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  Qual è quella ruina che nel fianco 
  di qua da Trento l’Adice percosse, 
  o per tremoto o per sostegno manco, 
  che da cima del monte, onde si mosse, 
  al piano è sì la roccia discoscesa, 
  ch’alcuna via darebbe a chi sù fosse… 
   

(da Divina Commedia – Inferno Canto XII, Dante Alighieri) 
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Chapter 1  

Introduction                       
p 

Increasing population density and development of mountainous terrains bring 
human settlements within reach of landslide hazards. Perhaps the most serious threat 
arises from small, high frequency landslides such as debris flows and debris 
avalanches. On the other hand, large and relatively rare rock avalanches also constitute 
a significant hazard, due to their prodigious capacity for destruction. Such landslides 
involve the spontaneous failure of entire mountain slopes, involving volumes 
measured in tens or hundreds million m3 and travel distances of several kilometres. 

Stability analysis of entire mountain slopes is exceedingly difficult. Thus, concern 
about the possible occurrence of a rock avalanche usually arises only once certain 
precursory signs of impending failure appear. When such signs are identified, 
monitoring of displacements, strains, piezometric pressures or rock noise can be used 
to gauge deterioration in stability and signal the onset of failure (e.g. Schuster and 
Krizek, 1978). 

Flow-like movements of rocks can then be identified among the most dangerous 
and damaging of all landslide phenomena. Since it often proves impossible to mitigate 
their destructive potential by stabilising the area of origin, risk analyses, including 
predictions of runout, have to be performed. With these predictions losses can be 
reduced, as they provide means to define the hazardous areas, estimate the intensity of 
the hazard (which will serve as input for risk studies), and work out the parameters for 
the identification of appropriate protective measures. At the same time, reliable 
predictions of runout can help to avoid exceedingly conservative decisions regarding 
the development of hazardous areas. 
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Risk evaluation of these events requires the comprehension of two fundamental 
problems: the initiation and the runout. Even though the specification of the initial 
conditions is also a primarily problem, which is not yet resolved, the runout, that is the 
flowing and stopping phases of the mass, is here analysed. 

Numerical simulation should provide a useful tool for investigating, within realistic 
geological contexts, the dynamics of these flows and of their arrest phase. 

In the 1970’s the most widely used and perhaps earliest model proposed for the 
analysis of rockslides and similar phenomena was that of a rigid block on an inclined 
plane (e.g. Koerner 1976, McLellan and Kaiser 1984, Huchinson 1986, Sassa 1988). 

Few laboratory experiments were then done, but first qualitative and quantitative 
observations on the obtained results became fundamental for a better understanding 
of movement runout behaviour and motivated the introduction of more and more 
sophisticated apparatus. 

In recent years lumped mass models have been shelved. Simple empirical 
correlations among historical data (e.g. Scheidegger 1973, Hsu 1975, Li 1983, Davies 
1982, Nicoletti and Sorriso Valvo 1991) have then been put beside new and more 
sophisticated models based on a continuum mechanics approach (e.g. Hungr 1995, 
Chen and Lee 2000, Denlinger and Iverson 2004). 

Together with continuum mechanics models, a noteworthy type of modelling is 
that based on a discontinuum mechanics approach (e.g. Strack and Cundall 1984, 
Cundall 1988, Walton et al. 1988, Will and Konietzky 1998), in which the run out 
mass is modelled as an assembly of particles moving down along a surface. Nowadays 
this last approach still presents some macroscopic limitations that in some way 
compromise a satisfactory application to large movement analysis. 

It is probably fair to state that Savage and Hutter in 1989 developed the first 
continuum mechanical theory capable of describing the evolving geometry of a finite 
mass of a granular material and the associated velocity distribution as an avalanche 
slides down inclined surfaces. Their model provided a more complete analysis of such 
flows than previous models had done, and its extension as well as comparison with 
laboratory experiments demonstrated it to be largely successful. 

A continuum mechanics approach assumes that during an avalanche, the 
characteristic length in the flowing direction is generally much larger than the vertical 
one, e.g. the avalanche thickness. Such a long-wave scaling argument has been widely 
used in derivation of continuum flow models. This leads to depth-averaged models 
governed by generalized Saint Venant equations. 

Nowadays, these models provide a fruitful tool for investigating the dynamics and 
extent of avalanches. 

Anyway, whatever the applied analytical model, results of a numerical simulation 
depend on the value assigned to the constitutive parameter of the assumed rheology. 
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The aim of the dissertation is the development and validation of a three 
dimensional numerical model able to run analyses of propagation on a complex 
topography and the setting of a procedure direct to define some reference values for 
characteristic parameters of an assumed rheology. Case histories having a different 
runout path and material type are analysed and compared, the obtained values could 
be considered useful guidelines to study a potential landslide (before the event). 

The choice of a certain approach rather than another is the result of a careful 
analysis of advantages and disadvantages of each existing method. All choices are 
made never forgetting to remain focused on real problems and real behaviour of a 
mass. By consequence, each problem tackled and solved is directed to guarantee more 
realistic results. 

Whatever the chosen numerical approach, it is fundamental to know in detail the 
type of phenomenon that will be studied. In this sense, it is important to learn from 
past events and to always have on mind that each analysed problem is not abstract but 
it is linked to a real site. 

  
In the present work, a continuum mechanics approach has been followed.  
The original version (SHWCIN) of the implemented three dimensional code was 

developed at the Institut de Physique du Globe de Paris but before using it to run 
analysis of propagation on a complex topography many fundamental changes are 
necessary.  

Trying to reduce the uncertainty range of values to be assigned in prediction to 
rheological parameters, the numerical code DAN (Hungr, 1995) is applied to back 
analyse a set of case histories of landslides selected from literature.  

For prediction, the main limitation of DAN is due to the fact that it reduces a 
complex and heterogeneous three dimensional problem into an extremely simple 
formulation and the width of propagation is a part of the input data. But, when a back 
analysis is run, the geometry of propagation is already known. Therefore, the limits of 
DAN in some way disappear.  Also, cases for which a DEM (Digital Elevation Model) 
is not available can be analysed. Moreover, advantages in using this code are mainly 
due to its simplicity, it makes possible an immediate and rapid numerical simulation of 
many real cases. It also allows the choice among different rheologies, some of which 
are particularly simple, reducing the number of mechanical parameters that have to be 
defined. 

The methodology here proposed consists in using DAN to run back analyses of as 
many case histories as possible and the new three dimensional code to predict 
propagation of a mass on a complex topography. 

It is important to underline that when values obtained from back analyses are used 
to simulate a potential landslide, only cases having similar characteristics (e.g. run out 
area shape, material type, glacier along the path) can be compared. 
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To guarantee correctness of this approach it is necessary to verify that DAN 
results, if used as input data in a three dimensional numerical code, give approximately 
the same solution. Cases for which a DEM pre-collapse is available are analysed with 
both DAN and the new code.  

 
After a critic overview of landslide classifications and a detailed description of 

those phenomena known as rock avalanches (Chapter 2), a description of existing 
propagation methods has been done, underlining advantages and disadvantages of 
each considered approach (Chapter 3). On the basis of possibility of application on 
analysis of real cases a continuum mechanics approach has then been followed, two 
numerical codes have been analysed: SHWCIN and DAN (Chapter 4). 

The SHWCIN code was originally used to carry out simple numerical simulations 
of a mass released from a gate or from a hemi-spherical cap on an inclined plane and 
results were analysed considering the centre line section. 

To simulate the movement on a complex three dimensional topography, the code 
has been numerically implemented allowing to: reduce mesh-dependency effects on 
results of propagation by using an irregular mesh, change gravity components as a 
function of the considered topography, change earth pressure coefficients in a 
condition of anisotropy of normal stresses, take into account both different 
constitutive laws and pore water effects. Each of these changes has been carefully 
validated. Once the final version of the code was obtained it has been tested through 
numerical analysis of laboratory tests and back analysis of case histories obtained from 
literature (Chapter 5). 

In order to create a database of well described phenomena and rheological 
parameters, that can be useful guidelines when prediction is the aim of an analysis, 
case histories have been analysed with DAN following a procedure that gives the 
possibility of calibrating the model in order to obtain the best value for each of the 
parameters required by the assumed rheology (Chapter 6). 
 

 
 
 
 
 
 
 
 



Chapter 2  

Landslide classifications                       
and rock avalanche features 

2.1 Introduction 
As a result of the widespread use of the landslide classifications, certain terms 

describing common types of mass movements have become entrenched in the 
language of engineering geology. 

The landslide classifications of Varnes (1954, 1978) and Hutchinson (1968, 1988) 
are today the most widely accepted systems. Nevertheless, literature on engineering 
geology of landslides continues to be plagued by inconsistent terminology and 
ambiguous definitions of various landslides types. 

In this frame fundamental is the work performed by Hungr et al. in 2001, in which 
an effort is made in giving a more precise definition of the used terms. The aim is to 
guarantee the preservation of the original meaning of each term and to make the 
application less ambiguous. 

Phenomena such as as rock avalanches are rare but are considered among the most 
destructive and dangerous natural calamities. Catastrophic failures at a given site are 
difficult to estimate. Thus, concern about the possible occurrence of a rock avalanche 
usually arises only once certain precursory signs of impending failure appear. The 
frequency of occurrence and amplitudes of these disastrous events appear to have 
increased in recent years, possibly due to increase in land use and development 
activities, anticipated warming of the Earth’s atmosphere, the associated increase of 
extreme storms, poor forestry practices and land misuse in the mountainous areas. 
This implies an increase in damage of properties and infra-structures and a further 
endangering of public life.  
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Reliable methods for the prevention and/or reduction of the effects of such 
disasters are therefore in great need. Evidently, concerned authorities who are 
responsible for the planning and development in these regions have considerable 
interest in it and these justify a more detailed analysis of rock avalanches phenomena. 

2.2 Landslide classifications 
The term landslide denotes “the movement of a mass of rock, debris or earth 

down a slope” (Cruden, 1991). The phenomena described as landslides are not limited 
either to the land or to sliding, the word has a much more extensive meaning than its 
component parts suggest. Phenomena like falls, topples, slides, spreads and flows 
(Figure 2.1) are encompassed.  

    

   

  
Figura 2.1. Slope movement types 
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Landslides can be initiated by rainfall, earthquakes, volcanic activity, changes in 
groundwater, disturbance and change of a slope by man-made construction activities, 
or any combination of these factors.  

Landslides can also occur underwater, causing tidal waves and damage to coastal 
areas. These types of events are called submarine landslides. 

The most widely accepted landslide classifications are by Hutchinson (1968) and 
by Varnes (1978). Both classifications are based on earlier systems (Sharpe, 1938) and 
have tended to converge over recent years, particularly in terminology.  

The synthesis of these two classifications has continued.  
Huchinson (1988) springs from Hutchinson (1968) and Skempton and Hutchinson 

(1969) and draws heavily on the work of others, particularly that of Varnes (1978). 
The suggested classification pays regard primarily to the morphology of slope 
movements, with some consideration being given also to mechanism, material and 
rate of movement. It is primarily applied to sub-aerial mass movements, on natural or 
man-made slopes. It excludes the very large-scale movements involved in gravity 
tectonics, mass movements involving subsidence and other forms of sinking of the 
ground surface, all mass transport phenomena and avalanches of snow or ice.  

The criteria used in the classification of landslides presented by Cruden and Varnes 
(1996) follow Varnes (1978) in presuming the knowledge of movement mechanisms 
and emphasizing type of movement and type of material (Table 2.1). 

 
TYPE OF MOVEMENT TYPE OF MATERIAL 
Falls Rock 
Topples  Debris    (coarse soil) 

Rotational Earth      (fine soil) 
Slides 

Translational  
Spreads  
Flows  
Complex  

Table 2.1. Slope movement classification after Varnes (1978) 

 Any landslide can be then classified and described by two nouns: the first 
describes the material and the second describes the type of movement (e.g. rock fall, 
debris flow). 

In Cruden and Varnes (1996) the names for the types of material are unchanged 
from Varnes’ classification (1978): rock (a hard or firm mass that was intact and in its 
natural place before the initiation of movement), earth (describes material in which 80 
percent or more of the particles are smaller than 2 mm) and debris (contains a 
significant proportion of coarse material, 20 to 80 percent of the particles are larger 
than 2 mm and the remainder are less than 2 mm). Movements have again been 
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divided into five types: falls, topples, slides, spreads and flows. The sixth type proposed by 
Varnes (1978), complex landslides, has been dropped from the formal classification, 
although the term complex has been retained as a description of the style of activity of a 
landslide indicating the sequence of movement in the landslide and distinguishes this 
landslide from a composite one, in which different movements occur simultaneously on 
different parts of the displaced mass (Table 2.2). 

 
ACTIVITY 

STATE  

(what is known about the 
timing of movements) 

DISTRIBUTION  

(where the landslide is moving) 
STYLE 

(the manner in which different 
movements contribute to the 
landslide) 

Active  Advancing Complex 
Reactivated Retrogressive Composite 
Suspended Widening Multiple 
Inactive Enlarging Successive 
    Dormant Confined Single 
    Abandoned Diminishing  
    Stabilized Moving  
    Relict   

 
DESCRIPTION OF MOVEMENT 

RATE WATER CONTENT MATERIAL TYPE 

Extremely rapid Dry  Rock Fall 
Very rapid Moist Earth Topple 
Rapid Wet Debris Slide 
Moderate Very wet  Spread 
Slow   Flow 
Very slow    
Extremely slow    

Table 2.2. Slope movement classification after Cruden and Varnes (1996) 

The name of a landslide can become more elaborate as more information about 
the movement becomes available. To build up the complete identification of the 
movement, descriptions are added in front of the two-noun classification using a 
preferred sequence of terms. The suggested sequence provides a progressive 
narrowing of the focus of the descriptors, first by time and then by spatial location, 
beginning with a view of the whole landslide, continuing with parts of the movement, 
and finally defining the materials involved. The recommended sequence describes 
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activity (including state, distribution, and style) followed by descriptions of all 
movements (including rate, water content, material, and type). 

For instance, the very large and rapid slope movement that occurred near the town 
of Frank, Alberta, Canada, in 1903 (McConnell and Brock, 1904) was a complex, 
extremely rapid, dry rock fall-debris flow (Figure 2.2). 

 

Figura 2.2. Frank slide, 1903 Alberta (Canada). 

2.3 To understand each other 
Landslides exhibit an initial failure stage followed by a runout. A central problem 

in classification is what weight to give to each of these two, often contrasting stages. 
In Varnes’classification a complex landslide is described considering that the type 

of movement and the type of material change as it progresses. A landslide is then 
described at the beginning of each successive phase (i.e. rock fall-debris flow). Unlike 
Varnes, Hutchinson’s classification appears to be related more closely to the 
conditions of failure (Crozier, 1986). 

A classification system can be taxonomic, employing a hierarchy of descriptors to 
form a branching structure. Alternatively, it can be a filing system, which places items 
into classes on the basis of various attributes. Hutchinson’s classification is essentially 
non-taxonomic, Varnes’ classification is weakly taxonomic.  
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The different approach followed by the two considered classifications can be well 
emphasized if the status of flow is considered. 

In the scheme of Varnes (1978) the mechanism of the movement assumes a 
fundamental value. Following this approach, all slope movements involving significant 
internal distortion of a moving mass would be classed as flows.  

Morphology is the principal factor in Hutchinson’s classification; phenomena with 
different mechanism are classed together as a function of their overall behaviour. 
From this point of view, mudslides, flowslides, debris flows, and sturzstroms (rock 
avalanches) are all defined flow-like movements, and any commitment to a specific 
kinematic model is avoided. 

In a way Varnes’ scheme is perhaps easier to apply and requires less expertise to 
use, Hutchinson’s classification has particular appeal to the engineer contemplating 
stability analysis. On the other way, it is sometimes difficult to easily estimate aspects 
like the average grain-size distribution of a deposit, because of lateral and vertical non-
homogeneity of many landslides together with the possibility that a poorly-sorted 
material can be fully supported by a clayey matrix with high coarse-grain content. 

The term flow itself can induce a lack of understanding. Which is the real difference 
between a slide and a flow?  

The definition of slide by the Oxford Concise Dictionary, is “progress along 
smooth surface with continuous friction on the same part of object progressing”. The 
very fact that a rigid block was converted into a debris tongue should be sufficient 
argument that the fallen block did not simply slide; there was not a continuous friction 
on the same part of object progressing; instead, more and more new surfaces on 
freshly broken debris came into contact with the valley floor.  

In contrast, flow has been defined as “glide along a stream”. The mass moulded 
itself to fit the geometry of the valley floor and glided along as a debris stream, is thus 
not a slide but a flow. 

A second question originates if the difference between fall and flow is considered. 
Heim (1932) describes the movement of Elm (Switzwerland, 1881) as “a large mass 
broken into thousand pieces, falling at the same time along the same course, whose 
debris had to flow as a single stream. The uppermost block at the very rear of the 
stream would attempt to get ahead. It hurried but struck the block slightly ahead, 
which was in the way”. 

Cruden and Varnes (1996) define fall a material that “descends by falling, 
bouncing, or rolling”. 

Explanatory is the definition introduced by Sander (1948) where a flow is 
described as “a continuously arranged relative movement, carried out by sufficiently 
small (compared to the system under consideration) parts…”. The type of movements 
does not only depend on the materials in which it takes place, but also on the scale of 
the movement. 
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In accordance with this consideration the landslide classification introduced by 
Rochet (1987) assumes the volume as the parameter that allows the organization of 
the movements as a function of the system under consideration. But the interpretation 
of the attribute “sufficiently small” is left to everyone personal discretion. 

As a result of the widespread use of the landslide classifications certain terms 
describing mass movements have become entrenched in the language of engineering 
geology. Since conservativism is a very important attribute of classification and 
language is to be an effective communication tool, Hungr et al. (2001) explore the 
three taxonomic dimensions (movement mechanism, material type and velocity of 
movement) as used in Varnes’ classification in order to review the main characteristics 
of flows-type movements as defined by Hutchinson.  

Fundamental in Hungr’s work is the attempt of making a translation matrix 
between the terms used in Varnes’ classification and those contained in Hutchinson’s 
classification (Table 2.3). 

If attention is focused on Table 2.3 a new doubt can be aroused by the presence of 
phenomena like debris avalanche and rock avalanche.  A rock avalanche is usually 
defined as “an extremely rapid flow of dry debris” (Hsu, 1975). 

The presence of the ambiguous term debris avalanche is clarified if a detailed 
analysis of the existing classifications is run. A debris avalanche originates in debris 
and the movement is assumed as partly or fully saturated, while a rock avalanche 
originates in rock and is mainly dry (Hungr et al., 2001). 

 
VARNES (1978) HUTCHINSON (1988) HUNGR et al. (2001) 

Wet sand, silt flow Flow slide  Sand, silt flow slide 
Rapid earth flow Flow slide (clay) Clay flow slide 
Loess flow Flow slide (loess) Loess flow slide 
Dry sand flow - Dry sand slide 
Earth flow Mudslide Earth flow 
- Mudflow Mud flow 
Debris avalanche Hillslope debris flow Debris avalanche 
Debris flow Debris flow Debris flow 
- Hyperconcentrated flow Debris flood 
Rock avalanche Sturzstrom Rock avalanche 

Table 2.3. Translation matrix for landslides of the flow type after Hungr et al. (2001). 

A universal classification does not exist. All the existing classifications can generate 
doubts both in terminology and in attributes to be assigned to each type of 
movement, especially if the analysis is carried out by a non-expert. A text-book case is 
difficult to be found, the influence of geological and topographic conditions very 
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frequently cause the real phenomenon to be a combination of two or more types 
produced either in a simultaneous process or in successive and interconnected 
processes. Fundamental is to have a huge and clear knowledge of the possible 
behaviour that a mass can assume, knowledge that can be enriched through field trips 
and analyses of as many case histories as possible. Once that familiarity is attained, 
analysis of existing classifications becomes easier. 

2.4 Rock avalanche 
Large landslides affect many mountain valleys. They are characterised by a low 

probability of evolution into a catastrophic event but can have large impacts on 
population, infrastructures and the environment. This impact is becoming more and 
more pronounced due to increasing tourism and the construction of new roads and 
railways in mountainous areas (Bonnard et al., 2004). 

Rock avalanches are among the most dangerous and damaging of all landslide 
phenomena. They can release enough energy to cause large amount of human losses 
and destruction of developed areas. 

The term “rock avalanche” was first used by McConnell and Brock (1904) to 
describe the Frank slide in Alberta and is now well established in the geological 
literature (e.g. Bock, 1977; Eisbacher and Clague, 1984; Melosh, 1987; Evans et al., 
1989; Hungr et al., 2001). A rock avalanche is defined by Crandell (1968) as a “very 
rapid downslope flowage of segments of bedrock that become shattered and 
pulverised during movement... [which] typically results from a very large rockfall or 
rockslide...,” a definition that is the basis for the description given in Bates and 
Jackson (1987).  

“Rock avalanche” is also preferred to the more complex terms of Varnes (1978) 
(e.g. rockfall-avalanche, rockfall-debris flow) on the grounds of brevity and simplicity.  

Furthermore, it is taken to be synonymous with the German word “sturzstrom,” 
which has also gained currency in the literature (e.g. Hsu. 1975; Eisbacher, 1979; 
Hutchinson, 1988). 

In the following, the term rock avalanche will be adopted. 
A rock avalanche can be defined as a stream of very rapidly moving debris derived 

from the disintegration of a fallen rock mass of very large size (e.g. rockslides, 
rockfalls), the gained speed often exceeds 100 km/h, and the involved volume is 
commonly greater than 1⋅106 m3. 

The source material of a rock avalanche may be any kind of rock, sedimentary, 
metamorphic or igneous, including pyroclastic deposits. Weak rock masses appear to 
be more likely to produce slow moving rock slides than strong, brittle rocks (Hungr et 
al., 2001).  

When a rock slide mass disintegrates and fragments in the process of becoming a 
rock avalanche, an initial volume increase occurs. A few estimates of the volume 
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increase exists in the literature, Hungr and Evans (2004b) assume that fragmentation 
produces a volume increase of approximately 25%. This is consistent with the centre 
of the typical range of porosities of loosely placed well-graded crushed rock, which is 
18-35% (Sherard et al., 1963). It is of interest to note that such a volume increase 
negates all possibility of a fluid pore pressure existing in the fragmented rock during 
this phase. The newly created pore space must be essentially dry. 

Considering that the propagation of a mass is characterized by different phases, an 
increase of volume could be followed by a decrease (due for example to an impact) 
with collapse of the pores and consequent high pore-water pressure (Hutchinson, 
1988). This last concept is also used to face the hypothesis of Hsu (1975) that 5⋅106 m3 
is the lower limit of the volume of significant rock avalanches. Hutchinson (1988) 
demonstrated that, due to pore-water pressure, falls in high-porosity, weak European 
chalk rocks with volumes two orders of magnitude smaller can have the same 
exceptional mobility of larger movements. 

During or following fragmentation, an increase of volume can also occur by 
entrainment of substrate material, partly or completely liquefied by rapid undrained 
loading (Hutchinson and Bhandari, 1971). In case of rock avalanches occurring in 
temperate climates, the substrate is generally saturated, as proven by the often-
observed presence of liquid mud in or near rock avalanche debris. Given the rapid 
motion and large volume of rock avalanches, one can speculate that even incompletely 
saturated and moderately fine-grained soil can liquefy under the high intensity 
undrained loading imparted by masses of fragmented rock (e.g. Sassa,1985; Dawson et 
al., 1998). 

As mentioned in section 2.3, it is important to underline that the term rock fall, by 
contrast, is reserved for talus forming independent rolling, fall and bouncing of 
discrete rigid fragments, individually or in swarms (fragmental rock fall, Evans and 
Hungr 1993). The type of behaviour depends both on the volume of the event and on 
the mechanism of failure. Rock fall typically involves relatively small volumes 
(<10.000 m3, Whalley 1984), or piecemeal failures involving sequential detachment of 
smaller blocks. 

It is recognized that the largest rock avalanches tend to exhibit much greater 
mobility than could be predicted using frictional models appropriate for dry broken 
rock, a unique relationship between volume and mobility cannot be established. 

Interest has centred on the high-speed streaming movements of the essentially dry 
debris discussed, for example, by Skermer (1985) and Voight et al. (1985). As urged by 
Hsu (1975, 1978), following Heim (1882, 1932) and Bagnold (1954, 1956), it seems 
likely that the motion of rock avalanches depends on turbulent grain flow with 
dispersive stresses arising from momentum transfer between colliding grains. This 
mechanism would not require the presence of a liquid or gaseous pore fluid.  

The motion is generally described as massive, in that the bulk of the rock 
fragments moves as a semi-coherent flowing mass. 
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2.4.1 Avalanche dynamics 
How does an avalanche move, how fast, how far and with how much destructive 

powder? The answer to these, and similar, questions are contained in the topic 
avalanche dynamics. The science of avalanche dynamics was not well advanced till the 
middle of the 20th century. Perhaps, the main reason could be a lack of measured data 
for avalanche velocity and the complicated geometric features on which the flow takes 
place. Methods to predict avalanche velocity and runout zones were first developed in 
Switzerland in 1950s due to the availability of historical and initial experimental data 
of their own. Here some important aspects of avalanche dynamic are addressed. 

With respects to its dynamic, an avalanche can be divided into three parts. The 
starting zone is usually the steepest part of the entire path. Here the avalanche breaks 
away, accelerates down the slope and picks up additional material as it moves. From 
the starting zone the avalanche moves into the track, where the velocity generally 
remains more or less constant and little material is added to the moving avalanche and 
the average slope angle becomes less steep. This is where small avalanches stop, 
because they do not have enough inertia to flow further. After travelling down the 
track it reaches the runout zone where the avalanche motion ends, either abruptly as it 
crashes into the bottom of a gorge of deep narrow valley with deep sides. Or it can 
stop slowly as it decelerates across a gradual slope. As a general rule, the slope angle of 
starting zones is in the range of 30° to 45° or more, the track is 20° to 30° and the 
runout zones are less than 20°. In most cases the avalanche simply flows a path down 
the steepest route on the slope while being guided or channelled by terrain features, 
such as the side walls of a gully, which normally direct the flow of avalanche to the 
bed.  

One of the most complicated and practical relevant aspect of avalanche dynamics 
is the effort to predict how far an avalanche will continue to flow or travel after it has 
reached the runout zone. An equally important question for avalanche practitioners is 
how much area it will hit and how the deposition profile looks like. These areas are 
important from infrastructure point of view. 

2.4.2 Entrainment of substrate material 
The 1939 landslide at Fidaz, Switzerland (Figure 2.3), began as a 0.1*106 m3 rock 

failure from the head scarp of the pre-historic Flims landslide, but grew to a total 
volume of 0.4*106 m3 by expanding during fragmentation and entraining a part of the 
colluvial apron surrounding the source cliff (Niederer, 1941). 
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Figura 2.3. Flims slide, 1939 Switzerland. 

Many rock avalanches liquefy and entrain saturated soil from their path. 
Observational evidence for this includes liquid mud displaced from the lateral and 
distal margins of rock avalanche deposits, substrate material smeared along the base of 
deposits, extrusion of liquefied soil upward through the deposits and increases of 
landslide volume (Hungr and Evans, 2004b). 

A hypothesis first suggested in 1881 and since reinforced by several authors, 
suggests that entrainment of substrate material on the slide path is an important 
process, contributing to the mobility of many large landslides. Although the process of 
material entrainment has been discussed in the literature for more than 100 years few 
detailed and quantitative descriptions exist. One possible reason for this is that rock 
avalanche volumes are difficult to estimate in the field and fractional volume increases 
are often missed in case history descriptions. 

