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SUMMARY

In this paper, we present the exact solution of the Riemann problem for the nonlinear one-dimensional
so-called shallow-water or Saint-Venant equations with friction proposed by SAVAGE and HUTTER to
describe debris avalanches. This model is based on the depth-averaged thin layer approximation of granular
flows over sloping beds and takes into account a Coulomb type friction law with a constant friction
coefficient. A particular configuration of the Riemann problem corresponds to a dam of infinite length in
one direction from which granular material is released from rest at a given time over an inclined rigid or
erodible bed. We solve analytically and numerically the depth-averaged long-wave equations derived in
a topography-linked coordinate system for all the possible Riemann problems. The detailed mathematical
proof of the derivation of the analytical solutions and the analysis of their structure and properties is intended,
first of all, for geophysicists, mathematicians, and physicists because of the possible extension of this study
to more complex problems (geometries, friction laws, . . . ). The numerical solution of the first-order finite-
volume method based on a Godunov-type scheme is compared with the proposed exact Riemann problem
solution. This solution is used to solve the dam-break problem and analyze the influence of the thickness
of the erodible bed on the speed of the granular front. Comparison with existing experimental results shows
that, for an erodible bed, the equations lack fundamental physical significance to reproduce the observed
dynamics of erosive granular flows. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Analytical and numerical modeling of granular flows is a key issue for industrial and geophysical
applications. Indeed, natural granular flows such as debris flows and landslides play a key role in
erosion processes on the Earth’s surface and represent one of the major natural hazards threatening
life and property in mountainous, volcanic, seismic, and coastal areas. Despite the large amount of
work devoted to this problem, the mechanisms that govern flow dynamics and deposition in a natural
environment are still unclear and key questions remain unanswered, for example concerning the origin
of the high mobility of some natural granular flows [1–11].

Discrete element or continuum methods can be used to simulate natural granular flows. Although
discrete element methods may reproduce laboratory experiments quite accurately [12], they can handle
only a limited number of tractable particles. This makes them unsuitable for natural flows where the
observed broad size distribution with well-represented classes of different sizes involves many more
particles than is computationally possible at the moment [13, 14]. Similarly, solving the complete
continuum 3D equations of granular mass motion with sufficient resolution to describe the real
topography also leads to prohibitive computational costs. For this reason, most of the models dealing
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with natural flows are based on the so-called thin layer approximation (i.e. the thickness of the flowing
mass is assumed to be small compared with its downslope extension). These models make use of a
depth-averaged continuum description of the flow where the dissipation is described using Coulomb-
type friction laws as first proposed by Savage and Hutter [15]. These assumptions lead to a system
of hyperbolic equations for the thickness and slope-parallel, depth-averaged velocity field of the
granular flow. These equations have been used to successfully reproduce a large range of experimental
granular flows [4, 16–19] and natural landslides [20–25]. Analytical solutions for this system of
equations have provided insight into the scaling laws observed in experimental and natural granular
flows [6, 17, 21, 23, 26–28].

However, the entrainment processes related to the presence of an erodible bed on the avalanche path
is not or poorly taken into account in present analytical and numerical models. Entrainment of bed
material along the slope has long been suspected to play a key role in flow dynamics, possibly driving
landslides over unusually long distances [3, 7]. Indeed, recent laboratory experiments and numerical
simulations have shown that the presence of a very thin layer of erodible material lying on an inclined
bed may increase the maximum runout distance of a granular avalanche flowing down the slope by
up to 40% [4–6] and even generate granular surges that propagate at constant velocity along the slope
[16,18,29]. Even though erosion/deposition processes in natural flows are expected to be very complex
involving in particular segregation and recirculation processes [30], the question here is whether or not
classical depth-averaged thin layer models can be used to obtain the first order approximation of the
effect of the presence of an erodible bed on granular flow dynamics.

We will investigate here an analytical solution of the dam-break problem, when a granular mass is
suddenly released from rest over an inclined plane covered by a thin erodible bed made of the same
material. This configuration is similar to laboratory experiments performed by [6], designed to mimic
erosion processes of natural flows traveling over deposits built up by earlier events (Figure 1).

(a) Deposit of a debris avalanche of 45 Mm3 , that
occurred on December 24th 1997 in Montserrat,

Lesser Antilles.

(b) Unconfined rock falls in the Dolomieu
crater, La Réunion with volumes in the range

of 1 to 103 m3 (Hibert et al.[12]).

(c) Pyroclastic flows from the 1993
eruption of the Lascar Volcano, Chile. 

Figure 1. Three examples of geophysical granular flows that traveled down slopes over the deposits of
earlier events.
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Exact solutions of dam-break problems were first developed for shallow-water equations (i.e. thin
layer) without friction [31]. Dam-break problems are typical Riemann problems, that is, initial value
problems for conservation laws with initial data given by two constant states. Ritter [32] addressed the
case of one-dimensional water floods created by dam failure over a horizontal plane without friction
and over a dry bed. The case of the dam-break of a frictionless fluid over a horizontal wet bed has
been dealt with by Stoker [32]. These two cases correspond to two different initial conditions of the
same equations. All the possible Riemann problems corresponding to the flow of a frictionless fluid
over a horizontal plane are described in several books [31,33], providing seven possible wave patterns
(including the two cases mentioned earlier). Ungarish [34] solved the case of the release of a friction-
less fluid mass into a frictionless fluid with a different density. Karelsky et al. [35, 36] extended the
analytical solution of the Riemann problem to a frictionless fluid over a sloping bed. Mangeney et al.
[37] generalized the Ritter solution to granular flows over a sloping dry rough plane described by the
Savage–Hutter model (i.e. dissipation reduced to a Coulomb type friction law at the base of the flow).
Karelsky et al. [35] and Mangeney et al. [37] showed that the solution for the fluid dam-break over
an inclined bed differed from the solution of the classical shallow water equations because the char-
acteristics of the system are branches of parabolas (and not straight lines), and the domain of constant
flow is transformed into domains of uniformly accelerated flow. Exact (analytical or semi-analytical)
solutions for the release of a finite initial mass over a rough bed with various geometries have been
developed recently [26, 38–40] for dam-break over a dry bed. For the case of the release of a finite
rectangular mass over a dry horizontal bed, a double Riemann problem has to be solved [26]. When
the slope of the released finite mass is not parallel to the slope of the plane, as in Ancey et al. [38] and
Dressler [41], a more complicated Cauchy problem has to be solved instead of a Riemann problem.
This involves a system of partial differential equations together with piecewise constant data exhibiting
a single discontinuity.

The aim of the present paper is to compute the exact solution for the shallow-water equations over
an inclined plane (with or without a Mohr–Coulomb type friction law at the base of the flow) for all
possible Riemann problems, providing once again seven possible wave patterns, including the case
of the vacuum (i.e. corresponding to a thickness of the granular mass h D 0) in the initial data
and the appearance of the vacuum at a later time. The objective is to provide mathematical proof
of the derivation of the exact solution for all these cases, expressing the spatio-temporal solutions for
the depth and velocity of the flow as well as the solution properties for direct use by geophysicists,
physicists, or mathematicians. A particular Riemann problem corresponds to the case of granular
flow over a bed covered by a thin layer of granular material. For the case of an initial vacuum, we
obtained the same result as Mangeney et al. [37], without an initial vacuum, we support the results of
Mangeney et al. [6].

Although the solution treats idealized cases never strictly encountered in nature, these unsteady
solutions may help reveal the asymptotic behavior of some real problems in certain limiting cases [42].
Because they are mathematically accurate, exact solutions provide important test cases (i.e. benchmark
solutions) for numerical algorithms designed to integrate the depth-averaged thin layer equations for
granular flows. This is particularly convenient for the purpose of obtaining an approximate or even
an exact Riemann solver to be used eventually in numerical integration by means of a Godunov-type
method [43, 44].

