of instruments required us to
be very careful in our outlier rejection in order to retain as
many valid picks as possible.

To respond to these difficulties, we applied some
changes to the APP. (1) The APP only computed the CF for
the best component of each station. (2) The S onset is iden-
tified by taking the onset located just before the maximum
trace energy (energy conditioning). (3) It then identified the
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Table 3
Differences between Manual P and S Picks for Both APP and STA/LTA Picks for the Vanuatu Dataset

P Picks S Picks

Variance Variance

Method Weight Fraction (%) Residuals (s) σ 2σ Fraction (%) Residuals (s) σ 2σ

New Kurtosis 0 64 −0.01 0.07 – 0 – – –
1 22 0.03 0.07 – 26 −0.06 0.16 –
2 14 0.03 0.10 – 45 −0.12 0.23 –
3 0 – – – 29 −0.10 0.28 –
All 100 0.01 0.08 0.40 100 −0.09 0.23 0.61

STA/LTA All 100 −0.18 0.19 15.60 100 −0.06 0.29 12.56

For the APP picks, these differences and the percentage of picks assigned are also shown as a function of the quality index.
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P onset using an algorithm explained in the next paragraph.
Choice of components to be processed and energetic condi-
tioning are user-defined options that can be directly defined
in the algorithm input file. All user-defined parameters used
in the APP for the MAR dataset are summarized in Table 2.

In the marine data, to identify the P onset, the APP first
selects the strongest minimum of the CF preceding the S pick.
This is the P-onset candidate. It then checks if there is an-
other strong minimum at a time ΔtP � �2H�=Vw before the
P onset candidate, in which H is the water depth in meters
and Vw is the estimated acoustic-wave velocity in water
(≈1500 m=s). If there is, the P-onset candidate was actually
a sea-surface bounce, and the APP selects the preceding
strong minimum as the true P onset.

Manual picking provided 1801 P and 1809 S onsets,
whereas the APP provided 1676 P and 2349 S onsets. We
compared automatic and manual picks (Fig. 17). 1112 (61%)
of the manual P onsets and 1536 (84%) of the manual S on-
sets were picked automatically. For P waves, the median dif-
ference is 0:04� 0:17 s, for S waves it is 0:07� 0:08 s. A
smaller standard deviation is obtained for S than for P picks
because of the high energy of S onsets.

We also automatically picked the data using the
STA/LTA picker (Fig. 18). In this case median differences
and standard deviations are severely biased by the large
amount of outliers (37% of the P picks residuals and 69% of
the S residuals are above 2 s). These outliers are in part
caused by the STA/LTA picker picking S onsets as P onsets
and spikes as S onsets. If we do not consider outliers (resid-
uals above 2 s in absolute value), only 49% of the manual P
and 17% of the manual S onsets were picked by the STA/LTA.
Compared to our picker, the STA/LTA causes much more mis-
picks. When throwing out the outliers the median and the
residual are −0:14� 0:42 s for P onsets and −0:19� 0:14 s
for S onsets. Residuals obtained by the two methods are sum-
marized in Table 4. Figure 19 shows manual and automatic
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picks on four vertical channel traces of our network for
one event. Again, picks from the kurtosis-derived picker are
closer to manual picks than the ones from the STA/LTA
picker. Moreover in this and many other cases, the STA/LTA

picker has difficulty picking S waves and even declares an S
onset as a P onset (OBS station LSd3).

These results demonstrate that the APP with our new CF
can be applied to a wide range of networks and instrument
types. The APP has also been adapted to localize rock fall
events occurring in the crater of the Piton de la Fournaise
volcano on Réunion island (Hibert et al., 2011; Hibert,
2012). Picking shows good performance even when dealing
with emergent waves recorded on a few number of stations
(seismic network composed of five stations).

Discussion

In the past two decades, many new automatic pickers
have been proposed, using different approaches and meth-
ods. Even if significant improvements have been made, only
a few of these algorithms are openly available to the scien-
tific community and can be rapidly implemented on new
datasets. Two of these are included in the well-known Earth-
worm (Johnson et al., 1995) and SeisComP3 (Hanka et al.,
2000) software suites. The automatic picking module imple-
mented in both software suites is based on the STA/LTA
method introduced by Allen (1982), which is simple, robust,
and easily adaptable. Implementation of kurtosis-derived
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Figure 18. The difference between automatic and manual pick-
ing times using the STA/LTA picking method (MAR dataset). All val-
ues beyond 2�−2� seconds are compiled at 2�−2� seconds. Median
and standard deviations are shown for overall picks and for residuals
in between −2 and 2 s. (a) P-wave onsets. (b) S-wave onsets.
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Figure 17. The difference between automatic and manual pick-
ing times using the proposed APP (MAR dataset). All values beyond
2�−2� seconds are compiled at 2�−2� seconds for (a) P-wave onsets
and (b) S-wave onsets.