The mechanism of material entrainment and displacement is discussed by Hungr 
and Evans (2004b). A suggestion is made that rapid rock failures entraining very large 
quantities of saturated substrate material represent a special type of landslide, 
transitional between rock avalanche and debris avalanche. Rock avalanches can thus 
be seen as an end member of a continuum of phenomena involving rock failure 
followed by interaction with saturated substrate.  

As shown in flume experiments, once the slope of the channel increases beyond 
approximately 10°, the bed itself may become unstable under the combination of 
gravity and drag forces imposed by the over-riding water flow (Bagnold, 1966).  If the 
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surface fluid is saturated debris instead of water, even greater drag forces result and 
the bed material can be massively mobilized and entrained into the flow.   

One of the main mechanisms causing material entrainment is bed destabilization 
and erosion.  Destabilization of bed material is the result of drag forces acting at the 
base of the flow, but may be aided by strength loss due to rapid loading (Hutchinson 
and Bhandari, 1971).  

Some of the existing empirical algorithms attempt to correlate potential 
entrainment magnitude with the involved area, but the results tend to be widely 
scattered. Other methods concentrate on erosion of material along the length of 
channels.  

Ikeya (1981) suggested that potential magnitude can be calculated as a product of 
the channel length, L, mean width, B and mean erosion depth, D.  He used estimated 
D as ranging between 0.5 and 3.2 m.   

A more direct method was developed by Thurber Consultants (1983) and Hungr et 
al. (1984), based on the concept of yield rate, Yi.  The yield rate is defined as the 
volume eroded per metre of channel length (see section 3.3).  

The ability to determine entrainment is a crucial step in prediction of avalanche 
magnitude and behaviour. Analytical techniques are unlikely to be useful in the 
foreseeable future. Empirical relations must be developed, but this task is made 
complex by the wide scatter in the available data sets, combined with the difficulty of 
acquiring such data and their generally low level of reliability.  Although difficult, the 
approach of collecting data on entrainment depth and yield rate, then correlating these 
data with well-chosen descriptive parameters in a statistical treatment seems to be the 
only course available.   

2.4.3 Excessive mobility of rock avalanches 
It has long been noted that many rock avalanches are excessively mobile, if 

considered as shearing masses of dry broken rock (Heim, 1932). 
For many years, researchers have been looking for an explanation of this 

phenomenon. The main hypotheses advanced for this purpose include (Hungr and 
Evans, 2004b): 

1. Mobilization by an air cushion, overridden and trapped beneath the mass of 
the rock avalanche (Shreve, 1968). 

2. Fluidization by similarly air or by steam generated by vaporization of ground 
water (Goguel and Pachoud, 1972). 

3. Fluidization by dust dispersions (Hsu, 1975). 
4. Rock melting or dissociation by the heat of friction (Erismann, 1979). 
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5. “Mechanical fluidization”, understood as a process of spontaneous reduction 
of friction angle at high rates of shearing (e.g. Scheidegger 1975, Campbell 
1990). 

6. Acoustic fluidization – reduction of friction angle resulting from acoustic-
frequency vibrations at the base of the flowing mass (Melosh, 1979). 

7. Increase in areal dispersion of debris as a result of fragmentations (Davies and 
McSaveney, 1999). 

8. Lubrication by liquefied saturated soil entrained from the slide path (Buss and 
Heim 1881, Abele 1974, 1997, Sassa 1988 and Voight and Sousa (1994) are 
among its later proponents.). 

The 1903 Frank Slide of southern Alberta, a rock avalanche of 36⋅106 m3, 
destroyed a part of the town of Frank, with 73 fatalities (Figure 2.2).  

Most of the damage in Frank was not due to impact or burial by rock debris. 
Homes and other buildings were impacted by a lateral outflow of mud, the liquefied 
alluvium from the floodplain of the Old Man River, expelled from the western margin 
of the landslide (McConnell and Brock, 1904). 

This is one example where liquefaction and displacement of saturated substrate soil 
from the path of a rock avalanche was documented. 

Many critical reviews and discussions of these various mechanisms have appeared 
in the literature (e.g. Hsu 1975, Hungr and Morgenstern 1984b, Hungr 1990, Legros 
2002). 

Liquefied substrate can play a dominant role in rock avalanche motion (Hypothesis 
8). Its entrainment serves to increase the volume of the landslide, but may also lead to 
a change in the rheological character of material forming the basal part of the moving 
mass. Thus, the mobility of the landslide may be enhanced. This is the oldest among 
numerous hypotheses that attempt to explain excessive mobility of rock avalanches; it 
was first proposed and supported by direct field evidence by Buss and Heim (1881) 
following their examination of the Elm slide in Switzerland. 

In 1968 Shreve proposed that the sole of the rock avalanche is lubricated by a 
cushion of trapped air (Hypotheses 1-2). If this were the case and air pressure was 
sufficient to provide significant uplift of the average column of debris, then parts of 
the debris sheet which are thinner than average would be completely fluidized. This 
would result in normal grading with the coarsest particles falling to the base. No such 
features have been observed (Cruden and Hungr, 1986). 

The mechanical fluidisation theory (Hypotheses 3-5) anticipates that the friction 
will decrease with increasing velocity. However, no one has so far been successful in 
demonstrating this effect in the laboratory where the measured dynamic friction 
increases with velocity (Hungr and Morgenstern, 1984b). 
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The acoustic fluidization (Hypothesis 6) of Melosh (1979) relies on energy input 
from external vibrations, set up by the boundary of the moving mass. It is not known 
whether such vibrations are sufficiently regular to cause a loosening effect. 

Davies and McSaveney (1999) proposed that mobility is the result of gradual 
fragmentation of the moving mass (Hypothesis 7). However, fragmentation is an 
energy-consuming process. 

Abele was one of the first workers to suggest a link between long travel distance of 
rock avalanches and interaction with valley fills, on the basis of detailed field mapping 
of prehistoric rock avalanche deposits in the Alps. He proposed a mechanism 
whereby a combined movement of a rockslide mass riding on water-saturated silt, 
sand and gravel can increase both runout distance and spreading of the debris. 

However, few quantitative descriptions of relevant case histories exist to 
substantiate this theory for rock avalanches. In general, it is difficult to assess the role 
of basal liquefaction in field studies, as the surface of rock avalanche deposits typically 
consists of dry coarse rock fragments. However, abundant displaced saturated fine soil 
is often observed around the deposit margins (e.g. Buss and Heim, 1881; Cruden and 
Hungr, 1986) and a lubricating layer of such material may well remain concealed 
beneath the coarse debris. The situation is more transparent where the amount of 
debris entrained along the path is very large, relative to the volume of rock in the 
initial failure. In such cases, the flow of liquefied soil unquestionably adds to the 
mobility of the event as a whole. Such landslides have a transitional character and 
deserve special identity both in name and in terms of descriptive and analytical 
treatment. 

In Hungr’s opinion, mud lubrication is the most likely explanation for the great 
mobility of many, if not all, rock avalanches. Some of the other mechanisms, such as 
fragmentation spreading and acoustic fluidization may also simultaneously play a role. 
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Run out models of rock slope failures        
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3.1 Introduction 
In 1979 Pariseau and Voight wrote “Even if the type of information necessary to 

forecast the motion of all material particles in a geological mass were known, the 
volume of information would be astronomical; calculations would be impossible with 
even the largest and fastest electronic computers. Of necessity, the elaboration of 
physical principles towards predictive schemes must involve a great sacrifice of detail. 
Predictive schemes are further constrained by practical considerations of purpose and 
availability of data. Consequently, mathematical representations of mass movements 
of geologic materials are largely conceptual and rather primitive, but occasionally 
useful”. 

At that time the most widely used and perhaps earliest model proposed for the 
analysis of rockslides and similar phenomena was that of a rigid block on an inclined 
plane (lumped mass models). Laboratory experiments were still at dawn but first 
qualitative and quantitative observations on the obtained results became fundamental 
for a better understanding of movement run out behaviour and stirred the 
introduction of more and more sophisticated apparatus. 

In the last years lumped mass models have been shelved. The numerical modelling 
based on simple empirical correlations among historical data (empirical models) has 
been then put beside new and more sophisticated models based on a continuum 
mechanics approach. 

It is probably fair to state that Savage and Hutter in 1989 developed the first 
continuum mechanical theory capable of describing the evolving geometry of a finite 



  

 
 

3.2 

mass of a granular material and the associated velocity distribution as an avalanche 
slides down inclined surfaces. Their model provided a more complete analysis of such 
flows than previous models had done, and its extension as well as comparison with 
laboratory experiments demonstrated it to be largely successful. 

Together with continuum mechanics models, a noteworthy type of modelling is 
that based on a discontinuum mechanics approach in which the run out mass is 
modelled as an assembly of particles moving down a surface. Nowadays this last 
approach still presents some macroscopic limitations that in some way compromise a 
satisfactory application to large movement analysis. 

3.2 Experimental approach 
Direct field observations of catastrophic motion of avalanches are extremely 

difficult to make; in fact there is only a limited number of field observations that 
would permit a partial verification of theoretical models.  

Laboratory experiments permit a control of both material properties and bed 
geometries, and thus facilitate comparison of theory with experiment. 

A satisfactory fit of a model computation with laboratory data still does not imply 
that the theory is adequate to describe large scale processes in nature. Apart from the 
idealisations of the laboratory experiment, scale effects might falsify the conclusions. 
However, finding satisfactory agreement between theory and experimental results in 
the small scale is still superior to none and it constitutes a step into the direction of 
treating the full problem. 

In 1954 Bagnold described a series of tests in which the stresses developed in a 
shearing grain mass were measured. In order to overcome centrifugal and gravitational 
effects, neutrally-buoyant grains in a fluid were sheared in an annular space, the outer 
wall of which revolved while direct and shear stresses were measured at the inner wall. 
Although this physical situation seems some way removed from that of a mass of 
rocks moving under gravity in air or in a vacuum, Bagnold (1956, 1966) showed that 
his results apply to the transport of sand grains by water and to the avalanching of 
sand in air. The results thus appear to be of wide applicability. 

In his tests with clay suspensions, Hsu (1975) found that the retention, in the final 
deposit, of the original sequence of material types is characteristic of fluid spreading. 

A series of laboratory flume experiments were conducted by Hungr and 
Morgestern (1984a) to investigate the flow behaviour of dry sand at high velocities. 
The first incentive for this experimental programme was an attempt to explain the 
high mobility of apparently dry masses of rapidly moving broken rock during rock 
avalanches. The research programme also included rapid ring shear experiments 
conducted at high normal stresses, which are reported in Hungr and Morgestern 
(1984b) and whose results are similar to those obtained by Sassa (1988).  
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In general, it emerged that ring shear apparatus (Figure 3.1) are useful to measure 
the internal friction angle during motion. 

 

Figure 3.1. Example of ring shear device (Image courtesy of N.R.Iverson, Iova State 
University). 

In the hope of isolating the simplicities inherent in the response behaviour of 
rapidly flowing granular materials, Hutter and his co-workers have performed well-
defined laboratory experiments. Three classes of problems have been analysed with 
increasing complexity: 

1. Flows of a finite mass of granular material within a narrow straight or curved 
chute that is situated in a vertical plane. Experiments were performed for 
chutes with flat beds by Huber (1980); exponentially curved beds by Koch 
(1989), Hutter and Koch (1991); chutes consisting of a straight inclined 
portion, a curved part and a horizontal part by Hutter et al. (1988), Savage 
and Hutter (1991), Hutter et al. (1995), and chutes whose bed was concavely 
and convexly curved by Greve (1991), Greve and Hutter (1993). 

2. Flows of a finite mass of granular material down a surface in three-
dimensional space, providing no or at most limited sidewise confinement to 
the moving granular mass were considered in the second stage. These 
surfaces are either inclined planes or rolled surfaces which are curved in the 
direction of steepest descent but flat perpendicular to this direction. 
Experiments were performed for inclined planes and surfaces consisting of an 
inclined plane in the upper part, a cylindrically curved transition zone and a 
horizontal plane in the runout and deposition zone by Koch et al. (1994) and 
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Greve et al. (1994). The conceivably next complication is to replace the 
inclined plane by a weakly parabolic channel (Figure 3.2) with straight talweg 
in the direction of steepest descent (Gray et al., 1999; Wieland et al., 1999).   

 

Figure 3.2. Experiment using a weakly parabolic channel (Image courtesy of S. McDougall, 
University of British Columbia). 

3. Flows that disclose the hyperbolic nature of the governing equations, i.e. for 
which internal shocks are formed. These for instance comprise parallel flows 
of a granular material down an inclined plane encountering obstructions. 

In the course of the years, some of the performed experiments have demonstrated 
that applicability of the Coulomb equation extends beyond the quasistatic flow regime, 
in which grains interact exclusively through enduring frictional contacts, because even 
rapid granular flows exhibit a Coulomb-like proportionality between shear and normal 
stresses [e.g. Bagnold, 1954; Hungr and Morgenstern, 1984b; Savage and Hutter, 1989; 
Iverson and Denlinger, 2001; Hunt et al., 2002] 

To clarify the long run out problem, Davies et al. (1999) carried out a series of 
experiments in which volumes of sand ranging from 0.1 to 1000 l were allowed to fall 
from similar initial conditions down a plane inclined at 35° or 45° and to run out 
across a horizontal surface (Figure 3.3). They found that the longitudinal extent of the 
deposits, representing the spreading of the material during motion, was consistent at 
about 1.5-3.0 times the cube root of the volume of material and was largely 
independent of the fall height and fall slope.   

Experiments with about 10 m3 of water-satured sand and gravel were conducted at 
the U.S. Geological Survey debris flow flume (located in H.J. Andrews Experimental 
Forest, Oregon), a rectangular concrete chute 95m long and 2m wide that slopes 31° 
throughout most of its length and flattens at its base to adjoin an unconfined runout 
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surface (Figure 3.4). Details of the flume facility and experimental methods are 
reported in Iverson et al. (1992), Iverson (1997a) and Major and Iverson (1999). 

 

Figure 3.3. Experiment in which a volume of 0.4 l of sand is allowed to fall from a plane 
inclined 45° and to run across a horizontal surface (Image courtesy of I.Manzella, 
EPFL, Switzerland). 

           

Figure 3.4. a. A debris flow discharging from the gate at the head of the flume. b. Debris flow 
passing instrumented cross section, 22 meters downslope from headgate (Images 
courtesy of U.S. Geological Survey). 
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3.3 Empirical approach 
Empirical methods useful for estimating landslide runout have been reviewed by 

Hungr (2002). 
These methods can roughly predict the overall travel distance of the landslide 

mass, or its areal extent, but they can give no indication of the distribution of debris in 
the deposition area, information that is needed for planning protective measures.  

Detailed descriptions of numerous known major rockfalls in the Alps were given 
by Heim (1932) and Abele (1974). From empirical observations, Heim ascertained the 
dependence of the distance travelled by the rock mass upon the initial height, the 
regularity of terrain and the volume of rockfall. He defined “fahrboschung” (“travel 
angle”) as the slope of a line connecting the crest of the source area with the distal tip 
of deposits, measured on a straightened profile of the path (Figure3.5): 

( )LH /tana=α  (3.1) 

 

Figure 3.5. Profile of a rock avalanche showing the definition of fahrboschung (α) due to 
Heim, 1932. 

Heim and Mueller noted that the friction coefficient would theoretically 
equals αtan . Fahboschung is therefore sometimes called the “mean friction angle” of 
the slide. 

The statistical comparison made by Abele demonstrated that the distance travelled 
and the morphology of deposits of a major rockfall are influenced mainly by the 
volume, the vertical drop and the relief of the deposit area. 

Scheidegger (1973) formalised the Heim’s relationship by defining a correlation 
between landslide volume and the ratio of the total fall height, H, to the total runout 
distance, L, based on data from 33 prehistoric and historic rock avalanches (Figure 
3.6) . The ratio of H/L, termed the effective friction angle, has been considered by 
many authors as a measure of mobility.  
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Hungr (1981) repeated Scheidegger’s plot, expressing “travel angle” as the vertical 
angle between the centres of gravity of the source and deposit. The trend is similar 
and the scatter is undiminished. In addition, estimation of the position of the gravity 
centres is difficult and unreliable in most cases. 

Li (1983) and Okuda (1984) found a correlation between volume and H/L, as well 
as between the landslide volume and the spreading area. Correlations have also been 
made between volume and total length of deposit (Li, 1983; Davies, 1982). 

 

Figure 3.6. Correlation between rock avalanche volume and the tangent of the fahrboschung 
angle (from Scheidegger, 1973). 

Hsu (1975) presented evidence to support Heim’s contention that rock avalanches 
flow rather than slide, resulting in spreading of the debris lobe during deposition. 
Based on this theory, he introduced the “excessive travel distance”, Le, as an 
alternative measure of mobility.  He defined this term as: 

32tan
HLLe −=  (3.2) 

If it is assumed that 32° is the average angle of the source/travel segment of the 
path, then Le must simply equal the length of the deposit, measured in the direction of 
motion. 

Nicoletti and Sorriso-Valvo (1991) presented a modified version of the Hsu model 
and studied the local geomorphic controls on the shape and motion of rock 
avalanches, in addition to providing a comparative review of empirical methods of 
prediction. 

Some authors noted that the fahrboschung of large rock avalanches is much less 
than 30 to 35°, which is the typical dynamic friction angle of dry broken rock. Further, 
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the angle apparently decreases with increasing magnitude of the event. With regard to 
this topic, Corominas (1996) showed a linear correlation between volume and angle of 
reach for all types of failures. He found that all kinds of mass movement show a 
continuous decrease in angle of reach with increasing volume starting from 
magnitudes as small as 10 m3. This correlation contained a great deal of scatter, which 
he attributed mainly to path obstructions. 

A characteristic of some landslides is that most, if not all, of their volume develops 
by gradual entrainment of material from the slide path. 

Hungr et al. (1984) introduced the concepts of “yield rate” and “erosion depth”. In 
some channels and gullies it is possible to estimate the amount of debris removable by 
a debris flow by a direct visual inspection. The resulting “yield rate”, Yi, is expressed in 
m3 per m of path length. The total volume, M, of the debris flow event can then be 
estimated by multiplying the lengths of channel segments Li, with the corresponding 
yield rates: 

∑
=

=
n

i
ii LYM

1

    (3.3) 

The yield rate approach is difficult to use for unchanellized debris avalanches, 
where the yield rate depends strongly on the width of the path. In this case, the 
“erosion depth” parameter is a more suitable index for estimating volumes, provided 
that the width of the path is known. The relationship between yield rate (Yi), erosion 
depth (di) and path width (Wi) is: 

iii WdY =   (3.4) 
The use of the yield rate concept was extended to the simulation of the deposition 

behaviour of debris flow and avalanches by Cannon (1993). She assumed that each 
event begins by a discrete slide, the volume of which can be estimated beforehand by 
independent means. A constant “lag rate” is then assumed, being the equivalent if the 
yield rate but negative as the material is gradually discarded along the path in levees 
and sheets. The runout distance is determined by dividing the slide volume by the lag 
rate. Using multiple regression analysis, Cannon (1993) found an empirical 
relationship connecting the lag rate with slope and width of the path. This approach 
was then elaborated by Fannin and Wise (2001) combining the yield rate and lag rate 
approaches.  

Useful empirical relationship between magnitude and peak discharge of debris 
flows was presented by Rickenman (1999) and others. 

The empirical methods suffer from great scatter of data, making even the limited 
prediction very unreliable. It is difficult in this method to take account of the 
influences of the ground condition, the degree of saturation of the landslide mass, and 
the micro-topography. 
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3.4 Analytical approach 

3.4.1 Lumped mass 
The lumped mass models idealize the motion of a slide as a single block, by 

consequence they have an obvious limitation in being unable to account for internal 
deformation.  

The block represents the mass of the potential slide. Friction between the block 
and plane prevents sliding below some critical angle of inclination; above the critical 
angle the mass accelerates according to Newtons’s secon law. Once the mass is in 
motion, deceleration occurs at angles of inclination below the critical angle. 

When a mass having the potential energy h moves by a distance x, the energy loss 
during motion (Ef) is, 

∫ ==
x

aaf mgxdxmgE
0

tan
cos

tancos δ
ψ

δψ  (3.5) 

m: mass; g: acceleration of gravity; ψ: slope angle; δa: friction angle. 
In Figure 3.7 the energy is shown by height (dividing the energy by mg), the energy 

line shows the total energy (potential energy + kinetic energy). The kinetic energy 
(v2/2g) is shown by the height between the energy line and the center of gravity of the 
moving mass. The angle δa corresponds to the gradient of energy line. Then, if the 
angle δa is known, the moving distance and the velocity can be estimated by drawing 
the energy line. 

 

Figure 3.7. Energy analysis (from Sassa, 1988). 
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A variety of lumped mass models have been proposed, differing in the definition 
of the resisting forces as functions of velocity, distance, or both. 

Banks & Strohm (1974) assumed the resisting force to be a purely frictional term, 
dependent on the normal component of the slide weight. This approach is probably 
correct for small scale rockslides and falls of limited displacement. It severely 
overpredicts the velocity of movement for larger rock avalanches (Koerner, 1976). 

The most widely used and applied lumped mass models utilised a centre of mass 
approach and were based on the ideas first suggested by Voellmy (1955), who related 
the shear traction at the base of the flow to the square of the velocity and postulated 
an additional Coulomb friction contribution to it. On the one hand, Voellmy assumed 
uniform and steady conditions; whilst, on the other hand, a number of subjective 
parameters must be predetermined in order to obtain results which match observed 
data.  

Koerner (1976) adapted to rock avalanches the resistance equations developed by 
Voellmy (1955) for snow avalanches and Evans et al. (1989) applied the Koerner 
model to the highly channelized Pandemonium Creek slide in British Columbia. 

Many successful attempts were undertaken to improve Voellmy’s model (e.g. Perla 
et al., 1980 and Salm, 1966). Unfortunately, none of these extensions could be 
advanced beyond the centre of mass approach. 

McLellan and Kaiser (1984) presented a modified version of Koerner’s (1976) flow 
model in which velocities are predicted in an iterative manner along a postulated travel 
path. Individual pairs of frictional and dynamic resistance parameter are used to 
simulate these velocities. 

Moriwaki et al. (1985) used a two parameters model with a fractional term, 
decreasing exponentially with distance. 

Huchinson (1986) and Sassa (1988) made efforts in the same direction. They 
considered that friction during motion is determined by the internal friction angle of 
soil and the pore pressure during motion.  

Eventually many others models were proposed but noteworthy are in particular 
those models in which authors tried to extend analyses in three dimensions, using 
digital representation of the path. On the one hand we can mention the Rochet (1987) 
model, in which blocks are released sequentially and upon deposition the path is 
modified for the next block, whilst on the other hand, Kobayashy and Kagawa (1987) 
model that is derived from the Koerner model and in which blocks are released 
simultaneously and interact by lateral collisions.  

Even though the lumped mass models may provide reasonable approximations to 
the movement of the centre of gravity of the landslide, they are not able to provide 
information as to the spatial and temporal properties of an avalanche such as the 
velocity distribution and the evolution of the avalanche height and spread. Aspects 
that are certainly not constant throughout the dimensions of the flowing mass and the 
time. 



Chapter 3:Run out models of rock slope failures  
 
 

3.11

3.4.2 Continuum mechanics 
Continuum mechanics models for rapid landslides use techniques developed for 

analysis of the flow of fluids in open channels. There are, however, important 
differences between fluids and earth materials, even if the latter are saturated and 
highly disturbed. In addition, landslide paths are often much steeper and more varied 
than channels considered in most hydraulic calculations and landslide motion is highly 
unsteady. 

These characteristics make the analysis of landslide motion exceedingly complex. 
Although granular material is a large assemblage of discrete particles, it is here 

treated as a continuum. This implies that the depth and length of the flowing mass are 
large compared to the dimensions of a typical particle.  

In this framework it becomes fundamental to find an “apparent” fluid whose 
rheological properties are such that the bulk behaviour of the flowing body simulates 
the expected bulk behaviour of the prototype landslide (Figure 3.8). The properties of 
the equivalent fluid do not correspond to those of any of the slide components. 

 

Figure 3.8. (a) Prototype of a heterogeneous and complex moving mass; (b) A homogeneous 
“apparent fluid” replaces the slide mass (from Hungr, 1995). 

A promising approach for describing unsteady and non-uniform flow on complex 
geometry is the depth averaged Saint Venant approach, in which the avalanche 
thickness (H) is very much smaller than its extent parallel to the bed (L), which is 
often the case for geophysical flows (Figure 3.9). The material is assumed to be 
incompressible and the mass and momentum equations are written in a depth-
averaged form.  

Depth averaging allows us to avoid a complete three dimensional description of 
the flow: the complex rheology of the granular material is incorporated in a single 
term describing the frictional stress that develops at the interface between the flowing 
material and the rough surface. (Pouliquen and Forterre, 2002). 

Depth-averaged equations have been introduced in the context of granular flows 
by Savage and Hutter (1989). In their model, the moving mass is supposed to be 
volume preserving, is cohesionless and obeys a Mohr-Coulomb yield criterion both 
inside the deforming mass as well as at the sliding basal surface, but with different 
internal, φ, and bed, δ, friction angles. 
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The avalanching motion consists of shearing within the deforming mass and 
sliding along the basal surface. 

Key elements of the work by Savage and Hutter (1989) included: 
1. derivation and scaling of depth-averaged momentum and mass conservation 

equations to obtain one-dimensional shallow flow equations appropriately 
normalized to account for the finite size of avalanching masses;  

2. formulation of shallow flow equations using the Coulomb equation for basal 
shear resistance and an earth pressure equation for the influence of Coulomb 
friction on longitudinal normal stresses;  

3. numerical solution of the one-dimensional shallow flow equations using a 
Lagrangian finite difference scheme suitable for tracking propagation and 
deformation of an avalanching mass; and  

4. experimental testing that demonstrate the veracity of the model. 

 

Figure 3.9. Depth-averaged approximation. 

Savage, Hutter and coworkers were able to predict the motion and spreading of a 
granular mass on steep slopes in two and three dimensions (Savage and Hutter, 1989: 
Gray et al., 1999; Wieland et al., 1999). Experiments have been carried out also on 
curved beds (Greve and Hutter, 1993; Greve et al., 1994; Koch et al., 1994) and the 
measurements agree relatively well with the prediction of the depth-averaged model. 

Hungr (1995) developed, starting from the approach of Savage and Hutter (1989), 
a model based on a lagrangian solution of the equations of motion in which a 
selection of a variety of material rheologies is possible. These rheologies can be varied 
along the slide path or within the slide mass. Furthermore, this model allows for the 
internal rigidity of relatively coherent slide material and takes into consideration the 
effects of lateral confinement along the path.  

Successively, Chen and Lee (2000) used the combination of a Lagrangian frame 
and a finite element method for running a three-dimensional analysis of the 
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propagation phase. Their model makes use of a number of columns in contact to each 
other and with averaged properties with depth. For a typical column, the unit net 
force F acting on the column consists of the weight component force of the column 
W, intercolumn force P, and basal resistance force T (Figure 3.10). The columns are 
free to deform but are fixed in volume when sliding down a slope and a constant bulk 
density is assumed.  

 

Figure 3.10. Diagram of the forces acting on a column (from Chen and Lee, 2000).  

Subsequent generalizations of Savage-Hutter approach have included extensioon 
to multidimensional avalanches (Hutter et al., 1993; Gray et al., 1999; Denlinger and 
Iverson, 2001; Pudasaini and Hutter, 2003), extension to flows containing viscous 
intergranular fluid (Iverson, 1997a; Iverson and Denlinger, 2001; Savage and Iverson, 
2003; Jenkins and Askari, 1999; Denlinger and Iverson, 2004), and a variety of 
numerical implementations and experimental tests (e.g. Hutter and Koch, 1991; 
Wieland et al., 1999; Denlinger and Iverson, 2001; Gray et al., 1999). 