The paper is structured as follows. Section 2 presents the governing equations and the Riemann
problem. Section 3 describes the complete set of exact solutions to a general Riemann problem. In
section 4, we show comparisons between the exact solution and the numerical results obtained using
the Rusanov scheme for all wave patterns. In Section 5, the exact solution is used to solve specific
dam-break problems and to investigate the influence of the friction coefficient and the thickness of the
erodible bed on the front position and velocity. The detailed proof of the derivation of this exact solution
is presented in the Appendix. We describe the mathematical properties of the shallow water equations
with a Mohr–Coulomb friction term written in a conservative form. This transformation makes it
possible to remove the source term and work with a usual hyperbolic system of conservation laws.
A detailed description of the construction of the analytical solution follows, presented in four steps:
(i) formulation of the Riemann problem as a system for the height of the material and for a modified
velocity; (ii) solution for rarefaction waves; (iii) solution for shock waves; and (iv) combination with
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the previous study to solve the general Riemann problem. Finally, we check that the total energy
function is an entropy function for the system.

2. GOVERNING EQUATIONS

2.1. Mass and momentum conservation

The one-dimensional flow of an incompressible fluid is described by mass and momentum conservation
equations. Gravitational flows are generally long and shallow so that the long-wave approximation
along the slope is valid (h� L, where h and L are the thickness and typical extent of the flow along
the slope, respectively). The equations are obtained by depth-averaging Navier–Stokes equations for
an incompressible fluid and by using the free surface boundary condition. The coordinate system is
linked to the topography: in our case the x-axis is parallel to the uniform slope with an angle ' to the
horizontal (Figure 2). Following Savage and Hutter [15] and Mangeney et al. [37], a Mohr–Coulomb
type friction law has been introduced in our model to describe debris or dense snow avalanches. Mass
and momentum equations can be written as²

@thC @x.hu/D 0,
@t .hu/C @x.hu

2C g´h
2=2/Dmh,

(1)

where x 2 R is the downstream coordinate and t > 0 is the time. The unknowns are h � h.x, t/ > 0,
the flow depth measured perpendicular to the plane, and u � u.x, t/ 2 R, the depth-averaged flow
velocity. The other terms are g´ � g cos.'/, the projection of the gravitational acceleration on the
vertical axis (perpendicular to the plane), and m � gx C F D g´.tan.'/ � tan.ı//, the constant
x-acceleration resulting from the sum of the forces due to gravity and friction. The friction force is the
well-known Coulomb-type friction law proposed by Savage and Hutter [15] to describe granular flow
behavior, F D �g´ tan.ı/ 6 0, where ı is the basal friction angle. Here, we assume tan.'/ > tan.ı/,
so that, when initially flowing, the granular mass never stops on the plane. If m > 0 and u > 0, the
system can represent for example a granular flow over an inclined plane covered or not by a layer of
material made of the same material as the flowing granular mass.

2.2. Initial conditions: the Riemann problem

We consider a Riemann problem, that is, the system (1) with particular initial data consisting of two
constant states separated by a single discontinuity

.h,u/.x, t D 0/D

²
.hL,uL/, if x < 0,
.hR,uR/, if x > 0,

(2)

where hL > 0, uL 2R, hR > 0, and uR 2R are four constants. For example, the instantaneous release
of fluid from rest, typical of natural gravitational flows, leads to a significant initial discontinuity that
corresponds to a Riemann problem. A dam with infinite length in one direction where material is
released from rest corresponds to hL > hR D 0 and uL D uR D 0 (Figure 7(a)). Granular material

Figure 2. Geometry of the granular flow and reference frame.
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flowing over an inclined plane covered by an erodible bed where material is released from rest
corresponds to hL > hR > 0 and uL D uR D 0 (Figure 7(b)). The solution of these problems
has a relatively simple structure and can be calculated explicitly.

Unrealistic as it may seem (unbounded domain and piecewise constant initial data with a single
discontinuity), the solution to the Riemann problem is extremely valuable for practical applications.
Many laboratory experiments reproduce in fact the conditions of the Riemann problem. The solution
to the Riemann problem also provides information on the structure of the system of equations and can
be used as the building block for obtaining solutions to problems with more complex initial conditions.
Moreover, many interesting test problems for numerical methods arise from one-dimensional Riemann
problems. This is particularly convenient for the purpose of obtaining an approximate or even an
exact Riemann solver to be used eventually in the numerical integration of the equations (1) with
any initial conditions by means of a Godunov-type method [43, 44]. Indeed, in a numerical method,
a set of discrete values

�
hni ,uni

�
is computed, presumably an approximation of .h,u/.xi , tn/ on a

given set of grid points ¹.xi , tn/º, where n denotes the time increment. A great deal of information
on the local structure of the solution near .xi , tn/ is obtained by solving a Riemann problem with
data .hL,uL/ D

�
hni ,uni

�
and .hR,uR/ D

�
hniC1,uniC1

�
. Many numerical methods make use of these

Riemann solutions.

3. EXACT SOLUTION OF THE RIEMANN PROBLEM

We present here the solutions of all possible Riemann problems (2) for the system (1). The detailed
derivation of the exact solution is presented in the appendix for different initial conditions. Here, we
present and analyze the characteristics and properties of this exact solution. Neglecting the case of
the vacuum (i.e. h > 0), the structure of the solutions involves two distinct waves separating three
regions. Across a wave, we can observe a discontinuity of the state variables, called a shock wave, or
all variables may be continuous and there is a smooth transition, called a rarefaction wave or fan.

3.1. The solution

The solution consists of at most three states where h and u �mt are constant (the left, intermediate,
and right states, hereafter referred to as L, �, R, respectively) separated by rarefaction waves (where
h and u are continuous) or admissible shock waves (where h and u exhibit a jump), see Figures 3–4.
The wave separating the state .hL,uLCmt/ and the state .h�,u�Cmt/ is called a 1-wave and can be
a 1-rarefaction or a 1-shock wave. Similarly, the wave separating the state .h�,u�Cmt/ and the state
.hR,uR C mt/ is called a 2-wave and can be a 2-rarefaction or a 2-shock wave. As for the shallow
water system, the free surface h.x, t/ in the rarefaction waves is curved with a parabolic shape. If
there is a vacuum region between two zones (between the left zone L and the intermediate zone � for a
1-rarefaction or between the intermediate zone � and the right zoneR for a 2-rarefaction), the parabola
has a horizontal tangent. On the contrary, if there is no vacuum region between the two zones, the slope
of the free surface is discontinuous at these points.

Let us summarize here the complete solution of system (1) with an initial condition of type (2) for
all m 2 R that has been derived using the method detailed in the Appendix. Depending on the initial
conditions, different solutions are obtained that can be separated into two types. For the first type, the
solution is analytical and includes a ‘dry’ state or ‘vacuum’ where the thickness of the flow is zero
(cases 1.1–1.3). For the second type, the solution is semi-analytical‡ and involves only so-called ‘wet’
states, that is, the flow thickness is always strictly positive (cases 2.1–2.4).

We introduce the wave celerities cL �
p
g´hL and cR �

p
g´hR.

Type 1. In the following three cases, the solution is analytical and contains regions where the
thickness of the flow is zero. If the thickness h D 0, the value of the velocity u does
not have any physical significance.

‡Our solution is called semi-analytical rather than analytical because it depends on the solution (in general only
numerical) of a nonlinear equation, here equation (3).
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(a) (b)

(c)

Figure 3. Scheme of the solution in presence of a vacuum, that is, zones where hD 0 (type 1).

1.1. If hL D 0, it is natural to consider uL D 0. The solution is composed of a 2-rarefaction
wave as in Figure 3(a). The flow depth satisfies

h.x, t/D

8̂̂<
ˆ̂:
0, if x � mt2

2
6 .uR � 2cR/t ,

.�uRC2cRC.xt �
mt
2 //

2

9g´
if .uR � 2cR/t < x � mt2

2
6 .uR C cR/t ,

hR, if x � mt2

2
> .uR C cR/t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂<
ˆ̂:
mt , if x � mt2

2
< .uR � 2cR/t ,

uR�2cRC2.xt �
mt
2 /

3
Cmt if .uR � 2cR/t < x � mt2

2
6 .uR C cR/t ,

uR Cmt , if x � mt2

2
> .uR C cR/t .

