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[1] Cliff collapse is an active geomorphological process acting at the surface of the Earth
and telluric planets. Recent laboratory studies have investigated the collapse of an initially
cylindrical granular mass along a rough horizontal plane for different initial aspect ratios
a = Hi/Ri, where Hi and Ri are the initial height and radius, respectively. A numerical
simulation of these experiments is performed using a minimal depth-integrated model
based on a long-wave approximation. A dimensional analysis of the equations shows that
such a model exhibits the scaling laws observed experimentally. Generic solutions are
independent of gravity and depend only on the initial aspect ratio a and an effective
friction angle. In terms of dynamics, the numerical simulations are consistent with the
experiments for a � 1. The experimentally observed saturation of the final height of the
deposit, when normalized with respect to the initial radius of the cylinder, is accurately
reproduced numerically. Analysis of the results sheds light on the correlation between the
area overrun by the granular mass and its initial potential energy. The extent of the
deposit, the final height, and the arrest time of the front can be directly estimated from the
‘‘generic solution’’ of the model for terrestrial and extraterrestrial avalanches. The
effective friction, a parameter classically used to describe the mobility of gravitational
flows, is shown to depend on the initial aspect ratio a. This dependence should be taken
into account when interpreting the high mobility of large volume events.
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1. Introduction

[2] Dense gravitational flows, triggered by large mass
destabilization, are active processes that participate in the
evolution of the surface of the Earth and other telluric
planets. They also represent natural hazards that are today
a threat to many populations and industrial infrastructures.
Investigation of dense gravitational flows has a long history
in geology and geomechanics. Extensive field and remote
sensing observations have led to a comprehensive descrip-
tion of their morphogenesis. However, field studies are
difficult and the underlying physics and environmental
processes of dense gravitational flows remain poorly un-
derstood, partly due to the wide range of physical regimes,
as well as different space and timescales, involved in

phenomena ranging from cliff collapse to rapid debris
flows.
[3] The underlying physical principles driving dense

gravitational flows have been recently investigated through
laboratory experiments and conceptual dense granular mod-
els. Clearly, a large number of time and space scales are
involved, differing by many order of magnitudes. An
unresolved issue is the continuum description of dense
gravitational flows, from laboratory scale to the large scales
of complex geological flows and incorporating the relevant
environmental parameters.
[4] Dense dry granular flows along inclined planes have

been shown to exhibit a number of characteristics of natural
gravitational flows [e.g., Felix and Thomas, 2004; Iverson,
1997; Denlinger and Iverson, 2001] and have been thor-
oughly investigated [Gray et al., 1999; Pouliquen, 1999;
Pouliquen and Forterre, 2002]. Simple continuum hydro-
dynamic models, based on the long-wave approximation
(LWA) [Savage and Hutter, 1989] and Saint Venant equa-
tions, have been shown to reproduce basic features of both
experimental dense granular flows along inclined planes
and geological flows along real topographies [e.g.,
Denlinger and Iverson, 2001; Naaim et al., 1997; Pastor
et al., 2002; Pouliquen and Forterre, 2002; Mangeney-
Castelnau et al., 2003; Pitman et al., 2003; Denlinger and
Iverson, 2004; Iverson et al., 2004, Sheridan et al., 2005].
The LWA is a natural approximation for these flow regimes
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given the low aspect ratio between the vertical (the ava-
lanche thickness) and horizontal (the avalanche runout)
length scales and the small ratio of the surface topography
amplitude to the typical vertical length scale. Continuum
models are expressed in terms of the change of the vertically
averaged velocity field and of the associated vertical length
scale h, i.e., the avalanche thickness, and describe hydro-
static imbalance [Mangeney-Castelnau et al., 2003] or
nonhydrostatic plasticity and friction effects [Savage and
Hutter, 1989]. The models assume an averaged friction
dissipation described phenomenologically in the framework
of Coulomb’s friction with a constant [e.g., Hutter et al.,
1995; Naaim et al., 1997] or velocity- and height-dependent
[Pouliquen, 1999; Douady et al., 1999] friction coefficient.
[5] Although quite important in terms of risk assessment,

cliff collapse, which involves mechanisms of mass spread-
ing quite different from classical flows, has been the subject
of fewer studies. Recently, laboratory experiments involving
collapse and spreading of a granular mass have been
performed by Lajeunesse et al. [2004] and Lube et al.
[2004]. In both experiments a granular mass of cylindrical
shape was suddenly released on a quasi-horizontal surface.
The main conclusion is that the spreading and final deposit
are controlled by the aspect ratio of the initial mass.
Depending on the initial aspect ratio a, two different flow
regimes are identified. Empirical relations were derived
relating the runout distance and the height of the deposit
to the initial aspect ratio a of the cylindrical mass.
[6] The aim of this paper is to investigate these experi-

ments numerically. Two approaches are possible. Discrete
element methods make use of an explicit description, at the
particle scale, of the behavior of the granular mass and make
it possible to take into account nonhomogeneous deforma-
tions and potential localization patterns during the collapse
[e.g., Müller, 1995; Staron and Hinch, 2004]. Although this
approach provides insight into the mechanical behavior of
the granular mass during spreading, its application to large
extended systems is difficult for computational reasons. A
continuum-like approach is therefore needed. As previously
mentioned, continuum hydrodynamic models based on the
LWA and Saint Venant equations have been widely used to
simulate granular flows along inclined planes or topogra-
phy. In this case, the LWA is a natural approximation due to
the small aspect ratio of the flow d = H/L, where H is the
height of the flowing material and L the running distance.
Obviously, such a geometrically based argument is not
necessarily relevant in collapse experiments. However, note
that the LWA is a kinematic approximation based on the
existence of a spatial scale, e.g., the vertical scale, below
which rapid fluctuations of the velocity field can be
smoothed out through a vertical averaging, and small
vertical accelerations. Therefore for a leading order approx-
imation, classical LWA gives flow models characterized by
a weak hydrostatic imbalance on the vertically averaged
horizontal velocity of an incompressible fluid possessing a
free surface and moving under the force of gravity. Al-
though simple geometrical scaling arguments cannot be
used for mass collapse experiments, it is hard to know a
priori if LWA can or cannot be applied to describe the
spreading. In fact, the initial geometry is not preserved
during the spreading, leading to a lower aspect ratio
geometry. Moreover, the flow, at a distance r > Ri from

the center of the mass, where Ri is the initial radius of the
mass, bears a strong resemblance to thin skin flow and at a
distance r < Ri the flowing region is expected to be located
near the surface.
[7] We therefore investigated numerically the mass col-

lapse experiments using a LWA approximation. The validity
domains of such an assumption will be analyzed by direct
comparison with the experimental results, both in terms of
flow dynamics and the final shape of the deposit. In these
situations, direct investigation of the scaling of the govern-
ing equations may provide an explanation of the key role
played by the initial aspect ratio, as suggested by the experi-
ments. Moreover, numerical experiments of the spreading
make it possible to explore numerically the sensitivity of the
results to various parameters, such as the initial shape of the
released mass, and to extend this exploration to the larger
volumes involved in real events.
[8] While this paper was being finalized, several authors

published new results for numerical studies of this phenom-
enon. Where comparison is possible, the results of the
analytical and numerical approach performed by Kerswell
[2005], also based on Saint Venant equations with Coulomb
friction, appear consistent with those reported here. This
study shows that the spreading of granular columns are
purely extensional. Only one of the Earth pressure coeffi-
cients reflecting whether the material is locally extending or
contracting [Savage and Hutter, 1989] is then relevant and
this can easily be scaled out of the problem. Furthermore the
discrete element simulation performed by L. Staron and E. J.
Hinch (Study of the collapse of granular columns using
DEM numerical simulation, submitted to Journal of Fluid
Mechancis, 2005) provides insight into the heterogeneous
behavior of granular collapse.
[9] We first briefly describe, in section 2, the experimen-

tal results used for this study. Then after a short presentation
of the model, a scaling analysis of the LWA model is
performed in section 3, providing new insight into the
experimental observations. A qualitative comparison be-
tween the experimental and numerical results is presented
in section 4 where the accuracy and the intrinsic limitations
of the LWA approach are discussed. In section 5, the
dependence of the deposit morphology on the control
parameters is investigated numerically and empirical scaling
relations, similar to those derived experimentally, are pre-
sented. Finally, in section 6, implications of the simulations
to the spreading of large volumes are discussed with
reference to geological observations.

