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Abstract. In this work we focus on the numerical study of shallow submarine

avalanches. Submarine avalanches could be modeled by a two-layer shallow-

water Savage-Hutter type model (see [9]). The system is discretized by a finite
volume solver named as IFCPH, that results form a combination of IFCP solver

(see [11]) and the standard HLL solver (see [13]). Concerning the applications,
we focus on the collapse of an initially cylindrical submarine granular mass

along an horizontal plane. It is well stablished by laboratory studies ([14]) and

the dimensional analysis of the Savage-Hutter model and numerical simulations
([16]), that the final profile of the landslide depends on the aspect ratio a =

Hi/Ri, where Hi and Ri are the initial height and radius, respectively, and

the effective friction angle. In this work, a similar behavior, for the two-layer
model, and the final profile of the landslide only depends on the two aspect

ratios: aH = H1/H2 and a2 = H2/R, with R and H2 the initial radius and

height of the sediment column, respectively, and H1 the initial height of the
water above the sediment column. The sensitivity of the granular dynamics and

of the associated water perturbation to these two aspect ratios is investigated.

1. Introduction. Submarine avalanches may occur when a sediment layer lying
on the ocean bottom suddenly becomes unstable. These avalanches may generate
tsunami waves that carry the signature of their characteristics and dynamics. These
processes are however difficult to simulate because of the complex interaction be-
tween the granular and the fluid phases [2] and because of the accurate derivation of
the shallow approximation for both the sediment and fluid layers. In [9] a two-layer
Shallow Water Equation (SWE) system has been proposed to simulate submarine
avalanches and the potentially generated tsunami waves. The first layer corresponds
to the fluid and the second one to the sediment layer.
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For the sediment layer, a Savage-Hutter type model is considered. The pioneering
work of Savage-Hutter [24] derives a model to describe granular flows over a slop-
ping plane based on a Coulomb friction law that describes the avalanche/bottom
interaction.

One of the characteristics of the model proposed in [9] is that the definition of the
Coulomb friction term takes into account bouyancy effects involved in submarine
avalanches. Another characteristics is that, depending on the ratio between the
water density and the sediment density, the motion of the sediment avalanche can
be more or less influenced by the presence of the fluid.

In this work we present a two-dimensional two-layer model that is a generaliza-
tion of the 1D model presented in [9] in cartesian coordinates. One of the question
arising in the deduction of the model is the choice of the coordinate system in which
the model is deduced. Let us remember that the Saint-Venant equations are set up
in cartesian coordinates, but it is valid only for almost flat topography, thus not
relevant for debris avalanches in particular. On the other hand, the Savage-Hutter
model uses the curvilinear coordinate along a sloping plane. New Savage-Hutter
models over a general bottom have been proposed by Bouchut et al. in [1], taking
into account the curvature of the topography. In [3], Bouchut and Westdickenberg
generalize the previous models for small or for general slope variation in two di-
mensions. The 1D model introduced in [9] for submarine avalanches has been also
deduced on local coordinate along the topography, by taking into account the cur-
vature of the bottom. Here, we only focus on the spreading of an initially cylindrical
submarine granular mass on a flat bottom, therefore, cartesian coordinates could be
used. The resulting model has non-conservative terms, that come from the pressure
terms, and can be written under the general formulation

∂W

∂t
+

∂F1

∂x1
(W ) +

∂F2

∂x2
(W ) +B1(W )

∂W

∂x1
+B2(W )

∂W

∂x2
= S(W ), (1)

where the unknown W (x, t) is defined in the domain D×(0, T ), where D is a subset
of R2, with values in an open subset Ω of RN ; Fi, i = 1, 2 are regular functions from
Ω to RN ; Bi, i = 1, 2 are regular function matrices from Ω to MN×N (R) and S, is
defined from Ω to RN .