Note that when x!
�
mt2=2C .uR � 2cR/t

�C
, the flow depth is continuous because

h.x, t/! 0 but the depth-averaged velocity can be discontinuous because u.x, t/!
.uR � 2cR Cmt/.
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(a) (b)

(c) (d)

Figure 4. Scheme of the solution without vacuum, that is, h > 0 for all .x, t / (type 2).

1.2. If hR D 0, it is natural to consider uR D 0. The solution is composed of a 1-rarefaction
wave as in Figure 3(b). The flow depth satisfies

h.x, t/D

8̂̂<
ˆ̂:
hL, if x � mt2

2
6 .uL � cL/t ,

.uLC2cL�.xt �
mt
2 //

2

9g´
, if .uL � cL/t < x � mt2

2
6 .uLC 2cL/t ,

0, if x � mt2

2
> .uLC 2cL/t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂<
ˆ̂:
uLCmt , if x � mt2

2
6 .uL � cL/t ,

uLC2cLC2.xt �
mt
2 /

3
Cmt , if .uL � cL/t < x � mt2

2
6 .uLC 2cL/t ,

mt , if x � mt2

2
> .uLC 2cL/t .

Note that when x ! .mt2=2 C .uL C 2cL/t/
�, the flow depth is continuous

because h.x, t/ ! 0, but the depth-averaged velocity can be discontinuous because
u.x, t/! .uLC 2cLCmt/.
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1.3. If hL > 0, hR > 0 and uR � uL > 2.cR C cL/, the solution is composed of
a 1-rarefaction wave followed by a 2-rarefaction wave separating a dry zone as in
Figure 3(c). The flow depth satisfies

h.x, t/D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

hL, if x � mt2

2
6 .uL � cL/t ,

.uLC2cL�.xt �
mt
2 //

2

9g´
, if .uL � cL/t < x � mt2

2
6 .uLC 2cL/t ,

0, if .uLC 2cL/t < x � mt2

2
6 .uR � 2cR/t ,

.�uRC2cRC.xt �
mt
2 //

2

9g´
, if .uR � 2cR/t < x � mt2

2
6 .uR C cR/t ,

hR, if x � mt2

2
> .uR C cR/t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

uLCmt , if x � mt2

2
6 .uL � cL/t ,

uLC2cLC2.xt �
mt
2 /

3
Cmt if .uL � cL/t < x � mt2

2
6 .uLC 2cL/t ,

mt , if .uLC 2cL/t < x � mt2

2
6 .uR � 2cR/t ,

uR�2cRC2.xt �
mt
2 /

3
Cmt if .uR � 2cR/t < x � mt2

2
6 .uR C cR/t ,

uR Cmt , if x � mt2

2
> .uR C cR/t .

Note that the flow depth and depth-averaged velocity are continuous throughout the
domain .

Type 2. If hL > 0, hR > 0 and uR � uL < 2.cR C cL/, we can compute semi-analytical solutions.
We define h� as the root of the function

f .h/D uR � uLC .h� hL/´.h, hL/C .h� hR/ˇ.h, hR/ (3)

with

ˇ.h, /D

8<
:

2
p
g´

p
hC
p
 

if h6  ,q
g´
2
hC 
h 

otherwise,

and we note u� � uRC.h��hR/ˇ.h�, hR/ and c� �
p
g´h�. Then we have the following

four configurations.
2.1 If h� > max¹hL, hRº, the solution is composed of a 1-shock wave followed by a

2-shock wave as in Figure 4(a). The flow depth satisfies

h.x, t/D

8̂<
:̂
hL, if x � mt2

2
< Ps1t ,

h�, if Ps1t < x � mt2

2
< Ps2t ,

hR, if x � mt2

2
> Ps2t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂<
:̂
uLCmt , if x � mt2

2
< Ps1t ,

u�Cmt , if Ps1t < x � mt2

2
< Ps2t ,

uR Cmt , if x � mt2

2
> Ps2t ,

where the constant speeds of the discontinuities are

Ps1 � uL � h�

s
g´

2

hLC h�

hLh�
, Ps2 � uR C h�

s
g´

2

h�C hR

h�hR
.
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2.2. If hL < h� < hR, the solution is composed of a 1-rarefaction wave followed by a
2-shock wave as in Figure 4(c). The flow depth satisfies

h.x, t/D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

hL, if x � mt2

2
< Ps1t ,

h�, if Ps1t < x � mt2

2
6 .uR C 3c� � 2cR/t ,

.�uRC2cRC.xt �
mt
2 //

2

9g´
if .uR C 3c� � 2cR/t < x � mt2

2
6 .uR C cR/t ,

hR, if x � mt2

2
> .uR C cR/t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂̂
<̂
ˆ̂̂̂:

uLCmt , if x � mt2

2
< Ps1t ,

u�Cmt , if Ps1t < x � mt2

2
6 .uR C 3c� � 2cR/t ,

uR�2cRC2.xt �
mt
2 /

3
Cmt if .uRC3c� � 2cR/t<x � mt2

2
6.uR C cR/t ,

uR Cmt , if x � mt2

2
> .uR C cR/t ,

where the constant speed of the discontinuity is

Ps1 � uL � h�

s
g´

2

hLC h�

hLh�
.

2.3. If hL > h� > hR, the solution is composed of a 1-shock wave followed by a
2-rarefaction wave as in Figure 4(b). The flow depth satisfies

h.x, t/D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

hL, if x � mt2

2
6 .uL � cL/t ,

.uLC2cL�.xt �
mt
2 //

2

9g´
, if .uL � cL/t < x � mt2

2
6 .uLC 2cL � 3c�/t ,

h�, if .uLC 2cL � 3c�/t < x � mt2

2
< Ps2t ,

hR, if x � mt2

2
> Ps2t ,

and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂̂
<̂
ˆ̂̂̂:

uLCmt , if x � mt2

2
6 .uL � cL/t ,

uLC2cLC2.xt �
mt
2 /

3
Cmt , if .uL � cL/t<x � mt2

2
6.uLC 2cL� 3c�/t ,

u�Cmt , if .uLC 2cL � 3c�/t < x � mt2

2
< Ps2t ,

uR Cmt , if x � mt2

2
> Ps2t ,

where the constant speed of the discontinuity is

Ps2 � uR C h�

s
g´

2

h�C hR

h�hR
.

2.4. If h� < min¹hL, hRº, the solution is composed of a 1-rarefaction wave followed by a
2-rarefaction wave as in Figure 4(d). The flow depth satisfies

h.x, t/D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

hL, if x � mt2

2
6 .uL � cL/t ,

.uLC2cL�.xt �
mt
2 //

2

9g´
, if .uL � cL/t < x � mt2

2
6 .uLC 2cL � 3c�/t ,

h�, if .uLC2cL�3c�/t<x� mt2

2
6.uRC3c��2cR/t ,

.�uRC2cRC.xt �
mt
2 //

2

9g´
, if .uR C 3c� � 2cR/t < x � mt2

2
6 .uR C cR/t ,

hR, if x � mt2

2
> .uR C cR/t ,
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and the depth-averaged flow velocity satisfies

u.x, t/D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

uLCmt , if x � mt2

2
6 .uL � cL/t ,

uLC2cLC2.xt �
mt
2 /

3
Cmt if .uL � cL/t<x � mt2

2
6 .uLC2cL � 3c�/t ,

u�Cmt , if .uLC 2cL � 3c�/t < x � mt2

2

6 .uR C 3c� � 2cR/t ,
uR�2cRC2.xt �

mt
2 /

3
Cmt if .uR C 3c� � 2cR/t<x � mt2

2
6.uRC cR/t ,

uR Cmt , if x � mt2

2
> .uR C cR/t .