 The models differ primarily in their representation of basal resistance forces and 
the constitutive relations describing the mechanical behaviour of the considered 
material.  

Uncertainties persist about the most appropriate flow law (viscous, Coulomb-type, 
Bagnold behaviour) and basal friction law, both depending on the concentration of 
fluid, solid and gas within the flowing material (Hunt, 1985; Laigle and Coussot, 1997; 
Arattano and Savage, 1994; Macedonio and Pareschi, 1992; Whipple, 1997). 
Therefore, depth-averaged models (i.e. hydraulic type models) provide a good way of 
assessing gravitational flow dynamics as they do not need a precise knowledge of the 
mechanical behaviour within the flow. Also, depth-averaged models do not require 
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large numerical resources and can be easily applied to real three-dimensional 
topography. 

3.4.2.1 Kinetic theory  
Many investigators (e.g. Haff, 1983; Jenkins and Savage, 1983; Jenkins and 

Richman, 1985; Lun et al., 1984; Campbell, 1990; Hwang and Hutter, 1995; Iverson et 
al., 1997) speak about a phenomenon, known as granular temperature, important 
when soil deformation rates exceed quasistatic limits. Granular temperature, T, is a 
measure of the degree of agitation of solid grains which is also directly related with 
changes in the mixture bulk density and in the particle interlocking and mobility. 
Granular temperature derives its name from the analogy between grain fluctuation 
kinetic energy and the molecular kinetic energy that determines the thermodynamic 
temperature of a gas. 

The main difference between gas and granular temperature consists in the 
impossibility to maintain granular temperature in the absence of energy exchange with 
the environment, because grain velocity fluctuations cause energy dissipation due to 
grain interactions and pore fluid flow. 

Granular temperature can be generated and maintained only by a continual 
conversion of bulk translational energy to grain fluctuation energy. Bulk translational 
energy in landslides is supplied by downslope travel of the moving mass, and 
conversion of bulk translational energy to grain fluctuation energy occurs as grains 
shear along irregular surfaces (Iverson et al., 1997). 

Granular temperature has been defined by Campbell (1990) and Iverson et al. 
(1997) as the ensemble average of grains’ velocity fluctuations, v’, about their mean 
velocities: 

( )22' xvvvT −== r  (3.6) 

where vr  is the instantaneous velocity of a solid grain, vx is its average downslope 
velocity, and denotes the ensemble average of all grains. According to this 
definition the granular temperature may be interpreted as twice the fluctuation kinetic 
energy per unit mass of grains. 

A kinetic theory would involve the solution of an additional energy equation for 
the granular temperature, velocity and density variations. 

The model developed by Iverson and Denlinger (2001) is a generalization of the 
depth averaged, two-dimensional grain-fluid mixture model of Iverson (1997a, 1997b), 
who in turn generalized the flow model of Savage and Hutter (1989). In particular, to 
describe flowing mass and linear momentum balances are adopted, while separate 
energy balance equations are unnecessary because the mixture is considered 
isothermal. 
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3.4.3 Discontinuum mechanics 
Discontinuum mechanics modelling is based on the relatively new science of 

discontinua introduced in geomechanics almost forty years ago (Goodman et al., 
1968). The runout mass is modelled as an assembly of particles moving down a 
surface. Its structure is often called a "fabric" referring to the microstructure of the 
particle mass collection, space between particles within the mass (pore space), 
arrangement of particles, and their static and dynamic motion interaction contact laws 
(Mitchell, 1976).  

Loose soils, concrete, and rock with fracture planes are all examples of discrete 
grain structures forming a discontinuum fabric formation. 

Early applications of discontinuum mechanics centred on rock mechanics 
(including ice), soil mechanics, flow of fine and large particles, and molecular 
dynamics (Cundall, 1988).  

The Discrete (Distinct) Element Method (DEM) is the term given to the numerical 
analysis procedure that simulates the behaviour within discontinuum mechanics. 
Formulation of discontinua by the Discrete (Distinct) Element Method (DEM) was 
originally developed by Cundall, in 1971, and named by him and Strack in later 1979 
publications (see Cundall and Strack, 1979). 

DEM treats particles as an assemblage of individual or distinct bodies. By applying 
their known individual constitutive properties, contact laws, velocities, displacements, 
and body forces, their dynamic behaviour can be studied over a selected period in 
time.  

Cundall (1988) proposed the term DEM to be applied only to the class of 
computer based programs that: 
- allows finite displacements and rotations of discrete bodies, including complete 

detachment between bodies; 

- recognizes new body contacts automatically as the analysis progresses. 
As the dimension of discontinuum mechanics extends beyond the solid body 

phase either the definition will need to be expanded or a more general description 
found. A more appropriate term, maybe Multi-Element Method (MEM). 

Each particle is followed exactly as it moves and interacts with the surface and 
with its neighbours.  

Two dimensional studies of circular disks were conducted in the late 1970's and 
early l980's. Three dimensional spheres were published in the mid and late 1980's 
(Strack and Cundall, 1984; Cundall, 1988; Walton et al., 1988). Higher order shapes are 
very recent: two dimensional ellipses in 1992 (e.g. Ng), three dimensional ellipses in 
1993 and 1995 (e.g. Lin), two dimensional clustered spheres in 1997 (e.g. Jensen et al.), 
and three dimensional clustered spheres in 1997 (e.g. Qiu and Kruse). 
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Circular disks and mono-spheres are most frequently studied due to the simplified 
particle contact detecting mathematical algorithms and available computer power. 

Much research has been published on the limitations of circular disks and spherical 
shaped particles. Most soils and fragmented rock particles are more angular and 
blocky which:   
- increases voids within the fabric of the granular mass,  

- increases interlocking between particles, and  

- inhibits rolling.  
Disks and spheres, unlike fragmented particles, produce a low shear resistance and 

induce rolling that dominates deformation of the fabric. Therefore, disk or spherical 
shapes do not provide realistic behaviour of most mined or processed rock.  
Furthermore, modelling in two dimensions implies a complete consolidation in the 
third dimension, which is obviously not possible, thereby altering or skewing the 
outcome. 

Polygonal and hyperquadric shapes have also been studied, but are impractical for 
large numbered particle models due to the complexity of the contact patterns and 
large penalty in computational time. Higher order shapes are proposed (Barr, 1981) 
but still have a large computational time penalty. 

Ellipses and dusters of spheres, in proper size distributions and aspect ratios, do 
provide more realistic interlocking and consolidation properties which yield behaviour 
that mimics natural materials (Jensen et al., 1997). For most real-world problems, 
three-dimensional models of non-circular shapes will be required. 

Through the implementation of DEM in the PFC2D code (by Itasca) it has been 
demonstrated the great interest of this approach for the study of fast slope 
movements (Calvetti et al., 2000; Barla G. and Barla M., 2001; Gonzales et al., 2003). 
It should be recognised however that further work is needed before the DEM can be 
used reliably as a predictive tool. 

Will and Konietzky (1998) used the Particle Flow Code PFC2D by Itasca to analyse 
rock fall and rock avalanches problems. PFC models the movements and interactions 
of stressed assemblies of spherical particles being in or getting into contact with wall 
elements. The particles may be bonded together at their contact points to represent a 
block that may fracture during its movements, due to progressive bond breakage. 
Every particle is checked on contacts with every other particle in every time step. 

With reference to the calibration of the material parameters necessary to run an 
analysis with PFC, Valentino et al. (2004) derive a method for relating the numerical 
parameters to the mechanical and geometrical characteristics of landslides. A series of 
tests have been performed on dry sand which is intended to simulate the granular flow 
(Figure 3.11). During each test the geometry of the mass profile has been recorded; 
the displacements, velocities and impact forces against an obstacle, positioned along 
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the runout, have been measured. The observations made and the data derived are 
shown to be useful for a direct quantitative comparison between an ideal experiment 
and the numerical simulation by the DEM.  

 

Figure 3.11. Comparison between geometrical configurations in the physical laboratory test (a) 
and in the numerical simulation (b) (from Valentino et al., 2004). 

Roth (2003) adapted the contact management in PFC3D in simulating rock 
avalanches in three dimensions. After finding the detached rock mass, the slope 
surface is modelled by triangular wall elements and the detached rock mass by spheres 
(Figure 3.12a). After detachment of the particles, by reducing the friction at the failure 
surface and by deleting artificial walls holding back the particles, the run out 
calculation starts. As the particles may be bonded together at their contact points, 
PFC can also simulate massive rock that may fracture due to progressive bond 
breakage. Thus, failure mechanisms of rock slopes and detachment of a mass of 
particles can be simulated (Figure 3.12b). 

      

Figure 3.12. Example of PFC application. a) Ball-Wall, detached rock mass modelled by balls 
while bedrock simulated by linear and planar elements. b) All-Ball, detached mass 
and bedrock modelled by balls. 
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The problem, however, at the moment, is the maximum number of particles 
(about 100000) building up the slope, including the detached rock mass. In general, 
this number is not sufficient to simulate every failure mechanism in detail and the 
particles may be too large in diameter to simulate the runout exactly.  

3.4.3.1 Dynamic equations of equilibrium 
The main governing equations must include for the six degrees of particle motion 

freedom in three-dimension (rectilinear displacement and rotation). 
Rectilinear motion, or translational position in the x, y and z planes of an arbitrary 

element includes acceleration (x",y"z"), velocity (x',y',z') ,and displacement (x, y, z). 
For a given element mass (m) equilibrium is established by tile second order 
differential equation: 

0=−++ Fkxcx'mx"  

0=−++ Fkycy'my"  (3.7) 

0=−++ Fkzcz'mz"  
where c is the contact damping coefficient, k the element elastic non-linear 

stiffness and F is the applied external force. 
Angular momentum of the arbitrary element in equilibrium, is governed by Euler's 

equation: angular acceleration (ω’1,ω’2,ω’3), spin velocity (ω1,ω2,ω3) and external 
moments (M1,M2 ,M3,), (where the three-dimensional axes 1,2,3 are the principal 
normal axes with regards to the element). For the element mass moment of inertia (I1, 
I2, I3), the Euler equilibrium differential equations about the element's principal 
normal axes 1, 2, and 3 are: 

( ) 0' 1232311 =−−+ MIII ωωω  

( ) 0' 2313122 =−−+ MIII ωωω  (3.8) 

( ) 0' 3121233 =−−+ MIII ωωω  
The method for solving the system or equations follows the finite difference 

iteration schemes such as found in Walton et al., 1988. 

3.4.3.2 Contact law 
Accurate constitutive equations, describing the dynamic particle contact laws 

between particles and with containment surfaces, are essential for useful model 
prediction. The contact laws must relate the distances between particles, interactions 
of particle structure (i.e. disks and spheres use Hertzian linear elastic solid law; Hertz, 
1992), shape, size, distribution, moisture, elasticity, viscoelasticity, viscoplasticity, and 
time dependent consolidation and relaxation properties. Disk and sphere shapes are 
most often used due to the simple test for contact and known surface deformation 
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theory. Contact stiffness between particles must also incorporate both normal and 
tangential contact relationships with respect to their normal deformation and 
rotational displacement. Variations of Mindlin's solution given in Mindlin, 1949 are 
often used to describe the non-linear hysteresis of normal and tangential coupled 
loads (e.g Thornton and Randall, 1968; Seridie and Dobry, 1984).  

Constitutive tuning of particle-to-particle friction, particle-to-wall friction, cohesive 
forces, adhesive forces, asperite of particles and wall surfaces, moisture and related 
constitutive properties are well presented by Roberts tome (1982) on bins, chutes, and 
feeders.  



 
 
 
 



Chapter 4  

Continuum mechanics approach:             
DAN and SHWCIN codes, theoretical aspects 

4.1 Introduction 
In 1989 Savage and Hutter applied for the first time the depth averaged Saint 

Venant equations to the analysis of propagation of a granular mass. This was the first 
step to the development of some numerical models of runout having a different solver 
but all based on a continuum mechanics approach and on Saint Venant equations. 

The three dimensional numerical model RASH3D, used in the present work, is part 
of this set of models. 

The original version of the code (SHWCIN) was developed by the Institut de 
Recherche en Informatique et en Automatique (INRIA, France) in cooperation with 
the Institut de Physique du Globe de Paris (IPGP, France). Before using SHWCIN to 
run analysis of propagation on a complex topography many fundamental changes 
have been necessary. Their numerical integration in the source code has improved 
obtained results. 

  Whatever the numerical model is, more or less complex, a still unsolved problem 
is the choice of the value to be assigned to the characteristic parameters of the 
assumed rheology. To study this problem, some case histories have been selected 
from literature. Each case is carefully analysed and all the available information is 
collected in a filing table. 

Through back analyses, values that better fit the real behaviour of the mass are 
obtained as a function of the assumed rheology and are considered representative of 
the considered case.  



  

 
4.2 

The values assigned to rheological parameters in case of back analysis can be useful 
guidelines in choosing values to use when a potential landslide is analysed, provided its 
characteristics are similar to those of the considered case histories. The back analysis 
of a considerable number of events is then necessary. 

Back analyses have been carried out using the two dimensional numerical code 
DAN, developed by Hungr in 1995. It is based, as RASH3D, on a continuum 
mechanics approach and it was especially developed to simulate the motion of flows, 
flow-like slides and avalanches.  

The main limitation of DAN is due to the fact that it reduces a complex and 
heterogeneous three dimensional problem into an extremely simple formulation. The 
path width is an input data of the code but if a back analysis is the aim of DAN 
application this information is already known. 

The simplicity of the model and the possibility of choice among different 
rheologies, some of which are particularly simple, make of DAN an interesting tool to 
be applied. 

As will be discussed in Chapter 6, if back analyses are run with DAN and the 
obtained rheological values are used to simulate the same cases with RASH3D, by 
using a complex topography (i.e. DEM), it emerges that the results of propagation are 
still correct. This justifies the proposed coupled methodology: DAN, to run many 
back analyses in a few time, and RASH3D, to predict propagation of a potential 
landslide on a complex topography. 

4.2 Field equations 
Movements are described here within a continuum theoretical framework as a 

single-phase, incompressible material with constant density (e.g. Savage and Hutter. 
1989; Iverson and Denlinger, 2001).  

A free surface flow of a granular material along a varying bottom profile is 
considered. The granular material is treated as a continuum which implies that the 
thickness H (Figure 4.1) of the sliding and deforming body extends over several 
particle diameters. 

 

Figure 4.1. Shallow flow assumption hypothesizes that H << L.  
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Under these conditions an incompressible model, consisting of the balances of 
mass and momentum, namely 

0=⋅∇ u  (4.1) 
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is used to describe the motion of the avalanching mass. In these equations u(x, y, z, 
t)=(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) denotes the three-dimensional velocity vector 
inside the avalanche in a (x, y, z) coordinate system that will be discussed later, σ(x, y, 
z, t) is the Cauchy stress tensor, ρ the mass density, and g the vector of gravitational 
acceleration.  

The basal topography, or bed, over which the avalanche is assumed to slide is 
described by a surface ωb(x, y, z, t) = z – b(x, y) = 0 and the free surface of the flow by 
ωs(x, y, z, t) = z – s(x, y, t) ≡ z –(b(x, y) + h(x, y, t)) = 0, where h(x, y, t) is the depth of 
the avalanche layer, s(x, y, t) is the free surface elevation and b(x, y) is the basal surface. 

Boundary conditions at the free surface may be expressed in terms of a function ωs 
which is zero for a particle there, i.e. 
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The first equation is the kinematic statement that the free surface is material; the 
second expresses stress-free conditions at the surface, neglecting the atmospheric 
pressure. 

Similarly, for a ‘particle’ at the base the boundary conditions become 
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The first equation introduces a solid friction law, which relates shear traction Tt to 
the local friction angle δ and the normal stress Tn, where the sign is given by the 
direction of the sliding velocity (us), the second express the tangency of the flow to 
the bed. 

During the flow, the avalanche thickness is much smaller than the avalanche extent 
parallel to the bed; by consequence, the shallow flow assumption, that hypothesizes 
that H<<L (Figure 4.1), can be assumed.  

Depth averaged equations and shallow flow assumption require the choice of an 
appropriate coordinate system. In case of significant slopes, the shallow flow 
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assumption is more significant in a reference frame linked to the topography and the 
classical shallow water approximation relating fixed horizontal and vertical directions 
is not appropriate. As in Denlinger and Iverson (2001) work, the equations have to be 
written in an orthogonal Cartesian coordinate system in which the z coordinate is 
normal to the local topography and a local x axis, in the local tangent plane to the 
topography, and y = x ∧ z are defined. 

Note that the choice of an appropriate reference frame is not straightforward. The 
equations developed in a coordinate system linked to the topography are not directly 
applicable in a fixed reference frame as was performed by Naaim et al. (1997): 
appropriate rotation has to be used to transform properly topography-linked 
equations in a fixed frame and vice versa [see, e.g., Douady et al. (1999)]. 

The plane Cartesian coordinates x and z (see Figure 4.1) is now introduced. In this 
coordinate system the field equations (4.1)-(4.2) become 
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In order to obtain the depth averaged equations two steps are necessary. The first 
originates from shallow hypothesis that allows to neglect some terms in equations 
(4.5)-(4.7). The second is the z -integration of the equations. 

It is before advantageous to non-dimensionalize the equations by scaling variables 
accordingly. To this end: 

[ ]Lxx ∗=                        [ ]Hzz ∗=                      [ ]gLtt ∗=   (4.8) 

[ ]gLuu ∗=                   [ ]gLvv ε∗=                  [ ]Hhh ∗=  (4.9) 

[ ]ψρσσ cosgHxxxx
∗=  ; [ ]ψρσσ cosgHzzzz

∗=  ; [ ]ψρσσ singHxzxz
∗=  (4.10) 

In which, as previously mentioned, H is a typical depth while L is a typical span or 
spread of the slide and ψ is the dip of the slope. Observations indicate that the aspect 
ratio LH=ε is small. 

With these assumptions the non-dimensionalized field equations become: 

0=
∂
∂

+
∂
∂

z
v

x
u  (4.11) 
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In which for brevity asterisks have been omitted; subsequently this will always be 
done. 

In the limit as 0→ε , (4.13) reduces to the hydrostatic equilibrium equation, 
yielding 

1−=
∂

∂

z
zzσ

 (4.14) 

After integration and taking account of the zero pressure condition at the free 
surface it is obtained: 

( )zsgzz −= ψρσ cos  (4.15) 

In which, as previously mentioned, s is the free surface elevation. 
At this point, to obtain final equations it is necessary a z –integration. It is possible 

to proceed in two directions. 
 
For a detailed description of the first procedure it is referred to Savage and Hutter 

(1989). The final system of equations is obtained in this case as follows. 
The x –momentum equation is depth averaged through integration from z=b to 

z=s and after simplification will eventually contains terms involving the bed shear 
stress and the integral over the depth of the normal stress σxx.  

σxx and σzz are related to one another throughout the use of an earth pressure 
coefficient, k.  

σxz and σzz are related at the bed through the use of constitutive assumptions 
(Coulomb sliding law).  

Thus it is consistent to 1) obtain an order-unity expression for σzz (equation 4.15), 
2) determine σxx from it, and finally 3) use this expression for σxx in the term of order 
ε in equation (4.12). This yields a final set of equations. Provided the internal angle of 
friction, φ, the basal friction angle, δ, and the basal geometry are known, the evolution 
in time of both h (=s-b) and u (mean velocity) can be determined. 

For the motion of an avalanche in a reference system linked to the topography it is 
possible to set b=0. The resulting equations which will be called system (I) result: 
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The overbars are omitted for simplicity. 
The second procedure is based on the balance of forces acting on a narrow 

column dx of material (Figure 4.1). 

Mean velocity on depth is indicated as ( )∫=
h

dztzxu
h

u
0

,,1 . 

The mass conservation law indicates that the change in volume of the element dx 
in a time step dt is obtained subtracting the outflow from the inflow as quoted in 
equation (4.16). 

∫∫ +−=
h

dxx

h

x udtdzudtdzdxdh
00

 (4.16) 

The mass conservation law is then obtained dividing by dx and dt : 

0=
∂
∂

+
∂
∂

x
uh

t
h  (4.17) 

As a function of the forces acting (∑ F ), the change of momentum of the element 
dx in a time step dt is defined as follows: 

( )
32144 344 2143421

ForcesOutflow

0

2

Inflow

0

2 ∑∫∫ +−= + Fdtdtdzudtdzuuhdxd
h

dxx

h

x ρρρ  (4.18) 

from which 
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t
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⎛

∂
∂

+
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In which ( )∫=
h

dztzxu
h

u
0

22 ,,1 , assuming that 22 uu α= . Values of α which 

deviate from unity give information about the deviation of the velocity profile from 
uniformity. Since it is likely that sliding is present, the active shear zone is confined to 
a thin basal layer and the velocity profile is blunt (Melosh, 1986), without introducing 
a large error it can be considered α=1. 

Forces acting on the element dx are indicated in Figure 4.1. 

{
434214342143421

dxx  inPressure

0

x  inPressure

0stressshear Basal Gravity

sin

+

+∫∑ ∫ −++=
h

dxxxx

h

xxx dzdzdxghdxF σστψρ  (4.20) 
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In which τ is the basal resisting force. σxx is defined, as in the previous procedure, 
assuming zzxx kσσ = . Equation (4.20) can be written as follows: 
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⎜
⎝
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∂
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−+=∑ x
hghkghdxF ψρτψρ cossin  (4.21) 

The resulting equations which will be called system (II) are quoted below: 
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The overbars, as in system (I), are omitted. 

4.3 Reference frame 
The Eulerian reference framework, widely used in hydraulics, relates the 

calculations to a reference frame fixed in the space. 
A moving Lagrangian reference framework considers a moving origin, attached to 

the moving mass.  
The advantage of the numerical implementation in form of a Lagrangian scheme is 

given by the fact that the mesh stretches. This makes it possible to keep track of 
internal strain in the sliding body, which could help to determine the magnitude of the 
longitudinal pressure coefficient k (Hungr, 1995). 

Given the highly unsteady nature of landslide motion, some authors consider more 
advantageous to use a moving Lagrangian reference framework but the “front-
tracking” system, introduced in the last Eulerian models, allows to follow in detail the 
displacement and the general behaviour of the mass. 

On the other hand, the disadvantage of a Lagrangian scheme could be the liability 
to numerical instabilities. 

Concerning CPU-time and memory, compared to the Eulerian approach, where 
the entire avalanche track has to be covered by the mesh all the time, in a Lagrangian 
scheme the mesh can stretch only over the interested portion of the track, by 
consequence the needed amount of memory can be reduced. 

4.4 Rheological constitutive laws 
The basal resisting force is a function of mean velocity, flow density and depth, 

derived by an integration of the rheological constitutive relationship of the equivalent 
fluid. 
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Any given total displacement of a landslide can be simulated by choosing the 
appropriate values of the resistance coefficients for the assumed model. 

The obtained behaviour of the landslide, e.g. its velocity, degree of longitudinal 
spreading and distribution of deposits along the path, can change as a function of the 
considered rheology. 

Constitutive relationships with fewer parameters are to be preferred wherever 
possible, as they can be more easily calibrated. 

In the literature of landslide dynamics several different rheologies are considered 
(Figure 4.2). 

 

Figure 4.2. Definition of some common rheological constitutive relationship (from Hungr, 
2002).  

 
As a function of viscosity (µ) it is possible to classify fluids as follows: 
a. Newtonian, for which viscosity is constant, independently from temperature and 

pressure values; 
b. Non Newtonian, for which viscosity is connected to some characteristic 

quantities that change as a function of shear stress (τ) (or squared velocity) and time. 
In this hypothesis two classes are identified: 

b1. Pseudo-plastic, µ decreases as shear strain rate increases. A stress decrease is 
due to a velocity increase. 

b2. Dilatant, µ increases as shear strain rate increases. A stress increase is due to 
a velocity increase.  

 

Assuming as Ai the basal area and Hi the depth of a considered i-element in which 
the mass can be discretized (Hungr 1995, 2002), some of the existing rheologies can 
be defined as follows: 

 
Plastic rheology : according to this, the resisting term T is a constant, uninfluenced by 

either velocity or flow depth.  
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iAcT ⋅=  (4.22) 
Frictional rheology : the resisting shear forces at the base of the flowing mass are 

assumed to depend on the effective normal stress, but not on velocity.  

( ) δψγ tan1cos ⋅−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⋅= u

c
ii r

g
a

HAT  (4.23) 

Here, Rva ic
2=  is the centrifugal acceleration, dependent on the vertical 

curvature radius of the path R, and ru is the pore-pressure coefficient (ratio of pore 
pressure, u, to the total normal stress, σ, at the base of the element). 

σ
uru =  (4.24) 

Newtonian laminar flow : where T is a linear function of velocity with a viscosity µ. 

The flow resistance term is determined by the Poiseuille equation: 
i

ii

H
vA

T
µ3

=  

Turbulent flow : this is the principal model for analysis of fluid flow in rivers and 
channels, based on Manning’s equation. The resisting stress is a function of the 
squared mean velocity and the one-third power of the inverse of the flow depth, with 
the roughness coefficient n: 

3122 −⋅⋅⋅⋅= iii HnvAT γ  (4.25) 
Dilatant flow : it occurs when a concentrated mixture of granular material and fluid 

is sheared rapidly at constant volume. Based on experiments by Bagnold (1954) the 
resisting force at the base of such a flow in a laminar regime depends on the square of 
the mean velocity, divided by the square of the flow depth. The velocity profile varies 
with 3/2 power of depth and is therefore fairly similar to that of a Newtonian viscous 
fluid. 

Bingham model : fluids initially assume a behaviour typical of solids (shape and 
volume defined) only in a second phase they reveal their fluid characteristics. The 
resisting shear stress is assumed to depend on a constant strength and a viscous term 
dependent on the velocity and the inverse of the debris sheet thickness. There are two 
material constants, a yield shear strength (τ) and a Bingham viscosity (µ). With zero 
shear strength, the flow becomes Newtonian. The mean flow velocity is derived from 
an assumption of a linear increase of shear stress with depth: 

⎟⎟
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⋅
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23

32
6 T

A
A

TH
v i

i

i
i

τ
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µ
 (4.26) 
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The determination of the resistance term, T, requires a solution of the cubic 
equation 4.26. The velocity profile associated with this formulation contains a rigid 
plug, riding on a zone of distributed shear. The thickness of the plug equals THi /τ . 

Voellmy rheology : this two-parameter model was developed by Voellmy (1955) for 
use in lumped-mass modelling of snow avalanches. It contains a friction coefficient, µ, 
which is equivalent to tanδ. Added to this is a “turbulent” term, ξ, dependent only on 
the square of the flow velocity and the density of the debris. 
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The use of Voellmy’s model for rock avalanches was suggested by Koerner (1976). 

4.5 The three-dimensional model, SHWCIN 
In the reference frame linked to the topography, equations of mass and 

momentum in the x and y direction read 
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∂
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t
h  (4.28) 
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where ( )vu ,=u  denotes the depth-averaged flow velocity in the reference frame (x, y, 
z) defined below, h the fluid depth, and γi are coefficients, function of the local slope, 
defining the projection of the gravity vector along the i direction. The traction vector 
T = (Tx, Ty, Tz), read 
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where the notation fb indicates the value of f at the base (at z=0). In the following, the 
assumptions long-wave approximation and the specifications of a friction law, leading 
to simplify and close the equations (4.28) - (4.30), are introduced. 