2. Experimental Setup and Results

[10] We will first briefly outline the experimental setup
and the main results of Lajeunesse et al. [2004]. The
experimental setup is made of a cylinder, with an inner
radius Ri, lying on a horizontal 60 cm � 60 cm plane. The
cylinder is partially filled with glass beads, of diameter d =
350 ± 50 mm, so as to form a column of radius Ri and height
Hi with mass M. The angle of repose qr � 21� and the angle
of avalanche qa � 29� of the granular material are approx-
imated from the estimation of the slope of the granular pile
built by slowly pouring the beads from a small height
[Lajeunesse et al., 2004]. The angle of avalanche corre-
sponds to the limiting angle of stability of the pile, while the
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angle of repose corresponds to the angle of the pile after
avalanche. The density of the glass beads is r0 = 2500 kg
m�3 and the mean density of packing of the granular
column is roughly estimated as f � 0.62–0.65, a typical
value for dense initial heaps [Daerr and Douady, 1999].
[11] The granular material enclosed inside the tube is

suddenly allowed to spread, by removing the tube, on the
horizontal plane. When released, the granular mass collap-
ses and spreads until it comes to rest and forms a deposit, as
shown in Figure 1, where the same experiment is performed
numerically. The change of the granular mass with time is
monitored by a high-speed camera. Profiles h(r, t) of the
granular mass are measured as a function of time t along
with the radial distance r from the axis of symmetry of the
granular mass. More details are given by Lajeunesse et al.
[2004]. Among other parameters, experiments were per-
formed for different initial masses M and different initial
aspect ratios a = Hi/Ri of the granular column. The
investigated range of aspect ratios varies from a � 0.2 to
a � 20. The accuracy of the experimental measurements
decreases as the initial aspect ratio increases. For such
initial shapes, motion occurs before the tube has been
completely removed.
[12] Lajeunesse et al. [2004] showed that the spreading of

the granular mass can be classified into two different flow
regimes depending on the initial aspect ratio a of the
granular mass. In the first regime, for a < 3, the spreading
of the granular mass is accommodated by surface ava-
lanches along the flanks and only a fraction of the initial
gravitational energy is actually dissipated. The morphology
of the deposit makes it possible to subdivide this regime.
For a < 0.74, the flow ends before complete consumption of
the undisturbed central region by the avalanche: the char-
acteristic shape of the final deposit is a ‘‘truncated cone’’ of
height Hf = Hi with an angle close to the angle of repose of
the beads qr = 21�. For a > 0.74, the avalanche completely
destroys the central region. The characteristic shape of the
deposit is a cone of height Hf < Hi. In the second regime, for
a > 3, the initial gravitational energy is almost totally
dissipated by the flow. While for 0.74 < a < 3, the final
deposit is characterized all along the profile by a positive
curvature, for a > 3, it is characterized by an inflection
point, i.e., the transition between an outer region of negative
curvature and a central region of positive curvature, leading
at the end to a ‘‘sombrero’’ shape with a large and almost
flat outer region and a steep central cone. Experiments
suggest that the spreading results from surface flows in-
volving a significant number of glass beads. Furthermore,
the shape of the deposit, normalized by dividing by the
initial radius, as a function of the normalized radius h(r/Ri)/
Ri is shown to be independent of the mass M but to vary
with the aspect ratio a. For a > 0.74, Hf /Ri is observed to
saturate roughly approaching a value of the order of 0.74.
This value has been associated with the angle of a failure
surface within the granular column occurring upon removal
of the tube dc � tan�1(0.74) � 36, 5� [Lajeunesse et al.,
2004]. The rescaled front velocity and the amount of energy
dissipated during the flow also appear to be independent of
the mass but to vary with a. The results are shown to be
independent of the nature of the bed and of the bead size.
[13] In the following, we perform the numerical simula-

tion of these experiments using the LWA and a depth-

integrated model. We investigate to what extent such a
model is able to reproduce the scaling laws observed
experimentally and the averaged spreading behavior.

3. Mathematical and Numerical Model

3.1. Equations

[14] A long-wave approximation is classical for fluid
dynamics problems when it is important to separate large-
scale motion from motion on smaller time and length scales.
It is based on an asymptotic expansion in powers of one or
more small parameters, one being typically a length scale
below which rapid fluctuations of the velocity field can be
smoothed out. The Savage-Hutter empirical model for
granular flows was derived using such an approximation.
Such a model describes long-time effects of slowly varying
bottom topography, and of weak hydrostatic imbalance on
the vertically averaged horizontal velocity of an incom-
pressible fluid, with a free surface, that moves under the
force of gravity with friction dissipation [e.g., Gray et al.,
1999; Pouliquen and Forterre, 2002; Mangeney-Castelnau
et al., 2003].
[15] Assuming the vertical velocity to be smaller than the

characteristic tangential velocity, together with a length
scale for the vertical fluctuations of the velocity smaller
than that for the horizontal fluctuations of the same order,
we shall consider here a minimal model derived from a
purely inviscid incompressible fluid together with phenom-
enological friction dissipation along planes parallel to the
bottom topography. The reduced governing equations are
then obtained by vertically averaging the equations and by
using a leading order approximation neglecting the La-
grangian vertical acceleration. For a flat bottom, the result-
ing equations are

@h

@t
þ div huð Þ ¼ 0; ð1Þ

@

@t
huð Þ þ @

@x
hu2
� �

þ @

@y
huvð Þ ¼ � @

@x
g
h2

2

� �
þ 1

r
Tx; ð2Þ

@

@t
hvð Þ þ @

@x
huvð Þ þ @

@y
hv2
� �

¼ � @

@y
g
h2

2

� �
þ 1

r
Ty; ð3Þ

where u = (u, v) denotes the depth-averaged horizontal flow
velocity in the horizontal-vertical Cartesian reference frame
(x, y, z), h is the free upper surface, r is the mass density, and
g is acceleration due to gravity. These equations model the
hydrostatic imbalance in presence of an averaged friction
force Tt = (Tx, Ty), parallel to the horizontal plane, and
which is an effective approximation of the friction effects
arising both at the bottom and within the bulk due to
differential motion between flowing layers parallel to the
bottom surface. See [Pouliquen, 1999] for a similar
formulation.
[16] Note that more sophisticated models of friction

dissipation have been proposed by Savage and Hutter
[1989], Iverson and Denlinger [2001], and Iverson et al.
[2004], who also take into account friction dissipation
arising from deformation within the flowing layers parallel
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to the basal plane. As a result, the averaged total spherical
stress becomes anisotropic and the gravity wave celerity c =ffiffiffiffiffi
gh

p
must be rescaled by a factor kkk1/2, where k depends

phenomenologically on both a basal friction angle and an
internal friction angle that are to be determined indepen-
dently experimentally. The effective parameter may depend
on the sign of the divergence of the averaged tangential
velocity field. The effect of k would be to change the lateral
stresses. This effect would be increased with increasing
values of the aspect ratio a due to increasing value of the
pressure gradient (i.e., the surface gradient). Such anisotro-
py could have some influence on the spreading when the
initial aspect ratio of the granular mass increases; however,
such an analysis is beyond the scope of this paper. In these
phenomenological models, the internal friction effect is an
additional vertically averaged friction effect that can be
related to potential nonhomogeneities of the tangential
averaged kinematic field. However, the key problem in
spreading experiments is in fact potential vertical nonho-
mogeneities of the deformation during spreading. Note
that actually no physically or experimentally based three-
dimensional (3-D) continuum model exists for the flow of
granular materials. It seems quite reasonable to start with
minimal continuum models and to investigate qualitatively
these minimal models by direct comparison with exper-

imental experiments. Moreover, various discrete element
simulations [Ertas et al., 2001; Volfson et al., 2003] tend
to support stress isotropy during granular flows, as well
as previous studies that directly compare granular flow
laboratory experiments along rough inclined planes with
LWA numerical simulations [Pouliquen and Forterre,
2002].
[17] The friction force has a direction opposite to the

averaged tangential velocity field and when flowing, the
amplitude of the friction force is governed by a friction
coefficient and the total overall pressure, i.e., m = kTtk/rgh,
where m = tan d with d the friction angle. The transition
between static and fluid behavior is simply modeled here
using a Coulomb type transition [Mangeney-Castelnau et
al., 2003], i.e.,

kTtk � sc ) Tt ¼ �mrgh
u

kuk
kTtk < sc ) u ¼ 0;

ð4Þ

where sc = mrgh.
[18] Note that granular flow laboratory experiments

[Pouliquen, 1999] on inclined planes suggest, beside a
domain of high inclination angles, height- and velocity-
dependent friction. Building on the idea of investigating a

Figure 1. Numerical simulation and corresponding experimental results at time (a) and (e) t = 15 ms,
(b) and (f) t = 75 ms, (c) and (g) t = 120 ms, and (d) and (h) at the time of deposit, showing the spreading
of an initially cylindrical granular mass with aspect ratio a = 0.8.
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minimal model for the simulation of the spreading experi-
ments, a constant friction approximation is retained here,
and the effective friction angle d can be identified as the
limiting angle of stability of a cone on a rough horizontal
plane. For the minimal model considered here, the stability
limit of a cone initially at rest is simply given by

krrrrrhk � tan d ) u ¼ 0 ð5Þ

krrrrrhk > tan d ) spreading; ð6Þ

which leads to identification of the effective friction angle d
of the model as the limiting angle of stability of the
‘‘numerical cone.’’ A cone with a slope smaller than tan d
will remain at rest while for a larger slope, flow occurs with
a spreading of the cone along the plane until the dynamic
forces become less or equal to the Coulomb threshold,
leading to a new static equilibrium. The effective angle d
could be directly identify by experiments involving the
release of a conical mass, unfortunately such experiments
were not available at the time of this study.