Remark
It is interesting to observe that this solution can be obtained from the solution of the classic shallow-
water equations [31] with mD 0, (i.e. the horizontal problem with g D g´) by the change of reference
frame: X � x�mt2=2, U � u�mt , wherem is the acceleration of the reference frame, X and U are
the horizontal coordinate and velocity in the new reference frame (i.e. horizontal/vertical), respectively.
Therefore, the Ritter’s solution corresponds to cases 1.1 and 1.2 and the Stoker’s solution to cases 2.2
and 2.3. We obtain the same change of variables as suggested by Karelsky et al. [35, 36] to generalize
the classic shallow-water system to the case of flows over a uniform slope without friction, that is,
when m� gx .

4. NUMERICAL TESTS

Let us compare our exact solution with the numerical solution in all possible configurations. In order to
represent all possible combinations of wave patterns, seven Riemann problems have been solved. The
corresponding initial data are shown in Table I. We consider an inclined bottom of slope ' D 22° and
a friction angle ı D 21°. Acceleration due to gravity is g D 9.81m s�2, so thatm' 0.1839m s�2 (the
flow is accelerated). In all cases, the initial discontinuity is located at x D 0 m. When it is necessary
to compute the intermediate state .h�,u�/, that is, for tests – , the proposed Riemann solver has
been implemented using a Newton iterative method, with a stop criterion when the increment of two
iterates or when f .h/ is < 10�10 (the function f is defined in equation (3)). The initial guess for h is
taken to be the average of h on the left and right states of the Riemann problem.

For comparison, we report the solution of the same Riemann problems calculated with the first-order
Rusanov scheme [31, p. 179] applied to solve the system (1) in the conservative form (5) (Appendix)
using a uniform grid of 5000 cells. Figure 5 shows the projection of the flow depth h.x, t/ on the plane

Table I. Definition of the Riemann problems used in the different tests.

Waves patterns Left Right

Test Case 1.1: 2-rarefaction hL D 0.0 m hR D 0.1446 m
(Dam-break type problem, ‘dry bed’) uL D 0.0 m s�1 uR D 0.0 m s�1

Test Case 1.2: 1-rarefaction hL D 0.1446 m hR D 0.0 m
(Dam-break type problem, ‘dry bed’) uL D 0.0 m s�1 uR D 0.0 m s�1

Test Case 1.3: 1-rarefaction 2-rarefaction hL D 0.0046 m hR D 0.0046 m
(with formation of a ‘dry zone’) uL D�1.0 m s�1 uR D 1.0 m s�1

Test Case 2.1: 1-shock 2-shock hL D 0.1446 m hR D 0.1446 m
uL D 1.0 m s�1 uR D�1.0 m s�1

Test Case 2.2: 1-shock 2-rarefaction hL D 0.0046 m hR D 0.1446 m
(Dam-break type problem, ‘wet bed’) uL D 0.0 m s�1 uR D 0.0 m s�1

Test Case 2.3: 1-rarefaction 2-shock hL D 0.1446 m hR D 0.0046 m
(Dam-break type problem, ‘wet bed’) uL D 0.0 m s�1 uR D 0.0 m s�1

Test Case 2.4: 1-rarefaction 2-rarefaction hL D 0.1446 m hR D 0.1446 m
uL D�1.0 m s�1 uR D 1.0 m s�1
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5. Projection of the function h.x, t / on the plane .x, t / illustrating the wave patterns. The color scale
represents the thickness of the granular mass. Note that the waves have a parabolic shape, contrary to the

classic shallow-water system where the waves are straight lines.

.x, t/ illustrating the wave patterns. The color scale represents the thickness of the granular mass.
We obtain the theoretical wave structure of Figures 3 and 4: the waves have a parabolic shape, contrary
to the classic shallow-water system where the waves are straight lines. In Figure 6, we observe that the
numerical solution agrees very well with our exact solution. In particular, positions and types of all
waves coincide, showing a very good agreement between the exact and numerical solution.§.

5. A SPECIFIC CASE: THE ‘DAM-BREAK’ PROBLEM

The problem of a dam breaking suddenly is a paradigm for the shallow water model. For our system
of equations, the analogous problem is when an infinite mass of granular material is suddenly released
from rest over an inclined plane.

First case: ‘dry bed’. Here, a granular material flows over a rough plane inclined at an angle '.
We assume that a granular mass of constant depth hL > 0 at x < 0, initially at rest, is suddenly
released at t D 0 s:

.h, hu/.x, 0/D

²
.hL, 0/ if x < 0,
.0, 0/ if x > 0.

Using the exact solution presented in Section 3 (case 1.2), the spatio-temporal change of the flow
depth is sketched in Figure 7(a) and described by

h.x, t/D

8̂<
:̂
hL, if x 6

�
mt
2
� cL

�
t ,

1
9g´

�
2cL �

x
t
C mt

2

�2
, if

�
mt
2
� cL

�
t < x 6

�
2cLC

mt
2

�
t ,

0, if x >
�
2cLC

mt
2

�
t ,

§The spurious over(under) shoots in the numerical solution near the step position for the depth-averaged velocity in
test disappear at convergence. Similarly, the numerical velocity near the front in cases and converges toward
the analytical solution when the grid is refined.
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Figure 6. Comparison of the exact solution with the numerical solution computed with the Rusanov scheme
(flow depth on the top and depth-averaged flow velocity on the bottom) at t D 0 and t D 0.5 s for tests –
of Table I. The numerical grid is 5000 cells with CFLD 0.5, m' 0.1839 m s�2, and g´ ' 9.0957 m s�2.
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(a)

(b)

Figure 7. Surface profile for the ‘dam-break’ problem: an infinite granular mass is suddenly released from
rest over an inclined rough bed (a) and bed covered by a layer made of the same material as the released

mass (b).

and the spatio-temporal change of the depth-averaged flow velocity is described by

u.x, t/D

²
mt , if x 6

�
mt
2
� cL

�
t ,

2
3

�
cLC

x
t
Cmt

�
, if

�
mt
2
� cL

�
t < x 6

�
2cLC

mt
2

�
t .

The regions x <
�
mt
2
� cL

�
t and x >

�
2cLC

mt
2

�
t are the spatio-temporal zones where the thickness

is not affected by the dam removal. We obtain the solution computed by Mangeney et al. [37].

Second case: ‘wet bed’. Here, we consider the case where a granular mass is initially released from
rest over an inclined plane of slope angle ', covered by a layer made of the same material. This case
may mimic erosion processes of natural flows traveling over deposits built up by earlier events [6]. It is
an obvious extension to the removal of a dam between two reservoirs containing material at different
heights and corresponds to the Riemann problem

.h, hu/.x, 0/D

²
.hL, 0/ if x < 0,
.hR, 0/ if x > 0,

with hL > hR > 0. Using the solution presented in Section 3 (case 2.3), the spatio-temporal change in
the flow depth is sketched in Figure 7(b) and described by

h.x, t/D

8̂̂̂
<
ˆ̂̂:
hL, if x 6

�
mt
2
� cL

�
t ,

1
9g´

�
2cL �

x
t
C mt

2

�2
, if

�
mt
2
� cL

�
t < x 6

�
2cL � 3c�C

mt
2

�
t ,

h�, if
�
2cL � 3c�C

mt
2

�
t < x <

�
PsC mt

2

�
t ,

hR, if x >
�
PsC mt

2

�
t ,
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and the spatio-temporal change in the depth-averaged flow velocity is described by

u.x, t/D

8̂̂̂
<
ˆ̂̂:
mt , if x 6

�
mt
2
� cL

�
t ,

2
3

�
cLC

x
t
Cmt

�
, if

�
mt
2
� cL

�
t < x 6

�
2cL � 3c�C

mt
2

�
t ,

2.cL � c�/Cmt , if
�
2cL � 3c�C

mt
2

�
t < x <

�
PsC mt

2

�
t ,

mt , if x >
�
PsC mt

2

�
t .