Finite volume path-conservative schemes ([19]) are well-adapted to approximate
non-conservative hyperbolic system (1). Here, we propose to combine two par-
ticular path-conservative schemes: the IFCP solver (Intermediate Field Capturing
Parabola method, see [11]), that is very well-adapted to approximate two-layer
shallow-water type systems, with the robust extension of HLL solver to the non-
conservative framework (see [6]). IFCP solver provides accurate results, similar to
the standard path-conservative Roe scheme ([20]), being IFCP more efficient, from
the computational point of view, but may present disturbances in wet/dry fronts,
while HLL solver is more robust in such situations. Therefore, the main objective
is to naturally combine both solvers, and this can be easily done in the framework
of PVM schemes. Both solvers, IFCP and HLL could be re-written as PVM meth-
ods with a similar structure, that allows to combine them in a very natural way,
obtaining the IFCPH solver.

As the two-dimensional landslide model is rotationally invariant, IFCPH solver
could be extended as the HLL solver to deal with the contact discontinuities asso-
ciated to the tangential velocities (see [26])
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This work is organized as follows. In Section 2 we present a 2D extension of
the model proposed in [9] for submarine avalanches. Section 3 is devoted to the
presentation of the IFCPH finite volume solver. Finally, in Section 4, we analyze
the dependency of the model on the parameters involved both in terms of avalanche
dynamics and water wave generation.

2. 2D two-layer Submarine landslide model. In [9] a two-layer 1D model is
presented to study submarine avalanches. The first layer corresponds to the water
and it is modeled by the standard shallow-water system and the submerged sediment
layer is modeled by a Savage-Hutter type system (see [24]).

Savage-Hutter model is characterized by the presence of a Coulomb friction term.
This term opposes the avalanche motion and depends on the pressure at the bottom
and on a friction coefficient. When the driving forces are higher than a threshold,
the avalanche is moving and Coulomb friction applies to the flow [15]. When the
driving forces are smaller, the material stops. The Coulomb friction term in the
model proposed by [9] also includes the bouyancy effect.

In this section we present a 2D simplified extension of the model proposed in
[9] with flat bottom topography. With subindex 1 we denote the unknowns corre-
sponding to the fluid layer: h1 is the height of the fluid layer and �q 1 = (q11, q12) =
(h1U1, h1V1) is the fluid flux, with �u1 = (U1, V1) the fluid velocity vector. Index
2 corresponds to the sediment layer: by h2 we denote the height of the sediment
layer and �q 2 = (q21, q22) = (h2U2, h2V2) is the flux of the granular material, with
�u2 = (U2, V2), the granular velocity vector

h

h

2

1

x

Granular layer y

Water free surfacez

Figure 1. Notation: 2D submarine avalanche on a flat bottom
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∂t (h1) + ∂x(h1U1) + ∂y(h1V1) = 0,

∂t (h1U1) + ∂x(h1U
2
1 ) + ∂y(h1U1V1) + gh1∂x(h1 + h2) = 0

∂t (h1V1) + ∂x(h1U1V1) + ∂y(h1V
2
1 ) + gh1∂y(h1 + h2) = 0

∂t (h2) + ∂x(h2U2) + ∂y(h2V2) = 0,

∂t (h2U2) + ∂x(h2U
2
2 ) + ∂y(h2U2V2) + gh2∂x(rh1 + h2) = Tx

∂t (h2V2) + ∂x(h2U2V2) + ∂y(h2V
2
2 ) + gh2∂y(rh1 + h2) = Ty

(2)

where g is the gravity acceleration, r = ρf/ρs is the ratio between the fluid density,
that it is supposed to be ρf = 1000 kg.m−3 and the density of the granular material,
ρs. Typical values of ρs are between 1200 to 2500 kg.m−3 depending on the solid
volume fraction and on the material involved. Note that we consider here quite
dense granular material consistent with our model. As a result, the density ratio is
0.4 < r < 0.8. T = (Tx, Ty) denotes the Coulomb friction term:

T = −g(1− r)h2µ�
U2
2 + V 2

2

�
U2

V2

�
.