3.2. Scaling of the Equations

[19] One of the main results of the spreading experiments
of Lajeunesse et al. [2004] and Lube et al. [2004] was that
the height of the final deposit, when normalized by division
by the initial radius, obeys a scaling relationship with the
normalized final radius of the deposit, i.e., h(r/Ri)/Ri, which
is shown to be mass M independent and to depend only on
the initial aspect ratio a of the cylinder. Such scaling law is
intrinsically contained in the equations of our minimal
model (1)–(3) together with the assumed Coulomb friction
law (4). With appropriate dimensionless analysis, the ge-
neric form of the solution can be shown to be independent
of the mass and in addition acceleration due to gravity.

Among others, let us consider the following dimensionless
variables: horizontal and vertical distances are scaled by Ri

and Hi, respectively; the mean tangential velocity is scaled
with the gravity wave celerity V =

ffiffiffiffiffiffiffi
gHi

p
; time is scaled by

T =
ffiffiffi
Ri

g

q
. Introducing the dimensionless variables,

h ¼ Hi
~h; x; yð Þ ¼ Ri~x;Ri~yð Þ; t ¼

ffiffiffiffiffi
Ri

g

s
~t; u ¼

ffiffiffiffiffiffiffiffi
gHi

p
~u; ð7Þ

in equations (1), (2), (3), and (4) a new set of dimensionless
equations is obtained

@~h

@~t
þ

ffiffiffi
a

p @

@~x
~h~u
� �

þ
ffiffiffi
a

p @

@~y
~h~v
� �

¼ 0; ð8Þ

ffiffiffi
a

p @

@~t
~h~u
� �

þ a
@

@~x
~h~u2
� �

þ a
@

@~y
~h~u~v
� �

¼ �a
@

@~x

~h2

2

 !
� m~h

~u

k~uk ;

ð9Þ

ffiffiffi
a

p @

@~t
~h~v
� �

þ a
@

@~x
~h~u~v
� �

þ a
@

@~y
~h~v2
� �

¼ �a
@

@~y

~h2

2

 !
� m~h

~v

k~uk :

ð10Þ

The generic solution of the dimensionless system depends
now only on a, not on the mass nor on acceleration due to
gravity g. Such a result can be extended to more complex
basal topography; however, this requires additional terms
that can be shown again to only involve a [see, e.g.,
Wieland et al., 1999; Savage and Hutter, 1989]. Beside the
friction term, this invariance results from the fact that, for a
leading order approximation, the vertical Lagrangian
acceleration is assumed to be negligible leading to a
hydrostatic state of pressure p.

Figure 1. (continued)
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[20] Note that for models involving more complex fric-
tion behavior, such scaling must be investigated carefully.
For example, the friction law proposed by Pouliquen [1999]
for granular flows along a rough inclined rigid plane is
expressed as

m kuk; hð Þ ¼ tan d1 þ tan d2 � tan d1ð Þ exp �b
h

d

ffiffiffiffiffi
gh

p

kuk

� �
; ð11Þ

where d1 and d2 are characteristic friction angles of the
material, d is a length scale, of the order of a grain diameter,
and b = 0.136 is a dimensionless parameter. With the scaling
(7), such a law leads to

m k~uk; hð Þ ¼ tan d1 þ tan d2 � tan d1ð Þ exp �b
Hi

d

~h
ffiffiffi
~h

p
k~uk

 !
; ð12Þ

and the a scaling seems to be lost. However, a scaling can
be recovered by assuming that d scales with either Hi or Ri.
Note that in the actual experimental conditions of Pouliquen
[1999], h/d � 10 leading to bh/d = O(1). The friction effect
may therefore be sensitive to the ratio Hi/d, which in most
granular experiments is simply the number of grains in the
height of the initial granular mass. For large values of Hi,
maintaining a constant d value, the exponential becomes
negligible and the friction angle is constant and quite small.
In a LWA formulation, d will appear as a new dissipation
length scale that control the crossover between a constant
and a variable friction coefficient. However, this remains
quite speculative and the d length must still be characterized
for more general experimental conditions.

3.3. Numerical Method

[21] The numerical method used here to solve the hyper-
bolic system (1)–(3) relies on a finite volume formulation
together with the hydrostatic reconstruction scheme devel-
oped by Audusse et al. [2004] for Saint Venant models, and
on the well-balanced scheme of Bouchut [2004] to deal with
friction. This finite volume scheme is second-order
accurate, in contrast with the first-order method used by
Mangeney-Castelnau et al. [2003] and based on a kinetic
scheme. Alternative methods have recently been proposed
by Denlinger and Iverson [2004], based on a combination
of finite volume and finite element schemes, and by Pitman
et al. [2003], based on a finite volume scheme together with
an adaptive grid. A comparison of these different methods
would be of interest but is clearly beyond the scope of this
paper.
[22] We will now take a closer look at certain aspects of

the method used. More details are given by Bouchut [2004].
For simplicity, we will consider only one dimension and the
first order. The method has two parts: a method for solving
the Saint Venant problem with topography and a procedure
to interpret the source as an apparent topography.
3.3.1. Saint Venant Problem With Topography
[23] The one-dimensional Saint Venant system with to-

pography is expressed by

@thþ @x huð Þ ¼ 0

@t huð Þ þ @x hu2þ gh2=2ð Þ þ hZx ¼ 0;
ð13Þ

where Z(x)/g represents topography. In this system the
steady states given by u = 0, gh + Z = cst, play a crucial role.
The numerical model is presented here with a term linked to
the topography even though this term is equal to zero for the
application studied here, i.e., the spreading of a granular
column over a horizontal plane.
[24] In the past few years, a great deal of work has been

devoted to the problem of finding well-balanced schemes
for (13), i.e., schemes that preserve steady states at the
discrete level. According to Bouchut [2004], such schemes
can be written as

Unþ1
i � Un

i þ Dt

Dx
Fiþ1=2� � Fi�1=2þ
� �

¼ 0; ð14Þ

where Ui
n is an approximation of U = (h, hu) and the left/

right numerical fluxes are computed as

Fiþ1=2� ¼ Fl Ui;Uiþ1;DZiþ1=2

� �
Fiþ1=2þ ¼ Fr Ui;Uiþ1;DZiþ1=2

� �
;

ð15Þ

with D Zi+1/2 = Zi+1 � Zi. The numerical fluxes Fl and Fr

must satisfy two consistency properties. The first is
consistency with the conservative term,

Fl U ;U ; 0ð Þ ¼ Fr U ;U ; 0ð Þ ¼ F Uð Þ � hu; hu2þ gh2=2ð Þ; ð16Þ

and the second is the consistency with the source,

Fr Ul;Ur;DZð Þ � Fl Ul;Ur;DZð Þ ¼ 0;�hDZð Þ þ o DZð Þ; ð17Þ

as Ul, Ur ! U and DZ ! 0. An overall property that must
be satisfied is the conservation of mass,

Fh
l Ul;Ur;DZð Þ ¼ Fh

r Ul;Ur;DZð Þ � Fh Ul;Ur;DZð Þ: ð18Þ

A well-balanced scheme must satisfy

Fiþ1=2� ¼ F Uið Þ Fiþ1=2þ ¼ F Uiþ1ð Þ ð19Þ

whenever

ui ¼ uiþ1 ¼ 0 ghiþ1 � ghi þ DZiþ1=2 ¼ 0:

A consistent well-balanced scheme capable of dealing with
transonic flows and dry states h = 0, that satisfies a discrete
entropy inequality and is very inexpensive has been
proposed recently by Audusse et al. [2004]. It is called
the hydrostatic reconstruction method, and has the follow-
ing form:

Fl Ul;Ur;DZð Þ ¼ F Ul*;Ur*ð Þ þ
0

g

2
hl2�

g

2
h2l*

 !