5.1. Influence of the friction coefficient on the front position and velocity

To illustrate the behavior of the exact solution in the dam-break problems, fluid heights are calculated
for the case of the instantaneous release of an infinitely-long hL D 20 m high granular mass on an
inclined bottom (' D 30°) without friction (ı D 0°), with ı D 15°, with ı D 29°, and with ı D 30°,
hereafter referred to as case A, case B, case C and case D, respectively. The solutions are compared
at time t D 15 s for different values of hR (Table II). As expected, as the friction increases, the front
travels over a smaller distance whatever hR. The intermediate state h� and the length of the region
where h D h� is not affected by the value of the friction coefficient. On the contrary, the value of hR
strongly changes h� and the length of the zone where hD h�: both quantities increase with hR.

To obtain better insight into the influence of the friction coefficient and of the ratio hR=hL on the
front behavior, let us look at the expression for the front position xfront as a function of the time t :

xfront.t/D

´ �
2
p
g´hLC

mt
2

�
t , if hR D 0,�

PsC mt
2

�
t , if 0 < hR < hL.

For hR > 0, the speed of the front is Pxfront D PsCmt=2 where Ps depends only on the two constant initial
values hL and hR:

Ps D h�

s
g´

2

h�C hR

h�hR
,

and the constant value h� 2 .hRIhL/ is the solution of the nonlinear equation

p
8.
p
hL �

p
h�/D .h� � hR/

s
1

hR
C

1

h�
.

We also know that on both sides of the shock wave, the velocity of the flow relative to the shock wave
is negative: Ps > u� > uR D 0. In Figure 8, we draw the position of the front xfront as a function of
time for different values of the friction angle ı and for different values of the ratio thickness hR=hL
with hL D 20 m and ' D 30°. For m¤ 0, the function xfront D xfront.t/ has a parabola shape; whereas
for m D 0, we obtain the classic straight line of the shallow-water system. As expected, the front
always accelerates for friction angle ı smaller than 30°. When ı D 30° (m D 0), that is, when the
friction compensates for gravity, the front immediately reaches a steady velocity, as in the classical
Saint-Venant system.

Table II. Front position xfront / thickness h� of the intermediate zone obtained with the exact solution for the
dam-break problem over a plane with slope angle ' D 30° for different values of hR and different values of

the friction angle ı. The position is computed at time t D 15 s with hL D 20 m.

Case A: ı D 0° Case B: ı D 15° Case C: ı D 29° Case D: ı D 30°
mD 4.905 m s�2 mD 2.629 m s�2 mD 0.196 m s�2 mD 0 m s�2

hR D 0 m=0 m 943 m=0 m 687 m=0 m 413 m=0 m 391 m=0 m
hR D 1%hL 795 m=3.423 m 539 m=3.423 m 267 m=3.423 m 243 m=3.423 m
hR D 33.61%hL 735 m=12.363 m 479 m=12.363 m 205 m=12.363 m 183 m=12.363 m
hR D 60%hL 738 m=15.73 m 482 m=15.73 m 208 m=15.73 m 186 m=15.73 m
hR D 99%hL 747 m=19.9 m 491 m=19.9 m 217 m=19.9 m 195 m=19.9 m
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(a) = 15 , thus m = 2.629 ms−2 (b) = 29 , thus m = 0.196 ms−2

(c) = 30 , thus m = 0.0 ms−2

Figure 8. Position of the front xfront as a function of the time t for different values of the friction angle ı.
For all figures, hL D 20 m and ' D 30°. For m > 0, the function xfront D xfront.t/ is a parabola; for mD 0,

we obtain the classic behavior of the shallow-water system where this function is a straight line.

5.2. Influence of the thickness of the erodible bed on the front position and velocity

Figure 8 shows that whatever the friction coefficient (i.e. whatever m), the front travels over a smaller
distance when the thickness of the bed layer on the right increases towards a value hR ' 33.61%hL.
Then the front position increases slightly with hR. This critical thickness hcR ' 33.61%hL is
independent of the friction angle ı for a given hL. Note that a strong decrease of the front position
for very small hR (about 1%hL) is observed, whereas for hR > hcR, the front position (and velocity) is
almost insensitive to the value of hR.

Let us look in more detail at the influence of the thickness of the erodible bed by focusing on the
case of the instantaneous release of an infinitely-long granular mass of thickness hL > 0 on an inclined
bottom covered or not by a layer made of the same granular material. To compute the position of the
front wave as a function of the ratio � � hR=hL, we introduce the normalized speed of the front
relative to the accelerated frame:

 �

xfront.t/
t
� mt

2p
g´hL

.

If � D 0 (i.e. hR D 0), the front of the flow is the tail of the rarefaction wave, whereas, if � 2 .0I 1/
(i.e. hL > hR > 0), the front of the flow is located at the shock wave, thus

 .�/D

´
2, if � D 0,
Psp
g´hL

D �.�/
p
2

q
1
�
C 1

�.�/
, if 0 < � < 1,
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(a) (b)

Figure 9. Normalized characteristics of the flow as a function of the normalized thickness of the
erodible layer.

where �D �.�/� h�
hL
2 .�I 1/ is implicitly defined by the following nonlinear equation

p
8.1�

p
�/D .�� �/

s
1

�
C
1

�
. (4)

Figure 9(a) shows the ratio � as a function of the ratio �: as expected, �.�/ ���!
�!1

1, �.�/ ���!
�!0

0 and

�0.�/ > 0. Figure 9(b) represents the normalized speed of the front  as a function of the ratio �:
 .�/ ���!

�!1
1 and  .�/ D 1 for � D �1 ' 0.0902. We observe non-monotonous behavior: denoting

�m the value such that  0.�m/ D 0, then for � < �m,  decreases as � increases and for � > �m,  
increases with �. To estimate �m, we observe that

 0.�/D
�2.�/C 2�.�/� C �2 �

p
�5.�/

q
2
�
C 2

�.�/

�
q
2
�
C 2

�.�/

�
�
p
�3.�/

q
8
�
C 8

�.�/
C ��.�/C 2�2.�/C �2

� .

Thus, solving  0.�/ D 0 numerically together with the Equation (4), we obtain �m ' 0.3361 and
 .�m/ ' 0.944, so that a minimum velocity (0.944

p
g´hL) of the front relative to the accelerated

reference frame is obtained for hR ' 33.61%hL. We conclude that

0.944
p
g´hL 6 Ps 6 2

p
g´hL.

5.3. Discussion on the physical meaning of the solution

A great amount of experimental and numerical work has been done on granular flows over rough or
erodible inclined beds [6, 16–18, 28–30]. Even though it is quite difficult to compare these results to
our very simplified exact solution, let us discuss the general trends and the rough order of magnitudes
of the solution with respect to laboratory experiments in some specific cases.

For granular collapse over rough beds with slope angles smaller than the repose angle of the gran-
ular mass involved (hereafter called moderate slope), the exact solution presented here reproduces the
mean dynamics and deposition of granular collapse over horizontal or inclined beds [6, 17]. On the
contrary, for granular collapse over an erodible bed of moderate slope, the solution proposed here does
not agree with experimental observations. In particular, contrary to what we obtained here using the
exact solution (Figure 9(b)), experimental results show that the front velocity increases with the thick-
ness of the erodible bed, that is, with � [6]. Numerical simulation by Farin et al. [45] shows indeed that
when using a Coulomb-like friction law, the front position and velocity decrease with increasing hR.
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However, it is possible to reproduce the increase in front position and velocity observed experimentally
when using the Pouliquen and Forterre friction law in which the friction coefficient depends on both
the velocity and thickness of the flow [45].

Even though the analogy between the exact solution and the experimental studies on granular flows
over erodible beds is very difficult due to the simplified solution developed here, it seems that the
thin layer model with a constant Coulomb friction law and its associated solution lacks a strong
physical basis to quantitatively reproduce the experimental observations. Indeed, the description of
erosion/deposition processes is still an open issue because of the lack of precise understanding and
quantification of the mechanisms and parameters that control the static/flowing transition in granular
media [7, 16, 30, 46, 47].