Note that this term is multi-valuated when |�u2| = 0.
The simplest friction law corresponds to a constant friction coefficient:

µ = tan(δ), (3)

where δ is the friction angle, although more complex friction terms have been used
to simulate natural subaerial or submarine landslides (see [17], [22]). For example,
in order to incorporate turbulence effects, McDougall and Hungr [18] proposed to
add a turbulent friction term proportional to (U2

2 +V 2
2 ). Other definitions, deduced

from experimental data, have been proposed by Pouliquen (see [23]) where the
friction coefficient depends on the velocity and thickness of the granular layer. This
law is widely used in the literature but involves at least three parameters that are
difficult to calibrate for natural landslides (see e. g. [4]).

Model (2) can be written in the same form as (1), by setting:

W =




h1

h1U1

h1V1

h2

h2U2

h2V2




, F1(W ) =




h1U1

h1U
2
1

h1U1V1

h2U2

h2U
2
2

h2U2V2




, F2(W ) =




h1V1

h1U1V1

h1V
2
1

h2V2

h2U2V2

h2V
2
2




,

B1(W ) =




0 0 0 0 0 0
gh1 0 0 gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rgh2 0 0 gh2 0 0
0 0 0 0 0 0




,
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B2(W ) =




0 0 0 0 0 0
0 0 0 0 0 0

gh1 0 0 gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rgh2 0 0 gh2 0 0




,

S(W ) = S1,T (W ) + S2,T (W ) is defined by the Coulomb Friction terms,

S1,T (W ) = −g(1− r)h2µ�
U2
2 + V 2

2




0
0
U2

0


 , S2,T (W ) = −g(1− r)h2µ�

U2
2 + V 2

2




0
0
0
V2


 .

Note that Fi(W ), i = 1, 2 represent the convective terms and Bi(W )∂xW are the
pressure terms.

System (2) is rotationally invariant. Thus, if we denote by η = (η1, η2) an unit
vector, and

Rη =

�
η1 η2
−η2 η1

�
, Tη =




1 0 0 0
0 Rη 0 0
0 0 1 0
0 0 0 Rη


 .

and if we also denote

Fη(W ) = F1(W )η1 + F2(W )η2, Bη(W, s) = B1(W )η1 +B2(W )η2,

Sη(W ) = S1,T (W )η1 + S2,T (W )η2.

Then, the following properties follows:

TηFη(W ) = F1(TηW ), TηBη(W ) = B1(TηW ) and TηSη(W ) = S1,T (TηW ). (4)

Moreover, for any unit vector η, system (2) can be rewritten as follows:

∂tW + ∂ηFη + ∂η⊥Fη⊥ +Bη(W )∂ηW +Bη⊥(W )∂η⊥W = Sη(W ) + Sη⊥(W ).

Multiplying previous system by Tη and using (4) we obtain

∂t(TηW ) + ∂ηF1(TηW ) +B1(TηW )∂ηTηW = S1(TηW, ) +Rη⊥ (5)

where

Rη⊥ = −Tη

�
∂η⊥Fη⊥ +Bη⊥(W )∂η⊥W − Sη⊥(W )

�
.

h

K

E

K
i

j

ij

ij

Figure 2. Notation, control volumes
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Up to our knowledge, there is not in the bibliography results on the existence
and uniqueness of solution of this model. It can be seen as a bilayer Shallow Water
system with a specific definition of the friction terms. In this sense we can remark
that in [25] an existence theorem of global weak solutions is presented for a bilayer
Shallow Water system with other friction terms and capillary effects.

3. Numerical scheme. First we set a partition of the domain Ω into control
volumes. We denote the volumes that define the mesh by Ki. Here, quadrilateral
finite volume meshes are considered. In any case, the description of the numerical
scheme is also valid for arbitrary meshes. Let also denote by |Ki| the are of the
volume Ki and by Ei j the common edge between the volumes Ki and Kj . dij is
the distance between the center of mass of both volumes, and ηi j is the unitary
normal vector to Ei j outward to Ki (see Figure 2). We will also denote by Wn

i the
approximation computed by the numerical scheme of the cell average of the solution
at every volume Ki at time tn:

Wn
i ≈ 1

|Ki|

�

Ki

W (x, tn) dx.