4.5.1 Approximation 
A small aspect ratio ε  = H/L (Figure 4.1), where H and L are the two characteristic 
dimension along the z axis and in the plane xOy, respectively is introduced in the 
depth-averaged x and y equations (equations (4.29) and (4.30)) and in nondepth-
averaged z equation obtained from the z projection of equation (4.2). An asymptotic 
analysis with respect to ε [e.g. Gray et al. (1999)] leads to neglect the acceleration 
normal to the topography and the horizontal gradients of the stresses in the z 
equation, leading to equation (4.15), with ψ defined as the angle between the vertical 
axis and the normal to the topography. 

Note that neglecting the horizontal gradients iiz x∂∂σ  for i = x,y in the z 

equation do not allows to neglect bizσ (at the base) in Tx and Ty [Gray et al. (1999)]. 

From the scale analysis with respect to ε, the normal traction reduced to bzzzT σ−=  

and ( )( )xyi hx σ∂∂  can be neglected in the x and y depth-averaged momentum 
equations. 

The shape of the vertical profile of the horizontal velocity in debris avalanche flow 
is still an open question. As previously mentioned, the conservation of the initial 
stratigraphy sometimes observed in the deposits of a debris avalanche has led to the 
assumption that all the deformation is essentially located in a narrow boundary layer 
near the bed surface, so that the horizontal velocity is approximately constant over the 
depth [e.g. Savage and Hutter (1989)]. 

It is here assumed a vertically constant velocity so that jiji uuuu = . 
In the following, the overbar will be dropped and (u,v) will represent the mean 

velocity field. 
A relation deduced from the mechanical behaviour of the material has to be 

imposed between the tangential stress Tt = (Tx, Ty ), u and h in order to close 
equations (4.28), (4.29), (4.30). 

Dissipation in granular materials is generally described by a Coulomb-type friction 
law relating the norm of the tangent traction tT  at the bed to the norm of the 

normal traction bzzzn T σ==T  at the bed, through a factor µ = tanδ involving the 

dynamic friction angle δ 

bzznct σµµσ ==≤ TT  (4.32) 
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and acting opposite to the velocity. The value of σc defines the upper bound of the 
admissible stresses. In the considered coordinate system, using equation (4.15), σc read 

hg zc γµρσ =  (4.33) 

The resulting Coulomb-type behaviour can be summarized  

u
T i

cict
u

T σσ −=⇒≥  (4.34) 

0=⇒< uT ct σ  (4.35) 

where i = x,y. The application of this behaviour poses the problem of the evaluation 
of Tt as will be described in section 4.5.2.3. 
It is considered here the minimal model by assuming isotropy of normal stresses, i.e. 
σxx = σyy =σzz contrary to Savage and Hutter (1989) where earth pressure coefficients 
are defined as the ratio of the longitudinal stresses to the normal stress. 

The depth-averaged stress tensor and the traction vector involved in the x and y 
depth-averaged equations reduce to 
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with 
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The resulting set of equations reads 

( ) 0div =+
∂
∂

uh
t
h  (4.38) 

and if ct σ≥T , the granular mass is flowing following the dynamical equations 



Chapter 4: Continuum mechanics approach: DAN and SHWCIN codes, theoretical aspects  
 

4.13 

( ) ( ) ( )
u
x

zzx
u

hghg
x

ghhuv
y

hu
x

hu
t

γµγγ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=
∂
∂

+
∂
∂

+
∂
∂

2

2
2  (4.39) 

( ) ( ) ( )
u

y
zzy

u
hghg

y
ghhv

y
huv

x
hv

t
γµγγ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=
∂
∂

+
∂
∂

+
∂
∂

2

2
2  (4.40) 

or if ct σ<T , the granular mass stops and the momentum equations are replaces by 
u = 0. The evaluation of Tt is achieved by using a classical resolution method for 
nonsmooth mechanics and will be developed in section 4.5.2.3. 

4.5.2 Numerical model 

44..55..22..11  FFiinniittee  VVoolluummee  MMeetthhoodd  
The model developed here is based on the classical finite volume approach for 

solving hyperbolic systems using the concept of cell centred conservative quantities. 
This type of methods requires the formulation of the equation in terms of 
conservation laws. The system of equations (4.38), (4.39) and (4.40) can be written 
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with 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

y

x

q
q
h

U ,  ( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+=

2
2

2
2

22

22

h
gq

h
qq

h
qq

h
gq

qq

yyx

yxx

yx

UF  (4.42) 

    ( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+=

yy

xx

Tgh

Tgh

ρ
γ

ρ
γ

1

1
0

UB  (4.43) 

 
where q=hu is the material flux. 
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The equations are discretized here on general triangular grids with a finite element 
data structure using a particular control volume which is the median based dual cell 
(Figure 4.3a). 

 

Figure 4.3. Triangular finite element mesh for (a) dual inner cell Ci and (b) dual boundary cell 
Ci (from Mangeney et al., 2003). 

 
The finite element grid is appropriate to describe variable topography and 

refinement is performed when strong topographic gradients occur. Dual cells Ci are 
obtained by joining the centres of mass of the triangles surrounding each vertex Pi. 
The following notations are used: 

Ki set of nodes Pj surrounding Pi, 
Ai area of Ci, 
Γij boundary edge belonging to cells Ci and Cj, 
Lij length of Γij, 
nij unit normal to Γij outward to Ci. 
If Pi is a node belonging to the boundary Γ of the numerical domain, the centres of 

mass of the triangles adjacent to the boundary to the middle of the edge belonging to 
Γ are joined (Figure 4.3b). Let ∆t denote the time step, n

iU the approximation of the 
cell average of the exact solution at time tn 
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n
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and ( )n
iB U  the approximation of the cell average of the exact source term at time tn 
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1  (4.45) 
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Then the finite volume scheme writes 

( ) ( )∑
∈
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iKj
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iij
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n
iij

n
i
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i tBF UnUUUU ,,1 α  (4.46) 

with 
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ij
ij A

tL∆
=α  (4.47) 

and where ( )ij
n
j

n
iF nUU ,,  denotes an interpolation of the normal component of the 

flux ( ) ijnUF ⋅ along the edge Γij. The treatment of the boundary conditions (i.e. the 
calculation of the boundary fluxes) using a Riemann invariant is addressed by Bristeau 
et al. (2001). 

The main difficulty is to compute fluxes at the control volumes interfaces Γij and 
to guarantee the overall stability of the method. The computation of these fluxes 
constitutes the major difference between the kinetic scheme used here and Godunov-
type methods which are very accurate for shock capturing, but not well suited to deal 
with vacuum front at the margins of the avalanche where the system looses 
hyperbolicity (h=0 corresponding here to dry soils). Many shock capturing schemes 
produce negative heights at these points and subsequently break down or become 
unstable. An artificial small height of fluid in the whole domain was imposed to 
stabilize the scheme by Mangeney et al. (2000). Denliger and Iverson (2001) calculate 
the theoretical speed of a flow front using the Riemann invariant of the wave 
emanating from the front directed in the inner part of the mass. An alternative 
approach to solve the Saint-Venant equations by using a kinetic solver is here 
followed, it is intrinsically able to treat vacuum and is also appropriate to handle 
discontinuous solutions. These properties are of highest importance for gravitational 
flow modelling. To the authors knowledge, this type of schemes has never been 
applied to avalanche flow modelling over slopping topography. 

44..55..22..22  KKiinneettiicc  ffoorrmmuullaattiioonn  
The kinetic approach consists in using a fictitious description of the microscopic 

behaviour of the system to define numerical fluxes. The main concept of the kinetic 
scheme used in this model is here introduced. A complete description of this scheme 
and its numerical implementations are done by Audusse et al. (2000) and Bristeau et 
al. (2001). The scheme will be discussed by omitting the friction term which is further 
introduced using a semi-implicit scheme (see section 4.5.2.3). A distribution function 
of fictitious particles M(t, x, y, ξ) with velocity ξ is introduced in order to obtain a 
linear microscopic kinetic equation equivalent to the macroscopic equations (4.41), 
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(4.42) and (4.43). The microscopic density M of particle present at time t in the 
vicinity ∆x∆y of the position (x, y) and with a velocity ξ is defined as 
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,,, 2
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with a “fluid density” h, a “fluid temperature” proportional to 

2
2 gh

c =   (4.49) 

and χ(ω) a positive, even function defined on ℜ2 and satisfying 
  

( ) ( ) ijji d,d δχωωχ == ∫∫ ℜℜ
ωω  ωω

22
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with δij the Kronecker symbol and ω = (ωx, ωy). This function χ is assumed to be 
compactly supported, i.e. 

( ) MM ωχω ≥=ℜ∈∃ ω   ω   for 0that  such  (4.51) 

where the rectangular function χ given by Bristeau et al. (2001) read 
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Note that the rectangular shape of the distribution function χ imposed for the 
fictitious particles would change in time if real particles where considered. Simple 
calculations show that the macroscopic quantities are linked to the microscopic 
density function by the relations 
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These relations imply that the nonlinear system (4.38), (4.39), (4.40) is equivalent to 
the linear transport equation for the quantity M, for which it is easier to find a simple 
numerical scheme with good properties 
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( )ξξ ξ ,,, yxtQMgM
t

M
x =∇⋅−∇⋅+

∂
∂ γ  (4.56) 

for some collision term Q(t, x, y, ξ) which satisfies 

( ) 0,,,
1

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫ℜ ξξ

ξ
dyxtQ  (4.57) 

As usual, the “collision term” Q(t, x, y, ξ) in this kinetic representation of the Saint 
Venant equations is neglected in the numerical scheme, i.e. in each time step it is 
projected the kinetic density on M, which is a way to perform all collisions at once. 
Finally, the discretization of the obtained kinetic equation allows to deduce an 
appropriate discretization of the macroscopic system. From the microscopic equation 
(4.56) the formulation of the fluxes defined in equation (4.46) are obtained as follow: 

( ) ( ) ( )ijjijiijjiF nUFnUFnUU ,,,, −+ +=  (4.58) 
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ξ

nξnUF
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dM jijijj
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⎟⎟
⎠

⎞
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⎝

⎛
⋅= ∫ ≤⋅

− 1
,

0
 (4.60) 

The simple form of the density function (here a rectangular function Π) allows 
analytical resolution of integrals (4.59), (4.60) and gives the possibility to write directly 
a finite volume formula, which therefore avoids using the extra variable ξ in the 
implementation of the code. The resulting numerical scheme is consistent and 
conservative. Furthermore, it is proved that the water height positivity is preserved 
under the Courant Friedrichs Levy condition [Audusse et al. (2000)] 

( )
∑
∈

≤+∆

iKj
ij

in
iM

n
i L

A
cut ωmax   (4.61) 

In comparison with flood modelling, avalanche modelling introduces a further 
difficulty relating to the property of granular media able to remain static (solid) even 
with an inclined free surface. This equilibrium is not intrinsically preserved by the 
finite volume scheme and specific processing has to be introduced in the numerical 
scheme for the particular case of kinetic scheme, as will be developed in section 
4.5.2.3. 
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44..55..22..33  FFrriiccttiioonn  
The friction is introduced here by using a projection method on the domain of 

admissible stresses defined by the Coulomb friction law. The implicit treatment of the 
friction is done by using the discretized set of equation (4.46) 

( )∑
∈

+ −=
iKj

ij
n
j

n
ihij

n
i

n
i Fhh nUU ,,1 α  (4.62) 
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where γt = (γx, γy), with the complementary inequality 
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Equation (4.63) shows the linear variation of the traction as a function of 1+n
iq  
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where 
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(i.e. the solution of equation (4.63) without any friction term). As the Coulomb 
friction does not change the direction of the velocity the flux 1+n

iq  has the same 

direction of the trial 1~ +n
iq . Furthermore, Tt acts in the opposite direction of the 

velocity. Equation (4.66) reduces in the direction of the flow to a scalar equation 
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i
n
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n
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t
q

t
T ρρ  (4.68) 
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Figure 4.4. Resolution of the tangential traction by projection on the admissible state imposed 

by the Coulomb friction law. Solid lines represent the domain of admissible state 
of the traction, dashed lines represent the family of straight lines obtained from 
the momentum conservation equation. Circles represent the solution of the 
problem (three possibilities depending on the relative value of (ρ/∆t) 1~ +n

iq and σc) 
(from Mangeney et al., 2003). 

 
Figure 4.4. shows 1) the admissible state of the traction Tti defined by equations 

(4.64) and (4.65) and 2) the family of straight lines (equation (4.68)) with slope ρ/∆t 
defining the relation between the traction and the algebraic value of the flux 1+n

iq . 

Note that ( ) 1~ +∆− n
iqtρ  is the value of Tti at  01 =+n

iq . It appears from Figure 4.4. 

that if the norm of the driving force ( ) 1~ +∆ n
iqtρ  is lower than the Coulomb threshold 

1+= n
izc hgγµρσ , the admissible traction Tti  is also lower than σc  and the mass stops, 

i.e. 
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On the other hand, if the driving force ( ) 1~ +∆ n
it qρ  is higher than the Coulomb 

threshold then the admissible value of the traction is equal to σc  and equation (4.63) 
read 
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Note that, numerically, the resolution process leads to take the positive part on the 
right hand side of equation (4.70). 

Classical kinetic schemes do not allow the mass stopping when h gradients are 
nonequal though its velocity is equal to zero. In fact, for the kinetic scheme based on 
a rectangle-type distribution function χ (see equation (4.48)), perturbations propagate 
at velocity ghc =~  even though the fluid is at rest because the “temperature” is non 
equal to zero. Perturbation linked to the h gradient of a nonflat free surface generates 
fluxes and the fluid never stops if its free surface is not horizontal. In the opposite, the 
Coulomb criterion imposes that under a given threshold, a perturbation (e.g. a 
perturbation of the surface elevation) does not propagate. It can be represented by a 
fluid at a “temperature” equal to zero, so that the local speed of propagation of 
disturbance relative to the moving stream is equal to zero. It can be obtained by using 
a Dirac distribution for the function χ. The idea of the present scheme is to introduce 
a zero temperature fluid with Dirac-type density of particles M when the fluid is under 
the Coulomb threshold and a nonzero temperature fluid using a rectangular type 
density  of particles when the fluid is over the Coulomb threshold 
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n
i ,,,,,,,0~ 11 uξξ     q −=⇒<∆− ++ δγµ    (4.71) 
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where χ is the rectangular function Π (equation (4.52)). The expression of the flux 
related to the edge Γij  in the mass conservation equation using equation (4.59) read 
then 
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where Y is the Heaviside distribution and niu ,  is the velocity in the normal direction 

of the edge Γij . Similar expression is obtained for  ( )ijj nUF ,− . In the situation of 
equation (4.73) (i.e. under the Coulomb threshold), implicit resolution is performed by 
using the velocity niu ,  at time n+1 so that niu , = 0 and ( ) ( ) 0,, == −+

ijihijih nUFnUF .  
The momentum equation become the following: 

00~ 11 =⇒<− ++ q    q  thg n
z

n
i ∆γµ  (4.75) 
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  (4.76) 
As quoted in equation 4.77, the Dirac distribution, without the pressure gradient 

due to the zero temperature fluid, does not allow to recover the momentum equation: 

( ) ( )niniiijiq uYuh ,
2
,, =+ nUF   (4.77) 

By consequence, when the fluid is under the Coulomb threshold, the momentum 
equation is replaced by equation 4.75 so that the Dirac-type function is only used in 
the calculation of the fluxes in the mass conservation equation. 

The first step of the numerical scheme is to evaluate the grid points that are under 
the Coulomb threshold using 1~ +n

iq . In Figure 4.5 a simple one-dimensional (1-D) case 
where (Figure 4.5) the points P0, P1 and  P2  are under the Coulomb threshold (solid  
circles) and the points P3 and P4 are above this threshold (stars) is presented. In order 
to obtain the flux ( ) ( )ihihih PFPFF −

−
+ += 1,  at the interface Mi allowing to satisfy 

conservation laws, the same distribution function has to be used in both side of the 
interface: a rectangular distribution is imposed if one of the two points Pi or Pi-1 is 
above the Coulomb threshold and a Dirac distribution elsewhere. As a result, the flux 
through the interface M3 is calculated using a rectangular function whereas the flux 
through the interface M2 is calculated using the Dirac function. The solid/fluid-like 
transition is then exactly at the point P2. At this point, the propagation of the h 
gradient is allowed to the right where the fluid is above the Coulomb threshold and 
forbidden to the left where the fluid is under the Coulomb threshold. Numerical test 
show that this method is mass conservative. 

 

Figure 4.5. One-dimensional mesh and dual cell Ci with center Pi. Circles denotes the points 
under the Coulomb threshold, mad stars denote the points above the Coulomb 
threshold (from Mangeney et al., 2003). 
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The resulting 2-D scheme consists in evaluating at time t the points under the 
Coulomb threshold, and at time t+dt  in calculating the flux Fh through an interface Mij 
of a cell Ci (1) using the rectangular distribution if one of the two point Pi, Pj situated 
on both sides of this interface is above the Coulomb threshold, and (2) using a Dirac 
distribution if the two points Pi, Pj  are under the Coulomb threshold. The numerical 
method can be illustrated on the 2-D mesh presented in Figure 4.6 where the points 
M1, M2, M3, P2, M10, M11 surrounding the point P1 are under the Coulomb threshold. 
The fluxes Fh  through the interfaces of the cell C1 is then calculated using the Dirac 
distribution whereas in the cell C4, all the fluxes are calculated using the rectangular 
distribution. For the cell C2, the surrounding points P3 and M8 being above the 
Coulomb threshold, the fluxes Fh through the edges cutting P2M8, P2P3 are calculated 
using the rectangular distribution while the fluxes Fh through the edges cutting P2P1, 
P2M3, P2M9, P2M10 are calculated using the Dirac distribution. With this scheme 
preserving mass conservation at the machine accuracy, the fluid is able to stop. 

 

Figure 4.6. Triangular mesh and dual cell C1, C2, C3, C4. Circles denote the points under the 
Coulomb threshold, and stars denote the points above the Coulomb threshold 
(from Mangeney et al., 2003). 
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4.6 The two-dimensional model, DAN 

4.6.1 Numerical model 
The slide mass is represented by a number of blocks contacting each other, free to 

deform and retaining fixed volumes of material in their descent down a vertically 
curving path.  

A lagrangian finite difference solution of the hydrodynamic equations is referenced 
to curvilinear coordinates and a moving mesh, as illustrated in Figure 4.7.  

 

Figure 4.7. The lagrangian mesh in curvilinear coordinates (from Hungr, 1995). 
 
The vertically integrated momentum equation (as obtained in section 4.2, second 

procedure) is applied to narrow columns of the flow (“boundary blocks”), numbered i 
= 1 to n. The continuity equation is applied to “mass blocks” of fixed volume 
numbered j = 1 to n-1 separating the boundary blocks.  

The heights of the boundary blocks are designated as Hi and widths as Bi, both 
measured perpendicular to the flow direction.  

 

Figure 4.8. Forces acting on a boundary block (from Hungr, 1995). 
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The net driving force, F, acting on each boundary block (Fig. 4.8) (as explained in 

section 4.2 equation 4.20) consists of the tangential component of weight, the basal 
resisting force, T, and the pressure resultant, P (the nominal length ds of the boundary 
block, measured in the direction of the curvilinear co-ordinates, cancels out in the 
equations, once all the forces are evaluated): 

TPBHF ii −+⋅⋅⋅= ψγ sin  (4.78) 
Deposition or entrainment of material at the base or sides of the flow can be 

simulated by changing the volume of each boundary and mass block in each time step 
by a prescribed amount, proportional to the distance travelled. The erosion or 
deposition rates can be assumed as constant percentages of the cross-sectional area 
per unit displacement. 

The momentum flux term must be set to reflect momentum changes resulting 
from the mass changes. Newton’s second law in terms of momentum is: 

( ) F
t

mv
=

∆
∆  (4.79) 

where m and v are the mass and velocity of the boundary block under consideration 
and ∆ signifies change in a time step. 

Any material lost or gained during a time step crosses the boundary of the 
streamline, bearing with it the momentum that it possessed at the start. The 
momentum of a block equals mv. After a time step, both the velocity and the mass 
have changed. Neglecting a second order term, the new momentum is then: 

( ) ( )( ) vmmvmvvvmmmvmv ∆+∆+=∆+∆+=∆+  (4.80) 
from which  

( ) vmmvmv ∆+∆=∆ . (4.81) 
 
If picking up (eroding) material that is stationary, no momentum is added to the 

system and the momentum changes is given simply by equation (4.81). Substituting 
this into equation (4.79) and rearranging, we have 

m
mvtFv ∆−∆

=∆  (4.82) 

where ∆m  is the increment of mass picked up during the time step. 
 

If a quantity ∆m  of material is deposited during a time step, it is removed from the 
reference frame at the mean velocity v, and removes with it its share of momentum, 
equal to ∆mv  in equation (4.81). In this case the equation equivalent to (4.82) is: 
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m
tFv ∆

=∆  (4.83) 

The new velocity of each boundary block at the end of a time step is then obtained 
from the old velocity '

iv : 

( )
dsBH
MtFg

vv
ii

ii γ
−∆

+= '  (4.84) 

where 
g

dsBH iiγ
 is the mass of a boundary block, ∆t is the time step interval, g is the 

gravity acceleration, and M is the momentum flux terrm (=∆mv erosion; =0 
entrainment). 

A second integration, a centered explicit finite difference formula, is used to obtain 
the curvilinear displacements, Si of the boundary blocks following the time step (the 
old displacements are primed): 

( )''

2 iiii vvtSS +
∆

+=  (4.85) 

The new positions of the boundary blocks are now known, as are the volumes of 
material between them. The average depth of the flow in the mass blocks, hj, is 
determined so as to maintain their constant volume, Vj’ assuming the basal area as a 
trapezium having Bi+1, Bi as sides and ( )ii SS −+1 as height 

( )( )iiii

j
j BBSS

V
h

+−
=

++ 11

2
 (4.86) 

The new height of each boundary block is calculated as the mean of the depths of 
the adjacent mass blocks: 

2
1 jj

i

hh
H

+
= −  (4.87) 

The end mass blocks are assumed to be triangular so that: 

2
1

1
hH =                  

2
1−= n

n
h

H   (4.88) 

4.6.2 The flow resistance term, T 
The basal flow resistance force, T, depends on the rheology of the material and is a 

function of several different known parameters of the flow. The functional 
relationship between T and the other parameters is based on the assumption that the 
shear stress on tangential planes increases linearly with normal depth.  
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This, together with a given rheological constitutive equation, determines a velocity-
depth distribution profile and an equation for T. Different alternative rheological 
functions are available in DAN code (Table 4.1) and the type of material can vary 
either along the path or within the sliding mass.  
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Table 4.1. Comparison of flow resistance laws. The following notation is used: Ti = resisting 
forces, Ai = base area of the ith element, Hi = height of the ith element, ψi = bed 
slope angle, δ = bed friction angle, µB = Bingham viscosity, τB = Bingham yield 
stress, γi = bulk unit weight, µf = fluid dynamic viscosity, vi = velocity, n = Manning 
roughness coefficient, ζ = lumped coefficient accounting for grain and 
concentration properties in granular flow, ξ = C2 (C = Chézy roughness 
coefficient).  

4.6.3 The pressure term, P 
The pressure differential on each boundary block is determined based on the 

assumption that the flow lines are approximately parallel with the bed and that the 
pressure parallel with the path increases linearly with depth: 

dsBH
g

a
ds
dhkP ii

c ⋅⋅⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⋅−= αγ cos1  (4.89) 

The pressure gradient ( )dsdhk  at each boundary block is obtained as the average 
for the two adjacent mass blocks using the following equation: (sj values are the 
curvilinear displacements of the mass block centres): 
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The incremental tangential strain in each mass block is calculated from the 
displacements of the adjacent boundary blocks (∆ means a change in a time step): 

( ) ( )
ii

iiii
j SS

SSSS
''

''

1

11

−
−−−

=∆
+

++ε   (4.91) 

The lateral pressure coefficient, k, is defined as the ratio between the tangential 
and normal stress in the flowing mass. It is determined both for the boundary blocks 
(with a subscript i) and for mass blocks (subscript j). 

The value of kj is assigned based on tangential strain prevailing at each mass block. 
Initially, all blocks start with a k equal to an intermediate “at reast” condition, usually 
1.0. After each time step, the incremental strain, ∆εj, is determined by equation (4.91). 
The coefficient kj is is then increased or decreased by a value equal to the incremental 
strain times a stiffness coefficient, as shown in Figure 4.9: 

jjj kk ε∆= '  (4.92) 

 

Figure 4.9. Method of calculating the lateral pressure coeffficient k in a mass elelment as a 
funciton of changing tangential strain (from Hungr, 1995). 
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The stiffness coefficient Sc  is taken as ( ) 05.0ap kk −  for compression, or 

( ) 025.0apu kkS −=  for unloading. The minimum and maximum values that kj can 
reach correspond to the active and passive states. The quantitative influence of the 
magnitude of the stiffness coefficients is not great. 
  

 



Chapter 5  

From SHWCIN to RASH3D.          
Numerical model upgrade 

5.1 Introduction 
In order to run three dimensional analyses of propagation on a complex 

topography it has been necessary to introduce some fundamental changes in the 
source version (SHWCIN) of RASH3D.  

Firstly it is pointed out that some numerical problems can occur in topology 
optimization and it is emphasized why they appear and what can be done to prevent 
them. Some of these problems depend on element type, number of elements, 
optimization algorithm and so on. This is the mesh-dependency problem. In order to 
get a better finite element solution and a better resolution of existing problems a 
higher discretization can be made, but this can increase the CPU-time unacceptably. 

It is then underlined that the runout of a mass is deeply conditioned by changes in 
the slope pattern. It has to be considered that the gravity vector components change 
along the path as a function of dip and dip direction and a component having 
negligible effect in a certain portion of the slope can become predominant in another 
one. In every realistic analysis this aspect has been necessarily taken into account. 

To model the mass deformation in a correct way, the earth pressure coefficients 
are also important. In this case, it is necessary to distinguish between convergence and 
divergence of the mass and to be able to split the behaviour along x and y direction. 

Deposit shape and mass distribution can change as a function of the considered 
rheology and of the value assigned to each of the required mechanical parameters. 



  

 
5.2 

In a continuum approach an equivalent fluid substitutes the real mobilized 
material. To take into account water effect a pore pressure coefficient has been 
introduced. 

As described in the following, the new version of the Code (RASH3D) takes into 
account each of the above mentioned aspects. Each change has been validated 
through simulation of experimental laboratory tests. 

5.2 Structured vs. Unstructured 
A numerical problem that can occur when solving topology optimization is the 

fact that different solutions can be obtained just by choosing different element types 
and/or element numbers. This is the mesh-dependency problem. Ignorance of mesh 
dependency can sometimes be an embarrassment in numerical calculations. Mesh 
structures need to be developed to eradicate mesh dependency without compromising 
the finite computing resource and/or incurring large computational expense.  

To understand mesh influences, simple analyses of propagation on a horizontal 
surface have been run using various mesh regimes and the obtained results have been 
compared. 

In the following, it is explained what numerical problems can occur in topology 
optimization, why they appear and what can be done to prevent them. 

5.2.1 Original vs. modified version of the Code 
The original version of the applied Code assumed a triangular regular mesh (Figure 

5.1), which in the following will be called “structured mesh”. 

 
Figure 5.1. Structured mesh. 

In this hypothesis, if numerical results are analysed considering only the centre line 
section of the movement in the direction of propagation observations can be wrong.  
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A simple three-dimensional analysis of a hemi-spherical mass flowing on a plane 
whose slope ψ is equal zero has been in fact carried out as test. (Figure 5.2).  

 
Figure 5.2. Hemi-spherical mass on a horizontal plane. 