6. CONCLUSION

The key results of this paper are the complete general exact solution to the Riemann problem for
the shallow water equations with a Mohr–Coulomb type friction law and the mathematical proof of
the solution derivation. The solution comprises two waves, a 1-wave and a 2-wave, separated by an
intermediate constant state. Each of these two waves may only be a rarefaction or a shock wave. Thus,
there can only be seven possible combinations of waves. All these combinations, which constitute the
complete set of solutions to the Riemann problem, have been derived and discussed here. We have
proposed a method making it possible to find the intermediate state by solving a nonlinear equation.
The results computed with this method have been compared successfully with the numerical solutions
of some Riemann problems calculated by means of the Rusanov scheme, a Godunov-type approximate
Riemann solver.

We have also investigated the influence of the thickness of the erodible bed on the front speed
for the dam-break problem. When compared with existing experimental results, the exact solution
seems to reasonably well reproduce granular flows over a rough bed. On the other hand, the qualitative
and quantitative results obtained for granular flows over erodible layers are very different from the
observations, suggesting that more sophisticated flow laws should be used. In particular, the existence
of static and flowing zones within the granular mass observed when a mass is flowing over an erodible
bed or segregation and recirculation processes must be taken into account [6, 7, 16, 30]. Force chains
in granular materials may also play a role in erosion/deposition processes, as observed at the onset of
destabilization in granular layers, preventing the use of continuum models for accurate description of
these processes [47].

The detailed derivation and presentation of the solution is mostly dedicated to geophysicists,
physicists, and mathematicians for direct use or for possible generalization to more complicated
geometries or flow laws. These solutions can be extended to go beyond the specific problem of granular
flows because shallow-water equations are widely used in other fields such as lava, glacier and river
flows, oceanography, and atmospheric studies.

APPENDIX A. PROOF OF THE EXACT SOLUTION OF THE RIEMANN PROBLEM

In this section, we solve the Riemann problem for system (1) using classical theory of hyperbolic
problems. For x 2 R and t > 0, by introducing the velocity v.x, t/ � u.x, t/ � mt , the nonlinear
hyperbolic system (1) can be written concisely as

@tVC @xF.V/D 0 where V�
�
h

hv

�
and F.V/�

�
h.vCmt/

hv.vCmt/C
g´
2
h2

�
. (5)

Let us consider the Riemann problem, that is, the initial condition

V.x, t D 0/D

²
VL if x < 0,
VR if x > 0,

(6)

where VL � .hL, .hv/L/ and VR � .hR, .hv/R/ are two constant states.
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First, we describe here the mathematical properties of system (5). We follow with a detailed descrip-
tion of the construction of the analytical solution following four steps: (i) the eigenstructure of the
system; (ii) the solution for rarefaction waves; (iii) the solution for shock waves, (iv) the solution for
the general Riemann problem. Finally, we verify that the total energy function is an entropy function
for the system.

A.1. Hyperbolicity

To perform the hyperbolicity analysis, we rewrite Equation (5) in the quasilinear following form

@tWCA.W/@xWD 0 where W�
�
h

v

�
and A.W/�

�
vCmt h

g´ vCmt

�
. (7)

The matrix A.W/ has the following two real eigenvalues (characteristic speeds), written in increasing
order,

�1.W/D vCmt �
p
g´h 6 �2.W/D vCmt C

p
g´h.

If h > 0, the eigenvalues are distinct thus the system (5) is strictly hyperbolic.

A.2. Wave structure

We seek a solution of the form V.x, t/D V.�/, that is, a self-similar solution in the variable �, meaning
that the solutions at different times ‘can be obtained from one another by a similarity transformation’.
This means that the solution is constant along any ray � in the .x, t/-plane. It can be shown that self-
similar solutions of the Riemann problem are composites of constant states, shocks joining constant
states, and rarefaction waves connecting constant states or contact discontinuities. More precisely,
because for a strictly hyperbolic system waves of different families are strictly separated, any self-
similar solution to the Riemann problem for a n � n system comprises n C 1 constant states Vk ,
k D 1, : : : ,nC 1. States Vk�1 and Vk are joined by a wave of the k-family which, in general, may
consist of k-rarefactions, k-shocks, and/or k-contact discontinuities.

In our case, n D 2 so that the exact solution is composed of three constant states, VL, V�, and
VR, separated by two waves. Next, the admissible wave structure for our system is described, and the
complete set of solutions to the Riemann problem is given. We describe in detail how to compute the
intermediate constant state V� and the waves separating these three constant states and we will see that
the similarity variable � is � � x=t �mt=2.

A.2.1. Eigenstructure and Riemann invariants. The right eigenvectors associated with the
characteristic speeds are

r1.W/D

 
�
2
p
h

3
p
g´

,
2

3

!T
, r2.W/D

 
2
p
h

3
p
g´

,
2

3

!T
.

It is immediately verified that .r�k.W//T � rk.W/ D 1 for k D 1, 2 and for any W in the domain of
definition of the variables h and v, so that characteristic fields are genuinely nonlinear. The genuinely
nonlinear character of the eigenvalues implies that all waves are rarefaction or shock waves. Let us
define Ik as the Riemann invariant of the k-field, that is, .rIk.W//T � rk.W/ D 0, for k D 1, 2. We
can choose I1 D vCmt C 2

p
g´h and I2 D vCmt � 2

p
g´h.

A.2.2. Rarefaction waves. A rarefaction wave is a one-parameter family of states connecting a given
state and satisfying the differential equations (5). This kind of continuous solution is obtained by
determining the so-called integral curves of each genuinely nonlinear mode of the system, which is the
curves tangent at any point to the vector field of the associated eigenvector.

1-rarefaction. The condition �1.WL/ < �1.W�/ gives vL C mt �
p
g´hL < v� C mt �

p
g´h�

then v� > vL C
p
g´.
p
h� �

p
hL/. In a k-rarefaction wave, the k-Riemann invariants are con-

served; here I1.WL/ D I1.W�/, that is, vL C 2
p
g´hL D v� C 2

p
g´h�, then h� 7! v� D
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vL C 2
p
g´.
p
hL �

p
h�/, thus h� < hL and v� > vL. We conclude that the states W� D .h�, v�/

that can be connected to a given left state WL D .hL, vL/ by a 1-rarefaction wave satisfy the relation

v� D vLC 2
p
g´

�p
hL �

p
h�

�
for h� < hLI

and for h� < hL, we have v0�.h�/D�
p
g´=h� < 0 and v00�.h�/D

q
g´=

�
4h3�

�
> 0 (Figure 10(a)).

The speed of the 1-rarefaction wave satisfies �1.WL/ 6 dx
dt
6 �1.W�/, that is, vL C mt=2 �p

g´hL 6 x=t 6 v�Cmt=2�
p
g´h�, that can be rewritten as�

vLCmt �
p
g´hL

�
„ ƒ‚ …

�1.WL/

t 6 xC mt2

2
6
�
v�Cmt �

p
g´h�

�
„ ƒ‚ …

�1.W�/

t .

To compute the solution at a point . Ox, Ot / at the interior of the wave, we consider the characteristic
that connect this point at the origin of the wave .0, 0/. The characteristic speed verify dx

dt
D �1.W/,

that is, Ox
Ot
D v C mOt

2
�
p
g´h. Moreover, the Riemann invariant is conserved in the wave, thus

vC 2
p
g´hD vLC 2

p
g´hL. We obtain

v. Ox, Ot /D
1

3

�
vLC 2

p
g´hLC 2

Ox

Ot
�mOt

�
, h. Ox, Ot/D

1

9g´

�
vLC 2

p
g´hL �

Ox

Ot
C
mOt

2

�2
.

2-rarefaction.In the same way, the condition �2.W�/ < �2.WR/ gives v�<vRC
p
g´
�p
hR �

p
h�
�
.

