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Abstract We propose a numerical method for a two-dimensional non-hydrostatic
shallow water system with topography (Bristeau et al. in Discret Contin Dyn Syst
Ser B 20(4):961–988, 2015, [6]). We use a prediction-correction scheme initially
introduced byChorin-Temam (Rannacher in TheNavier-Stokes equations II—theory
andnumericalmethods. Springer, Berlin, pp 167–183, 1992, [13], andwhich has been
applied previously to the one dimensional problem inAïssiouene (Numerical analysis
and discrete approximation of a dispersive shallow water model, 2016, [1]). The
prediction part leads to solving a shallowwater system forwhichwe use finite volume
methods (Audusse and Bristeau in J Comput Phys 206(1):311–333, 2005, [3]), while
the correction part leads to solving amixed problem in velocity/pressure using a finite
elementmethod.We present an application of themethodwith a comparison between
a hydrostatic and a non-hydrostatic model.
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1 Introduction

Mathematical models for free surface flows are widely studied, however one still
needs to improve the existing models as well as develop robust numerical methods.
The most common way to represent the physical behavior of the free surface is to
compute the solutions of the ShallowWater equations. These equations are based on
a shallowness assumption and lead to assuming the pressure is hydrostatic. There-
fore, they are used for many geophysical flows on rivers, lakes, oceans where the
characteristic horizontal length is much greater than the depth.

However, when the hydrostatic assumption is no longer valid, what we call dis-
persive effects appear, then more complex models have to be used to represent these
effects. Many free surface models are available to take into consideration this dis-
persive effect, see [11] for the classical Green-Naghdi (GN) model and [5–7, 9] for
other kinds of non hydrostatic models with bathymetry.

In this approach, we propose a new method dealing with a formulation without
high order terms, we treat the depth-averaged Euler system developed in [6] where
the non-hydrostatic pressure is an unknown of the system. The aim is to provide a
robust numerical method for the two-dimensionalmodel on an unstructured grid. The
objective is to have a stable method to simulate real cases where the topography can
be complex and needs an irregular mesh.Moreover, it gives the possibility to perform
adaptive meshes if one wants to refine the mesh in the areas where the dispersive
effects are expected. For instance, the dispersive contribution can have a significant
impact in the water depth for the propagation of tsunamis [4, 10].

The paper is organized as follows. In the next section,we recall the depth-averaged
Euler system. The Sect. 2 is devoted to the Chorin-Temam approach (prediction-
correction scheme) applied for the model problem, while in Sect. 4, we give a geo-
physical application where we compare the results using a hydrostatic model vs a
non-hydrostatic model.

2 The Averaged Euler System

We consider a two-dimensional domain Ω ⊂ R2 delimited by the boundary Γ =
Γin ∪ Γout ∪ Γs as described in Fig. 1a. We denote by H(x, y, t) the water depth,
zb(x, y) the topography, u(x, y, t) the averaged velocity of the fluid u = (u, v, w)t

and p the non hydrostatic pressure (see Fig. 1b).
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Fig. 1 Model domain and notations

The two-dimensional depth-averaged Euler system described in [6] reads:

∂H
∂t

+ ∇0 · (Hu) = 0, (1)

∂Hu
∂t

+ ∇0 · (Hu ⊗ u)+ ∇0(
g
2
H 2)+ ∇sw (p) = −gH∇0(zb), (2)

divsw (u) = 0, (3)

where we define the operators ∇0 and div0 by

∇0 f =

⎛

⎜⎝

∂ f
∂x
∂ f
∂y
0

⎞

⎟⎠ , div0v = ∂v1
∂x

+ ∂v2
∂y

. (4)

Also, we give an interpretation of the non-hydrostatic contribution by defining a
shallow water version of the pressure gradient ∇sw and the divergence operator
divsw . Assuming that f and v = (v1, v2, v3)T are smooth enough:

∇sw f =

⎛

⎜⎝
H ∂ f

∂x + f ∂(H+2zb)
∂x

H ∂ f
∂y + f ∂(H+2zb)

∂y
−2 f

⎞

⎟⎠ , (5)

divsw (v) = ∂Hv1
∂x

+ ∂Hv2
∂y

− v1
∂(H + 2zb)

∂x
− v2

∂(H + 2zb)
∂y

+ 2v3. (6)

Under the assumptions done for the derivation of the non-hydrostatic model, the
operator ∇sw (resp. divsw ) is the average of the classical operator ∇ (resp. div) in the
sens that it corresponds to the gradient averaged in the vertical direction between zb
and η. An important property is that the operators divsw and ∇sw satisfy the duality
relation
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∫

Ω

∇sw ( f ) · v = −
∫

Ω

divsw (v) f +
∫

Γ

H f v · n, (7)

where n is the outward unit normal vector to the boundary Γ . This property is crucial
for the algorithm presented in the following since we will consider a mixed problem
in velocity/pressure, which will lead, at the numerical level, to having an operator
for the pressure and its transpose for the velocity.

The depth-averaged model (1)–(3) is derived in [6] and is based on the mini-
mization of the energy (see [12], this property provides a consistency with the Euler
system [6] in terms of energy.

ptot = g
H
2

+ p, (8)

where we take into account the hydrostatic pressure g H
2 .

3 Prediction—Correction Scheme

The problem (1)–(3) is solved using a Chorin-Temam splitting scheme (see [13]).
The prediction-correction method is widely used to approximate the Navier-

Stokes equations and is based on a time-splitting scheme. For each time step, the
problem is solved in two steps, in the first one, we use a finite-volume method to
solve the hyperbolic part which is a Shallow Water system with topography (where
the non hydrostatic pressure p is not evaluated). This allows us to get a first predicted
state which is not divergence free. In the second step, we update the predicted state
with the shallow water version of the gradient pressure evaluated in such a way that
the velocity satisfies the divergence free condition (3).

