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Abstract
A non-hydrostatic depth-averaged model for dry granular flows is proposed, taking into
account vertical acceleration. A variable friction coefficient based on the μ(I ) rheology is
considered. The model is obtained from an asymptotic analysis in a local reference system,
where the non-hydrostatic contribution is supposed to be small compared to the hydrostatic
one. The non-hydrostatic counterpart of the pressure may be written as the sum of two terms:
one corresponding to the stress tensor and the other to the vertical acceleration. The model
introduced here is weakly non-hydrostatic, in the sense that the non-hydrostatic contribution
related to the stress tensor is not taken into account due to its complex implementation.
The motivation is to propose simple models including non-hydrostatic effects. In order to
approximate the resulting model, a simple and efficient numerical scheme is proposed. It
consists of a three-step splitting procedure and the resulting scheme is well-balanced for
granular material at rest with slope smaller than the fixed repose angle. The model and
numerical scheme are validated bymeans of several numerical tests, including a convergence
test, a well-balanced test, and comparisons with laboratory experiments of granular collapse.
The influence of non-hydrostatic terms and of the choice of the coordinate system (Cartesian
or local) is also analyzed.We show that non-hydrostaticmodels are less sensitive to the choice
of the coordinate system. In addition, the non-hydrostatic Cartesian model produces deposits
similar to the hydrostatic local model as suggested by Denlinger and Iverson (J Geophys Res
Earth Surf, 2004. https://doi.org/10.1029/2003jf000085), the flow dynamics being however
different. Moreover, the proposed model, when written in Cartesian coordinates, can be seen
as an improvement of their model, since the vertical velocity is computed and not estimated
from the boundary conditions. In general, the non-hydrostatic model introduced here much
better reproduces granular collapse experiments compared to hydrostatic models, especially
at the beginning of the flow.

Keywords Savage–Hutter model · Non-hydrostatic pressure · Finite volume · Granular
flows

Mathematics Subject Classification 35L60 · 76M12 · 76T25 · 35L65

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01377-9&domain=pdf
http://orcid.org/0000-0003-2013-6127
https://doi.org/10.1029/2003jf000085


   25 Page 2 of 35 Journal of Scientific Computing            (2021) 86:25 

1 Introduction

Granular flows have been intensely studied in recent years, since they play an important role
in the understanding of natural hazards (avalanches, submarine landslides,...) and industrial
processes. Aerial granular flow models as well as other more complex models such as debris
flows have been widely studied (e.g. [5,28,30,46]) and applied to simulate laboratory exper-
iments [29,38] and real landslides [33,35,45] up to hazard assessment [42,44]. The physical
description of these type of flows is a very active field of research from several points of
view. On the one hand, the definition of rheological laws describing the complex dynamics
of the flow is a challenge nowadays [1,14], namely the solid-fluid transition occurring when
a granular material is flowing. On the other hand, the mathematical modelling of these flows
is a difficult issue, since the stress tensor has a complex expression usually, and therefore its
numerical treatment is not straightforward.

From the physical point of view, the μ(I ) rheology, introduced in Jop et al. [31,32], is
the most accepted rheological law describing dry granular flows. It considers a pressure
and strain-rate dependent viscosity, through a variable friction coefficient depending on the
inertial number. In addition, in recent years, some works have been devoted to improving
this law by adding non-local effects to the μ(I ) rheology. However, there are still many open
questions around these non-local models (see e.g. [8,50]). Thus, the local μ(I ) rheology
continues being a very popular law for physicist when describing dry granular flows and start
to be used for landslide simulation at the field scale [10].

The μ(I )-rheology was implemented in a 2D continuous model solving the full Navier–
Stokes equations by Staron et al. [52] by using a regularization method to describe the static
behavior of the material. By fitting the rheological parameters of the μ(I )-rheology down to
values smaller that those of the granularmaterial involved, theywere able to reproduce 2Ddis-
crete elements simulations. Ionescu et al. [27] andMartin et al. [40] quantitatively reproduced
laboratory experiments of a granular collapse problem using finite element discretizations
of the full 2D equations and an Augmented Lagrangian method, as well as a simplified
description of the lateral wall effects. Bouchut et al. [6] derived an analytic expression for the
non-hydrostatic pressure. It is based on an asymptotic analysis under some hypothesis, such
as shallow flow and small velocity. As a consequence, only the terms related to the stress
tensor are considered in the definition of the non-hydrostatic pressure counterpart, while the
acceleration in the direction normal to the slope is neglected. This analytical formulation
of the pressure is compared with the pressure computed solving the full 2D Navier–Stokes
equations, showing that these non-hydrostatic analytical terms describe well part of the non-
hydrostatic pressure (see Figure 18 of [40]), although the effect of the vertical acceleration
is not taken into account.