Fr Ul ;Ur;DZð Þ ¼ F Ul*;Ur*ð Þ þ
0

g

2
hr2�

g

2
h2
r*

 !
;

ð20Þ
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where U*l = (hl*, hl*ul), U*r = (hr*, hr*ur),

hl*
¼ max 0; hl �max 0;DZ=gð Þð Þ;

h
r* ¼ max 0; hr �max 0;�DZ=gð Þð Þ:

ð21Þ

Here F is any entropy providing a consistent numerical flux
for the homogeneous problem (i.e., with Z = cst), that is
capable of dealing with dry states. We use a relaxation
solver described by Bouchut [2004], but other choices give
similar results.
3.3.2. Friction as an Apparent Topography
[25] The apparent topography method is general and can

be used to deal with generic source terms [see Bouchut,
2004]. Note that the apparent topography introduced here is
only a numerical ruse used to solve the equations and has
nothing to do with any physical assumption concerning the
rheological behavior. For our purpose, consider the Saint
Venant system with friction

@thþ @x huð Þ ¼ 0

@t huð Þ þ @x hu2þ gh2=2ð Þ þ hZx ¼ hf ;
ð22Þ

where Z = Z(x), and f = f(t, x) must satisfy

jf t; xð Þj � gm

u t; xð Þ 6¼ 0 ) f t; xð Þ ¼ �gm
u t; xð Þ
ju t; xð Þj :

ð23Þ

Solutions at rest are given by u = 0, f = @x(gh + Z) or,
equivalently,

u ¼ 0 and j@x ghþ Zð Þj � gm: ð24Þ

The idea is to identify the equations in (22) as (13) with a
new topography Z + B, where @xB = �f. B also depends on
time while it should be time-independent; thus we take
@xB

n = �f n and solve (13) over the time interval (tn, tn+1)
with topography Z + Bn. In this way, we freeze the source
term on a time interval. The estimation of the source term is
of course exact for a stationary solution.
[26] At the discrete level, this is done as follows. We

define

DBn
iþ1=2 ¼ �f niþ1=2Dx; ð25Þ

and update U = (h, hu) via

Unþ1
i � Un

i þ Dt

Dx
Fiþ1=2� � Fi�1=2þ
� �

¼ 0; ð26Þ

with

Fiþ1=2� ¼ Fl Ui;Uiþ1;DZiþ1=2 þ DBn
iþ1=2

� �
Fiþ1=2þ ¼ Fr Ui;Uiþ1;DZiþ1=2 þ DBn

iþ1=2

� �
;

ð27Þ

where the numerical fluxes Fl, Fr are those associated
with the problem of section 3.3.1 without a source. Then if
fi+1/2
n is a consistent value for the friction, it is easy to see

that our scheme is consistent with (22) and well-balanced
since it preserves the discrete steady states satisfying ui =
ui+1 = 0 and ghi+1 � ghi + DZi+1/2 = fi+1/2Dx. The scheme
also conserves mass, is capable of computing dry bed states
and satisfies a discrete entropy inequality. For the
computation of fi+1/2

n , a good choice is

f niþ1=2 ¼ � proj
gm

ghi � ghiþ1 � DZiþ1=2

Dx
þ
uiþ1=2

Dt

� �
; ð28Þ

where

proj
gm

Xð Þ ¼
X jX j � gm;

gm
X

jX j jX j > gm;

8<
: ð29Þ

and, for example,

uiþ1=2 ¼
hiui þ hiþ1uiþ1

hi þ hiþ1

: ð30Þ

This gives a well-balanced scheme, in the sense that data
satisfying

ui ¼ 0 and jghi � ghiþ1 � DZiþ1=2j � gmDx ð31Þ

are preserved exactly.
3.3.3. Two-Dimensional Scheme
[27] The method can be extended to two dimensions in a

relatively direct manner (by resolving interface problems)
that will not be described here. For our purpose, we
performed a series of numerical experiments on a two-
dimensional regular grid with 400 � 400 points, for
different values of the aspect ratio a and initial radius Ri.

4. Granular Mass Changes With Time

[28] We first investigate the ability of our minimal model
to capture the different regimes observed experimentally for
the spreading of a granular mass and to describe the
resulting morphology of the deposit.
[29] In the numerical experiments, initial conditions are

defined in terms of an initial cylindrical mass of height Hi

and of radius Ri with zero initial velocities. A lower cutoff,
� = 7 � 10�4m, is introduced numerically when computing
the h profiles in order to simulate the lower cutoff inherent
to the experimental resolution of the h measures, estimated
by Lajeunesse et al. [2004] to be of the order of two to three
grain diameters.
[30] On the basis of the three types of deposits observed

experimentally, three numerical experiments have been
performed corresponding to the following initial geome-
tries: (1) a = 0.56, Ri = 70.5 mm, (2) a = 0.8, Ri = 70.5 mm,
and (3) a = 5.4, Ri = 28 mm. The cases 1 and 2 correspond
to the first dynamic regime and case 3 to the second regime
described by Lajeunesse et al. [2004].

4.1. Calibration of the Model

[31] The effective friction law (4) in our minimal model is
characterized by a single parameter, i.e., the limiting angle
of stability d. This angle could be directly measured by
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performing release experiments on an initial conical mass.
Unfortunately such experiments were not performed by
Lajeunesse et al. [2004] and results were not available at
the time of this study. Therefore a simple procedure was
adopted: the friction angle d was first estimated by direct
comparison between laboratory experiments involving the
most favorable case, case 1, for which precise experimental
observations were available, and then kept constant for the
other cases.
[32] Numerical simulations show very similar dynamics

for different values of the friction angle d, d 2 [32�, 34�],
until roughly t ’ 120 ms (Figure 2). The height h and flux
hu profiles, corresponding to d = 30�, d = 32�, and d = 34�,
are found to be almost identical as shown in Figure 2b for t =
80 ms. Even though the deposit appears to depend weakly
on the friction angle, differences in the h and hu profiles
appear just before and during the arrest phase, as experi-
mentally observed within the range of friction angles (30� <
d < 35�) explored by Lube et al. [2004] using different types
of material such as sand, salt, couscous grains, rice or sugar.
[33] Numerically, mass spreading is found to stop at t �

160 ms, for d = 34�. The final deposit is obtained at t �
180 ms for all the three values of d as shown in Figures 2c
and 2d. The main differences between the three profiles are
observed at the top while the front region remains quite
similar. The ratio Rf/Ri is found to be a relatively robust
parameter as already observed for spreading experiments
with glass beads, for various diameters and for both rigid
and erodible planar surfaces [Lajeunesse et al., 2004].

[34] The best agreement between laboratory and numer-
ical observations is obtained for a friction angle d = 32�.
This value was selected and used for all the numerical
experiments presented below.

4.2. Comparison Between Numerical and
Experimental Results

[35] For small aspect ratios, a < 1, the overall collapse
and spreading observed in laboratory is globally represented
numerically by the model. The dam-break-type behavior of
the profile of the granular mass with time, measured by
laboratory experiments, is well reproduced by the numerical
experiments, as observed in Figure 3 for the initial aspect
ratios a = 0.56 and a = 0.8. Moreover, the behaviors of the
front and the deposit are found to be in very good agreement
with the laboratory measurements, and differences only
appear in the vicinity of the highest zone of the deposit
and at the front. The deposit in the numerical experiment,
corresponding to a = 0.8, exhibits a slightly steeper profile
in the highest region than actually measured in the labora-
tory experiment. The front, for both a = 0.56 and a = 0.8, is
found to be more spread out in numerical experiments than
in laboratory experiments. While the position of the front,
measured in laboratory and numerical experiments, pro-
gresses in a very similar way during most of the experiment
(see Figure 3c for a = 0.56 at t = 160 ms and Figure 3g for
a = 0.8 at t = 180 ms), the final movement of the front is
found in laboratory experiments to progressively retropro-
pagate (see Figures 3d and 3h). Such retropropagation may
be explained by a loss of mass at the front during the arrest
phase in laboratory experiments.
[36] Numerical estimations of the times at which the front

stops are of the same order as those measured in the
laboratory by Lube et al. [2004], although slightly lower.
For a = 0.56, Lube et al. [2004] actually measured a
normalized time t/

ffiffiffiffiffiffiffiffiffi
Ri=g

p
� 2.2 leading to t � 186 ms,

while numerical estimations give ts � 170 ms. For a = 0.8,
laboratory estimations are t/

ffiffiffiffiffiffiffiffiffi
Ri=g

p
� 2.7 leading to t �

230 ms, while numerical estimations give ts � 200 ms.
However, when taking a closer look, the arrest phase
appears quite different in the numerical experiments com-
pared to the actual observations of Lajeunesse et al. [2004]
for laboratory experiments. In laboratory experiments, for
both a = 0.56 and a = 0.8, the arrest phase is observed to
start at the front edge of the spreading mass and then to
propagate toward the highest zone. When the front stops, a
late relaxation of the highest deposit region is observed
leading to a smaller slope after t = 180 ms for a = 0.56 (see
Figures 3c and 3d) and after t = 200 ms for a = 0.8 (see
Figures 3g and 3h). This relaxation seems to be accommo-
dated by shallow surface flows smoothing out the highest
zone of the deposit. In numerical experiments, the arrest
phase is different for a = 0.56 and a = 0.8. For a = 0.56, it
appears to initiate in the vicinity of the front (see Figure 4a
at t = 162 ms) and then to propagate both toward the front
edge and the center of the mass. Finally, the center of the
mass first comes to rest at t = 167 ms (see Figures 4b and
4c), while the whole mass comes to rest only later. For a =
0.8, the arrest phase appears to start in the central part of the
granular mass and then to propagate outward from the
center to the spreading front (see Figures 4d–4f). In
laboratory experiments, arrest phase propagation is found