Here a two step method is used to discretize (2). In the first step, the Coulomb
friction term is neglected and the non-conservative hyperbolic system is discretized
by means of the IFCPH path-conservative finite volume solver, to obtain the value

W
n+1/2
i given by:

W
n+1/2
i = Wn

i − Δt

|Ki|
�

j∈Ki

|Ei j |D−(Wn
i ,W

n
j , ηi j). (6)

In the second step, that corresponds to the discretization of the Coulomb friction

term, we obtain Wn+1
i from W

n+1/2
i as follows:

We set hn+1
1,i = h

n+1/2
1,i , �q n+1

1,i = �q
n+1/2
1,i and hn+1

2,i = h
n+1/2
2,i . In order to compute

�q n+1
2,i , let us first define �u ∗

2,i as follows,

�u ∗
2,i = �u

n+1/2
2,i −Δt

g(1− r)µ

| �u2,i
n+1/2|

�u
n+1/2
2,i .

Then we proceed as follows: if |�u ∗
2,i| ≤ g(1−r)µ then we set �un+1

2,i = �u ∗
2,i. Otherwise

�un+1
2,i = 0. Finally, �q n+1

2,i is obtained multiplying �un+1
2,i by hn+1

2,i .

In order to define D−(Wn
i ,W

n
j , ηi j), we consider at each edge Eij of the finite

volume mesh the following 1D projected Riemann problem (see [5], [7] and [10]):




∂tW + ∂ηij
Fη +Bηij

(W )∂ηij
W = 0,

W (x, y, t = 0) =

�
Wi if (x, y) ∈ Ki,
Wj if (x, y) ∈ Kj .

Notice that taking into account the invariance by rotation property (4)

∂tW + ∂ηij
Fη +Bηij

(W )∂ηij
W =

= T−1
ηij

�
∂tTηij

W + ∂ηij
F1(Tηij

W ) +B1(Tηij
W )∂ηij

Tηij
W

�
.

Then, we propose to define

D−(Wn
i ,W

n
j , ηi j) = T−1

ηij
D−(Tηij

Wn
i , Tηij

Wn
j )
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being D−(TηijW
n
i , TηijW

n
j ) the path-conservative fluctuation associated to the fol-

lowing 1D problem:




∂tw(ξ, t) + ∂ξF1(w) +B1(w)∂ξw = 0,

w(ξ, t = 0) =

�
Tηij

Wi if ξ < 0,
Tηij

Wj if ξ > 0.

(7)

System (7) has non-conservative products. The presence of the nonconservative
product implies that the notion of weak solution in the sense of distributions can-
not be used. The theory introduced by Dal Maso, LeFloch, and Murat [8] is followed
here to define weak solutions of (7). This theory allows one to define the noncon-
servative product B1(w)∂ξw as a bounded measure provided a family of Lipschitz
continuous paths ϕ : [0, 1] × Ω × Ω → Ω is prescribed, which must satisfy certain
natural regularity conditions. Here, the family of straight segments is considered:

ϕ(s;wL, wR) = wL + s(wR − wL).

Moreover, the chosen path will play also an important role in the discretization of
the system. As mentioned before, here path-conservative finite volume framework
will be used.

Moreover, system (7) has two linearly degenerated fields associated to the tan-
gential velocities of each layer with respect to the normal vector ηij , that act as two
passive scalars. In this way, the definition of D−(Tηi jWi, Tηi jWj) is blocked based:
the first block corresponds to the non passive scalar unknowns and the second block
to the passive scalar unknowns.

To define D−(Tηi j
Wi, Tηi j

Wj), we introduce the following notation. Let N de-
note the set of index associated to the non passive scalar unknowns, that for that (7)
is N = {1, 2, 4, 5}. We also denote by [D−]N the vector defined by the components
of D− with index in N .