Table 4
Differences between Manual P and S Picks and Both APP and STA/LTA Picks, for the

MAR Dataset

P Picks S Picks

Method Comments Residuals (s) Variance σ Residuals (s) Variance σ

New Kurtosis All 0.04 0.17 0.07 0.08
STA/LTA All 0.54 2.61 9.21 15.92

−2 ≤ residuals �s� ≤ 2 −0.14 0.42 −0.19 0.14
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Figure 19. Comparison between automatic (kurtosis-derived
and STA/LTA) and manual picks for P and S onsets for one event
of the MAR dataset. Indexes under P and S are the same as in
Figure 11. We plotted the Z component of all four OBSs of the
network. All traces shown are filtered between 3 and 20 Hz.
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methods in these suites should allow much more accurate
onset picking.

Two other well-known picking algorithms are the “tan-
dem picker” (Nippress et al., 2010) and the MannekenPix
(MPX) algorithm (Aldersons, 2004; Di Stefano et al., 2006).
Both methods require operator-intensive preparation phases,
and neither automatically identifies phase arrivals. The MPX
method uses the Baer–Kradolfer algorithm (Baer and Kra-
dolfer, 1987), which has been shown to be less accurate than
the kurtosis (Küperkoch et al., 2010), whereas the tandem
picker uses the kurtosis but picks at the point of maximum
slope, which we have shown to be less accurate than picking
the initial point of inflection.

AR-AIC methods are powerful tools to pick onset times
when the SNR is very low (Takanami and Kitagawa, 1993;
Leonard and Kennett, 1999), but their implementation is very
computer intensive, as a large number of AR models must be
calculated. Taking into account these considerations, we be-
lieve the kurtosis-derived method that we developed here is
themost appropriate tool for fast and automatic onset picking.

The dip–rectilinearity polarization analysis proposed in
this paper is well suited for independently identifying P, S,
and surface waves, in most cases. However, the polarization
analysis does not reliably identify P and S arrivals if the P–S
delay is shorter than the analysis window. We demonstrated
that this window should be longer than three cycles of the
lowest period of the arrival waveform: if there is a risk of
significant arrivals with shorter P–S delays, it is recom-
mended that the user run the algorithm twice—once using
the polarization analysis and once without—to see if signifi-
cant events are lost using the polarization analysis. If this is
the case, the extra events identified without the polarization
analysis could be manually added into the database. The non-
polarization analysis code identifies the phase of events us-
ing energetic conditioning (used in the MAR example),
which is less discriminating than polarization analysis but
which does not rely on an analysis window length.

A future prospect could be to automatically switch from
polarization analysis to another method (such as energetic
conditioning) when the time delay between identified onsets
is shorter than the polarization window length, or to output
undefined arrivals with an appropriate flag.

Conclusion

We have presented a new automated algorithm to iden-
tify and pick P- and S-wave onsets. The method uses a new
CF based on the kurtosis statistical function to accurately
pick seismic onsets. The CF uses several sliding window
lengths and multiple frequency bandwidths, minimizing the
dependence of the picker on these parameters. A polarization
analysis is applied to distinguish P waves from S waves and
to reject picks of surface waves or noise. A second rejection
method is then applied, based on the clustering of P-onset
times, S-onset times, and P–S onset time differences. The
algorithm includes a pick quality classification based on

the SNR energy ratio, and it calculates amplitudes to allow
magnitude estimates.

We tested the automatic picker’s performance using two
datasets: a 30-instrument land-based array with wideband
seismometers, and a four-instrument seafloor array—often
without three-component data—that pushes the limits for
automatic picking and event location. For the first network,
of 163 automatically selected events, 99 events could be
picked manually, and 93 of these could be located, whereas
the automatic picker provided 133 locations. The automatic
picker picked as many P onsets and more S onsets than
manual picking, overlapping the manual onsets on 66% of
the P picks and 77% of the S picks. The automatic picks de-
viated from the manual picks by 0:01� 0:08 s for P and
−0:09� 0:23 s for S. The offset and deviation are much bet-
ter than obtained using an STA/LTA picker and, in addition,
many more S arrivals were picked. The assigned pick quality
index, based on the SNR, correlates well with manual quality
indexes. The pick accuracy (relative to manual picks) is in-
dependent of the event magnitude.

The second dataset confirms the improved performance
of our APP compared with the STA/LTA method, for which
over 40% of both P and S picks were more than 2 s from the
manual picks.

The automatic picking algorithm described in this paper
can be a powerful tool for automatically picking P and S
onsets with high precision and accuracy and coherently
assigning their quality index. Very few manually picked
events were lost and, for the tested datasets, the good quality
and consistency of the picking allowed more events to be
located. The number of picked events and accuracy of the
picking are significantly higher using our APP than using
the STA/LTA method. The picker has few and relatively sim-
ple user-defined parameters and should be easily adaptable to
a wide range of local networks.

Data and Resources

Data used in this paper come from projects funded
by IRD through Géoazur and by the French Ministry of
Research through the ANR Arc-Vanuatu program (Vanuatu
data) and by MoMAR and EMSO Azores (MAR data).
Data were analyzed using MATLAB 2012b (http://www
.mathworks.fr/products/matlab/) and SEISAN (http://seis
.geus.net/software/seisan/, last accessed on March 2013).
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