Figure 2. Evolution of the profile h(r/Ri, t)/Ri and
corresponding fluxes hu(r/Ri, t)/(Ri

ffiffiffiffiffiffiffi
gHi

p
) during the

spreading of a granular mass, for three different friction
angles: d = 30� (dash-dotted lines), d = 32�(solid lines), and
d = 34� (dashed lines). The initial geometry of the granular
mass is a = 0.56, and Ri = 70.5 mm. Results for the
laboratory experiment are also plotted here as dotted lines.
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to last much longer than in numerical experiments. Note
that experimentally, the arrest phase is actually observed at
the top surface of the granular mass by Lajeunesse et al.
[2004] and Lube et al. [2004] have suggested that differ-
ences may be expected when the arrest phase is observed at
the base of the mass.
[37] For high aspect ratios, a > 1, the granular mass is

found (see Figure 5 for a = 5.4) to spread much faster in
numerical experiments than in laboratory experiments,
where the initial cylindrical shape is also preserved during
the spreading. However, even if the dynamics of the
granular mass are not reproduced by the numerical experi-

ments in these cases, the final deposit is relatively well
represented (see Figure 5d for a = 5.4). This may suggest
the final deposit to be the result of a global energy balance.
Dissipation related to the inertial vertical motion is expected
to play an important role as the initial aspect ratio increases,
and to extend outside the domain of validity of the LWA.
On the other hand, part of the mass mobility observed in
numerical experiments could also suggest that the minimal
model must be extended by incorporating a more sophisti-
cated constitutive behavior as discussed later in this paper.
[38] Numerical experiments suggest that the first step of

the spreading, involving fast inertial motion during which

Figure 3. Evolution of the profiles h(r/Ri, t)/Ri (solid lines) and fluxes hu(r/Ri, t)/(Ri

ffiffiffiffiffiffiffi
gHi

p
) (dash-dotted

lines) during the spreading of a granular mass with a friction angle d = 32�. (a–d) Experiment 1: a = 0.56,
Ri = 70.5 mm. (e–h) Experiment 2: a = 0.8, Ri = 70.5 mm. Experimental data are plotted for reference
using dashed lines.

Figure 4. Evolution of the h(r, t)/Ri profile (solid lines) and corresponding velocity u(r, t)/
ffiffiffiffiffiffiffi
gRi

p
(dash-

dotted lines) as a function of the normalized radius r/Ri during the arrest phase (a–c) for a = 0.56, Ri =
70.5 mm where 5u(r, t)/

ffiffiffiffiffiffiffi
gRi

p
has been represented for better visibility and (d–f) for a = 0.8, Ri =

70.5 mm.

B09103 MANGENEY-CASTELNAU ET AL.: NUMERICAL SIMULATION OF GRANULAR SPREADING

9 of 17

B09103



most of the final morphology of the deposit is created, is
correctly captured by the model for low inertial aspect
ratios. In that regime, the inertial motion is expected to
involve the granular mass without significant vertical fluc-
tuations and dissipation. The late relaxation observed in
laboratory experiments when the front has stopped, seems
to be accommodated by very shallow surface avalanches
involving a few glass beads as the result of a vertical
propagation of a fluid to static interface. Such a consolida-
tion phase may be related either to some steric aspects or a
basal pore pressure decrease. Detection of this phase by the
model would require an extension of the LWA or a more
sophisticated representation of the constitutive behavior.

4.3. Influence of the Initial Conditions

[39] Identification of appropriate initial conditions is
always difficult when performing numerical experiments,
especially in the case of a high initial aspect ratio. This is
directly related to the uncontrolled conditions of the labo-
ratory experiments where the granular mass has begun to
spread in the time required to remove the cylinder (e.g., see
dotted lines in Figure 2a).
[40] Instead of imposing an initial perfectly cylindrical

shape in the numerical experiments, two different initial
profiles have been considered, based on the actual labora-
tory experiments: (1) a profile as measured experimentally
just after removing the cylinder as shown by the dashed
lines in Figure 6a and (2) a profile as measured experimen-
tally at t = 20 ms and exhibiting an edge at r/Ri � 1, as
shown by the solid lines in Figure 6b. In order to maintain
symmetric initial conditions, the laboratory profiles are here

symmetrized by imposing the left part of the experimental
profile (h(r); r � 0) for r � 0 and r � 0 (Figures 6a and 6b).
Note that even if these laboratory-derived profiles are
actually associated with a given velocity field, a zero initial
velocity has been imposed numerically. The full laboratory-
derived profiles, r � 0 and r � 0, are shown in Figure 6 to
show their initial asymmetry. This initial asymmetry of the
laboratory-derived profiles is in fact progressively smoothed
out during experiments (Figure 6) even though the use of
initial conditions reconstructed from the left part of the
laboratory profiles led to a slightly better agreement be-
tween numerical and laboratory experiments (Figure 6).
Interestingly enough, it is found numerically that the mass
stops approximately at the same time whatever the initial
conditions (Figure 6e). When compared with perfectly
cylindrical initial conditions (Figure 3c), a better agreement
between numerical and laboratory experiments is observed
for these new initial conditions at time t = 160 ms and the

Figure 5. Evolution of the h(r/Ri, t)/Ri profile (solid lines)
and corresponding fluxes hu(r/Ri, t)/(Ri

ffiffiffiffiffiffiffi
gRi

p
) (dash-dotted

lines) of the spreading of a granular mass for d = 32� and
experiment 3: a = 5.4, Ri = 28 mm. Experimental data are
plotted using dashed lines.

Figure 6. Evolution of the h(r, t)/Ri profile and corre-
sponding fluxes hu(r, t)/(Ri

ffiffiffiffiffiffiffi
gRi

p
) of the spreading of a

granular mass with a = 0.56, Ri = 70.5 mm using d = 32� as
a function of r/Ri for initial conditions corresponding to the
symmetrized experimental profile obtained just after the
lifting of the tube (dashed lines), and 20 ms after the lifting
of the tube (solid lines). Experimental data are plotted with
dotted lines.
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spreading is very accurately reproduced until the end of the
spreading at time t � 170 ms.
[41] For high initial aspect ratio, as previously mentioned,

an edge located at r/Ri � 1 is observed in the laboratory
experiments, probably related to nonhomogeneous initial
loading conditions, and is progressively smoothed out
during the experiment. Such an edge does not appear in
the profiles derived from numerical experiments based on
an initial cylindrical profile or the laboratory-derived profile
1. The exact mechanism that leads to such an edge pattern,
which has also been observed by Daerr and Douady [1999]
in a slightly different context, remains open to question.
When the laboratory-derived profile 2 is used initially, the
edge pattern is actually initially imposed in the numerical
experiment. However, even in this case, the edge pattern
does not evolve as observed in laboratory experiments.
While the edge pattern remains stationary and is progres-
sively smoothed out in laboratory experiments (Figures 6b
and 6c), the edge propagates in numerical experiments, as a
shock wave, toward the highest region without smoothing.
A discrete element simulation by Müller [1995] of granular
collapse experiments, somewhat related to this study, does
seem to reproduce the laboratory observed type of evolution
of such an edge pattern, which can be related in this study to
the localization of the deformation within the granular mass
and the formation of a slip surface. Such a step pattern
would therefore be related to nonhomogeneous deformation
and shear zone evolution within the granular mass, a mode
of deformation that is clearly outside the conditions for
validity of the LWA and any vertically integrated model. On
the basis of the numerical experiments, the occurrence of
such an edge pattern does not seem to alter the global
averaged spreading and the final deposit that are mostly
controlled by the overall energy imbalance associated with
the initial collapse conditions, rather than by second-order
nonhomogeneity effects, consistent with the underlying
principles of depth-average models.