The definition of the numerical scheme is done in the following two steps:

◦ Step 1: Definition of [D−(wi, wj)]N .
We consider here path-conservative numerical schemes, corresponding to the fol-

lowing definition:

[D−(wi, wj)]N =
1

2

�
[F1(wj)− F1(wi)]N +B1,ij [wj − wi]N

−Qij([wj − wi]N +A−1
ij [S1,T ,ij ]N )

�
,

(8)

In the previous equation Aij is a generalized Roe matrix (see [20, 19]) associated
to (7) for the equations of the set N , that is

Ai j [wj − wi]N = [F1(wj)− F1(wi)]N +B1,ij [wj − wi]N ,

where

B1,ij [wj − wi]N =

� 1

0

[B1(ϕ(s, wi, wj))∂sϕ(s, wi, wj)]Nds

and

[S1,T ,ij ]N = [S1,T (wij)]N ,

being wij an intermediate state computed from wi and wj .
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Note that the numerical diffusion term Qij([wj −wi]N +A−1
ij [S1,T ,ij ]N ) depends

on the Coulomb friction term. This correction is critical in order to preserve accu-
rately the stationary solutions of the form:

�u1 = �0, �u2 = �0, h1 + h2 = cst, and ∂xh2 ≤ µ ∂yh2 ≤ µ.

The viscosity matrix Qij is defined by considering the IFCP method (see [11]):

Qij = αij
0 Id+ αij

1 Aij + αij
2 A

2
ij (9)

where αij
l , l = 0, 1 2 are defined in terms of the wave speed of the system:

αij
0 = δL Sij

R Sij
int + δR Sij

L Sij
int + δint S

ij
L Sij

R ,

αij
1 = −Sij

L (δR + δint)− Sij
R (δL + δint)− Sij

int(δL + δR), (10)

αij
2 = δL + δR + δint

with

δL =
|Sij

L |
(Sij

L − Sij
R )(Sij

L − Sij
int)

, δR =
|Sij

R |
(Sij

R − Sij
L )(Sij

R − Sij
int)

,

δint =
|Sij

int|
(Sij

int − Sij
L )(Sij

int − Sij
R )

.

Here, Sij
L and Sij

R are approximations of the slowest and fastest waves (respectively)
of the Riemann problem associated to intercell Eij . Here, the following expressions
are used:

Sij
L = min(λ−

ext,i,λ
−
ext,ij), Sij

R = max(λ+
ext,j ,λ

+
ext,ij).

Sij
int is defined by

Sij
int = sij max(|λ−

int,ij |, |λ+
int,ij |) (11)

with

sij =

�
sign(Sij

L ) if |Sij
L | ≥ |Sij

R |,
sign(Sij

R ) otherwise.
(12)

where λ−
ext,ij < λ−

int,ij < λ+
int,ij < λ+

ext,ij are the eigenvalues of Aij . Moreover, for

the case of wet/dry fronts, that is if hk,i or hk,j is zero for k = 1, 2, we consider the

following definition of the coefficients αij
l , l = 0, 1, 2:

αij
0 =

Sij
R |Sij

L |− Sij
L |Sij

R |
Sij
R − Sij

L

, αij
1 =

|Sij
R |− |Sij

L |
Sij
R − Sij

L

, αij
2 = 0.

With this choice, it is straightforward to check that the Riemann solver reduces to
HLL solver (see [6]), which is more robust when wet/dry fronts appear.

Therefore, the resulting numerical scheme reduces to HLL solver in wet/dry areas
and in other case reduces to IFCP solver.

◦ Step 2: In this second step, we define the components of the numerical fluctuation,
D−, corresponding to the passive scalar unknowns. In this particular system, they
correspond to equations 3 and 6. Taking into account the relation between the
passive scalar and the other variables, and that their associated wave speeds only
depends on the normal velocities of both layers, we propose the following definition:

[D−(wi, wj)]3 =

�
[D−(wi, wj)]1 + [F1(wi)]1

�
C∗
1,η⊥

i j
− [F1(wi)]3
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[D−(wi, wj)]6 =

�
[D−(wi, wj)]4 + [F1(wi)]4

�
C∗
2,η⊥

i j
− [F1(wi)]6.

where, C∗
l,η⊥

ij
, l = 1, 2 is an uncentered approximation of the tangential velocities of

each layer through edges Eij :

C∗
1,η⊥

ij
=

�
[TηijWi]3/h1,i if S∗

1,ij < 0,
[TηijWj ]3/h1,j if S∗

1,ij > 0,
C∗
2,η⊥

ij
=

�
[Tηij

Wi]6/h2,i if S∗
2,ij < 0,

[TηijWj ]6/h2,i if S∗
2,ij > 0,

(13)
The values S∗

l,ij , l = 1, 2 are an approximation of the normal velocities through

edges Eij . We can use for example S∗
1,ij = ([D−(wi, wj)]1 + [F1(wi)]1)/h1,ij and

S∗
2,ij = ([D−(wi, wj)]4 + [F1(wi)]4)/h2,ij , respectively, being hl,ij =

hl,i+hl,j

2 . Some
other definitions are possible, as the one proposed in [10].