In a k-rarefaction wave, the k-Riemann invariant is conserved; here I2.W�/ D I2.WR/, then
h 7! v� D vR C 2

p
g´
�p
h� �

p
hR
�

and thus h� < hR and v� < vR. We conclude that the
states W� D .h�, v�/ that can be connected to a given right state WR D .hR, vR/ by a 2-rarefaction
wave verify the relation

v� D vR C 2
p
g´

�p
h� �

p
hR

�
for h� < hRI

and for h� < hR, we have v0�.h�/ D
p
g´=h� > 0 and v00�.h�/ D �

p
g´=.4h3�/ < 0

(Figure 10(b)). The speed of the 2-rarefaction wave satisfies �2.W�/ 6 dx
dt
6 �2.WR/, that is,

v�Cmt=2C
p
g´h� 6 x=t 6 vR Cmt=2C

p
g´hR, that can be rewritten�

v�Cmt C
p
g´h�

�
t„ ƒ‚ …

�2.W�/

6 xC mt2

2
6
�
vR Cmt C

p
g´hR

�
„ ƒ‚ …

�2.WR/

t .

(a) (b) (c) (d)

Figure 10. Rarefaction and shock waves.
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To compute the solution at a point . Ox, Ot/ at the interior of the wave, we consider the characteristic that
connect this point at the origin of the wave .0, 0/. The characteristic speed satisfies dx

dt
D �2.W/,

that is, Ox
Ot
D v C mOt

2
C
p
g´h. Moreover, the Riemann invariant is conserved in the wave, thus

v � 2
p
g´hD vR � 2

p
ghR. We obtain

v. Ox, Ot /D
1

3

�
vR � 2

p
g´hR C 2

Ox

Ot
�mOt

�
, h. Ox, Ot/D

1

9g´

�
�vR C 2

p
g´hR C

Ox

Ot
�
mOt

2

�2
.

A.2.3. Shock waves. Let us turn now to the description of the shock curves. A k-shock wave is a piece-
wise constant discontinuous solution, satisfying the entropy condition, that propagates at a velocity P�k
dependent on the states existing on the two sides of the jump. The conservation variables must respect
the Rankine–Hugoniot jump conditions. In the present case, if we note .h`, v`/ and .hr , vr / these two
states, the jump conditions assume the form8̂̂<

ˆ̂:
P�k D

h`.v`Cmt/� hr .vr Cmt/

h` � hr
,

P�k D
h`v`.v`Cmt/C .g´=2/h

2
`
� hrvr .vr Cmt/� .g´=2/h

2
r

h`v` � hrvr
.

(8)

The curve x D �k.t/ is the shock path and P�k is the shock velocity.

1-shock. We would like to determine all the states W� D .h�, v�/ that can be connected to a given
state WL D .hL, vL/ by an entropic discontinuity (1-shock) at speed P�1. The discontinuity satisfies
the Lax entropy conditions if ²

�1.W�/ < P�1 < �2.W�/,
P�1 < �1.WL/.

Thus the 1-shock is admissible for h� > hL and v� < vL. Eliminating P�1 in Rankine–Hugoniot
jump conditions (8), we obtain

h� 7! v� D vLC .hL � h�/

s
g´

2

hLC h�

hLh�
for h� > hL

and the speed of the 1-shock satisfies dx
dt
D P�1 D vL C mt � h�

q
g´
2
hLCh�
hLh�

, that is, x
t
D

vL C
mt
2
� h�

q
g´
2
hLCh�
hLh�

, which can be written x C mt2=2 D P�1t . For h� > hL, we have

v0�.h�/ D �
p
g´
�
hLh�C 2h

2
�C h

2
L

�
=
p
8h3�hL.hLC h�/ < 0 and v00�.h�/ D

q
g´h

3
L.5h� C

3hL/=
p
32h5.hLC h�/3 > 0 (Figure 10(c)).

2-shock. In the same way, we would like to determine all the states W� D .h�, v�/ that can be con-
nected to a given right state WR D .hR, vR/ by an entropic discontinuity (2-shock) at speed P�2. The
discontinuity satisfies the Lax entropy conditions if²

�2.WR/ < P�2,
�1.W�/ < P�2 < �2.W�/,

which implies h� > hR and v� > vR. Eliminating P�2 in the Rankine–Hugoniot jump conditions (8),
we obtain

hR 7! v� D vR C .h� � hR/

s
g´

2

h�C hR

h�hR
for h� > hR
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and the speed of the 2-shock satisfies dx
dt
D P�2 D vR C mt C h�

q
g´
2
h�ChR
h�hR

, that is, x
t
D

vR C
mt
2
C h�

q
g´
2
hRCh�
hRh�

, which can be written x C mt2=2 D P�2t . For h� > hR, we have

v0�.h�/ D
p
g´
�
h�hR C h

2
R C 2h

2
�

�
=
p
8h3�hR.h�C hR/ > 0 and v00�.h�/ D �

q
g´h

3
R.5h� C

3hR/=
p
32h5�.h�C hR/

3 < 0 (Figure 10(d)).

Remark
It is interesting to note that as h� ! hL (resp. h� ! hR), we find that P�1 ! vL �

p
g´hL (resp.

P�2 ! vR �
p
g´hR). In other words, the speed of infinitesimal discontinuities is the same as a

characteristic speed.

A.3. Complete set of solutions of Riemann problems

Let us now consider the Riemann problem (6) where hL > 0, hR > 0, vL 2 R and vR 2 R are
constant. The solution consist of at most three constant states (including .hL, .hv/L/ and .hR, .hv/R/)
separated by a k-rarefaction or a k-admissible shock wave, k D 1, 2. So, for a left state WL D .hL, vL/
and a right state WR D .hR, vR/, there are only four possible combinations of solutions: we construct
a solution composed by a 1-wave and a 2-wave separated by an intermediate state W� D .h�, v�/ as in
the following figure.

1-wave

2-wave

WL

W*

WR

x

t

The variables that need to be determined to fully characterize the solution are: the intermediate
constant state W�, the speed of shocks P�1 and P�2, the states in rarefaction waves W1�rar and W2�rar.

Intermediate state. We begin by characterizing the intermediate state W� D .h�, v�/ that can be con-
nected to the given left state WL D .hL, vL/ by a 1-curve and to the given right state WR D .hR, vR/
by a 2-curve. The intermediate state

� is connected to a left state .hL, vL/ by a 1-wave family curve that has equation

v� D

8<
:
vL � .h� � hL/

2
p
g´

p
hLC

p
h�

if h� 6 hL (1-rarefaction),

vL � .h� � hL/
q
g´
2
h�ChL
h�hL

if h� > hL (1-shock);

� is connected to a right state .hR, vR/ by a 2-wave family curve that has equation

v� D

8<
:
vR C .h� � hR/

2
p
g´

p
hRC

p
h�

if h� 6 hR (2-rarefaction),

vR C .h� � hR/
q
g´
2
h�ChR
h�hR

if h� > hR (2-shock).

Thus, v� D vR C .h� � hR/´.h�, hR/ and h� is the root of the function

f .h/D vR � vLC .h� hL/´.h, hL/C .h� hR/ˇ.h, hR/
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with

ˇ.h, /D

8<
:

2
p
g´

p
hC
p
 

if h6  ,q
g´
2
hC 
h 

otherwise.

Complete solution. We have four different structural forms for the solution of the Riemann
problem.

If h� >max¹hL, hRº, the solution is composed of a 1-shock and a 2-shock and reads

W.x, t/D

8̂<
:̂

WL, if xC mt2

2
< P�1.hL, h�, vL/t ,

W�, if P�1.hL, h�, vL/t < xC mt2

2
< P�2.h�, hR, v�/t ,

WR, if xC mt2

2
> P�2.h�, hR, v�/t ,

where the speeds of the discontinuities are

P�1.hL, h�, vL/D vLCmt�h�

s
g´

2

hLC h�

hLh�
, P�2.hR, h�, vR/D vRCmtCh�

s
g´

2

h�C hR

h�hR
.