It is a well-known fact that the computational cost of solving flows with a moving free
surface with a 3D (or 2D) solver is huge. Shallow depth-averaged and hydrostatic layer-
averaged models have been widely used in order to reduce this computational effort. These
models are mainly based on the pioneering work of Savage–Hutter [51], where the friction
between the bottom and the granular material is modelled though a constant Coulomb friction
coefficient. Pouliquen [47,48] proposed to replace this constant value by a friction coefficient
depending on the strain rate. In a more recent work, Pouliquen and Forterre [49] proposed
to make this coefficient depend on the Froude number. The resulting model was used by
Mangeney-Castelnau et al. [39] and Mangeney et al. [36] to simulate granular flows on
simple topography, making it possible to reproduce qualitatively self-channeling flows and
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levee formation. It has also been successfully used to simulate real landslides over complex
topography (e. g. [10,45]).

More recently, Gray and Edwards [26] proposed a slightlymodified depth-averagedmodel
by including second-order viscous terms derived by assuming a Bagnold profile for the
downslope velocity. It reduced to the model of [48] when these second-order terms are
dropped. This model, combined with the friction coefficient proposed by [49], is used in
Edwards and Gray [17] to simulate roll-waves and erosion-deposition waves and in Baker
et al. [3], making it possible to recover the transversal profile of the downslope velocity.
However, the main drawback of this model is the fact that the velocity profile is prescribed
even though the shape of the velocity profile is known to change during the flow. This change
can be handled using multilayer models as done by Fernández-Nieto et al. [23,24] that
also used theμ(I ) rheology. Indeed such models have been shown to reproduce the observed
change in velocity profiles during granular flows on inclined planes. Usingmultilayermodels,
[23] also showed that the μ(I ) rheology better reproduces the dynamics of granular flows
than using a constant friction coefficient.

In all these depth-averaged or multilayer models, the pressure is assumed to be hydro-
static. In addition, as explained before, the analytic formula for the pressure proposed by [6]
includes the rheology terms but not the normal acceleration terms due to their assumption
of small velocity flows. Furthermore, it is well known that the initial dynamics of granular
collapse is not well reproduced by shallow depth-averaged models, in particular because
of the importance of non-hydrostatic effects in this regime (e. g. [23,24,38]). Therefore, a
non-hydrostatic shallow model for granular flows, which takes into account the acceleration
in the direction normal to the slope may significantly improve the ability of depth-averaged
models to reproduce flow regimes where non-hydrostatic effects are important such as during
the first instant of granular collapses.

Non-hydrostatic shallow water models have been a popular topic of research in recent
years. The idea is to improve nonlinear dispersive properties of water waves by including
some information on the vertical structure of the model. One way of doing so is by including
a non-hydrostatic pressure in the model. In the usual process of averaging the fully 3D
equations, the pressure is no longer assumed to be hydrostatic and is split into a hydrostatic
and a non-hydrostatic part (see for instance [9,13,53,54], among others). The advantage of
non-hydrostatic models when compared to classical dispersive systems is that they present
only first-order derivatives, which are easier to treat numerically (see e.g. [19]).Moreover, the
particular structure of these type ofmodels and their similarities with shallowwater equations
allow extending many well-known numerical schemes for shallow water equations to non-
hydrostatic models, see for instance [18]. In view of the improvement and possibilities of this
technique for shallow waters, one could think that a similar approach would be interesting
for granular flows.