Theorem 3.1. The previous numerical scheme exactly preserves the water at rest
solutions given by

�u1,i = 0, �u2,i = 0, h1,i + h2,i = cst,
1

|Ki|

�����

j∈Ki

�
h2,j − h2,i

Δxηi,j,1 +Δyηi,j,2

�2

≤ µ.

The proof is similar to the one performed in [9].

4. Numerical tests: submarine collapse of initially cylindrical granular
masses. In this section we simulate a set of submarine circular dam-break problems
and we also compare them with some existing laboratory data for the case of aerial
avalanches. Let us denote by R the radius of the initial granular column and by
H2 its initial height. H1 designs the initial height of the water layer above the
sediment column (See Figure 3). We introduce two aspect ratios : aH = H1/H2

and a2 = H2/R. By scaling the equations as proposed below, we observe that the
dimensionless equations only depend on aH and a2 and not on the granular mass
or on the gravity acceleration g.

x

y

Water free surfacez

H

R

H

1

2

Figure 3. Initial condition and notation

The following change of variable is done:

(x, y) = (R x̃,R ỹ), t =

�
R

g
t̃,

Ul =
�

gHlŨl, Vl =
�

gHlṼl, hl = Hlh̃l, l = 1, 2.

183
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By omitting the tildes, we obtain the following system




�
aH
a2

∂t (h1) + aH∂x(h1U1) + aH∂y(h1V1) = 0,

�
aH
a2

∂t (h1U1) + aH∂x(h1U
2
1 ) + aH∂y(h1U1V1) + h1∂x(aHh1 + h2) = 0

�
aH
a2

∂t (h1V1) + aH∂x(h1U1V1) + aH∂y(h1V
2
1 ) + h1∂y(aHh1 + h2) = 0

1√
a2

∂t (h2) + ∂x(h2U2) + ∂y(h2V2) = 0,

1√
a2

∂t (h2U2) + ∂x(h2U
2
2 ) + ∂y(h2U2V2) + h2∂x(raHh1 + h2) = Tx

1√
a2

∂t (h2V2) + ∂x(h2U2V2) + ∂y(h2V
2
2 ) + h2∂y(raHh1 + h2) = Ty

where

T = −a2(1− r)h2µ�
U2
2 + V 2

2

�
U2

V2

�
.

and µ = tan δ. So, the solutions are mainly governed by the values of aH , a2, r and
δ.

In what follows, we initially check that the previous numerical scheme is able
to recover the stationary profiles of aerial avalanches. Aerial avalanches (not sub-
merged) can be described here by setting r = 0. Next, we will consider fully
submerges landslides and we perform some sensitivity analysis with respect to the
parameters aH , a2, r and δ.

The initial condition is �q1 = �0, �q2 = �0,

h1(x, 0) = aHa2R+ a2R− h2(x, 0),

h2(x, 0) =

�
a2R if (x− x0)

2 + (y − y0)
2 ≤ (R)2,

0 otherwise.

We set the domain [0, 0.6]m×[0, 0.6]m, the center of the cylinder is (x0, y0) =
(0.3m, 0.3m) and R = 0.0705m. The domain is decomposed in 200 × 200 square
finite volumes.

We compare the numerical solutions for r = 0, r = 0.2, r = 0.4, r = 0.6 and
r = 0.8 with laboratory data of dry granular flows, i. e. corresponding to r = 0.
The case r = 0.2 is presented to show the transition between submarine and aerial
avalanches. The test is done for a2 = 0.56 as in the experiments (1) in the sub-aerial
case and (2) for different values of the relative height aH = 1, 2, 10 to assess the
sensitivity of the flow dynamics and generated tsunami to the water depth.