If hL < h� < hR, the solution is composed of a 1-shock and a 2-rarefaction and reads

W.x, t/D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

WL, if xC mt2

2
< P�1.hL, h�, vL/t ,

W�, if P�1.hL, h�, vL/t < xC mt2

2
<
�
v�Cmt C

p
g´h�

�
t ,

W2�rar, if
�
v�Cmt C

p
g´h�

�
t < xC mt2

2
<
�
vR Cmt C

p
g´hR

�
t ,

WR, if xC mt2

2
>
�
vR Cmt C

p
g´hR

�
t ,

with

P�1.hL, h�, vL/DvLCmt�h�

s
g´

2

hLC h�

hLh�
, W2�rarD

0
B@ 1
9g´

�
�vR C 2

p
g´hR C

x
t
� mt

2

�2
1
3

�
vR � 2

p
g´hR C 2

x
t
�mt

�
1
CA .

Note that, if hL D 0, it is natural to consider vL D 0 and then there is only a 2-rarefaction (the
1-shock is not defined). In this case, the solution reads

W.x, t/D

8̂̂̂
<̂
ˆ̂̂̂:
.0, 0/, if xC mt2

2
<
�
vR Cmt � 2

p
g´hR

�
t ,

Wrar, if
�
vR Cmt � 2

p
g´hR

�
t < xC mt2

2
<
�
vR Cmt C

p
g´hR

�
t ,

WR, if xC mt2

2
>
�
vR Cmt C

p
g´hR

�
t .

If hR < h� < hL, the solution is composed of a 1-rarefaction and a 2-shock and reads

W.x, t/D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

WL, if xC mt2

2
<
�
vLCmt �

p
g´hL

�
t ,

W1�rar, if
�
vLCmt �

p
g´hL

�
t < xC mt2

2
<
�
v�Cmt �

p
g´h�

�
t ,

W�, if
�
v�Cmt �

p
g´h�

�
t < xC mt2

2
< P�2.hR, h�, vR/t ,

WR, if xC mt2

2
> P�2.hR, h�, vR/t ,

with

P�2.hR, h�, vR/D vRCmtCh�

s
g´

2

h�C hR

h�hR
, W1�rarD

0
B@ 1
9g´

�
vLC 2

p
g´hL �

x
t
C mt

2

�2
1
3

�
vLC 2

p
g´hLC 2

x
t
�mt

�
1
CA .
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Again, if hR D 0, it is natural to consider vR D 0 and then there is only a 1-rarefaction (the
2-shock is not defined). Then the solution reads

W.x, t/D

8̂̂̂
<̂
ˆ̂̂̂:

WL, if xC mt2

2
<
�
vLCmt �

p
g´hL

�
t ,

Wrar, if
�
vLCmt �

p
g´hL

�
t < xC mt2

2
<
�
vLCmt C 2

p
g´hL

�
t ,

.0, 0/, if xC mt2

2
>
�
vLCmt C 2

p
g´hL

�
t .

If h� <min¹hL, hRº, the solution is composed of a 1-rarefaction and a 2-rarefaction. We consider
the following two cases:
� if vR � vL < 2

p
g.
p
hR C

p
hL/ (which ensure that h� > 0) the solution is

W.x, t/D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

WL, if xC mt2

2
<
�
vLCmt �

p
g´hL

�
t ,

W1�rar, if
�
vLCmt �

p
g´hL

�
t < xC mt2

2
<
�
v�Cmt �

p
g´h�

�
t ,

W�, if
�
v�Cmt �

p
g´h�

�
t < xC mt2

2
<
�
v�Cmt C

p
g´h�

�
t ,

W2�rar, if
�
v�Cmt C

p
g´h�

�
t < xC mt2

2
<
�
vR Cmt C

p
g´hR

�
t ,

WR, if xC mt2

2
>
�
vR Cmt C

p
g´hR

�
t I

� if the initial states do not satisfy the condition vR�vL > 2
p
g.
p
hRC

p
hL/, the Riemann

problem has no solution in the above sense. However, one can yet define a solution by
introducing a dry state and the solution consists of two rarefaction waves separated by a dry
zone where h D 0, and the other dependent variables are left undefined (classically one set
v D 0)

W.x, t/D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

WL, if xC mt2

2
<
�
vLCmt �

p
g´hL

�
t ,

W1�rar, if
�
vLCmt �

p
g´hL

�
t < xC mt2

2
<
�
vLCmt C 2

p
g´hL

�
t ,

.0, 0/, if vLCmt C 2
p
g´hL/t < xC

mt2

2
<
�
vR Cmt � 2

p
g´hR

�
t ,

W2�rar, if
�
vR Cmt � 2

p
g´hR

�
t < xC mt2

2
<
�
vR Cmt C

p
g´hR

�
t ,

WR, if xC mt2

2
>
�
vR Cmt C

p
g´hR

�
t ,

with

W1�rarD

0
B@ 1
9g´

�
vLC 2

p
g´hL �

x
t
C mt

2

�2
1
3

�
vLC 2

p
g´hLC 2

x
t
�mt

�
1
CA, W2�rarD

0
B@ 1
9g´

�
�vR C 2

p
g´hR C

x
t
� mt

2

�2
1
3

�
vR � 2

p
g´hR C 2

x
t
�mt

�
1
CA.

A.4. Entropy dissipation

For this system, the total energy E and the energy flux G are respectively,

E D
h.vCmt/2C g´h

2

2
, G D

�
h.vCmt/2

2
C g´h

2

�
.vCmt/.

We can compute

@E

@W
D

 
.vCmt/2

2
C g´h

h.vCmt/

!
,

@G

@W
D

0
@
�
.vCmt/2

2
C 2g´h

�
.vCmt/

3
2
h.vCmt/2C g´h

2

1
A ,
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thus @E
@W

�
@V
@W

��1
@F
@W D

@G
@W . This says that the total energy function is an entropy function for the

system (5). To see whether the total energy function is convex, we compute the matrix of second
derivatives

@

@W

�
@E

@W

�T
D

�
g´ vCmt

vCmt h

�
.

This matrix is positive defined if and only if .vCmt/2 < gh.
Let .h`, v`/ and .hr , vr / two states and let us note �?� � ?r � ?`. Recalling that at prop-

agating discontinuity, the Rankine–Hugoniot conditions (8) require �h.v C mt/� D �h� P�k and�
hv.vCmt/C

g´
2
h2

�
D �hv� P�k , it follows that

�E�D 1

2
�h.vCmt/2C g´h2�D 1

2
�hv.vCmt/C g´h2C h.vCmt/mt�

D
1

2

�
hv.vCmt/C

g´

2
h2

�
C
g´

4
�h2�C 1

2
�h.vCmt/�mt

D
1

2
�hv� P�k C g´ .h`C hr /

4
�h�C 1

2
�h� P�kmt

D
1

2
.�h.vCmt/�� �h�mt/ P�k C g´ .h`C hr /

4
�h�C 1

2
�h� P�kmt

D
1

2
�h�

�
P�2k C g´

.h`C hr /

2

�
.

For a 1-shock, the Lax admissibility condition requires that �h� > 0, which implies �E� > 0. In this
case, the velocities of the flow relative to the shock are

.vLCmt/� P�1 D

s
g´
hLC h�

2

h�

hL
, .v�Cmt/� P�1 D

s
g´
hLC h�

2

hL

h�
.

In both cases, the velocity of the flow relative to the shock is positive. Thus, in this case, the total
energy E decreases from the pre-shock state (the intermediate state) to the post-shock state (the left
state). Similarly, for a 2-shock we have �h�< 0 and then �E�< 0, and the velocities of the flow relative
to the shock are

.v�Cmt/� P�2 D�

s
g´
hR C h�

2

hR

h�
, .vR Cmt/� P�2 D�

s
g´
hR C h�

2

h�

hR
.

On both sides of the shock, the velocity of the flow relative to the shock is negative, so this condition
says that the total energyE decreases from the pre-shock state (the intermediate state) to the post-shock
state (the right state).
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