The expected result is a symmetric propagation of the mass in all the directions. 
A recorded frame at t=0.3s with a structured mesh is shown in Figure 5.5a, an 

evident mesh-dependency is made clear. This effect is due to the existence of elements 
having all the same orientation.  

One way of reducing this mesh dependency is to give a more detailed structure by 
increasing the number of elements through a higher discretization. Results obtained in 
this manner underline a considerable increase of the cpu-time without a complete 
removal of the problem. 

An important result in the prevention of the mesh dependency effect was obtained 
turning to “unstructured mesh” (Figure 5.3).  

 
Figure 5.3. Unstructured mesh. 

This type of mesh is built using a simple numerical code based on a Delaunay 
triangulation technique. A triangulation is a subdivision of an area (volume) into 
triangles (tetrahedrons).   



  

 
5.4 

The Delaunay triangulation is the geometric dual of the Voronoi diagram (Figure 
5.4). If one draws a line between any two points whose Voronoi domains touch a set 
of triangles is obtained, known as the Delaunay triangulation. Generally, this 
triangulation is unique.  

   
   Voronoi diagram       Delaunay triangulation 

Figure 5.4. Voronoi diagram vs. Delaunay triangulation 
The Voronoi diagram consists in the partitioning of a plane with n points into n 

convex polygons such that each polygon gives an area containing exactly one point of 
the n defined points and hedging the portion of the plane that is closer to its point 
than to any other (Figure 5.4a).  

 
Figure 5.4a. Voronoi diagram step by step. 

The Delaunay triangulation has the property that the circumcircle (circumsphere) 
of every triangle (tetrahedron) does not contain any points of the triangulation (Figure 
5.4b). It is in some sense the most natural way to triangulate a set of points.  

  
Figure 5.4b. Each circumcircle does not contain any points of the triangulation. 

It is seen that even though the initial conditions are the same, an unstructured 
mesh is able to reduce the asymmetric effect obtained with a structured mesh (Figure 
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5.5b) and, since a huge increment of elements is not necessary, the cpu-time remains 
approximately the same. 

 

 
Figure 5.5. Propagation of hemi-spherical mass on horizontal plane at t = 0.3s using (a) a 

structured mesh and (b) an unstructured mesh. 

5.3 Gravitational acceleration effects 
In physics, acceleration (symbol: a) is defined as the rate of change (or time 

derivative) of velocity. It is thus a vector quantity with dimension length/time². In SI 
units, this is metre/second². 

Acceleration is a vector quantity - that is, it has both a magnitude and a direction. 
Acceleration describes both the magnitude of an object’s change in velocity, and the 
direction in which it is accelerating. Acceleration can thus involve changes of speed, 
changes of direction, or both.  

Objects do not speed up, slow down, or change direction unless they are pushed in 
some way.  



  

 
5.6 

The first mathematical formulation of the theory of gravitation was made by Isaac 
Newton, Newton’s Second Law (see Mechanics: The Second Law) sums up this idea, 
stating that the acceleration of an object results from the application of a force. The 
acceleration (a) of an object with mass (m) produced by a given force (F) may be 
calculated using the equation F = ma. A larger force produces a greater acceleration; a 
larger mass results in a smaller acceleration given the same force. 

A constant acceleration (a) over a given time interval (∆t), results in a change in 
velocity (∆v) that can be calculated using the equation ∆v = a∆t m/s. 

Gravitation is the force of attraction between all masses in the universe; especially 
the attraction of the earth's mass for bodies near its surface. The force of gravity near 
Earth’s surface results in a very familiar form of straight-line acceleration. The 
strength of Earth’s gravitational field near the surface (g) is an acceleration equal to 9.8 
m/s2 (at sea level at 45° latitude). So every second that an object falls, its speed 
increases by 9.8 m/s.  

The effect of gravity on a simple topography (e.g. a plane) was already considered 
in the Code. Since the aim of the present work is to analyse the behaviour of a mass 
moving on a complex topography it has been necessary to modify and generalize the 
components of gravity vector so that they automatically change in value as a function 
of the considered topography. 

5.3.1 Original vs. modified version of the Code 
The original version of the applied Code gave the possibility of choosing the value 

of gravity vector components for a simple plane topography considering a fixed  
reference system (x, y, z) or a reference system linked to the topography (x’, y’, z’) 
(Figure 5.6). 

Considering the reference system (x, y, z) the value to be assigned to gravity vector 
components are indicated in equations (5.1) as (gx, gy, gz), while in case of a reference 
system linked to the topography (x’, y’, z’) they are made explicit in equation (5.2) as 
(gx’, gy’, gz’): 
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 where ψ is the dip of the considered plane. 
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Figure 5.6. Representation of fixed reference system (x, y, z) and of reference system linked to 

the topography (x’, y’, z’). 
A careful analysis of the finite volume method and of the numerical solver used in 

the Code (see section 4.3) has been necessary to evaluate the components of gravity in 
case of a complex topography. 

A variable topography can be well discretized using an unstructured mesh. Each of 
the obtained triangles is characterized by a certain value of dip (ψ) and a certain value 
of dip direction (α). The variable (α) was not taken into account in the previous 
version of the Code and an only value (ψ) was considered independently from the 
complexity of the topography. 

If n is the number of triangles that converge on a knot of the mesh, it emerges that 
there are n values of dip and n values of dip direction (Figure 5.7b) to be assigned to 
the considered knot.  

The order of each dual cell (see section 4.3) is the same of the used mesh (i.e the 
precision of a digital elevation model is held) by consequence it is correct to get an 
only couple of values (ψ ,α) for each knot resorting to a simplification of the dual cell 
as explained in the following. 
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Figure 5.7. (a) Dual cell. (b) Possible behaviour of triangles converging on a knot. 

The whole explanation is carried out considering the dual cell of knot A (Figure 
5.7a) and in particular the boundary edge labelled 12  (Figure 5.8). It goes that the 
analysis concerns all the boundary edges and all the dual cells of the mesh. 

Points 1 and 2 are the centre of mass of triangle 
∧

BAG  and 
∧

BAC , respectively. 
They are also considered vertex of an average triangle of which the third vertex is knot 
A (Figure 5.8).  

 

Figure 5.8. Definition of average triangle 
∧

1A2  
The first step in the resolution of the problem consists in simplifying the 

considered dual cell with an only average plane. This aim is achieved introducing a 
fixed reference system (x, y, z) on which are projected the components (sx, sy, sz) of the 
line of maximum dip (s) for each average triangle converging on knot A 
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(i.e.
∧

1A2 ,
∧

2A3 ,
∧

3A4 ,
∧

4A5 ,
∧

5A6 ,
∧

6A1 ). Successively, the obtained components for 
each direction are summarized and assigned to knot A. The procedure is made clear in 

case of the average triangle 
∧

1A2 .  
Since points A, B, C, G usually belong to a digital elevation model their 

coordinates are known. By consequence, it is possible to define the coordinates of 
points 1 and 2 taking into account that they belong to the plane that get through 

∧
BAG  and 

∧
BAC , respectively (Figure 5.8). The average triangle 

∧
1A2 is then part of a 

new plane κ. 
The intersection between κ and the horizontal plane π is a line whose normal, t, is 

the projection on the horizontal plane of the line of maximum dip s, that belongs to 
the plane κ (Figure 5.9) . 

 
Figure 5.9. Representation of the angles ψ and α. 

The angle between t and s is defined as ψ , while the angle between t and x is 
defined as α. Now, (sx, sy, sz) can be defined as followed: 
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where s is assumed as unit vector.  
It is important to underline that, independently from the orientation of the plane 

κ, the angle ψ , obtained from the intersection between t and s, is always °≤ 90 . By 
consequence, in case of doubt it is always the lower angle that has to be taken into 
account (Figure 5.10).  

 
Figure 5.10. Definition of the angle ψ . 

The same reasoning is correct if the angle α is considered. In this case it is also 
necessary to choose correctly the plus or minus sign of sx and sy.  

Since the equation of κ is known, it is sufficient to choose a point A’ that belongs 

to the positive side of the x axis and to project it on the κ plane, if the obtained 
elevation (z) is lower of that on the x axis than a plus sign is assigned to sx else a minus 
sign is assigned. In case of sy the same reasoning is followed (Figure 5.11). 

 

 
Figure 5.11. Definition of the plus or minus sign of sx and sy. 

 
Once that (sx, sy, sz) are defined for all the average triangles converging on knot A, 

the components are separately summarized and the obtained resultant (sx, sy, sz) 
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represents a new plane κ’ and is assigned to the knot. The first step is then 
considered as completed. 

The second and last step consists in rotating the (x, y, z) reference system in order 
to have a reference system (x”, y”, z”) linked to the new plane κ’. This aim is achieved 
through a double rotation, the first of an angle γ round the y axis and the second of an 
angle θ round the x axis (Figure 5.12).  

 
Figure 5.12. From a fixed reference system (x, y, z) to a reference system linked to the 

topography (x”, y”, z”). 

The local projection x” on κ’ is obtained intersecting the resultant plane κ’ and a 
vertical plane that get through x. The angle between x and x” is γ (Figure 5.13).  

The angle θ is instead determined as the angle between the normal to the plane κ’ 
(z” ) and the normal (z’ ) to the plane η (Figure 5.14). This last plane has dip equal to 
γ and θ=0. Both the necessary vectors are known because the equation of κ’ and η 
are both known. 

For the same reason explained in the analysis of the angle ψ , the condition 
°≤ 90γ  and °≤ 90θ are verified. 

It is now possible to determine a value of (gx, gy, gz) as a function of the orientation 
of the plane κ’. The new obtained components (gx”, gy”, gz”) are the extension of 
equations (5.2) to a reference system linked to a complex topography.  
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It is now important to underline that (gx”, gy”, gz”) change as a function of the type 
of rotation (clockwise or anticlockwise) round to x and y. It is for this reason that the 
final value (equation 5.4) is linked to a variable part ( )zyx εεε ,, : 
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In Table 5.1 there is indication of the way in which ( )zyx εεε ,,  are determined. In 
particular it emerges that the obtained values change if a clockwise or a anticlockwise 
rotation is considered. 

 
θ  

 
γ  

 
0=θ  

 

  

 
0=γ  

 
1

0
0

=

=
=

z

y

x

ε

ε
ε

 

θε

θε
ε

cos

sin
0

=

=
=

z

y

x

 

θε

θε
ε

cos

sin
0

=

−=
=

z

y

x

 

 

γε

ε
γε

cos

0
sin

=

=
−=

z

y

x

 

γθε

γθε
γε

coscos

cossin
sin

=

=
−=

z

y

x

 

γθε

γθε
γε

coscos

cossin
sin

=

−=
−=

z

y

x

 

 

γε

ε
γε

cos

0
sin

=

=
=

z

y

x

 

γθε

γθε
γε

coscos

cossin
sin

=

=
=

z

y

x

 

γθε

γθε
γε

coscos

cossin
sin

=

−=
=

z

y

x

 

Table 5.1. Definition of ( )zyx εεε ,,  values. 

Obviously this type of analysis is run for the whole mesh and each of the knot will 
have a certain value of (gx”, gy”, gz”) as a function of the topography behaviour. 
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x x 
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Figure 5.13. Representation of the angle γ obtained through rotation round the y axis. 

 
Figure 5.14. Representation of the angle θ obtained through rotation round the x axis. 
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5.3.2 Validation 
The modified version of the Code has been tested verifying the value assumed by 

(gx, gy, gz) on a simple inclined plane in the following conditions: 
- ψ = 45° - α = 0°  → gx≠0; gy=0; gz≠0 
- ψ = 45° - α = 90°  → gx=0; gy≠0; gz≠0  
- ψ = 45° - α = 180°  → gx≠0; gy=0; gz≠0 
- ψ = 45° - α = 270°  → gx=0; gy≠0; gz≠0 
 

To verify the correct distribution of the three gravity components analyses are also 
run in intermediate conditions as: 

 
- ψ = 45° - α = 45°  → gx≠0; gy≠0; gz≠0 
- ψ = 45° - α = 135°  → gx≠0; gy≠0; gz≠0  
- ψ = 45° - α = 225°  → gx≠0; gy≠0; gz≠0 
- ψ = 45° - α = 315°  → gx≠0; gy≠0; gz≠0 

5.4 Earth pressure coefficients 

5.4.1 Theoretical analysis 
The Savage and Hutter theory (1989) that assumes that a very simple state of stress 

prevails within an avalanche is here considered. It hypothesizes that, at the base and at 
the stress free surface of the flowing mass, the normal stresses σxx and σyy can be 
expressed in terms of the overburden normal stress σzz through Mohr-circle 
considerations. Its validity through depth is justified by the continuity requirement. 
The hypothesis that the predominant shearing takes place in surfaces normal to the x-
z plane allows, as a rough approximation, to assume that the lateral confinement 
normal stress σyy is close to a principal stress σ1 say, see Figure 5.15. 
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Figure 5.15. Infinitesimal cubic element cut out of the avalanche with surface perpendicular to 

the coordinates. It is assumed that the motion predominantly is in the direction of 
steepest descent and the dominant shearing is parallel to the xz-plane. This gives 
rise to the dominant shear stresses τxz and normal pressures σxx, σyy, σzz. Shear 
stresses τyz and τxy also arise but much smaller than τxz. Thus σyy equals 
approximately to σ1, one of the principal stresses. (When τyz and τxy vanish exactly 
then σyy is exactly σ1). The other two principal stresses, σ2 and σ3, act on surface 
elements of which the surface normals lie in the xz-plane (from Savage and 
Hutter, 1989). 

Furthermore, it shall be assumed that one of the other principal stresses acting in 
the (x,z)-surface, σ2 and σ3, equals σ1. This is an ad-hoc assumption that is not 
guaranteed by any physical reason, but it reduces the three Mohr-circles that describe 
all possible combinations of normal stresses and shear stresses to only one Mohr-
circle as in the case in two dimensions. Thus, to a given stress state ( b

xxσ , b
xzτ ) at the 

base, two Mohr stress circles can be constructed to satisfy both the basal sliding law 
and the internal yield criterion simultaneously. Their construction is shown in Figure 
5.16. 
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Figure 5.16. Mohr-circle-diagram representing the stress state within the avalanche. The yield 

criterion corresponds to the two straight lines at angles ±φ  to the horizontal. 
Similarly, the Coulomb basal dry friction is indicated by the line at an angle -δ to 
the horizontal. The passive basal stress state is indicated by the solid circle of 
centre a. The circle is both tangent to the yield curves and passes through the 
point (σzz, -σzztanδ). The circle of centre b represents a second active stress state 
that also satisfies these conditions. ■ indicate the possible stress states in the xz-
plane, ● show possible stress states for σyy (from Savage and Hutter, 1989). 

The principal stresses, σ2 and σ3 in the xz-plane are given by 

( ) ( ) ( ) 22
32 4

2
1

2
1, xzzzxxzzxx τσσσσσσ +−±+=  (5.5) 

and the cross-slope principal stress σyy(=σ1) σ2 or σ3 depending on the nature of 
deformation. Two Mohr stress circles can be constructed that satisfy both the basal 
sliding law and the internal angle of friction at the same time. In the original works of 
Savage and Hutter (1991) the basal normal pressure equals b

zzσ  and the shear stress 

equals b
xzτ− . The basal downslope pressure b

xxσ  can therefore assume two values, 

one on the smaller circle, b
zz

b
xx σσ ≤ , and one on the larger circle b

zz
b
xx σσ > , that are 

related to active and passive stress states, respectively. Since there are four possible 
values for the principal stresses, b

2σ  and b
3σ , there are four values for the basal cross-

slope pressure b
yyσ . The earth pressure coefficients b

xK and b
yK  are defined as follows: 
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Savage and Hutter (1989) used elementary geometrical arguments to determine the 
value of b

xK and Hutter et al. (1993) used the Mohr-circle representation (see Appendix 

B) to define b
yK as a function of the internal (φ)and basal angle (δ) of friction, to 

derive 
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which are real for δ≤φ.  
To uniquely determine the value of the earth pressure coefficient associated with a 

particular deformation the earth pressure coefficient Kx is defined to be active or 
passive according to whether the downslope motion is dilatational or compressional 
as given by the following equation (Savage and Hutter, 1989): 
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Analogously, the earth pressure coefficients in the lateral direction are computed 
by considering whether the downslope and cross-slope deformation are dilatational or 
compressional: 
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At the traction free surface of the avalanche the downslope and cross-slope normal 
surface pressures are 

0=s
xxσ , 0=s

yyσ  (5.11) 

Given the values of σxx and σzz at the base and the free surface, intermediate 
values can be now interpolated accordingly. The Savage and Hutter theory assumes 
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that the downslope and cross-slope stresses vary linearly with normal stress through 
the avalanche depth. This is achieved by the following expression 

zz
b
xxx K σσ = , zz

b
yyy K σσ =  (5.12) 

Substituting the normal pressure σzz with equation (4.15) and integrating through 
the avalanche depth the depth-integrated pressures in the downslope and cross-slope 
direction are, respectively, given by 

2/hgK z
b
xxx γρσ = , 2/hgK z

b
yyy γρσ =  (5.13) 

in which, in comparison with terms written in equation 4.36 the K coefficient is 
included. 

According to Hutter et al. (1993), these relations are valid only when the motion is 
chiefly downhill and the shearing in the (x,y) plane is small in comparison with the 
shearing in the (x,z) and (y,z) planes. When the sidewise motion is large or when there 
is strong lateral confinement between rough walls these assumptions, of course, break 
down.  

The approximation that the downslope motion dominates over most of the 
avalanche track destroys the rotational invariance of the earth pressure coefficients, 
but yield a relatively simple system of equations that is favoured at this stage. The 
magnitude of these terms plays and important role in the development of the 
avalanche shape, as they control how much spreading and contraction occur. 

5.4.2 Original vs. modified version of the Code 
Unlike Hutter et al. (1993), where earth pressure coefficients are defined as the 

ratio of the longitudinal stresses to the normal stress (see equation 5.6), the SHWCIN 
code assumed isotropy of normal stresses, i.e. zzyyxx σσσ == . 

The depth-averaged stress tensor and the traction vector involved in the x and y 
depth-averaged equations reduce, as explained in chapter 4, to 
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The flowing dynamic equations used in the SHWCIN are the following (see 
section 4.5): 
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where isotropy of normal stresses is assumed. 
As in Iverson and Denlinger (2001), in RASH3D K coefficient is implemented 

which applies in the x and y directions simultaneously. Use of a scalar coefficient 
ensures frame invariance in the x-y plane and preserves the stress symmetry. 

The earth pressure coefficient K is in the active or passive state, depending on 
whether the downslope and cross-slope flows are expanding or contracting. The 
possibility of simultaneous  longitudinal contraction and lateral elongation is 
neglected. 

The K coefficient values are given by: 
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where the + (passive state) applies when flow is converging that is, if 
0<∂+∂ vu yx and the – (active state) applies if 0>∂+∂ vu yx . 

Earth pressure coefficients, as here defined, modify equations (5.15)-(5.16) as 
follows: 
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5.4.3 Validation and observations 
A laboratory experiment on a chute with a complex basal topography performed 

by Gray et al. (1999) has been used to test the effect of the earth pressure coefficients. 
In the experiment a simple reference surface is defined, which consists of an 

inclined plane (ψ=40°) that is connected to a horizontal runout zone (ψ=0°) by a 
cylindrical zone. Superposed on the inclined section of the chute is a shallow parabolic 
cross-slope topography, y2/2R with R=110cm, which forms a channel that partly 
confines the avalanche motion (Figure 5.17).  
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Figure 5.17. Experiment using a weakly parabolic channel (Image courtesy of S. McDougall, 

University of British Columbia). 
The inclined parabolic chute lies in x<215 cm, the plane run out zone lies in the 

range x>255 cm and a transition zone smoothly joins the two regions. 
The experiment is performed with quartz chips of mean diameter 2-4 mm, internal 

angle of friction φ=40° and basal angle of friction δ=30°. 
The granular material is released from rest on the parabolic inclined section of the 

chute by means of a perspex cap that opens rapidly at t=0 seconds. The cap has a 
spherical free surface, which is fitted to the basal chute topography. The projection of 
this line of intersection onto the reference surface is approximately elliptical in shape. 
The major axis of the ellipse is of length 32 cm and the maximum height of the cap 
above the reference surface is 22 cm. 

Numerical results obtained by Gray et al. (1999) with a constant bed-friction angle 
gave results showing that the avalanche tail moved only a few centimetres from its 
initial position and therefore the shape assumed by the material was more elongated 
than in the experiments. 

Results presented in Figure 5.18 show a sequence of pictures assuming a condition 
of anisotropy of normal stresses (Figure 5.18a) and a condition of isotropy (Figure 
5.18b) at approximately 0.25 s intervals, obtained by Gray et al. (1999) using a variable 
bed-friction angle: in the front quarter of the avalanche the bed-friction angle is 
assumed constant but reduces linearly in the rear three quarters.  

In Figures 5.18 all units are in centimetres. The vertical lines at x = 215 cm and x 
= 255 cm indicate the beginning and end of the transition zone, respectively. The 
inclined plane is on the left of each panel and the horizontal run out zone is on the 
right. The top panel shows the initial configuration of the avalanche and in the 
subsequent panels an additional thick solid line indicates the position of the 
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experimental avalanche boundary, which provides a direct comparison with the 
computed boundary of the edge of the shaded domains. 

 

 
Figure 5.18a. The computed avalanche thickness is illustrated at five time intervals. The thick 

solid line indicates the position of the avalanche edge in the laboratory experiment 
assuming anisotropy of normal stresses. (modified from Gray et al., 1999). 
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Figure 5.18b. The computed avalanche thickness is illustrated at five time intervals. The thick 

solid line indicates the position of the avalanche edge in the laboratory experiment 
assuming isotropy of normal stresses. (modified from Gray et al., 1999). 
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All the analyses carried out with RASH3D assume a constant bed-friction angle. It 
is preferred to obtain a more detailed correspondence between numerical and 
experimental results by increasing or decreasing the constant value assigned to the 
bed-friction angle for each analysis instead of introducing an ad-hoc variation of the 
bed-friction angle. 

RASH3D numerical analyses were initially carried out assuming isotropy of normal 
stresses and a basal friction angle δ=30° (Figure 5.19). 

At t = 0.51 s the numerical and the experimental results are acceptable even 
though a difference exists between the real and evaluated position of the front of the 
mass. The simulated avalanche behaviour is satisfacory along the confined inclined 
channel but when the horizontal plane is reached some problems are pointed out.  

At t = 1.00 s the maximum run out distance is underpredicted and at t = 1.51 s 
results become unacceptable, the deposit becoming too compact (Figure 5.19). 

A set of analyses assuming δ=27° are also run. The obtained results are 
encouraging up to t = 1.00 s, but at t = 1.51 s the problem of a deposit too compact is 
again pointed out (Figure 5.19). 

 

 
Figure 5.19. Analyses carried out with RASH3D assuming isotropy of normal stresses. 
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Figure 5.19. (Cont.) 

If these results are compared to those obtained by Gray et al. (1999) an interesting 
agreement emerges. In fact, when the avalanche is in divergence the model gives the 
same behaviour as in the experiment. While, as soon as the avalanche begins to 
converge in the run out zone a much more compact deposit is obtained, and the 
maximum run out distance is underpredicted. 

In this frame the analysis of earth pressure coefficients becomes fundamental. In 
Table 5.2 are summarized the K values as a function of the model hypotheses 
considering an internal friction angle φ = 40° and a basal friction angle δ = 27° and δ 
= 30°, respectively. 

As previously mentioned, the Iverson and Denlinger (2001) approach is followed 
in RASH3D. Two values for K are defined to introduce the anisotropy hypothesis 
(Table 5.2 hypothesis 2.a). 

 

δ = 27° - φ = 40°  Earth pressure coefficients 
1. Isotropy K = 1 

a Ka = 0.67 Kp = 4.15 
Ky,act = 0.30 Kx,act = 0.67 Ky,pass = 1.37 
Ky,act = 0.92 

2. Anisotropy b 
Kx,pass = 4.15  Ky,pass = 4.23 
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δ = 30° - φ = 40°  Earth pressure coefficients 
1. Isotropy K = 1 

a. Ka = 0.82 Kp = 4.00 
Ky,act = 0.32 Kx,act = 0.82 Ky,pass = 1.49 
Ky,act = 0.89 

2. Anisotropy b. 
Kx,pass = 4.00 Ky,pass = 4.10 

Table 5.2. Earth pressure coefficients. Values of K defined as a function of the model 
hypotheses: 1. Isotropy of normal stresses; 2. Anisotropy of normal stresses, (a) 
see equation 5.17 – (b) see equations 5.7-5.8. 

In this hypothesis, some interesting aspects emerge comparing results obtained in 
isotropy (δ = 30°) and anisotropy (δ = 30° - φ = 40°) conditions (Figure 5.20).  

At t = 0.51 s and t = 1.00 s the results underline that the general behaviour of the 
mass remains approximately the same independently from the assumed hypothesis of 
isotropy or anisotropy, the front position is overpredicted along the chute and 
underpredicted when the horizontal plane is gained. However, it is important to 
underline that a different trend of the mass behaviour can be pointed out. Along the 
chute the overprediction is higher assuming K=1 than K≠1 and on the horizontal 
plane the underprediction is higher assuming K=1 than K≠1. 

 

 

 
Figure 5.20. Comparison between analyses carried out with RASH3D assuming isotropy and 

anisotropy of normal stresses. 
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Figure 5.20. (Cont.) 

From results obtained at t = 1.51 s and t = 1.79 it emerges that the difference in 
the front positions on the horizontal plane becomes large. Assuming K≠1 the 
longitudinal position of the distal point approximates in a better way the experimental 
results but some problems emerge on the deposit width. 

A good approximation of the propagation phase was numerically obtained by 
McDougall and Hungr (2004) using a rheology with δ = 27° and φ = 40° and 4 values 
of K parameter (Table 5.2 hypothesis 2.b). The predicted distribution of the final 
deposit is reasonably accurate, with slightly more radial spreading (Figure 5.21). 
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Figure 5.21. Analyses of run out experiment carried out by McDougall and Hungr (2004) with 

anisotropy of normal stresses. 
In order to compare results obtainable with RASH3D to those obtained by 

McDougall and Hungr (2004), analyses have been carried out assuming the isotropy 
condition with δ = 27° and an anisotropy condition with δ = 27° and φ = 40° (Figure 
5.22).  

It emerges that at t = 0.51 s a large difference exists in the position reached by the 
front of the mass in the two hypotheses, even though an overprediction still exists it is 
higher in case of K=1. At t = 1.00 s it seems that in both cases the mass assumes the 
same behaviour but an important difference is underlined at t = 1.51 where by 
assuming K ≠1 a satisfactory approximation of the longitudinal position assumed by 
the mass during the experiment is numerically reached. The same is if t = 1.79 s is 
considered. 

 
Figure 5.22. Comparison between analyses carried out with RASH3D assuming isotropy and 

anisotropy of normal stresses. 
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Figure 5.22. (Cont.) 

In order to try to explain these results, the spatial variation of the earth pressure 
coefficient K during the propagation phase, obtained by Gray et al. (1999). Is quoted 
in Figure 5.23-5.24. The state of stress in down and cross slope directions is illustrated 
in the hypothesis of 4 values of the K parameter (as assumed by McDougall and 
Hungr, 2004). Cells are shaded to show which value of the earth pressure coefficient is 
activated at any given time.  
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Figure 5.23. The value of the downslope earth pressure coefficient (Gray et al., 1999). 
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Figure 5.24. The value of the cross-slope earth pressure coefficient (Gray et al., 1999). 
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The highest velocities are attained at the front of the avalanche and this 
predominantly divergent motion gives rise to active downslope earth pressures at t = 
0.51 s while in the cross slope the transition from expansion to compression originates 
some active and passive cells. 