We also denote

η(x, t) = h1(x, t) + h2(x, t)−Aref .

where Aref is the reference water surface. For this test Aref = h1(x, 0) + h2(x, 0).
We begin with the experiments corresponding to a2 = 0.56. First, in Figure 4 the

comparison between the experiment with r = 0 and experimental data is presented.
A good agreement of the numerical results and the laboratory data can be observed.
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Figure 4. Granular mass profiles. h2 evolution for r = 0.

In Figure 5 a comparison between the evolution of the sediment layer for different
values of r is presented, where aH is set to 1. For other values of aH , similar
behaviour is obtained. The evolution of the submarine avalanche depends on r. For
smaller values of r, the final deposit is quickly reached.

In Figure 6 we present the evolution of the front of the avalanche denoted by
xfront. Figure 6(c) correspond to Lf , the final length of the deposit. We observe
that the final length of the avalanche is smaller for bigger values of r and bigger
values of aH . The main difference of the final length between the aerial avalanche
(corresponding to r = 0) and submarine avalanches corresponds to r = 0.8 and
aH = 10.

In Figure 7 we present the evolution of xfront, for the values aH = 1 and aH = 10.
We can observe how, effectively the final deposit is reached previously for smaller
values of r. , i. e. the propagation time is smaller. The front position is more
sensitive to r for aH = 1 than for aH = 10.

In Figure 8 we represent the evolution of maxx |η(x, t)|, for t = 80, 160, 240 and
540 ms. We observe that the perturbation of the water surface are bigger from
smaller values of r and also smaller values of the aspect ratio aH . Indeed, the
spreading has been shown to be faster for small values of r and the water surface is
more sensitive to the granular flow if it is closer to it. For aH = 10 there is almost
no perturbation of the water surface, during the submarine avalanche. In Figure
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Figure 5. Granular mass profiles. h2 evolution for aH = 1,
r ∈ {0, 0.2, 0.4, 0.6, 0.8}.

9 the evolution of the water surface for aH = 1 and aH = 2 is presented. We can
observe the different behaviour of the water surface, depending on the initial aspect
ratios.

In Figure 10 the tridimensional evolution of the sediment avalanche and water
surface, for r = 0.4 and aH = 1 is presented.

5. Conclusion. In this work we present a preliminary study of the influence of
the ratio of densities and the characteristic dimensions of a cylindrical submarine
landslide over a flat bottom topography. This is done by considering a 2D general-
ization of the model presented in [9] where the bottom topography is supposed to
be flat. The 2D system is discretized by a first order Riemann solver that results of
the combination of the IFCP and HLL Riemann solvers. In particular, the solver
reduces to the HLL in wet/dry regions, while the IFCP solver is used in the other
regions. Finally, the model has been written in non-dimensional variables in terms
of the aspect ratio between the initial height of the avalanche and the initial height
of the fluid above the granular mass, and the aspect ratio of the initial sediment
mass. The evolution of the maximum amplitude of the free surface and the front
position has been studied in terms of the aspect ratios, the ratio of densities r and
the friction angle. A comparison with experimental data for the limit case when
r = 0, corresponding to aerial avalanches has been also presented. We observe that
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Figure 6. xfront evolution and Lf for r ∈ {0, 0.2, 0.4, 0.6, 0.8},
aH ∈ {1, 2, 10}.
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Figure 7. xfront for aH = 1 and aH = 10 for r ∈ {0, 0.2, 0.4, 0.6, 0.8}.
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Figure 8. maxx |η| for aH = 1, aH = 2 and aH = 10, r ∈ {0.2, 0.4, 0.6, 0.8}.

the mass spreading takes more time and lead to smaller runout distance for granu-
lar flows of smaller density, leading to a smaller amplitude of the generated water
wave. When the granular mass is closer to the water free surface, the runout of
the granular flow is smaller but the generated water wave is bigger than when it is
10 times deeper. For intermediate values of the water depth, the behavior is more
complex.
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