4.4. Limits of Saint Venant Equations

[42] Despite the kinematic assumptions and the vertical
integration of the governing equations of the minimal
model, laboratory experiments of the spreading of granular
mass with small initial aspect ratios are well reproduced by
numerical experiments until the arrest of the spreading
front. For these configurations, we would expect the main
shape changes of the granular mass, and in particular the
final deposit, to be correctly depicted by the macroscopic
balance inferred by the integrated governing equations of
the model despite some possible localization of the defor-
mation within the bulk.
[43] This comparison confirms the existence of two

regimes. The first, for low initial aspect ratios, corresponds
to experiments a = 0.56 and a = 0.8 for which the model
provides an appropriate description, and the second, for
high initial aspect ratios, corresponds to experiment a = 5.4
for which the dynamics are not correctly modeled. This
interpretation is supported by the observed laboratory scal-
ing of the front velocity V. For a < 3 (regime 1), V scales
with the celerity of gravity waves for shallow flow

ffiffiffiffiffiffiffi
gHi

p
,

while for a > 3 (regime 2), it scales with
ffiffiffiffiffiffiffi
gRi

p
[Lajeunesse

et al., 2004]. In the first regime, spreading occurs as a result
of surface avalanches, for which vertical acceleration

remains negligible compared to the vertical gradient of the
pressure. In the second regime, spreading results from a
vertical collapse. In that case, vertical accelerations and
vertical velocities may become significant and incompatible
with the physical assumptions of the depth-integrated model.
Moreover, such a dynamic initial vertical collapse may
generate high air pressures in the pores of the granular
material, and pore pressure changes within the granular
mass may play a paramount role in the propagation of
spreading during which an undrained behavior could pre-
vail. Note once again that the existence of a small flow
aspect ratio, a condition generally used for scaling argu-
ments is a sufficient but not necessary condition for the
LWA which relies on kinematic scaling arguments between
the vertical and horizontal velocity fields and on the vertical
acceleration field, as illustrated in various fields of geo-
physics such as ice sheet flow modeling, where the shallow
ice approximation has been shown to accurately reproduce
the flow of the ice in the dome region [Mangeney and
Califano, 1998]. Part of the LWA ability to depict these
experiments is also expected to be related to the fact that the
initial geometry is rapidly smoothed out, leading to lower
flow aspect ratio geometries during the dynamic phase.
Furthermore, the region located at a distance r from the
center of the mass r > Ri is subject to shallow flow while the
region r < Ri is expected to involve essentially surface flow.
Although a model involving both static and fluid granular
layers [Douady et al., 1999; Aranson and Tsimring, 2002]
would probably provide a more appropriate framework to
describe the flow for r < Ri, the simple LWA is still expected
to represent the dynamics when a significant part of the
column is actually flowing and when the static fluid
interface does not vary vertically to a great extent in space
and time.
[44] When the mass begins to stop, an arrest phase is

observed both in laboratory and numerical experiments, and
propagates within the granular mass. The disagreement
between laboratory and numerical observations of this arrest
phase suggest that our minimal model should be extended to
capture a more complex behavior of the granular mass
during spreading. Note also that laboratory observations
show differences in the arrest phase when measured from
the top or the base of the granular mass [Lube et al., 2004].
Laboratory experiments suggest that the arrest phase
involves both a horizontal and a vertical propagation of
transition between static and fluid material, with a vertical
propagation toward the surface inducing shallower ava-
lanches. Such a consolidation phase cannot be reproduced
by the minimal model in its present formulation. Such a
static/fluid boundary propagation may be explicitly taken
into account within the framework developed by Douady et
al. [1999] or Aranson and Tsimring [2002]. This consoli-
dation phase could also be related to a pore pressure
decrease at the base of the granular material and would
require, in this case, a kind of mixture theory taking into
account effective stresses and interactions between a solid
skeleton and pore fluids [Pastor et al., 2002; Iverson and
Denlinger, 2001].
[45] The incapacity to correctly reproduce the occurrence

and the changes of the edge pattern observed in laboratory
experiments, as previously discussed, may be related to the
fact that vertically integrated models cannot correctly de-
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scribed vertically nonhomogeneous deformation modes.
Moreover when introduced initially, the edge evolution
observed in the numerical experiments is reminiscent of
that of a shock wave with zero thickness. Introduction of
both a static and flowing phase, or of a mixture theory,
would lead to parabolic-hyperbolic equations, allowing
shocks with nonzero thickness and different propagation/
diffusion modes.
[46] Detailed analysis of the heterogeneous behavior of a

collapsing granular mass requires the use of numerical
models at small scale using discrete elements [e.g., Müller,
1995; Staron et al., 2002]. Although this is beyond the
scope of this study, we will note here some of the results of
this type of simulation. A discrete element simulation of the
collapse of a rectangular granular mass was performed by
Müller [1995]. This numerical experiment is quite different
since the beads flow over a smooth bed and the granular
mass reaches the right end of the box before the front stops.
Moreover, the initial ratio Hi/d, where d is a characteristic
bead diameter, is of the order of 20 whereas Hi/d � 100 in
the spreading experiments of Lajeunesse et al. [2004] and
Lube et al. [2004]. Nevertheless, these simulations provide
some insight into the flow dynamics. First a relatively deep
avalanche occurs along an inclined surface of rupture of
about 60�, then the motion propagates within the granular
mass leading to a relatively stable avalanche along the
surface of slope 30� with a shallow horizontal flow in the
front part. The existence of a first and second fracture was
also experimentally observed by Daerr and Douady [1999]
and is consistent with the interpretation made by Lajeunesse
et al. [2004]. The minimal model considered here, based on
a vertically integrated model, cannot describe such mecha-
nisms. However, as suggested in section 4.3, the details of
the initial collapse seem to have a negligible effect on the
mean behavior of the flow and on the final deposit. The
comparison between continuum and discrete modeling
requires further investigation, which is in progress.

5. Aspect Ratio a, a Key Parameter

5.1. A Mass- and Gravity-Independent Solution

[47] In section 3.2, the governing equations of the min-
imal model are shown to satisfy the scale invariance
observed in the laboratory. This has been investigated
numerically, and normalized profiles of the final deposit

are shown in Figure 7 for four numerical experiments
corresponding to the same initial aspect ratios a = 0.56
(Figure 7a) and a = 0.8 (Figure 7b) but to different masses
with initial radii Ri/2, 2 Ri, 10

4 Ri, and Ri = 70.5 mm. The
values of Hi are obviously scaled by the same factor to keep
a constant aspect ratio a. The initial volume of the cylinder
being Vi = �Ri

2 Hi, these experiments involve masses that
are 8 times smaller, 8 times larger, and 1012 times larger,
respectively, with a mass as high as M � 109 m3. The four
normalized profiles match perfectly, indicating that the
numerical model is accurate. The same result is obtained
for a = 5.4.

5.2. Characteristics of the Deposit Morphology

[48] Although the relevance of the numerical experiments
for initial aspect ratios a > 1 remains questionable due to the
high vertical accelerations, the characteristics of the associ-
ated deposit turn out to be somewhat similar to those
obtained in the laboratory and will be discussed together
with the results obtained for small initial aspect ratios.
[49] As described in section 2, three distinct deposit

morphologies have been observed in laboratory experi-
ments, depending on the initial aspect ratio a of the released
granular mass [Lajeunesse et al., 2004]. Two of these
morphologies, associated with the small initial aspect ratio
spreading regime, are well reproduced by numerical experi-
ments, i.e., the ‘‘truncated morphology’’ (Figure 3d for a =
0.56) and the conical morphology (Figure 3h for a = 0.8).
The laboratory transition at a � 0.7 between the two
morphologies is very well represented by the numerical
experiments, as shown in Figure 8. The slight difference in
the predicted values of the transition, a = 0.74 for numerical
experiments and a = 0.74 for laboratory experiments, is
within the uncertainty level of the experiments.
[50] Another transition was observed in the laboratory

around a = 3. For a > 3, the height profiles are characterized
by an inflection point. This inflection point is also observed

Figure 7. Profiles of the normalized deposit h/Ri as a
function of r/Ri calculated with Ri = 70.5 mm, Ri/2, 2Ri, and
104 Ri for (a) a = 0.56 and (b) a = 0.8.

Figure 8. Normalized profiles of the deposit as a function
of the normalized radius for initial (a) cylindrical
(b) paraboloidal, and (c) conical mass. The parameter a
varies from 0.1 to 1 in intervals of 0.1 and from 1 to 10 in
intervals of 1.
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numerically but appears already for a = 0.8 as shown in
Figure 8. Height profiles obtained for very large values of a,
e.g., a = 10, can be considered as a limiting envelope for all
the profiles obtained for smaller values of a. For a > 0.7, a
conical profile is observed with roughly the same shape
around the summit as the envelope profile, while the front
zones clearly differ. The inflection point appears at the
location of this divergence. As a increases, the inflection
point becomes more and more pronounced up to a � 3. For
higher values, the morphology of the deposit becomes
smoother and the inflection point finally disappears. Al-
though the final deposit, for large value of a, is different
from the laboratory deposit, the qualitative shape is similar
with large and almost flat outer regions surrounding a steep
central cone. In contrast to the laboratory results, the angle
at the vicinity of the front never saturates toward a value of
5�, but instead decreases as a increases. Moreover, the angle
near the summit saturates for a = 6 toward a value of 15�–
18�. However, it must be kept in mind that uncertainties
increase for high initial aspect ratios a both in the numerical
and laboratory experiments. Numerical experiments have
also been performed with paraboloidal or conical initial
shape conditions (Figures 8b abd 8c). In these experiments,
a limiting profile envelope is not clearly observed.