After 1 s has elapsed the avalanche spans all three sections of the chute and all the 
earth pressure states in the downslope and cross slope directions are activated. The 
front of the avalanche lies on the horizontal plane and diverges in the downslope 
direction, as does the granular material on the inclined section of the chute. In the run 
out zone, the lateral confinement ceases, the avalanche is free to expand laterally and 
the earth pressure coefficients change accordingly. 

At 1.51 s the front of the avalanche has virtually come to rest and the whole 
avalanche is in down slope convergence. In addition, since lateral confinement ceases 
on the run out plane there is strong cross slope divergence throughout most of the 
avalanche, with only the tip of the tail being compressed (Gray et al., 1999). 

The model here applied with variation of the earth pressure coefficients considers 
two values for K. The approach can be considered at least qualitatively correct, limits 
are probably due to the hypothesis that where 0<∂+∂ vu yx  the flow is considered 

converging and the passive state applies both in x and y directions, if 0>∂+∂ vu yx  
the active state applies. As presented in Figure 5.25 this approach can originates only 
two types of mass behaviours: divergence in both directions or convergence in both 
directions.  

 
Figure 5.25. Simultaneous longitudinal and lateral elongation (a) and longitudinal and lateral 

contraction (b).  
At the contrary, if 4 values of K had considered (see equation 5.9 – 5.10) it would 

have been possible to have also divergence in a direction and convergence in the other 
one (Figure 5.26). 
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Figure 5.26. Simultaneous longitudinal elongation and lateral contraction (a) and longitudinal 

contraction and lateral elongation (b).  
The obtained results are considered encouraging and qualitatively corrects. 

Differences as to experimental results can be explained, for example in case of δ = 
30° and φ = 40°, as follows. 

At t = 0.51 s the mass accelerates in down slope direction and the following 
conditions can be assumed: 
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∂
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∂
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∂
∂
x
u  (5.20) 

Considering the hypothesis 2a (Table 5.2, anisotropy with 2 values of K) 
0>∂+∂ vu yx  is obtained and Kact = 0.82 is applied in down slope and cross slope 

directions. If the hypothesis 2b (Table 5.2, anisotropy with 4 values of K) is considered 
the K value in down slope direction is the same than in case 2a, and approximately the 
same used in case of isotropy, but in cross slope direction it is possible to have K=Ka 
= 0.32 or K=Kpass = 1.49. This can modify the width of the mass along the chute. 

At t = 1.00 s three phases can be considered: 
 

Chute                  
y
v

x
u

∂
∂

>
∂
∂ ;   0>

∂
∂
x
u    0<

∂
∂

y
v ;   0>∂+∂ vu yx  (5.21)   

Transition zone     
y
v

x
u

∂
∂

>
∂
∂ ;   0<

∂
∂
x
u    0>

∂
∂

y
v ;   0<∂+∂ vu yx  (5.22) 

Horizontal plane   0>
∂
∂
x
u    0>

∂
∂

y
u ;   0>∂+∂ vu yx  (5.23) 
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Along the chute, as at t = 0.51 s, in cross slope direction there are both active and 
passive cells but elements passive in y and active in x are in prevalence. To consider 
only one K value in both x and y directions doesn’t allow to underline distinction 
between convergence and divergence. On the horizontal plane the hypothesis 2a gives 
a K=0.82 while in the hypothesis 2b K=0.82 defines the propagation only in the down 
slope direction while in the cross slope K=0.32 is assumed and in fact the width is 
correctly reduced. 

At t = 1.51 s the mass decelerates in down slope direction and the following 
conditions can be assumed: 
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∂

>
∂
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∂
∂
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u  (5.24) 

Considering the hypothesis 2a 0<∂+∂ vu yx  is obtained and Kpass = 4.00 is 
applied in down slope and cross slope directions. If the hypothesis 2b is considered 
the K value in down slope direction is the same than in case 2a but in cross slope 
direction it is K=Kact = 0.79 and the width becomes correctly reduced. 

The condition t = 1.79 s is complex, there are active and passive cells but the 
general behaviour determine a prevalence of active values in cross slope direction that 
reduces spreading of the mass. 

The graphic comparison between isotropy and anisotropy results helps to 
underline that it is useful to split the K value in x and y directions. In fact, values as 
K≈4 allow reproducing the position of the front but in the cross slope direction 
becomes fundamental to use K ≤ 1. 

5.5 Rheology 

5.5.1 Theoretical analysis 
Rheology aim is to characterize the mechanical behaviour of a material during its 

movement. This characterisation is usually obtained through a mathematical relation 
between stresses and strains of the considered material. A rheological law is made out. 

Several mathematical models describing the mechanics of motion of landslides 
have been presented in the literature (see Table 4.1).  

Rheological constitutive relationships applied to mass movement modelling in the 
past have usually been one of either Newtonian flow (e.g. Curry, 1966), Bingham flow 
(e.g. Sousa and Voight, 1991) or dilatant grain-flow (e.g. Takahashi, 1991).  

Perhaps the most well-developed group of models dealing with the flow of earth 
materials is based on the Bingham rheology. Jeyapalan (1981) concentrated on the 
special case of unsteady flow from a sudden breach of a dam and derived solutions in 
terms of linearly viscous (Newtonian) laminar flow and visco-plastic (Bingham) flow. 
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Dent (1982) modified an existing Newtonian unsteady flow program to accept a 
bilinear rheology similar to the Bingham model. 

The frictional rheology, where the resisting basal stress depends only on the 
normal stress has long been favoured in lumped mass models (see section 3.4.1). In 
the three dimensional frictional model developed by Sassa (1988) a two-parameter 
friction model for landslides, which includes the apparent sliding friction and a pore-
pressure ratio within the moving mass, was proposed. A three dimensional model 
using a quadratic rheological formula containing plastic, viscous and turbulent terms 
was proposed by O’Brien et al. (1993). 

A two-parameter model was developed for snow avalanche modelling by Voellmy 
(1955) combining Coulomb frictional and Chèzy formulas. The turbulence term, ξ, 
which is similar although not exactly equivalent, to the Manning n, was intended to 
cover all velocity-dependent factors in snow avalanche motion, including turbulence 
of the air-snow dispersion and air drag on the top surface of the avalanche. Koerner 
(1976) showed that the model offers a good simulation of velocities for rock 
avalanches. 

The applicability of the Voellmy rheology (Voellmy, 1955) has been tested by 
Rickenmann and Koch (1997), who found that models using a Newtonian turbulent 
or Voellmy fluid yielded the best simulations of channelised flows. 

Good empirical results obtained by Koerner (1976), Rickenmann and Koch (1997) 
and Hungr and Evans (1996) justify the use of the simple Voellmy model at least in 
the interim, until further experiments and back analyses are completed.  

In particular, the model developed by Hungr (1995) allows the selection of a 
variety of material rheologies, which can vary along the slide path or within the slide 
mass (see section 4.6). 

Some of the most recent solution methods involve the application of a more 
complex combination of rheologies. Iverson (1997a) describes the physics of debris 
flows based on the equations of motion for the flow of dry granular masses. The 
model is essentially a frictional one, which includes longitudinally varying internal and 
boundary forces as well as pore pressure 

5.5.2 Original vs. modified version of the Code 
Hungr and Evans (1996) applied a general dynamic model to back-analyse 23 case 

histories of rock avalanches. Three rheologies were tried: Frictional, Voellmy 
(frictional/turbulent) and Bingham. 

Results to date indicate that most avalanches on open slopes can be simulated 
satisfactorily using a friction model with pore pressure conditions that are 
intermediate between fully drained and liquefied. Channelised flows involving the 
dilution of debris by water and/or entrainment of liquefied saturated material appear 
to conform best to a friction-turbulent (Voellmy) mode.  



Chapter 5: From SHWCIN to RASH3D. Numerical model upgrade  
 

5.35

The first criterion used to evaluate the influence of rheology was to compare the 
calculated and the actual length of the deposit.  

The friction model tends to predict deposits having the bulk of the debris 
proximally with excessive thinning in the distal part (Figure 5.27a). The Voellmy 
model generally results in uniformly distributed deposits, and moderately long deposit 
area with accumulation on the flatter parts of the slope (Figure 5.27b), while the 
Bingham model consistently overestimates the debris length. 

 
Figure 5.27. A comparison of the cross-sectional distribution using (a) the friction rheology, 

and (b) the Voellmy rheology. 
A second criterion for comparing results of modelling with actual observations is 

in terms of velocity and flow duration. 
In this case the Voellmy model gives excellent correspondence between the 

calculated and observed velocities. Both the Frictional and Bingham models 
overestimate the velocities (Figure 5.28). A comparison in terms of flow duration 
produced a similar result. 

 
Figure 5.28. Flow velocity predictions (from Hungr and Evans, 1996). 
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Of the three rheologies considered the Voellmy model produced the most 
consistent results in terms of debris spreading and distribution as well as velocity data. 

This analysis justifies the integration within the applied Code of a Voellmy 
rheology. 

It is primary to underline that the turbulent term in the Voellmy rheology assumes 
an importance when the velocity of the mass is high, on the contrary this term 
vanishes and the rheological behaviour becomes as in Frictional case. 

As described in section 4.5, in the applied Code dissipation is described by a 
Coulomb-type friction law relating the norm of the tangent traction tT  at the bed to 

the norm of the normal traction bzzzn T σ==T  at the bed, through a factor µ = 

tanδ involving the dynamic friction angle δ. 
Having the necessity of introducing a Voellmy rheology, it is the term nc Tµσ =  

that has to be modified. The original equation of cσ  ,( hg zγµρ= see section 4.5.1) 
becomes the following: 

ξ
ργµρσ

2
i

zc
v

ghg +=        where (i = x,y) (5.25) 

Due to the fact that with low velocity the turbulent term vanishes, the effect of a 
Voellmy rheology is not evident if a laboratory test is considered while in case of 
analysis of a real case results change. 

5.6 Pore water pressure 
Even though lumped mass modelling is no longer useful. It is instructive to use 

this model to introduce the concept of energy line, as proposed by Koerner (1976). 
As described by Hungr, the energy line is a line raised above the movement path 

by an elevation equal to the kinetic energy head Hk=v2/2g, where v is the velocity. For 
a block sliding on a dry frictional surface, where the resisting force is proportional to 
the normal force, the energy line is a straight line, inclined at the friction angle, δ 
(Figure 5.29). 
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Figure 5.29. Energy line (Hungr and Evans, 1996). 

Should pore pressure be present, the energy line will remain straight, provided that 
it is assumed the pore pressure, u, to be proportional to the normal stress, σn: 

u=ruσn (5.26) 
where ru is a proportionality constant, similar to the pore pressure ratio used in soil 

mechanic. The magnitude of ru is about 0.5 for full saturation and more if excess pore 
pressure exists.  

The slope of the energy line will equal to the angle, δb: 
( )[ ]δδ tan1arctan ub r−=  (5.27) 

In case of non-frictional rheology, where either the friction angle or the pore 
pressure ratio is not constant along the path, the energy line will be curved. If δ 
increases or ru decreases as a function of velocity, a concave line will result (dotted 
line).  

Koerner (1976) showed that the frictional model over-estimates the velocity in 
most cases of rock avalanches and snow avalanches. He adopted Voellmy’s (1955) 
frictional/turbulent rheology, where the resisting forces are assumed to depend on the 
effective normal stress and the square of velocity. Presented in the same form as 
equation (5.27), the Voellmy relationship can be written as: 

( )[ ]
ψξ

δδ
cos

tan1arctan
2

i
ub H

vr +−=  (5.28) 

A concave shape of the energy line can also be obtained by allowing δb to decrease 
with displacement (e.g. Sassa, 1988). 

A long dashed line in Figure 5.29 shows the opposite effect where the energy line 
is convex, predicting higher velocities for a given displacement. Such an effect could 
result from decrease in δb with increasing velocity. Production of steam by means of 
frictional heating, or controversial mechanical fluidization phenomenon would both 
generate a convex energy line. Alternatively, a convex shape could result from resisting 
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forces increasing with displacement (or time), as would be the case if gradual 
consolidation and dissipation of pore pressure were coupled with movement (e.g. 
Hutchinson 1986, DeMatos 1987, Iverson and Denlinger 2001, Denlinger and Iverson 
2001). All such approaches are likely to lead to an unrealistic overestimation of 
avalanche velocities. 

5.6.1 Original vs. modified version of the Code 
The presence of water in the running mass is taken into account by introducing a 

distribution of water pressures (u) at the base of the moving mass. 
The values of the pressures are an input data and are given through the ratio, ru, of 

pore pressure to the total normal stresses at the base of the mass. 
The authors are aware that this is a preliminary and rough approach to the 

modelling of water effect on the runout. Even though this approach needs to be 
improved, it is considered acceptable by many authors (i.e. Hungr, 1995) for the 
analysis of real cases of rock avalanches. 

To run analyses taking into account pore pressure effects it is necessary to 
substitute δb to δ in the resisting force equation of the considered rheology. 

If the equation δψγ tancos iiiii HAT =  is considered, the new equation will be 

biiiii HAT δψγ tancos=  with δb defined as in equation 5.27 in case of a frictional 
rheology and in 5.28 in case of a Voellmy rheology.  

As described in section 5.5.2, in the applied Code it is the term nc Tµσ =  that is 
modified.  

5.7 Validation of the final version of RASH3D 
The final version of the obtained code has been validated through numerical 

analysis of laboratory tests and back analysis of case histories obtained from literature. 
A deflected run out experiment, carried out at the University of British Columbia, 

has allowed verify the precision of the code in simulating the behaviour assumed by 
the mass on bend and in case of run up. 

Cases quoted in the following show as the code has also simulated in a correct way 
the propagation and the arrest phase of a real mass. Frank Slide and Six des Eaux 
Froides are two phenomena whose propagation has been characterized by a very 
different behaviour. In particular, in Six des Eaux Froides case the run up on the 
opposite slope and the wide spread of the mass induce to consider it as an interesting 
and complex case to be numerically analysed. 

5.7.1 Deflected run out experiment 
A laboratory experiment was conducted at the University of British Columbia with 

dry polystyrene beads by McDougall and Hungr (2004). The material was released 



Chapter 5: From SHWCIN to RASH3D. Numerical model upgrade  
 

5.39

from a box onto a chute with variable slope (to control the approach velocity), ran out 
onto a 20° approach slope and was deflected by a dike oriented obliquely to the flow 
direction. The deflection angle, λ (plan angle between the initial direction of motion 
and the intersection of the dyke and approach planes), and the dike dip angle, ψd, were 
variable. A photograph of the laboratory apparatus is shown in Figure 5.30. 

The box used to contain and release the material at start up could not be replicated 
by a digital 3-D sliding surface, due to its infinitely sloping sidewalls. Therefore, an 
imaginary release chute and initial distribution of material were used by McDougall. 
By trial and error, the position, width and velocity of the simulated flow front were 
synchronized with the experiment at the start of the 20° approach slope. 

 
Figure 5.30. Photograph of laboratory apparatus used for deflected runout experiments 

(Image courtesy of S. McDougall, University of British Columbia). 

A simulation of an experiment configured with λ = 60° and ψd = 33° is shown in 
Figure 5.31, were laboratory results and McDougall numerical analyses are compared 
to the results obtained using RASH3D. 

As in McDougall’s analyses a frictional rheology with δ =20° and φ=25° has been 
applied.  

These friction angles are within a small range of values measured in separate 
laboratory tests by McDougall, placing a conical pile of beads on a sheet metal plane 
and, respectively: 1) measuring the tilt angle that initiates basal sliding, and 2) 
measuring the angle of repose of the material itself. 

With rheological parameters calibrated on the basis of the previous test (δ =20° 
and φ=25°) the model RASH3D produces accurate predictions of maximum runup 
distance, as well as the position and distribution of slide material at that instant. A 
comparison of observed and predicted maximum runup distances is shown in Figure 
5.31. 
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t= 0.0 s       A          B  

   
t= 0.2 s 

   
t= 0.4 s 

   
t= 0.6 s 

   
Figure 5.31. Analysis of a deflected runout experiment using λ=60° and αd=33°. Column A, 

RASH3D results. Column B, McDougall results. The planes are marked with a 
10cm square grid (Photographs courtesy of S. McDougall, University of British 
Columbia). 
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5.7.2 Frank slide (Canada) 
On April 29, 1903 approximately 30 million m3 of rock descended Turtle 

Mountain into the Crowsnest River valley, partially burying the town of Frank, Alberta 
and killing 70 people. It was Canada’s worst landslide disaster. 

 
Figure 5.32 Frank Slide event. 

The original sliding surface and the starting position of the 30 million m3 slide 
mass have been approximated using detailed digital elevation data provided by the 
Geological Survey of Canada as well as historical photographs and maps (Figure 5.33).  

t =0 s  
Figure 5.33 Frank Slide digital elevation model. 

The model has been applied using a frictional rheology with a basal friction angle  
δ = 14° and an internal friction angle φ =40°. 
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t = 20 s      t = 40 s 

  
t = 60 s      t = 80 s 

Figure 5.34  Numerical analysis with RASH3D. Dash line represents the boundaries of the real 
runout area.  
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5.7.3 Six des Eaux Froides (Switzerland) 
In 1946 approximately 6 million m3 of rock descended the Andin valley (near 

Rawyl, Valais, Switzerland), burying the Luchet Lake located in the bottom of the 
valley (Figure 5.36). 

 
Figure 5.35 Six des Eaux Froides landslide (Image courtesy of CREALP, Sion Switzerland). 

The original sliding surface and the starting position of the mass have been 
approximated using detailed digital elevation data provided by the CREALP 
(Switzerland) as well as historical photographs and maps.  

      
Figure 5.36 Luchet Lake before and after the landslide (Images courtesy of CREALP, Sion 

Switzerland). 
The model has been applied using a frictional rheology with a basal friction angle  

δ = 17° and an internal friction angle φ =40° (Figure 5.37). 
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t=0s  
 

t=10s  
Figure 5.37 Numerical analysis with  RASH3D. Dash line represents the boundaries of the real 

runout area 
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t=20s  

t=30s  
Figure 5.37           (Cont.) 
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t=40s  

t=50s  
Figure 5.37           (Cont.) 
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t=60s  

t=70s  
Figure 5.37           (Cont.) 

 
 



 
 



Chapter 6  

DAN. Back analyses of case histories 

6.1 Introduction 

Whatever the applied analytical model, results of a numerical simulation depend on 
the value assigned to each constitutive parameter of the assumed rheology before 
running the analysis. 

To define a range of typical values for these parameters, the numerical code DAN 
(Hungr, 1995) has been applied to back analyse a set of case histories of rock 
avalanches selected from literature.  

Before creating the geometrical model, to be used to run numerical analyses, each 
case has been carefully analysed and all the available information have been collected 
in a filing table.  

Some data are fundamental to characterize the general behaviour of each 
considered case and have to be taken into account when values obtained from back 
analyses are used to simulate a potential landslide, only cases having similar 
characteristics (e.g. run out area shape, material type, glacier along the path) can be 
compared.  

Some other data are important to calibrate the model. For this purpose 
information concerning the position of the proximal and distal points and the depth 
of the mass in the deposit, the mean or maximum velocity reached along the path, the 
presence of run up on bend or on an opposite slope and so on are fundamentals. 

A back analysis procedure gives the possibility of calibrating the model in order to 
obtain the best value that has to be assigned to each of the required rheological 
parameters. 
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As previously mentioned, the obtained results could be useful in run out prediction 
of a potential landslide. To proceed in this direction, it is beforehand necessary to 
verify that DAN results can be used as input data in a different numerical code, like 
RASH3D. Cases for which a DEM pre-collapse was available have been analysed with 
both DAN and RASH3D. Results have been encouraging and have justified the use of 
a coupled methodology in which DAN is applied to run back analyses while RASH3D 
is useful for prediction of propagation on a complex topography. 

6.2 Collection and cataloguing of case histories 

Numerical simulations should provide a useful tool for investigating case histories 
if some geometrical data and some characteristic information of the analysed case are 
known. 

Cases selected from literature are well documented for the purposes of the present 
work if available geometrical data consist at least of a simple topography, containing 
information about the shape of the run out area and the boundary of the unstable 
area, and a profile along the path of the movement, from which it emerges the 
position of the deposit and of the initial volume (Figure 6.1).  

 
Figure 6.1. Val Pola rock slide (Erismann and Abele, 2001). 

An advantage in using DAN is due to the fact that, among the required input data 
to run a back analysis, a DEM (Digital Elevation Model) is unnecessary. In fact, the 
above listed information is exhaustive enough to generate the geometrical model. This 
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allows the back analysis of many of the cases obtained from literature, whose analysis 
would be impossible with a code in which a digital elevation model is required. 

 
For each case, collected data can be subdivided in two main groups: 

- Classification parameters, containing information known before the event (e.g. 
material type, average slope angle, bedrock of the area, vegetation); 

- Control parameters, containing information known only after the event (e.g.. run 
up, velocity, final front and rear positions, run out area shape). 
To organize all the available information in an organic way and to guarantee that 

the main aspects of each case could immediately emerge, a filing table has been 
prepared (Figure 6.2). This table contains different sections, some of which collect 
data necessary to compare the characteristics of a back analysed case to those of a 
potential landslide (only cases having similar characteristics can be compared): 
- General aspects, in which information on type (e.g. rock avalanche, debris flow... ) 

and the geographical location of the event is quoted together with details 
concerning causes and consequences of the propagation (if known). In particular, 
sites not far one from the other or having similar triggering mechanism could have 
a similar behaviour. 

- Geometry, containing data from which it eventually emerges a different behaviour of 
the mass along different portions of the path and it is possible to determine the 
run out area shape and to obtain the geometrical model to be used as input in 
DAN (e.g. profile and topography before and after the event). It could be 
interesting and useful to compare cases having a similar propagation and a similar 
run out area shape (see section 6.2.1). 

- Morphology, in which are summarized all the information concerning the type of 
material existing along the path and within the mass, together with indication of 
any further entrainment of material during propagation. Comparing cases it could 
be important to know if the involved material is, for example, pyroclastic or 
gneissic. These could be one of the aspects that modify the behaviour of the mass. 
It is also important to underline if there is a glacier along the path and if water is 
clearly involved or not. 
Some others collect information necessary to compare the reconstructed geometry 

and the back analysis results to the real configuration of the slope and to the shape 
assumed by the deposit: 
- Geometrical details, aspects concerning the volume involved, the average slope angle 

along the path or in correspondence of the failure sector (obtained connecting the 
uppermost point from which the rock mass broke away and the toe of the surface 



  

 
6.4 

of rupture). Useful can also be information concerning the orientation of the 
sliding surface. 

- Run out details, data characterising the propagation phase. To calibrate the model 
during back analysis it is fundamental to know the final position reached by the 
mass (proximal and distal point of the deposit), further information concerning the 
velocity reached along the path and the existence of run up in bend or on the 
opposite slope can help to determine the real behaviour during propagation in a 
more detailed way. 
Finally, the last section (Bibliography) is devoted to list the source of the information 

concerning the described case. 

 
Figure 6.2. Example of filing table containing information about each analysed case. 
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6.2.1 General characteristics 
Cases having different characteristics are probably characterized by a different 

behaviour during the run out phase. It is important to focus on those aspects that 
seem to influence more than others the propagation phase of the unstable mass. 
When a potential event has to be simulated, this distinction can help in the choice of 
those back analysed cases that can be compared to the analysed event and should 
reduce the range of values to be assigned to the rheological parameters. The aim of 
this type of approach is to obtain the results as more realistic as possible.  

The main aspects on which attention has been focused on are the following: 
- Landslide volume (V).  In a landslide phenomenon mobility seems to increase with 

volume. Compared to a rock fall event (V<10000 m3), the motion of rock 
avalanches is more massive and the bulk of rock fragments moves as a semi-
coherent flowing mass.  

- Run out area shape (Figure 6.3). It introduces three different sub-classes as a function 
of the shape assumed by the run out area. The considered categories are the 
following (Nicoletti and Sorriso-Valvo, 1991): 

- Elongated shape (A). This generally occurs when there is a narrow 
valley down which the debris is channelized. 

- Tongue shape (B). This occurs when the moving debris is free from 
lateral constraints and is able to stop spontaneously when it comes to 
a wide valley or plan. 

- T shape (C). This shape results from the crossing of a narrow valley 
followed by a perpendicular impact against the opposite slope. Run 
up and partition of the debris are common features. 

       
Figure 6.3. Run out area shape. 
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- Material type. For the intact rock pieces, the generalised Hoek-Brown failure 
criterion for rock jointed masses (Hoek & Brown, 1980) is simplified  to: 
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where σ’1 and σ’3 are the maximum and minimum effective stresses at failure 
respectively, mi is the value of the Hoek-Brown constant m for the intact rock, 1 
and 0.5 are the characteristic constants of the rock mass in case of intact rock, and 
σci is the uniaxial compressive strength of the intact rock pieces. In order to use the 
above mentioned criterion for estimating the strength and deformability of jointed 
rock mass, σci and mi have to be estimated (Hoek & Brown, 1997). When 
laboratory tests are not possible, Table 6.1 can be used to obtain estimate of σci 
and mi of the intact rock pieces in the rock mass. On the base of this criterion, the 
material type classification can subdivide the cases as a function of UCS as 
indicated in Table 6.1. 

 

Table 6.1. Field estimates of uniaxial compressive strength (Hoek and Brown, 1997). 
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The behaviour of a rock mass probably changes as a function of the type of 
material involved, fragmentation and desegregation could be more rapid in a weak 
material than in a strong one.  

- Slope characteristics. The path followed by a mass during propagation can be 
characterized by presence of vegetation (e.g. forest), debris or intact rock. Probably 
events with a reduced volume are more influenced from differences in slope 
characteristics respect phenomena involving a large volume.  
The existence of water (e.g. superficial or due to infiltration) can determine 
saturation of the material and deeply modify the final configuration of the deposit.  
Ice (e.g. glacier) along all or part of the travel path reduces or vanishes the basal 
resistance term increasing velocity of propagation and changing the final 
distribution assumed by the debris. It is then important to distinguish cases in 
which ice or water have played an important role from those cases in which 
propagation was in dry conditions.  

6.3 Back analysis procedure 

The back analysis procedure can be subdivided into 6 steps (Figure 6.5):  
1. Digital reconstruction of the topography. The slope profile geometry, 

the profile of the top of the initial mass and the path width are 
described by a series of x (distance), y (elevation) and z (width) 
points, respectively (Figure 6.4). 

2. Choice of the values to be assigned to the characteristic parameters 
of the assumed rheology. 

3. Run of the analysis. 

4. Comparison between the results obtained through the simulation (B 
in Fig 6.5) and the actual characteristics of the deposit (A in Fig.6.5). 

5. If B is too different from A: Change of the value assigned to the 
rheological parameters 

6. Report of the obtained results. 
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Figure 6.4. Digital reconstruction of the topography using DAN. 

The material rheology has been assumed as frictional (see section 4.4 and 5.5). 
Friction angle (δ) and pore water pressure (ru) are the only rheological parameters that 
have to be calibrated. The remaining variables, held constant in all the analyses. 

In a first hypothesis a “dry” condition (ru =0) is assumed and only the value of δ is 
varied to better simulate the real behaviour of the mass.  

A second hypothesis considers the mass as saturated (ru =0.5).  
Finally, if there are some portions of the path covered by a glacier ru =0 and two 

values of friction angle: δ1 where there is no ice, δ2=0.6 where there is ice. In this case, 
δ1 corresponds to δb are assumed. 

The aim of this double analysis is to guarantee that water content is not neglected. 
A friction angle value too low is probably an index that no water assumption is 
unrealistic for the examined case.  