The choice of the coordinate system plays a key role, in particular in depth-averaged
models, which are obtained after an integration procedure. If a Cartesian coordinate system
is chosen, the 3D model is integrated along the vertical Cartesian direction. However, it is
usual in geophysical flows to use local coordinates (see e.g. [5,26,45]), where the integration
ismade along the normal direction to the topography, typically a reference planewith constant
slope (although it may vary along the domain [21]) or an arbitrary topography [7,36] where
curvature effects may strongly impact the flow dynamics and deposit [43]. These models are
more accurate for granular flows since the computed velocity is tangent to the topography,
which is physically relevant, in contrast to Cartesian models. Recently, Delgado-Sánchez et
al. [15] proposed a two-layer depth-averaged model, where they use Cartesian coordinates
for an upper water layer and local coordinates for a lower granular layer since for water waves
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the vertical acceleration can be supposed to be small while for granular flows the acceleration
normal to the slope is small. They showed that large errors are obtained when the coordinate
system is not correctly chosen. Denlinger and Iverson [16] proposed a Cartesian model for
landslides, where the pressure is corrected by an approximation of the vertical acceleration.
They show that the results of this Cartesian model are close to the results of a hydrostatic
model in local coordinates for dam break analytical solutions. In this model, the vertical
acceleration is introduced in the approximate non-hydrostatic pressure by taking the average
between the vertical velocity derived from the free surface and bottom boundary conditions.
As a result, the vertical velocity is not computed as an unknown of the system.

In this paper we deduce a simple model for granular flows including non-hydrostatic
effects related to the acceleration in the direction normal to the slope. Then, a simple and
efficient numerical scheme will be proposed that will allow us to notably improve the results
of hydrostatic models. To our knowledge, this is the first non-hydrostatic shallow model
(computing the normal acceleration) for dry granular flows. It follows from an asymptotic
analysis and the decomposition of the pressure into a hydrostatic pressure and a small per-
turbation (non-hydrostatic contribution). For simplicity, the non-hydrostatic pressure will be
assumed to follow a linear profile in the normal direction. Note that this is a simplification so
that the final system is easier to deal with. Nevertheless, other type of profiles could be used,
which would result in a more complexmodel, including extra variables and equations (see for
instance the approaches used in [19,25]). The model will take into account a bottom friction
coefficient defined by the μ(I ) rheology. Although the model will be derived using local
coordinates, one may follow easily the same procedure in order to obtain a similar version
in Cartesian coordinates. In [16], a Cartesian non-hydrostatic model is also proposed. The
main differences are: (i) in the proposed model the vertical velocity is an unknown, whereas
in [16] it is estimated in terms of the kinematic boundary conditions; (ii) the non-hydrostatic
pressure correction in the proposed model is the Lagrange multiplier associated to averaged
incompressibility equation, while in [16] it is approximated from the total time derivative of
the estimated vertical velocity.

This paper is organised as follows. In Sect. 2wepresent the initial systemand the derivation
of the non-hydrostatic model, based on an asymptotic analysis. Section 3 is devoted to the
development of an efficient numerical scheme to approximate the proposed non-hydrostatic
model. This is done with a three-step splitting technique, where the friction term is applied
before solving the non-hydrostatic pressure. This is one of the key points of the scheme. In
Sect. 4 different numerical tests are presented, including convergence and well-balance tests.
Anobjective is to show the influence of the choice of the coordinate system (Cartesian or local)
for hydrostatic and non-hydrostatic models. We also present a comparison with experimental
data of granular collapses over inclined planes, showing that the non-hydrostatic model gives
better results than the hydrostatic one, especially at short times and more generally on the
mass profiles during the spreading up to the deposit. In addition, non-hydrostaticmodelsmake
it possible to include the vertical velocity as a variable in the model and thus to simulate the
effect of the opening gate in the laboratory experiments, which is not possiblewith hydrostatic
model. Finally, some conclusions are presented in Sect. 5.
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Fig. 1 Sketch of the Cartesian (blue) and local (red) reference system (Color figure online)

2 Derivation of a Non-hydrostatic Shallow �(I)-Model

In this section we deduce the non-hydrostatic model. It follows from an asymptotic analysis
of the 2D Navier–Stokes system and the integration of the resulting equations along the
normal direction to the topography.