5.3. Deposit Parameters as a Function of a

[51] Since the normalized deposit morphology is shown
to depend only on a, simple empirical relations can be found
relating morphological variables, e.g., the runout distance,
the maximum height of the deposit, etc., to the aspect ratio
[Lajeunesse et al. 2004; Lube et al., 2004]. Such relations
can be investigated numerically by calculating for each
numerical experiment the final highest height of the deposit

Hf, the final radius Rf, i.e., the front position, and the time tf
at which the front stops. The normalized height Hf/Ri of the
deposit is shown in Figure 9a as a function of a. Clearly, for
a < 0.7, the normalized height increases linearly with a, as
in the laboratory experiments, a direct consequence of the
fact that Hf = Hi for a truncated-cone-like deposit. For a >
0.7, Hf/Ri saturates toward a value of the order of 0.7 as
observed in Figure 8a.
[52] A striking result of these numerical experiments is

their ability to reproduce the value Hf/Ri = 0.7 related to the
tangent of a critical angle dc ’ 35�. The physical interpre-
tation of this angle remains open to question. This angle was
associated with an active Coulomb-yielding process within
the granular column upon removal of the tube and to a
related failure surface of angle dc. Since our numerical
model is based on an vertically averaged continuum de-
scription, which cannot take into account such a hete-
rogeneous mode of deformation, the validity of this
interpretation may be questioned. The dependence of this
angle on the initial geometry of the released mass has been
investigated numerically by considering both paraboloidal
and conical initial shape conditions. The resultant angle
values are shown in Figure 9 and depend on the initial
geometry. The saturation value of Hf/Ri is found to be
Hf /Ri = 0.65 for an initial paraboloidal shape, and Hf/Ri =
0.64 for an initial conical shape, corresponding to angles
dp’ 33� and dt’ 32.5�, respectively. The angle dt is found to
be close to the effective friction angle d used in the numerical
model. Indeed, in the model, a conical mass should remain at
rest as long as its slope remains lower than tan (32�) ’ 0.62
(see Figure 8c), as discussed in section 3.1. It would be
therefore possible to roughly calibrate the effective friction
angle d of the numerical models by simplymeasuring the final
normalized height of the deposit resulting from the spreading
of a conical granular mass of known initial basal radius. Such
a calibration procedure would be much simpler than
performing laboratory experiments to measure the limiting
angle of stability of a granular cone over a given substratum.
However, such a procedure is not appropriate if the formalism
proposed by Savage and Hutter [1989], involving kactpass, is
used. In this case, the equation of equilibrium of the cone is
more difficult to solve and involves now two parameters fbed

and fint.
[53] The final radius Rf of the spreading mass is deter-

mined by the extent of the granular mass with a height
higher than a lower cutoff of two bead diameters. The
normalized runout distance, measured by Rf/Ri, is also in
good agreement with the experiments up to a value a � 1.
For larger values of a, the numerical simulation overesti-
mates the runout distance. As discussed above, for such
large values of the aspect ratio, a substantial part of the
energy is converted into vertical kinetic energy, a feature
that precludes the LWA. The runout distance is more
sensitive to the initial shape of the released mass
(Figure 9b). The normalized runout Rf/Ri is obviously
smaller for a paraboloidal shape and even much smaller
for a conical shape due to the lower initial potential energy
of the granular mass for a given Ri. As shown in Figure 9b,
for an initial conical shape the granular mass begins to
spread, i.e., Rf/Ri > 1, for a � 0.64. The normalized final
extent Rf/Ri decreases with increasing d for a given a. While
Rf/Ri decreases continuously for a = 0.9 (20� � d � 30�), it

Figure 9. Normalized (a) final height of the deposit Hf /Ri,
(b) final radius of the deposit Rf/Ri, and (c) time at which the
front stops tf /

ffiffiffiffiffiffiffiffiffi
Ri=g

p
as a function of the aspect ratio a.

The crosses plotted on Figures 9a and 9b correspond to the
experiments performed by Lajeunesse et al. [2004]. The
solid lines correspond to the numerical results obtained for
cylindrical initial conditions (solid lines), paraboloidal
initial conditions (dash-dotted lines) and conical initial
condition (dashed lines).
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increases for a value of a = 2 from d = 35� (Figure 10). For a =
2 (35�� d� 40�), the normalized extent is found to decrease
more quickly than for a = 0.9. The numerical deposit depends
on the friction angle in contrast with the conclusion of the
experimental study performed by Lube et al. [2004]. For
small values of a, the normalized runout is found to be only
slightly dependent on the friction angle, as shown in Figure 2.
This sensitivity increases with increasing a.
[54] The arrest time is difficult to determine due to the

arrest phase complexity (Figure 4). The arrest time of
the front has been chosen as the time at which the front
of the granular mass with height greater than two grains
diameter stops. The calculated arrest times are smaller but in
the range of those measured by Lube et al. [2004], even
though the details of the arrest phase are different as
previously mentioned in section 4.2. The numerical fit,
represented in solid lines on Figure 9c, leads to ~tf = 2.35
a0.51 � 2.35

ffiffiffi
a

p
which then gives

tf � 2:5

ffiffiffiffiffi
Hi

g

s
: ð32Þ

Lube et al. [2004] also found a relation involving the square
root of a but with a proportionality factor of the order of 3.
The calculated arrest time of the front is slightly less than
twice the free fall time, defined as the time of fall for a
particle initially at a height Hi. Note that the scaling relation
between the arrest time and the square root of a is very well
reproduced by the model even for high values of a, and that
tf does not depend on the initial radius of the cylinder. It can
be compared here with the arrest time of the front derived
from the analytical solution of Mangeney et al. [2000] for
the 1-D semi-infinite dam break problem. In this solution,
the position of the front is given by

xf ¼ 2c0t �
1

2
g tan dt2; ð33Þ

where c0 =
ffiffiffiffiffiffiffi
gHi

p
is the gravity wave celerity. The front

velocity is then

vf ¼ 2c0 � g tan dt: ð34Þ

The front stops when the velocity decelerates to zero due to
friction:

t0f ¼
2c0

g tan d
¼ 2

tan d

ffiffiffiffiffi
Hi

g

s
: ð35Þ

In this 1-D case, the time at which the front stops is given
by t0f � 3.2

ffiffiffiffiffiffiffiffiffiffi
Hi=g

p
. The coefficient value 3.2 is larger than

the value of 2.5 found in the 2-D case studied here. The
difference may be due to an enhanced effect of the front
velocity deceleration due to radial spreading. In all cases,
this must be linked to the friction coefficient m = tan d as for
the saturation of Hf/Ri.

5.4. Effective Friction H/L

[55] In geological literature, characterization of geologi-
cal gravitational events very often make uses of the notion
of effective friction me = H/L, where H is the fall height and
L the horizontal runout distance [e.g., Siebert et al., 1987;
McEwen, 1989; Stoopes and Sheridan, 1992]. The small
values of me deduced from geological observations are
generally interpreted as evidence of a low apparent coeffi-
cient of friction implying small friction angles in numerical
models. Moreover a physical interpretation of the observed
apparent decrease of the effective friction in the case of high
volume events is still open to question (see Legros [2002]
for a review). Within this study, the effective friction may be
defined as the ratio Hi/Rf. Both experiments and numerical
simulations show that me increases with a (Figure 11). A
numerical fit of the experimental data shows that me is
proportional to the square root of the aspect ratio. Such a
scaling relationship can be directly derived from the dimen-
sional analysis of the proposed minimal model where the
effective friction is defined as

me ¼
Hi

Rf

¼ a

~Rf

: ð36Þ

As in the work by Lajeunesse et al. [2004], the deposit for
a > 0.7 can be approximated by a cone of volume Vf =
p/3HfRf

2. Making use of volume conservation and of the
observed saturation of Hf toward the limiting value Hf =
0.7, the normalized radius is given by

a > 0:7; ~Rf ¼
ffiffiffiffiffiffiffi
3a

0:7

r
; ð37Þ

Figure 10. (a) Plot of dc = arctan(Hf/Ri) in degrees and
(b) normalized radius Rf /Ri of the deposit as a function of
the friction angle d used in the numerical model. The points
calculated with 20� � d � 30� are for a = 0.9, and the points
calculated with 35� � d � 40� are for a = 2.