The main results of each analysis were systematically recorded. Each trial run was 
assessed by matching the following parameters to the actual values as determined 
from maps or from the reports of the case histories: total horizontal run out distance, 
length of the main deposit, mean thickness of debris, flow velocities and flow duration 
(where available). 
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The above parameters could not always be obtained from the case history record, 
by consequence the comparisons were carried out opportunistically wherever data was 
available (Hungr and Evans, 1996). 

 

 
Figure 6.5. Back analysis procedure. 

The best match parameters were sought to produce mainly the correct run out, 
while at the same time obtaining the best possible match in term of velocities and 
duration (e.g. Table 6.2). 
 

Data Madison Canyon Literature Analysis 
Volume⋅106 [m3] 28 28 
Rear final position [m]       1360 1284 
Front final position [m] 401 417 
Fahrböschung [°] 14.6 14.4 
Velocity [m/s] 50  31 

Table 6.2. Madison Canyon rock avalanche. Example of analysis results. 
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6.4 Validation of the coupled methodology 

Trying to reduce the uncertainty range of values to be assigned to rheological 
parameters, a methodology in which DAN is used to run back analyses of case 
histories and RASH3D is applied to predict propagation of a mass on a complex 
topography is proposed. To consider rheological values obtained with DAN as 
guidelines in assigning values to rheological parameters in RASH3D it is beforehand 
necessary to verify that DAN results can be used as input data in a different numerical 
code, like RASH3D. Cases for which a DEM pre-collapse was available have been 
analysed with both DAN and RASH3D. Results have been encouraging and have 
justified the use of the proposed coupled methodology. 

Frank Slide (Canada) and Six des Eaux Froides (Switzerland) are two examples 
having run out with a very different configuration. Analyses shown in Section 5.7 have 
been carried out assuming a frictional rheology in which values assigned to rheological 
parameters are those previously obtained with DAN. Both cases are simulated in a 
satisfactory way. 

6.5 Results of back analyses 

After validation of the proposed methodology (see section 6.4), DAN has been 
widely applied to the back analysis of as many case histories as possible. 

The back analysis procedure has been more accurate when detailed data, 
characterising the propagation phase, were supplied (e.g. proximal and distal points 
and the depth of the mass in the deposit, mean and/or maximum velocity reached 
along the path, presence of run up on bend or on an opposite slope). 

Some of this information has been fundamental to guarantee a more accurate 
analysis and more reliable results. 

In Table 6.3 are summarized the best match parameters for the analysed cases, 
some of which were also analysed by Hungr in the past (Hungr & Evans, 1996). 

As described in section 6.3 each case has been analysed assuming ru = 0 and ru = 
0.5, respectively and introducing a second value of friction angle where the path was 
covered by ice (e.g. Felik and Pandemonium Creek). 

Even though both Felik and Pandemonium Creek have a portion of the path 
covered by glacier, for each case the variation of δ1 value respect the obtained δb value 
is deeply different. To think that these two cases are similar and by consequence to 
compare their behaviour it would be wrong. Analysing available information it 
emerges that in Felik case the mass run on ice in about the entire path, in 
Pandemonium Creek case, at the contrary, only a short portion of the whole path is 
covered by ice. This is an example of the attention that has to be put in the analysis of 
each considered case. 
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Frictional rheology 

ru = 0 ru = 0.5 Glacier 
(ru = 0) Country Site Material type 

δ [°] δ [°] δ1 [°] δ2 [°] 
Conturrana  Sedimentary 16 30   
Scanno Sedimentary 14 26   
Vajont Sec E-E Sedimentary 17 31   
Vajont SecF-F Sedimentary 18 32   
Val Pola Metamorphic 20 34   

ITALY 

Felik Metamorphic 22  32 0.6 
Charmonetier Metamorphic 39    
La Madeleine Metamorphic 19 35   FRANCE 
Claps de Luc Sedimentary 23 39   
Flims(pleistocene) Sedimentary 9 20   
Flims(1939) Sedimentary 23 41   
Six Eaux Froides  17 32   

SWITZERLAND 

Elm Metamorphic 16 30   
Avalanche Creek Volcanic 18 33   
Dusty Creek Volcanic 21 38   
Avalanche Lake N. Sedimentary 7(1) 14   
Avalanche Lake S. Sedimentary 8(1) 15   
Eagle Pass Metamorphic 30/38(

2) 
   

Nomash River Sedimentary 13 25   
Pandemonium 
Creek 

Metamorphic 12 26 14 0.6 

CANADA 

Rubble Creek Volcanic 14 27   
JAPAN Mt. Ontake Volcanic 8 17   

Table 6.3. Results of the back analyses. (1) back analyses are carried out assuming the Hungr’s 
hypothesis of  absence of glacier filing the bottom of the valley this requires a run 
up of about 650m on the opposite slope justifying a so low friction angle  (see 
Annex - Avalanche Creek), (2) there are two hypotheses on Eagle Pass run out (see 
Annex – Eagle Pass) in the first hypothesis the mass reaches the bottom of the 
valley in one phase (30°), in the second one two phases characterise the movement, 
the mass initially stops along the slope (38°). 

Mt. Ontake (Japan) represents a very particular case, a mass changing from 15 
million m3 to 30 million m3 ran for about 12 km along a river and the involved 
material is totally saturated. 

Since some cases originated long time ago (e.g. Conturrana, Flims(Pleistocene), La 
Madeleine, Scanno) a certain degree of uncertainty on the available information is 
probable. When results obtained through back analyses of these cases are used as 
guidelines this aspect does not have to be neglected. 
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Cases as Avalanche Lake and Eagle Pass have contrasting interpretations. In the 
present work, back analysis of these cases has been realized following Hungr’s 
hypothesis (see Appendix A). 

Main difficulties, on which it has been run into carrying out the analyses, have 
induced to deeply reflect on the influence that the presence of water can determine on 
the obtainable results. Indeed water assumes a particular effect not only in the 
triggering phase but also along the path of propagation. The presence of a river, 
crossed by the mass or along which the mass is channelized, can deeply modify the 
shape of the deposit, the distance of propagation and the reached velocity. Similar 
behaviour can be obtained with the entrainment of a large quantity of saturated 
material. 

If the three classes, introduced by Nicoletti and Sorriso-Valvo in 1991, about the 
runout area shape are considered (see Figure 6.3), it emerges that the rheological 
values obtained with the frictional rheology increase changing from elongated to 
tongue shapes, passing through T shape. Detailed results are quoted in Table 6.4-6.5-
6.6, respectively. 

 
Frictional rheology 

ru = 0 ru = 0.5 Site Date 
δ [°] δ [°] 

Nomash River 1999 13 25 
Pandemonium 
Creek (3) 

1959 
 

12 26 

Rubble Creek 1855-56 14 27 

Table 6.4. Results of the back analyses on cases having elongated shape run out area. (3) the case 
of Pandemonium Creek has a portion of the path covered by glacier but the limited 
extension could justify that it is compared to results in which ice is absent. 

Frictional rheology 
ru = 0 ru = 0.5 Site Date 

δ [°] δ [°] 
Claps de Luc 1442 23 39 
Charmonetier 1987 39  
Flims(1939) 1939 23 41 
Eagle Pass 1999 30/38  
Conturrana 4th century 16(4) 30 

Table 6.5. Results of the back analyses on cases having tongue shape run out area. (4) the case 
of Conturrana originated in the 4th century, results could be affected by a certain 
degree of uncertainty. 
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Frictional rheology 

ru = 0 ru = 0.5 Site Date 
δ [°] δ [°] 

La Madeleine post glacial 19 35 
Vajont Sez. E-E 1963 17 31 
Vajont Sez. F-F 1963 18 32 
Val Pola 1987 20 34 
Scanno 217 B.C. ?(5) 14 26 
Elm 1881 16 30 

Table 6.6. Results of the back analyses on cases having T shape run out area. (5) the case of 
Scanno originated probably in 217 B.C., results could be affected by a certain degree 
of uncertainty. 

In Table 6.7 it further emerges as all the considered parameters assume a mean 
value that increases changing from Elongated shape to Tongue shape. 
 

δ [°]  
Elongated T shape Tongue

min 12 16 23 
mean 13 18 30 
max 14 20 39 

 
Table 6.7. Distribution of resistance parameters as a function of the run out area shape. 
 

In this sense the classification introduced by Nicoletti seems to be respected in the 
carried out analyses. However, it has to be taken into account that the shape assumed 
by the deposit is influenced both by the topography and by the characteristic of the 
moving mass (e.g. presence of water). An elongated deposit (A) probably derives by a 
saturated material, mass is channelized along a narrow valley where a river is probably 
present. At the contrary, a tongue deposit (B) could be obtained with a dry material, 
the mass could not be able to reach the bottom of the valley and in this case less water 
or saturated material is probably involved in the movement. Finally, a T shape deposit 
(C) can be considered in some way intermediate between (A) and (B). A portion of the 
whole path can be considered as in situation (A) while the other more similar to 
situation (B). This could justify intermediate values of friction angle. 

Any way it has to be underlined that empirical methods, as those considered by 
Nicoletti, are unable to take into account the water effect. The code DAN used to run 
back analyses in the present work is able to consider the real width of the channel of 
propagation of the mass and can incorporate in the bulk friction angle the water 
effect. 
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Trying to subtract the water effect from the friction angle, a pore pressure different 
from zero can be introduced. But it is difficult to define which had really been the 
influence assumed by the water in each case. What can be suggested could be to use 
lower values of ru in case of tongue shape and higher values in case of elongated 
shape.  

More work is needed to better characterize the influence of water in the back 
analysed cases. In fact, once subtracted the water effect by the friction angle: 1) the 
runout area shape effect could be reduced; 2) a certain influence of material type could 
emerge.  

Furthermore, before trying to obtain possible correlations among friction angle, 
volume, shape, material type and slope characteristics the back analysis of a higher 
number of cases is required in future.  

6.6 Observations 

The DAN code allows to simulate the main features of all the considered case 
histories. 

To reduce a complex and heterogeneous three dimensional problem into an 
extremely simple formulation allows to run simulation on many case histories 
obtained from literature, cases for which a DEM is not available.  

The path width is an input data but working on back analyses and not on 
prediction this data is always known if a simple topography is given.  

The simplicity of the model is an advantage in making possible an immediate and 
rapid numerical simulation of real cases.  

To obtain useful guidelines to the choice of values to assign to resistance 
parameters of a potential landslide it is important to increase the number of back 
analysed cases.  
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Conclusions and further developments      
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Flow-like landslides are among the most destructive and difficult to prevent types 
of landslide phenomena. Their impact is becoming stronger and stronger due to 
increasing tourism and the construction of new roads and railways in mountainous 
areas (Bonnard et al., 2004). 

With prediction losses could be reduced, as they could provide means to define the 
hazardous areas, estimate the intensity of the hazard and work out the parameters for 
the identification of appropriate protective measures. At the same time, reliable 
predictions of run out could help to avoid exceedingly conservative decisions 
regarding the development of hazardous areas. 

Dealing with the run out problem, it has been observed that a continuum 
mechanics approach is flexible enough to allow that many of the aspects 
characterising propagation of a mass on a complex topography can be taken into 
account. Any way, a numerical code is never finished. It develops and when a problem 
is solved a new one originates. 

The SHWCIN code, which is at the base of the present work, has been thoroughly 
modified and now the new version, RASH3D, is able to answer in a correct way 
different analysed conditions.  

First three dimensional analyses carried out with SHWCIN gave asymmetric results 
also when symmetric conditions were imposed. A change of the type of adopted mesh 
solved this problem without increasing of CPU-time.  

Afterward the analysis of a real topography was introduced. To take into account 
its effect on the behaviour of a mass during propagation, it was necessary to introduce  
variation of the gravity vector components as a function of the slope local trend has. 
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Satisfactory results have been obtained, the behaviour assumed by the mass on 
complex surfaces looks correct both in case of laboratory tests and of real sites 
analyses. To further validate the gravity effect, analyses of run up have been carried 
out, results are again corrects both in case of run up on bend and on opposite slope 
with respect to the slope from which mass detached. 

It could seem strange but major problems have been observed not analysing a 
complex topography but considering a simple inclined or horizontal plane. In this 
condition the mass is not obliged to follow a certain path, not being influenced by a 
particular trend of the slope it will mainly assume its natural behaviour and degree of 
spread. To reduce mistakes in obtained results it has been fundamental to understand 
the real influence of earth pressure coefficients and introduce anisotropy of normal 
stresses. Simulations carried out on laboratory tests have been valuable to underline 
the necessity of separating the behaviour of the mass along the direction of 
propagation with respect the direction transversal to it.  

To approximate the real behaviour of a mass, a constitutive law has to be assumed. 
Each law is characterised by a certain number of parameters. Value to be assigned to 
each parameter has to be defined before running the analysis. Difficulties in choosing 
these values are due to the absence of a mass with a standard behaviour. To consider 
simple rheologies, characterized by a little number of parameters, becomes 
fundamental.  

The original version of the code used a frictional rheology in which the only 
required parameter is the basal friction angle. To better simulate the propagation 
phase the possibility of taking into account the eventual pore water effects has been 
introduced. 

To compare the obtained results to those obtainable with a different rheology, a 
Voellmy rheology has been numerically implemented. It emerges that deposited mass 
changes its distribution and maximum velocity is lower than that touched assuming a 
frictional rheology.  

Before going on with a new step, each change has been carefully tested and 
validated through numerical simulation of laboratory tests and back analysis of case 
histories. 

The carried out analyses underline as whatever the applied analytical model, more 
or less complex, results depend on the value that is assigned to the characteristic 
parameters of the assumed rheology. 

To define a range of typical values for these parameters, the numerical code DAN 
has been applied to back analyse a set of case histories of rock avalanches selected 
from literature.  

Some data characterising the general behaviour of each considered case have to be 
taken into account when values obtained from back analyses are used to simulate a 
potential landslide it is important to keep in mind that only cases having similar 
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characteristics (e.g. run out area shape, material type, glacier along the path) can be 
compared.  

Before employing energies on the analysis of as many cases as possible and on the 
creation of a database collecting them, it has been necessary to verify that DAN 
results can be used as input data in a different numerical code, like RASH3D. Cases for 
which a DEM pre-collapse was available have been analysed with both DAN (with a 
simplified topography) and RASH3D (with the real topography). Results have been 
encouraging and have justified the use of a coupled methodology in which DAN is 
applied to run back analyses while RASH3D is useful for prediction of propagation on 
a complex topography. 

 
Further developments of the research work undertaken are needed. These have to 

be done by keeping in mind the final objective, which is to provide a tool whose 
application could give useful information for investigating, within realistic geological 
contexts, the dynamics of flows and of their arrest phase. 

As regards the RASH3D code the main aspects that have to be further investigated 
concern the entrainment of material along the path of propagation, the possibility of 
having at the same time a multiple detachment of mass from different places of the 
slope and a condition of anisotropy of normal stresses that compared with the actual 
formulation guarantees all the possible combinations of divergence and convergence 
along two normal directions (i.e. Kx≠Ky). 

Concerning DAN, it is fundamental to increase the number of carried out back 
analyses. A wide database should guarantee a higher possibility that cases having 
similar characteristics are contained. Similar events can be compared each other and 
obtained information can be more attainable when used as guideline for the analysis of 
an equivalent potential landslide. 

 



 
  

 



                       

Appendix A                       
Analysed case histories 

Name: AVALANCHE CREEK (MT CAYLEY) 

Origin: Volcanic site 
Classification: Rock avalanche – Debris Flow 
Where: Mount Cayley, British Columbia, Canada 
When: 1984 

Yes 
The slope had undergone substantial deformations for at least 
10 years before failure. The debris flow was associated with the 
largest rainstorm of the summer Triggering: 

No  

Consequences: 

The rock avalanche destroyed vegetation along the path. A part of the 
mass travelled over the 1963 debris into Dusty Creek probably blocking it.  
The debris flow swept away a logging road bridge at the mouth of Turbid 
Creek and temporarily dammed the Squamish River. 

 
GEOMETRY 

 



  

 
II 

(modified from Evans et al., 2001) 
 

 

1° phase: rock avalanche   

 

 
 
 
2° phase: debris flow   

 
MORPHOLOGY 

Rock avalanche Debris flow 
 

Source Avalanche 
Creek Turbid Creek  

Subvolcanic, pyroclastic rock 
Bedrock of the 
area: 

Dacite, tuff and 
pyroclastic 
breccia 

  Landslide debris 

Material entrained 
along the path: 

 
Colluvial material, 
snow, ice   

Mantle: Forest Forest Debris   

Water: 
The melting snow and ice could have saturated the 
small volume of debris. Travelled on a main track 
covered by metres of snow and ice. 

Chunks of ice 

 
GEOMETRICAL DETAILS 

Vinitial 0.88*106 (0.74*106+20%) 
Rock avalanche 

Vfinal 1.08*106 
Volume [m3]: 

Debris flow 
1*106 (most of the rock avalanche debris 
transformed into a distal debris flow) 

Path: See figure 
Slope angle [°] 

Source: 40 
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Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: A 
Max:  
Debris flow Average: 10  

Upper-path 70 
Avalanche Creek/ 
Turbid Creek 

35 - 40 
Velocity [m/s] 

Rock 
avalanche 

Point R in the figure 24 
Time [s] 2-5 ore (debris flow) 
Deposit Thickness [m]: 5  
xfront [m]: See figure xrear [m]: See figure 
Run up [m]: On bend Fahrboschung [°]: 19 (rock avalanche) 

Note: 

In the opinion of Evans et al. (2001) the rock avalanche did not 
come to a halt in the upper part of its path as suggested by 
Cruden and Lu (1992) but travelled to its distal limit in one 
uninterrupted movement. 
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IV 

 
Name: AVALANCHE LAKE 

Origin: Glacial site 
Classification: Rock avalanche  
Where: Mackenzie Mountains, Backbone Ranges, Canada 

When: 
- Late Pleistocene (Kaiser and Simmons, 1990) 
- Holocene sometime after 1450 (Evans et al., 1994) 

Yes  
Triggering: 

No Unknown 

Consequences: 
Lakes have formed where drainage has been impedded by debris. 
(e.g. south lobe has dammed drainage to form South Lake) 

 
GEOMETRY 

 
(modified from Evans et al., 1994) 
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V 

 
MORPHOLOGY 

 Source Main deposit Shelf lobe 
(reverse slope)

South lobe 
(reverse slope) 

Devonian carbonate dolomite 

Bedrock of the area: Lower devonian 
carbonate 
dolomite 

Middle 
devonian 
dolomite 

Limestone and 
shale 

Limestone and 
shale 

Material entrained 
along the path: 

  
Alluvial deposits 
and conifer 
fragments 

 

Mantle: 
Vegetation 
absent 

Forested at 
that time 

Vegetation 
absent 

Vegetation 
absent 

Water: 
The mobility exhibited by debris on the Shelf may have been assisted 
by snow on the ground or by the presence of saturated ground due to 
thawed permfrost 

 
GEOMETRICAL DETAILS 

Vinitial 200*106 
Shelf above Avalanche 
Lake (Shelf lobe) 

5*106 

Avalanche Lake valley 
(Main deposit) 

155*106 
Volume [m3]: 

Vfinal 

South valley (South lobe) 40*106  
Path:  

Slope angle [°] 
Source:  

Failure surface 
slope [°] 

30 

 
RUN OUT PHASE 

Run out area shape: C 
Max: 80 

Velocity [m/s] 
Average:  

Time [s]  
Deposit Thickness [m]: 50 (Main deposit) 
xfront [m]:  xrear [m]:  

Run up [m]: 

On the opposite 
valley side and in 
the reversing 
direction again 

Fahrboschung [°]: 
8 (Shelf lobe);  
10 (South lobe) 



  

 
VI 

Note: 
In the opinion of Kaiser and Simmons (1990) a glacier ice 
partially filled the valley while Evans et al. (1994) think that the 
avalanche occurred in an ice-free environment 

 
BIBLIOGRAPHY 

Kaiser, P. K., Simmons, J. V., 1990. A reassessment of transport mechanisms of some rock avalanches in 
the Mackenzie Mountains, Yukon and Northwest Territories, Canada. Canadian Geotechnical Journal, 
Vol. 27, pp. 129-144. 
Evans, S. G., Hungr, O., Enegren, E. G., 1994. The Avalanche Lake rock avalanche, Mackenzie 
Mountains, Northwest Territories, Canada: description, dating, and dynamics. Canadian Geotechnical 
Journal, Vol. 31, pp. 749-767. 
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Name: CHARMONETIER 

Origin: Glacial site 
Classification: Rock avalanche 

Where: 
Taillefer Mountain, Romance Valley, Charmonetier (Lyon), 
France 

When: August 24th, 1987 
Yes Rain + Existence of abandoned quarry  

Triggering: 
No  

Consequences: Breakage of the road. The debris stripped away vegetation. 
 

GEOMETRY 
(Couture et al., 1997) 

 

 
 

 
MORPHOLOGY 

 Source Path Deposit 

 
Bedrock of the area: 

Amphibolites  Amphibolites/Granite Alluvial soil 
Material entrained 
along the path: 

 
Weathered amphibolites 
and trees  

Mantle: Forest Forest Forest 



  

 
VIII 

Water: Rain in the days before  probably the debris wasn’t dry 
 

GEOMETRICAL DETAILS 

Volume [m3]: 0.13*106 
Path: 30-40 

Slope angle [°] 
Source: 30-40 

Failure surface slope 
[°] 

39 

 
RUN OUT PHASE 

Run out area shape: B 
Velocity [m/s] - 
Time [s] - 

Deposit Thickness 
[m]: 

Higher near the later boundary of the corridor, lower in the central 
part 

xfront [m]: 600 xrear [m]: 200 
Run up [m]: No Fahrboschung [°]: 41 

Note: 
Existence of intermittent streams and water infiltrations in the 
detachment area 

 
BIBLIOGRAPHY 

Couture, R., Antoine, P., Locat, J., Hadjigeorgiou, J., Evans, S. G. and Brugnot, G., 1997. 
Quatre cas d’avalanches rocheuses dans les Alpes francaises. Can. Geotech. J., 34, pp. 102-119. 
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IX 

 
Name: CLAPS DE LUC 

Origin: Glacial site 
Classification: Rock avalanche 
Where: Luc-en-Diois, Drome, France 
When: 1442 

Yes  
Triggering: 

No  

Consequences: 
Blockage of the Drome river with formation of a little and a 
big lakes now disappeared 

 
GEOMETRY 

(Couture et al., 1997)   

 

 
MORPHOLOGY 

 Source Path Deposit 

Limestone, marne 
Bedrock of the area: Limestones alternate 

with marne   

Material entrained along 
the path: 

   

Mantle:  Forest Forest Forest 

Water: 
In a dry condition probably triggering would have been 
impossible  

 



  

 
X 

GEOMETRICAL DETAILS 

Volume [m3]: 2*106 

Path: 30 
Slope angle [°] 

Source: 45 
Failure surface slope 
[°] 

30-45 

 
RUN OUT PHASE 

Run out area shape: B 
Max:  

Velocity [m/s] 
Average:  

Time [s] - 
Deposit Thickness 
[m]: 

35-70 

xfront [m]: 800 xrear [m]:  
Run up [m]: no Fahrboschung [°]:  
Note: Initial mass slided as a slab  
 

BIBLIOGRAPHY 

Couture, R., Antoine, P., Locat, J., Hadjigeorgiou, J., Evans, S. G. and Brugnot, G., 1997. 
Quatre cas d’avalanches rocheuses dans les Alpes francaises. Can. Geotech. J., 34, pp. 102-119. 
Ramirez, A., Fabre, D., Antoine, P, 1988. Enseignements tires de deux ecroulements par glissement 
couche sur couche en terrain calcaire. Compte rendu, 5e Symposium International sur led glissement 
de terrain, Lausanne. A.A. Balkema, Rotterdam. pp.1359-1362. 
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Name: CONTURRANA 

Origin:  
Classification: Rockslide – Debris flow 
Where: Capo San Vito (peninsula of NW Sicily) 
When: 4th century 

Yes Earthquake and presumably groundwater pressures 
Triggering: 

No  
Consequences:  
 

GEOMETRY 

(Nicoletti and Parise, 1996) 

 

 

 
MORPHOLOGY 

 Source/Rock slide Debris flow 

Carbonate rock 

Bedrock of the area: 
Indurated breccia of limestone 
fragments with a plastic 
complex  (clayey-silty, sandy 
material) in the basal part 

The succession of formations 
involved, plastic complex 
surmounted by breccia is 
preserved in the deposit 

Material entrained 
along the path: 

  

Mantle:   
Water: There are some springs 



  

 
XII

 
GEOMETRICAL DETAILS 

Volume [m3]: 22*106 
Path: 2 (debris flow) 
Source: 20 Slope angle [°] 

Deposit: 11 
Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: B 
Max: - 

Velocity [m/s] 
Average: - 

Time [s] - 

Deposit Thickness 
[m]: 

- 

xfront [m]: 1590 xrear [m]: 300 
Run up [m]: No Fahrboschung [°]: - 

Note: 
The landslide deposit consists of 2 parts: the remnants of the 
rockslide mass, still resting upon the rupture surface above the cliff, 
and the debris flow deposit, extending in front of and below the cliff. 

 
BIBLIOGRAPHY 

Nicoletti, P. G., Parise, M., 1996. Geomorphology and kinematics of the Conturrana Rockslide-Debris 
Flow. Earth surface processes and landforms, Vol. 21, pp. 875-892. 
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Name: DUSTY CREEK (MT CAYLEY) 

Origin: Volcanic site 
Classification: Rock slide - Debris flow 
Where: Mount Cayley, British Columbia, Canada 
When: July 1963 

Yes
Geological setting + Deterioration of the slope over a 
long period of time until a triggering due to earthquake 
or storm Triggering: 

No  

Consequences: 

Turbid Creek and Dusty Creek were blocked and lakes 
formed behind the debris. Debris dam soon overtopped 
causing floods and probably debris flow.  
The debris stripped away vegetation. 

 
GEOMETRY 

 

 
(modified from Evans et al., 2001) 
 

MORPHOLOGY 

 Source Along Dusty Creek Along Turbid Creek 

Subvolcanic, Pyroclastic rock 
Bedrock of the 
area: 

Poorly consolidated 
tuff breccia and 
dacite, lapilli tuff 

Dacite, lapilli tuff, 
breccia, granodiorite, 
gneiss 

Granodiorite, quartz 
diorite, gneiss 

Involved material:    
Material entrained 
along the path: 

 Vegetation, granodiorite, lapilli, ash 

Mantle: Heavely forested Forest Forest 



  

 
XIV 

Water: 
Little water was involved in the flow. It is unlikely that there was snow 
or ice on the main track. 