Let us denote by X the vectors of unknowns and F(X) the matrix:

X =

⎛

⎜⎜⎝

H
Hu
Hv
Hw

⎞

⎟⎟⎠ , F(X) =

⎛

⎜⎜⎝

Hu Hv
Hu2 + g

2 H
2 Huv

Huv Hv2 + g
2 H

2

Huw Hvw

⎞

⎟⎟⎠ , (9)

and set

S(X) =

⎛

⎜⎜⎝

0
−gH ∂zb

∂x
−gH ∂zb

∂y
0

⎞

⎟⎟⎠ and Rnh =
(

0
∇sw (p)

)
. (10)
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Then, the system (1)–(3) can be written

∂X
∂t

+ div0F(X)+ Rnh = S(X), (11)

divsw (u) = 0. (12)

We set t0 the initial time and tn+1 = tn + ∆tn where∆tn satisfies a stability condition
(CFL) and the state Xn will denote an approximation of X (tn). For each time step,
we consider an intermediate state which will be denoted with the superscript n+1/2.
The semi discretization in time can be summarized in the following steps:

Xn+1/2 = Xn − ∆tndiv0F(Xn)+ ∆t S(Xn), (13)

Xn+1 + ∆tn Rn+1
nh = Xn+1/2, (14)

divsw un+1 = 0. (15)

So the first step (13) leads to solving the hyperbolic systemwith source terms in order
to get the state Xn+1/2 = (Hn+1/2, (Hu)n+1/2, (Hv)n+1/2, (Hw)n+1/2)T . Equation
(14) allows us to correct the predicted value Xn+1/2 in order to obtain a state which
satisfies the divergence free condition (15).

The prediction part (13) is solved using a cell centered finite-volume method [3].
For this system, our scheme is second order accurate in time and, if we use a recon-
struction algorithm [3] in the hyperbolic step, it is formally second order accurate
in space [2, 3]. In the application, we use a kinetic solver for its good mathematical
properties. The correction part (14) is solved using a finite element method. To do
so, we consider the equations (14)–(15) as a mixed problem [2] and, starting with
an appropriate variational formulation of the problem, we apply the finite element
method to obtain the pressure pn+1 which is solution of an elliptic equation and the
velocity un+1. The elliptic equation of the pressure can be written under the form:

divsw

(∇sw pn+1

Hn+1

)
= 1

∆tn
divsw

(
(Hu)n+1/2

Hn+1/2

)
. (16)

We consider a primal mesh which is the triangular mesh and a dual mesh corre-
sponding to the centered finite volume cells. The approximation of the variables is
based on the triangular mesh for the finite element scheme and the dual mesh for the
finite volume scheme. The finite volume cells are centered on the vertices and built
by joining the centers of mass of the triangles surrounding each vertex. The variables
H, Hu are estimated first as constant mean values on the cells by the finite volume
scheme, which gives the intermediate state Xn+1/2. For the finite element scheme,
the state Xn+1 is approximated at the vertices of the triangles. The algorithm uses an
iterative method of Uzawa type to solve the elliptic equation in pressure involved in
the problem. The details of the combined method and the treatment of the boundary
conditions will be detailed in a forthcoming paper.
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4 Numerical Results

In this section we test the depth-averaged model (1)–(3) on a numerical application.
We generate small amplitude waves at the inlet of a domain of dimensions [0, 10] ×
[0, 6] and we observe the propagation of the waves over an obstacle. The channel is
also ended by a slope of 40%. This simulation allows us to confront our method to
a test case where we have a variable bottom with strong variations of the elevation
and wet/dry interfaces. The dimensions of the case are described in Fig. 2 and the
obstacle is defined by the topography function:

zb(x, y) = min
(
zm, Ae−((a(x−x0)2)+b(y−y0)2)

)
, (17)

where we set zm = 0.5m, A = 2m, a = 3.3m, b = 1.51m and x0 = 3m, y0 =
3m. We set an initial free surface η0 = 0.6m and a sinusoidal wave given at the
inlet with an amplitude of 0.02m. The test is performed over an unstructured mesh
of 45506 nodes for the fine mesh. The numerical solution is computed with a P1-
iso-P2/P1 approximation (see [1] for more details on the choices of approximation
spaces). We compare the solutions obtained using the Shallow Water model and
using the depth-averaged Euler model (1)–(3) in order to observe the effects of
the dispersion on the propagation and the wave interactions. Figure3 shows the
simulations at instant t1 = 4.54531 s (Fig. 3a, b) for the Shallow Water model (left)
and the dispersive model (right). The figures represent the free surface η. We clearly
observe the impact of the dispersive effects around the obstacle and on the forms of
the waves. In Fig. 4 we show the free surface over the time at different points around
the obstacle and compare the solution obtained for the ShallowWater model and the
depth averaged model. We can recover the same kind behavior in one dimensions

Fig. 2 Dimension of the test
case
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(a) Hydrostatic simulation at time t1 = 4.54531s (b) Non-hydrostatic simulation at time t1

Fig. 3 Free surface obtained with a hydrostatic simulation and a non-hydrostatic simulation
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Fig. 4 Comparison of the free surface over the time for the selected points between solutions
computed with a hydrostatic model (· · · ) and the depth-averaged model (—)

for a very classical test case which is known as the Dingemans experiment [8], these
effects occurwhenwehave a strong variation of the topographywith a strong gradient
of the elevation.

5 Conclusion

In this paper, we have presented an application a the combined finite-volume/finite
element method for a two dimensional dispersive shallowwater model on an unstruc-
tured mesh. We solve a mixed problem using a finite element method to obtain the
velocity and the non-hydrostatic pressure.
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