Figure 11. Effective friction me = Hi/Rf as a function of the
aspect ratio a obtained from numerical simulation (circles)
and from experiments (crosses). Best fit lines for the
experimental data for an initial cone (solid lines) and the
numerical experiments (dashed lines) have been added.
The value of the friction coefficient m = tan(32�) = 0.62 is
represented by a dotted line.
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leading to

me � 0:5
ffiffiffi
a

p
: ð38Þ

Numerically, a scaling relation me / a0.52 is found for a < 1
with an uncertainty in the exponent of 0.52 ± 0.02, which is
close to the experimented square-root type of scaling. This
is consistent with an interpretation in terms of two regimes.
For small aspect ratios, only a few parts of the granular
material are actually in motion, leading to a weak global
dissipation. As a increases, larger amounts of material are
mobilized and the energy dissipation increases. This is
consistent with the experimental results shown by
Lajeunesse et al. [2004] which show the dissipation of
only a fraction of the initial potential energy in the first
regime while, in the second regime, dissipation of almost
the whole initial gravitational energy is observed. Geolo-
gically the height of the released mass is limited by the
height of the relief. For extremely large volumes, an
increase in the mass involved in the destabilization is then
expected to result from a lower aspect ratio, leading to a
lower effective friction me (Figure 11). This may possibly
explain why very large masses have greater mobility
depending on the actual volumes involved.
[56] The overall numerical experiments show that, in the

domain of validity of the LWA, i.e., a < 1, the effective
friction is lower than the coefficient of friction actually used
in the model, i.e., m = tan (32�) = 0.62. In fact, it is clear
from Figure 11 that the effective friction does not corre-
spond to the empirical friction angle d.

6. Comparison With Geological Data

[57] A strong correlation between the area overrun by the
avalanche and the potential energy of the avalanche has
been shown by Dade and Huppert [1998] on the basis of the
analysis of geological events associated with cataclysmic
failure of volcanic and nonvolcanic slopes on the Earth, the
Moon, and Mars (Figure 12). Extraterrestrial events follow

the same trend as terrestrial events. The best fit leads to a
power law relation with an exponent in the range 0.58–0.68
(the 95% confidence interval) [Dade and Huppert, 1998].
[58] When using the dimensionless generic solution (8),

(9), and (10), the final height, runout and time of deposit of
a granular mass, characterized by its initial aspect ratio a
and radius Ri, can be deduced from the scaling relation
displayed in Figure 9. Note that such a scaling relation is
also meaningful for extraterrestrial collapses, due to the
invariance of the dimensionless solution with respect to
acceleration due to gravity g. While such an invariance
leads to the same deposit area for terrestrial and extrater-
restrial events, the potential energy does depend on g. This
makes it possible to report (Figure 12) numerical results, in
terms of the deposit area and initial potential energy, with
the observations of Dade and Huppert [1998]. Acceleration
due to gravity was taken to be g = 9.81ms�2, g = 3.7ms�2,
g = 1.6ms�2 for the Earth, Mars and the Moon, respectively.
These new numerical points are found to follow the same
trend as the geological data both for terrestrial and telluric
conditions despite the fact that our minimal model may
appear rather simplistic with regard to the complexity
involved in the natural events. Note that here the friction
angle d = 32� has been kept constant with no attempt to fit
the actual data. When using d = 20�, a more extended area is
obtained (black triangles in Figure 12) which also falls in
the range of the observed area. It is possible to represent
analytically the observed correlation between the avalanche
area and its initial potential energy.
[59] The initial potential energy of a cylinder of radius Ri

and height Hi is given by

Ep ¼
MgHi

2
¼ frgp

a2

2
R4
i ; ð39Þ

where r � 2500 kg and f � 0.62 in the experiments, while
the aerial extent is given by

A ¼ pR2
f ¼ pR2

i
~R2
f : ð40Þ

After elimination of Ri, the scaling relation between Ep and
A is readily obtained as

Ep ¼
fra2

2p~R4
f að Þ

A2 ¼ f að ÞA2; ð41Þ

and Ep scales with the square of A with a prefactor that
depends only on a. Introducing equation (37) into
equation (41), leads to

f að Þ � frg 0:7ð Þ2

18p
; ð42Þ

which is actually independent of a. This analysis leads to
power law scaling relation between the avalanche area A
and the potential energy with an exponent of 1/2, slightly
smaller than the minimum exponent 0.58 estimated from
observational data. Such a difference may result from the
two-dimensional geometry of the experimental spreading
while geological avalanches may be regarded as essentially
a 1-D flow. Although the function f(a) does depend on

Figure 12. Area A covered by the deposit of avalanches or
rockfall as a function of the initial potential energy.
Geological data are from Dade and Huppert [1998]: white
circles correspond to nonvolcanic events, white triangles
correspond to volcanic events, and crosses correspond to
extraterrestrial events. Numerical simulations with d = 32�
(solid circles) and with d = 20� (solid triangles) for the
Earth, and d = 32� for Mars (solid diamonds) and for the
Moon (solid squares) have been added.
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acceleration due to gravity g, data obtained from terrestrial
and extraterrestrial events seem in Figure 11 to collapse.
However, the actual observations do not provide sufficient
resolution to single out the trend for a particular planet or a
g effect.

7. Conclusion

[60] In this paper we propose a minimal model based on a
long-wave kinematic approximation and a simple Coulomb
type effective friction. The dimensionless analysis of the
governing equations (1)–(4) of the model is consistent with
the experimental observation that the dynamics of spreading
depend on the initial aspect ratio a but not on the initial
mass, and the dimensionless equations do not depend on
acceleration due to gravity.
[61] Numerical experiments, using such a minimal model,

are in good agreement with the laboratory experiments of
Lajeunesse et al. [2004] on the spreading of granular
cylinders on a horizontal plane, at least for regimes
corresponding to an initial aspect ratio a � 1. In such a
regime, numerical experiments correctly reproduce labora-
tory experiments during dynamic spreading up to the arrest
phase, and the dynamics seems to depend only weakly on
the effective friction coefficient, i.e., the friction angle, at
least in the range of values explored by Lube et al. [2004].
In the same regime, the final shape of the deposit is also
found to depend weakly on the friction coefficient. This
sensitivity increases with a.
[62] Numerical experiments confirm the existence of two

dynamic spreading regimes depending on the initial aspect
ratio a, as observed experimentally. The saturation of the
normalized height of the deposit Hf /Ri, as a function of the
normalized radius r/Ri , observed experimentally
is accurately reproduced by the model. For an initial conical
shape, this saturated value is found to be close to the
effective friction coefficient. This suggests the need for
new experiments to calibrate the angle of effective friction
of the proposed minimal model, which could be identified
as the angle of stability of a conical mass suddenly released
from rest.
[63] The good agreement observed between numerical

and laboratory experiments for a < 1 strongly suggests that
in this case, the gravitational spreading involves a flow
regime characterized by vertical velocity fluctuations which
can be averaged out over a vertical length smaller or equal
to the actual height of the granular material, and that vertical
acceleration remains small compared to the vertical pressure
gradient. However, such an agreement becomes more qual-
itative in the second dynamic regime characterized by large
values of the initial aspect ratio a > 1. Note also that for this
regime, the final shape of the deposit becomes relatively
sensitive to the effective friction coefficient. Moreover in
both regimes, the experimentally observed arrest phase and
the late relaxation process are not reproduced by the
minimal model used in this study. This suggest that the
minimal model should be extended to provide a more
realistic rheological behavior. The laboratory experiments
suggest that both propagation and consolidation phases are
involved in the spreading of the granular mass. In our
minimal formulation, the model is expressed in terms of
total stresses. This approximation is only valid, for drained

or undrained behavior, when the consolidation timescale is
much larger than the propagation time. This is clearly not
the case during the arrest phase and the late relaxation
process, suggesting that pore pressure dissipation and ef-
fective stresses should be taken into account. The model
could be extended to include the coupling between a solid
skeleton and pore fluids, via an approach similar to mixture
theories [Pastor et al., 2002; Iverson and Denlinger, 2001],
in order to take vertical consolidation and pore pressure
decrease into account.
[64] The scaling relations of ~Hf (a) and ~Rf (a), suggested

by laboratory and numerical experiments, provide a useful
way of estimating the overun area A for gravitation collapse
events both in the case of terrestrial and extraterrestrial
conditions. Moreover, these experiments show that the time
needed for the front to stop scales directly with the charac-
teristic time of the free fall divided by the effective
coefficient of friction m = tan d, and can be recovered from
the ~ts(a) scaling. All the numerical results are shown to fall
within the range of the data from deposits of natural events
despite the simplicity of the numerical configuration. All
these results suggest that classical interpretation of the
effective friction coefficient in terms of the ratio H/L,
generally advocated for the mobility of geological events,
is very questionable since this ratio is shown to be depen-
dent on the aspect ratio of the initial released mass. Such a
dependence may provide an alternative interpretation of the
high mobility of natural events involving the destabilization
of large volumes of soil material.
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