 
GEOMETRICAL DETAILS 

Volume [m3]: 5*106 
Path: 18 (Dusty Creek); 12 (Turbid Creek) 

Slope angle [°] 
Source: 45 

Failure surface 
slope [°] 

30-35 

 
RUN OUT PHASE 

Run out area shape: A 
Max:  
Average:  Velocity [m/s] 

Along Dusty Creek 15-20 
Time [s] 120-180 

Along Dusty Creek up to 70 
Deposit Thickness 
[m]: Along Turbid 

Creek 
up to 65 

xfront [m]: 2400 xrear [m]: - 
Run up [m]: On bend  Fahrboschung [°]: 17 

Note: 

It exist deposit only along Turbid Creek (about 1km long). 
Total path about 2500 m. 
Quick fragmentation generates angular to subrounded clasts in a 
matrix of silt and sand 

 
BIBLIOGRAPHY 

Clague, J. J., Souther, J. G., 1982. The Dusty Creek landslide on Mount Cayley, British Columbia. 
Canadian J. of Earh Sciences, 19, pp. 524-539. 
Lu Z. Y., Cruden D. M., 1996. Two debris flow modes on Mount Cayley, British Columbia. Can. 
Geotech. J., 33, pp. 123-139. 
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Name: EAGLE PASS 

Origin: Glacial site 
Classification: Rockslide - Debris avalanche 
Where: Monashee Mountains, British Columbia, Canada 
When: May 1999 

Yes Snowmelt  
Triggering: 

No  
Consequences: Material landed in Clanwilliam Lake that was iced 
 

GEOMETRY 

 
(Hungr et al., 2002) 
 

MORPHOLOGY 

 Cliff Bench Main slope 
Gneiss 

Bedrock of the area: Gneiss   
Material entrained along 
the path: 

  Silty sand, glacial and 
colluvial material 

Silty sand, glacial and 
colluvial material 

Mantle: 
Forest Forest and glacial 

drift consisting of 
silty sand 

Thin forest 

Water: Snowmelt season 
 
 
 
 



  

 
XVI 

GEOMETRICAL DETAILS 

Cliff  Bench 0,094*106 
Bench  Slope 0,020*106 Volume [m3]: 

Slope  Lake 0,035*106 
Path: 26 (bench); 37 (main slope) 

Slope angle [°] 
Source: 60 

Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: B 
Max: - 
Average: - Velocity [m/s] 
500m from the 
crown:                       

8 m/s 

Time [s] - 
On the Bench: 2.5 (proximal) – 1.0 (distal) Deposit Thickness 

[m]: In the Lake: 2.2 
xfront [m]: --- xrear [m]: --- 
Run up [m]: No Fahrboschung [°]: 31 
Note:  
 

BIBLIOGRAPHY 
Hungr, O., Evans, S. G., 2002. Entrainment of debris in rock avalanches; an analysis of a long run-out 
mechanism (Manuscript in preparation). 
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Name: ELM 

Origin: Glacial site 
Classification: Rock fall – Debris avalanche 
Where: Switzerland 
When: 1881 

Yes
Failure was precipitated by the extraction of slate from 
the Plattenberg quarry Triggering: 

No  
Consequences:  
 

GEOMETRY 

        

      
(Heim, 1932) 

 



  

 
XVIII 

 
 

MORPHOLOGY 

 Source Path Deposit 

 
Bedrock of the area: 

Slates (?)   
Material entrained along 
the path: 

   

Mantle: Forest Forest Forest 
Water:   
 

GEOMETRICAL DETAILS 

Volume [m3]: 10*106 
Path:  

Slope angle [°] 
Source:  

Failure surface slope 
[°] 

 

 
RUN OUT PHASE 

Run out area shape: B 
Max: >80m/s 

Velocity [m/s] 
Average:  

Time [s] ∼40 
Proximal end 50 Deposit Thickness 

[m]: Distal end 5 
xfront [m]: ∼2000 xrear [m]:  
Run up [m]: ∼100 (at half path) Fahrboschung [°]: 16 
Note:  
 

BIBLIOGRAPHY 
Zaruba, Q., Mencl, V., 1969. Landslides and their control. Elsevier, Amsterdam, pp. 78-90. 
Hsü, K. J., 1978.  Albert Heim: observation on landslides and relevance to modern interpretations.  In B. 
Voight (ed.), Rockslides and Avalanches, 1, Natural Phenomena, pp. 71-93.  Amsterdam:  
Elsevier. 
Gassen, W. V., Cruden, D. M., 1989. Momentum transfer and friction in the debris of rock avalanches. 
Canadian Geotechnical Journal, Vol. 26, pp. 623-628. 
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Name: FELIK 

Origin:   
Classification: Rock (-ice) avalanche 
Where: Mount Rosa Massif, Aosta Valley, Italy 
When: August 4th, 1936 

Yes  
Triggering: 

No Avalanche developed during snow melting  
Consequences: The mass overran a small hamlet 

 
GEOMETRY 

 
(Bottino et al., 2002) 

 

 
 



  

 
XX 

 
MORPHOLOGY 

 Source Path 

Metamorphic rock 
Bedrock of the area: 

Gneiss and meta-granite  
Material entrained along 
the path: 

 Snow, glacier ice and glacial 
deposits 

Slope characteristics: Glacier 
Part of the distance was 
covered on snow/glacier ice 
(see figure) 

Water:  
 

GEOMETRICAL DETAILS 

Volume [m3]: 0.2*106 
Path: - 
Source: - Slope angle [°] 

Deposit: - 
Failure surface slope 
[°] 

- 

 
RUN OUT PHASE 

Run out area shape: A 
Max: - 

Velocity [m/s] 
Average: - 

Time [s] - 

Deposit Thickness 
[m]: 

30 

xfront [m]: 2345 m asl xrear [m]:  
Run up [m]: No Fahrboschung [°]: - 
Note: Source area: toe 3490m, crest 3585m 
 

BIBLIOGRAPHY 
Bottino G., Chiarle M., Joly A., Mortara G.,  2002. Modelling Rock Avalanches and Their Relation 
to Permafrost Degradation in Glacial Environments. Permafrost Periglac. Process, Vol. 13, pp. 283-
288. 
Monterin U., 1937. La frana di Felik sul Monte Rosa del 4 agosto 1936. Natura, Vol. 28, pp. 1-15. 
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Name: FLIMS (1939) 

Origin: Glacial site 
Classification: Rock avalanche 

Where: 
Graubunden Canton, Flims, Switzerland 
(the mass detached from the vertical back scarp of the prehistoric 
Flims landslide) 

When: April 10th, 1939 
Yes  

Triggering: 
No  

Consequences: The mass engulfed a childrens’ sanatorium, causing 18 deaths. 
 

GEOMETRY 

 
(Hungr and Evans, 1997) 
 

MORPHOLOGY 

 Source Apron Deposit 

Limestone  
Bedrock of the area: 

Limestone   
Material entrained along 
the path: 

 Talus deposits Talus deposits 

Mantle: 
Free of 
vegetation 

Mainly free of 
vegetation Forest 

Water:   



  

 
XXII 

 
GEOMETRICAL DETAILS 

Vinitial 0.1*106 
Volume [m3]: 

Vfinal 0.4*106 
Path:  

Slope angle [°] 
Source:  

Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: B 
Max:  

Velocity [m/s] 
Average:  

Time [s] 120-180 

Deposit Thickness 
[m]: 

5 

xfront [m]: 1300 xrear [m]:  
Run up [m]:  Fahrboschung [°]: 28 
Note:  
 

BIBLIOGRAPHY 
Hungr, O., Evans, S. G., 1997. A dynamic model for landslides with changing mass. Engineering Geology 
and thr Environment, Marinos, P. G., Koukis, G. C., Tsiambaos, G. C. and Stournaras, G. C. 
Editors, pp. 719-724. 
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Name: FLIMS (Pleistocene) 

Origin: Glacial site 
Classification:  Rock slide 
Where: Graubunden Canton, Flims, Switzerland 
When: Pleistocene 

Yes   
Triggering: 

No  

Consequences: 
The Rhine was blocked to a length of nearly 15 km and a lake 
formed upstream (a lake that gradually dwindled away). 

 
GEOMETRY 

 
 
 

 
 
 
 
 
(Zaruba and Mencl, 1969) 

 
MORPHOLOGY 

 Source Path Deposit 

Marmorean limestone 
Bedrock of the area: 

Limestone debris Limestone debris  
Entrained volume:    

Mantle: Free of vegetation Mainly free of 
vegetation 

Mainly free of 
vegetation 

Water:   
 
 



  

 
XXIV 

GEOMETRICAL DETAILS 

Volume [m3]: 12000*106 
Path:  8 

Slope angle [°] 
Source:  

Failure surface slope 
[°] 

 

 
RUN OUT PHASE 

Run out area shape: C 
Max:  

Velocity [m/s] 
Average:  

Time [s] - 
Deposit Thickness 
[m]: 

 

xfront [m]:  xrear [m]:  

Run up [m]: 
On the opposite 
slope (about 150m) Fahrboschung [°]: 8 

Note: Deposit has a preserved stratified aspect as the scar 
 

BIBLIOGRAPHY 

Zaruba, Q., Mencl, V., 1969. Landslides and their control. Elsevier, Amsterdam, pp. 78-90. 
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Name: LA MADELEINE 

Origin: Glacial site 
Classification: Rockavalanche 
Where: Haute Maurienne Valley, France 
When: Postglacial  

Yes  
Triggering: 

No 
Existence of water infiltrations in the detachment area that 
increase the pore pressure 

Consequences: Blockage of the river and formation of a lake behind the debris 
 

GEOMETRY 

(Couture et al., 1997) 

 

 
 

MORPHOLOGY 

 Source Path Deposit 

Metamorphic calcoschists 
Bedrock of the area: 

Schists   
Material entrained 
along the path: 

   

Mantle: 
No vegetation at 
that time 

No vegetation at that 
time 

No vegetation at that 
time 
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Water: 
Water infiltration from the glaciers located in the upper part of 
the slope 

 
GEOMETRICAL DETAILS 

Volume [m3]: 100*106 
Path:  

Slope angle [°] 
Source:  

Failure surface slope 
[°] 

 

 
RUN OUT PHASE 

Run out area shape: C 
Max:  

Velocity [m/s] 
Average:  

Time [s] - 
Deposit Thickness 
[m]: 

 

xfront [m]: 4500 xrear [m]:  

Run up [m]: 
On the opposing 
slope (hp.130m) Fahrboschung [°]: 19 

Note: 

Angular blocks with variable size in a finer matrix are part of the 
deposit. 
Not in a single phase but further detachment after the river blockage 
and fluvial debris flowage. 

 
BIBLIOGRAPHY 

Couture, R., Antoine, P., Locat, J., Hadjigeorgiou, J., Evans, S. G. and Brugnot, G., 1997. 
Quatre cas d’avalanches rocheuses dans les Alpes francaises. Can. Geotech. J., 34, pp. 102-119. 
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Name: Mt. ONTAKE 

Origin: Volcanic site 
Classification: Rockslide - Debris avalanche 
Where: Holy Mountains, Otaki Mura (Nagano), Japan 
When: 14 September 1984 

Yes Earthquake + Rain + Erosion at the foot by the river 
Triggering: 

No  

Consequences: 
15 killed persons, formation of a lake by damming the Otaki-gawa 
river, roads cut by the avalanche, damage to forestry 

 
GEOMETRY 

 

 

 
MORPHOLOGY 

 Source/Ridge Denjogawa Nigorikawa Otakigawa 

Pyroclastic rock 

Bedrock of the 
area: 

Tuff breccia and lava 
alternating with tuff, 
andesite (originate 
from andesitic 
magma eruption). 
Rupture surface along 
a pumice layer 

Volcanic rock Volcanic rock Volcanic rock 
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Material 
entrained along 
the path: 

 
 Soil, volcanic rock fragments, roots, wood chips, 
river water, saturated sediment 

Mantle: Forest  
Water: Saturated Run along the rivers  filled with water  
 

GEOMETRICAL DETAILS 

Ridge  Denjogawa 32-36*106 
Denjogawa  Nigorikawa 32-36*106 Volume [m3]: 

Nigorikawa  Otakigawa 15-20*106 
Path: 7 (Denjogawa), 4 (Nigorikawa), 1-2 (Otakigawa) 

Slope angle [°] 
Source: 30 (60 scarp) 

Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: A 
Max: 35 (2000m from the centre of the source area) 
Average: 22-30 
Point 1 26.5 
Point 2 30.6 
Point 3 24.4 

Velocity [m/s] 

Point 4 15.0 
Time [s] 600 

Denjogawa NO 
Nigorikawa 30 Deposit Thickness 

[m]: 
Otakigawa 50 

xfront [m]: 12900 xrear [m]: --- 
Run up [m]: On bend Fahrboschung [°]:  
Note: Rupture surface developed in the pumice layer. 
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BIBLIOGRAPHY 
Inokuchi, T., 1985. The Ontake Rock Slide and Debris Avalanche Caused by the Naganoken-Seibu 
Earthquake, 1984. Proc. Ivth International Conference and Field Workshop on Landslides 
Tokyo. 
Moriwaki, H., Yazaki, S., Oyagi, N., 1985. A Gigant Debris Avalanche and Its Dynamics at Mount 
Ontake Caused by the Naganoken-Seibu Earthquake, 1984. Proc. Ivth International Conference 
and Field Workshop on Landslides Tokyo. 
Yanese, H., Ochiai, H., Matsuura, S., 1985. A Large-Scale Landslide on Mt. Ontake due to the 
Naganoken-Seibu Earthquake, 1984. Proc. Ivth International Conference and Field Workshop 
on Landslides Tokyo. 
Voight, B., Sousa, J., 1994. Lessons from Ontake-san: A comparative analysis of debris avalanche 
dynamics. Engineering Geology, Vol. 38, pp. 261-297. 
Sassa, K., 1988. Geotechnical model for the motion of landslides. Proc. VI Int.Symp.Landslides, 
Lausanne, Balkema, Rotterdam, pp. 37-55. 
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Name: NOMASH RIVER 

Origin: Glacial site 
Classification: Rockslide - Debris avalanche 
Where: Insular Mountains, Vancouver Island, Canada 
When: 25-26 April 1999 

Yes Snowmelt  
Triggering: 

No  
Consequences: Lack of damming of the Nomash river 
 

GEOMETRY 
(Hungr et al., 2002)  
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MORPHOLOGY 

 Source/Crest Apron Valley floor 

Crystalline limestone with basaltic intrusion  

Bedrock of the area: White marble 
interbedded with 
basaltic sills 

Glacial till, fine-
grained colluvial 
apron 

Shallow sand, gravel 
deposit, organic matter, 
ground moraine 
consisting of silty sand 

Material entrained 
along the path 

 Clay, silt, sand, gravel  

Mantle: Forest Forest  

Water:   Run along the rivers 
  filled with water 

 
GEOMETRICAL DETAILS 

Crest Apron 0,375*106 
Volume [m3]: 

Apron Valley floor 0,735*106 
Path: 30 (apron) 

Slope angle [°] 
Source: 50 

Failure surface 
slope [°] 

 

 
RUN OUT PHASE 

Run out area shape: A 
Max: - 
Average: - 
Point B:                      22.5 m/s 
Point C:                      12 m/s 

Velocity [m/s] 

Point D:                      2 m/s 
Time [s] - 
Deposit Thickness 
[m]: 

Whole deposit Thin veneer 

xfront [m]: --- xrear [m]: --- 
Run up [m]: In bend Fahrboschung [°]: 13.8 
Note:  
 

BIBLIOGRAPHY 
Hungr, O., Evans, S. G., 2002. Entrainment of debris in rock avalanches; an analysis of a long run-out 
mechanism (Manuscript in preparation). 
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Name: PANDEMONIUM CREEK 

Origin: Glacial site 
Classification: Rock avalanche  
Where: Coast Mountains, Vancouver B.C., Canada 
When: 1959 

Yes  
Triggering: 

No No anomalous event can be identified as a trigger 

Consequences: 
Material entered in Knot Lakes  and generated waves that destroyed trees 
along the shore 

 
GEOMETRY 

(Erismann and Abele, 2001) 
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MORPHOLOGY 

 Source 1° phase 2° phase 

Plutonic and metamorphic rock 

Bedrock of the 
area: Jointed, gneissic 

quartz diorite 

Gravelly and 
bouldery alluvium 
and debris flow 
deposits 

Gravelly and bouldery 
alluvium and debris 
flow deposits 

Material entrained 
along the path: 

 
Colluvial, alluvial and 
glacial sediments 

Colluvial, alluvial and 
glacial sediments 

Mantle: Unvegetated On glacier 
Poor vegetation, some 
conifers but especially 
naked rock 

Water:   
 

GEOMETRICAL DETAILS 

Volume [m3]: 5*106 (deposited on the fan) 
0 - 3000m 27 
4000 – 7000m 7 
Fan 4 

Slope angle [°] 

Source: 48 
Failure surface slope  
[°] 

 

 
RUN OUT PHASE 

Run out area shape: A 
Before run up 81 - 100 

Velocity [m/s] 
After run up 21 - 38 

Time [s]  
Max:  
Average: 5-10 
On the Glacier 4 

Deposit Thickness 
[m]: 

On the Fan 20 
xfront [m]: 9000 xrear [m]:  

Run up [m]: 
On a opposing slope 
and on bend Fahrboschung [°]:  
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Note: 
The debris was constricted between two prominent lateral moraines 
The deposit is poorly sorted and comprises angular to subrounded 
blocks, boulders, and gravel, with only small amounts of sand and silt 

 
BIBLIOGRAPHY 

Erismann, T. H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer Editor. 
Evans, S. G., Clague, J. J., Woodsworth, G. J., and Hungr, O., 1989. The Pandemonium Creek 
rock avalanche, British Columbia. Canadian Geotechnical Journal, Vol. 26, No. 3, pp.427-446. 
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Name: RUBBLE CREEK 

Origin: Volcanic/glacial site 
Classification: Rock avalanche  
Where: Coast Mountains, Vancouver B.C,, Canada 
When: 1855-56 

Yes  
Triggering: 

No Unknown.  
Consequences: The course of the river was changed.  
 

GEOMETRY 
(Moore and Mathews, 1978) 
 

 

 



  

 
XXXVI 

 
 

MORPHOLOGY 

 Source Path Deposit 

 

Bedrock of the area Late glacial dacitic 
lava and green 
sandstone 

See figure See figure 

Material entrained 
along the path: 

 
Fluvioglacial debris, 
trees  

Mantle: Forest Forest Forest 
Water: Along the course of the Rubble Creek 
 

GEOMETRICAL DETAILS 

Volume [m3]: 25*106 

at 4600m 10  
at 6900m 8.5 Slope angle [°] 

Source: 35 
Failure surface slope 
[°] 

35 

 
RUN OUT PHASE 

Run out area shape: A 
Max: 30 

Velocity [m/s] 
Average: 20 

Time [s] 600 
Max: 100 Deposit Thickness 

[m]: Average: 60 - 80 
xfront [m]:  xrear [m]:  
Run up [m]: On bend Fahrboschung [°]: 8.5 
Note: Sector II does not contain debris deposit. 
 

BIBLIOGRAPHY 
Moore, D. P., Mathews, W. H., 1978. The Rubble Creek landslide, southwestern British Columbia. 
Can. J. Earth Sci., Vol. 15, No. 7, pp. 1039-1052. 
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XXXVII 

 
Name: SCANNO 

Origin: Glacial site 
Classification: Rock slide- rock avalanche 
Where: Mt. Rava, Scanno, Abruzzo (Italy) 
When: 217 B.C. (?) 

Yes Earthquake (?) 
Triggering: 

No  

Consequences: 
Crossed and completely dammed the valley of the Tasso 
Creek, thus causing the impoundment of the Scanno Lake  

 
GEOMETRY 

 

             
 
 
 
 
 
(Nicoletti et al., 1993) 

 (6) Lake 
 (7) Hummock 
 (8) Depression in the accumulation 
 (9) Site of interest 
 (10) Village 

 (1) Limit of debris accumulation 
 (2) Crown of main scarp 
 (3) Crown of secondary landslide 
 (4) Crest line of transverse ridge 
 (5) Filling of ephermeral lake 



  

 
XXXVIII

 
 

MORPHOLOGY 

 Source/Rock slide Rock avalanche/Deposit 

Calcareous rock /Carbonate shelf 

Bedrock of the area: Limestone with minor flysch 
consisting of alternating clays 
and sandstones 

Calcareous debris with small 
flysch masses 

Material entrained along 
the path: 

 Flysch 

Mantle:   
Water:  

 
GEOMETRICAL DETAILS 

Volume [m3]: 87*106 
Path: - 
Source: 23 Slope angle [°] 

Deposit: - 
Failure surface slope 
[°] 

- 

 
 

RUN OUT PHASE 

Run out area shape: C 
Max: 51  (182 km/h) 

Velocity [m/s] 
Average: - 

Time [s] - 
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XXXIX 

Max: 120 Deposit Thickness 
[m]: Average: 46 
xfront [m]:  3200 xrear [m]:  1540 
Run up [m]: about 130 m Fahrboschung [°]: - 

Note: 
The toe of the rupture surface was probably located at about 1150-
1200 m 

 
BIBLIOGRAPHY 

Nicoletti, P. G., Parise, M., Miccadei E., 1993. The Scanno rock avalanche. Boll. Soc. Geol. It., 
Vol. 112, pp. 523-535. 



  

 
XL 

 
Name: SIX des EAUX FROIDES 

Origin: Glacial site 
Classification: Rock slide – Rock avalanche 
Where: Vallon des Andins, Switzerland 
When: 1946 

Yes   
Triggering: 

No Earthquake ? 
Consequences:   
 

GEOMETRY 
 

 
(Courtesy of CREALP, Sion, Switzerland) 

 
MORPHOLOGY 

 Source Path Deposit 

 
Bedrock of the area: 

   
Material entrained 
along the path: 

   

Mantle:    

Water: 
Snowfall between January and February 
Luchet Lake in the valley bottom  
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GEOMETRICAL DETAILS 

Volume [m3]: 6-9*106 
Path:   

Slope angle [°] 
Source:  

Failure surface slope 
[°] 

 

 
RUN OUT PHASE 

Run out area shape: C 
Max:  

Velocity [m/s] 
Average:  

Time [s] - 
Deposit Thickness 
[m]: 

 

xfront [m]: 2500 xrear [m]: 880 
Run up [m]:  Fahrboschung [°]:  
Note:  
 

BIBLIOGRAPHY 

- 
 



  

 
XLII

 
Name: VAJONT 

Origin: Glacial site 
Classification: Rock slide 
Where: Mount Toc, Valley of Vajont, North Italy 
When: October 9th , 1963 

Yes
Erosion of the gorge and filling of the reservoir 
reduced the slope stability Triggering: 

No  

Consequences: 
The rock mass filled the reservoir. The water wave 
overflowing the dam destroyed the town of Longarone and 
devastated the valley of the river Piave downstream. 

 
GEOMETRY 

     (Erismann and Abele, 2001) 
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XLIII

MORPHOLOGY 

 Source Deposit 

Carbonate rock   

Bedrock of the area: 
Limestone intercalated with 
clay or clay marl. The 
predominant clay mineral is 
calcium montmorillonite. 

 

Material entrained along 
the path: 

  

Mantle: Forest Reservoir 
Water: Seepage of water in the slope 

 
GEOMETRICAL DETAILS 

Volume [m3]: 240-260*106 
Path: - 
Source: - Slope angle [°] 

Deposit: - 
Failure surface slope 
[°] 

- 

 
RUN OUT PHASE 

Run out area shape: B 
Max: 15-30 

Velocity [m/s] 
Average: - 

Time [s] 40-50 
Max: 400 Deposit Thickness 

[m]: Average: - 
xfront [m]: 1700-1800 xrear [m]: 500 
Run up [m]: 140 Fahrboschung [°]: 15 
Note:  

 
 
 
 
 
 
 



  

 
XLIV 

BIBLIOGRAPHY 
Erismann, T. H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer Editor, pp. 60-
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Skempton, A. W., 1966. Bedding-plane slip, residual strength and the Vaiont landslide. Geotechnique, 
Vol. 16, pp. 82-84. 
Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid landslides. Geotechnique, 
Vol. 32, 43-54. 
Voight, B., Faust, C., 1992. Frictional heat and strength loss in some rapid landslides: error correction and 
affirmation of mechanism for the Vaiont landslide. Geotechnique, Vol. 42, 641-643. 
Zaruba, Q., Mencl, V., 1969. Landslides and their control. Elsevier, Amsterdam, pp. 78-94. 
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XLV 

 
Name: VAL POLA 

Origin: Glacial site 
Classification: Rock avalanche 
Where: Mt. Zandila, Valtellina, Central Italian Als 
When: July 27th, 1987 

Yes
Shallow landslides caused by heavy rainfalls 
determined unloading of the mass toe  Triggering: 

No  

Consequences: 

The north arm of the rock avalanche displaced the water of a 
pre-existing landslide-dammed lake, generating a wave which 
surged upstream along the valley. A new and greater lake was 
formed as a consequence of the event.  Hamlets destroyed 
and people killed. 

 
GEOMETRY 

 

 
 
(Govi et al., 1995) 

 
MORPHOLOGY 

 Source Rock avalanche/Deposit 

Plutonic and metamorphic rock 

Bedrock of the area: Mostly formed by diorite, 
glabbro and paragneiss were 
locally present 

 

Material entrained 
along the path: 

 Morainal, alluvial, colluvial or 
landslide deposits 

Mantle: Forest  
Water:  



  

 
XLVI

 
GEOMETRICAL DETAILS 

Volume [m3]: 34*106 
Path: 32 
Source: - Slope angle [°] 

Deposit: 10 
Failure surface slope 
[°] 

- 

 
RUN OUT PHASE 

Run out area shape: C 
Max: 76-108 

Velocity [m/s] 
Average: - 

Time [s] - 
Max: 90 Deposit Thickness 

[m]: Average: 20 
xfront [m]:  2300 xrear [m]:  1500 
Run up [m]: about 290 m Fahrboschung [°]: 19 
Note: Relatively moderate runout and an unusually high degree of spreading 

 
BIBLIOGRAPHY 

Cambiaghi, A., Schuster, R. L., 1995. Landslide damming and environmental protection – A case study 
from Northern Italy. 2nd International Symposium on Environmental Geotechnology, Volume 
1, Edited by Fang, H. Y., Pamukcu, S.. Envo Publishing Company, Inc.. 
Erismann, T. H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer Editor. 
Govi, M., Gullà, G., Nicoletti, P. G., 1995. The Val Pola rock avalanche of July 28, 1987, in 
Valtellina (Central Italian Alps). Consiglio Nazionale delle Ricerche – Istituto di Protezione 
Idrogeologica nell’Italia Meridionale ed Insulare – Roges di Rende (CS) – Italy. 
Smith, D., Hungr, O., 1992. Failure behaviour of large rockslides. Reported to The Geological 
Survey of Canada and B.C. Hydro and Power Authority. Thurber Engineering Ltd., 
Vancouver, B. C. 
 



                       

Appendix B                       
Earth pressure coefficients 

Stress tensor is defined in the reference frame (x,y,z) introduced in §5.4.1. It is 
assumed that the Mohr circle tangential to the failure envelope is that describing the 
stress state in the xz-plane and that δστ tanxxxz −= , with δ the basal friction angle. 
In Mohr plane, the failure envelope, assuming a Coulomb type behaviour with 
cohesion equal to zero and internal friction angle φ , is a line passing through the 
origin O and having dip equal to φ  . 

Two circles pass through the point ( )δσσ tan, zzzz  and are tangent to the failure 
envelope, as it is underlined in Figure B.1. 

 

Figure B.1. Stress state in xz-plane, using Mohr circle. 



  

 
XLVIII 

Assuming s and t as the coordinate of the centre of the circle along the σ -axis and 
the radius of the circle, respectively, conditions of tangency and of passage through 
( )δσσ tan, zzzz  can be written as follows: 

φsinst =  (B.1) 

( ) 222 tan tzzzz =+ δσσ  (B.2) 
Solving the system of equations (B.1) and (B.2), two solutions are obtained: 
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δ
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Where + corresponds to the passive state and – to the active state.  
Earth pressure coefficients in the direction of steepest descent can then be 

obtained as follows: 
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Due to the hypotheses of a cross-slope stress that is principal (σyy=σ1) and that is 
equal to one of the other principal stresses acting in the (x,z) –surface (σ1=σ2) it is 
possible to obtain yK  as follows: 

zzzzzz

yy
yK

σ
σ

σ
σ

σ
σ 21 ===  (B.6) 

Since σx is defined as quoted in equation (5.5), Ky becomes 
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