2.1 Initial System

First, let us establish the notation used in this paper. In particular, we shall consider two
different reference systems. We shall use local (or tilted) coordinates, as is usually done in
granular flows, as well as Cartesian coordinates. We shall denote by (x, z) the Cartesian
coordinate system (the flow is assumed to be independent of the y-direction), while (X , Z)

will denote the local coordinates. This local coordinates will refer to a given fixed inclined
plane (being a straight line in the x − z plane). More explicitly, let us consider an inclined
reference plane with slope θ , that is a plane given by the function ˜b(x) = (xend − x) tan θ ,
where xend is the ending point of the domain. Let us remark that we consider here the usual
convention in geophysical applications which establishes that a positive angle θ corresponds
to a negative slope. Local coordinates (X , Z) are then considered, measured along the downs-
lope and normal direction to the reference plane, ˜b(x), respectively. The velocity vector is
u = (u, w), where u is the downslope component of the velocity and w is the normal one.
Finally, we consider also a bottom topography b(X) over the reference inclined plane (see
Fig. 1).

As starting point, we consider the 2D Navier–Stokes system for a flow with constant
density ρ given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂Xu + ∂Zw = 0,

∂t u + u ∂Xu + w ∂Zu + 1

ρ
∂X (pT ) = g sin θ + 1

ρ

(

∂X (τXX ) + ∂Z (τXZ )
)

,

∂tw + u ∂Xw + w ∂Zw + 1

ρ
∂Z (pT ) = −g cos θ + 1

ρ

(

∂X (τZ X ) + ∂Z (τZ Z )
)

,

(1)

where g is the gravity force, pT is the total pressure and

τ =
(

τXX τXZ

τZ X τZ Z

)

is the deviatoric part of the total stress tensor, σ = −pT I+ τ , where I is the identity matrix.
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The total pressure shall be decomposed as sum of the hydrostatic and the non-hydrostatic
contribution (see e.g. Casulli [13])

pT = pH + pNH , (2)

where pH = g cos θ (b + h − z) is the hydrostatic pressure and pNH denotes the non-
hydrostatic counterpart. The atmospheric pressure has been set to zero for the sake of
simplicity and we shall assume that the non-hydrostatic pressure vanishes at the surface

pNH |b+h = pH |b+h = pT |b+h = 0.

We also assume that τXZ |b+h = 0. We consider at the free surface the usual kinematic
condition

∂t h + u|b+h∂Xb − w|b+h = 0. (3)

At the bottom, we have the non-penetration condition

u · nb = 0, (4)

where nb = (∂Xb,−1) is the downward normal vector to the bottom.
In addition, a Coulomb-type friction condition is considered:

σ nb −
((

σ nb
)

· nb
)

nb =
(

−μ pT
u

|u| , 0
)′

, (5)

where the prime (′) denotes the transposed vector, and hereμ denotes the friction coefficient.
This coefficient may be constant (i.e., Savage–Hutter model [51]) or variable according to
some other rheological laws [14,35]. Currently, the μ(I ) rheology (see e.g. [31]) is the most
accepted law describing dry granular flows. Therefore, we shall consider this rheology and
define

μ = μ(I ) = μs + μ2 − μs

I0 + I
I , (6)

where μs, μ2, I0 are constant values, and I is the inertial number defined as

I = 2ds‖D(u)‖√
pT /ρs

.

In the previous equation, ds is the particle diameter, ρs the particle density, and D(u) is
the strain-rate tensor with ‖D(u)‖ = √

0.5D : D. Note that the apparent flow density is
ρ = ρsϕs , where ϕs is the solid volume fraction. This rheological law is included in system
(1) by defining the deviatoric stress tensor τ = νD(u), where the viscosity coefficient, ν, is
defined according to the μ(I ) rheology as (see e.g. [23,34])

ν = μ(I )pT
‖D(u)‖ . (7)

2.2 Dimensional Analysis and Derivation of the Model

We follow a classical dimensional analysis for dry granular flows (see e.g. [24,26]) to obtain
a simplified shallow model. Therefore, the ratio between the characteristic height (H) and
length (L) is assumed to be small

ε = H

L
.
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We denote as well by U the characteristic velocity. In what follows, we will denote with
tildes (̃·) the non-dimensional variables. Then, we have:

(X , Z , t) = (L˜X , H˜Z , (L/U )˜t),
(u, w) = (Uũ, εU w̃),

h = H˜h, ρ = ρ0ρ̃, pT = ρ0U 2 p̃T ,

(τXX , τXZ , τZ Z ) = ρ0U 2
(

ε̃τXX , τ̃XZ , ε̃τZ Z
)

.

Note also that

D(u) = U

H

1

2

(

2ε∂
˜X ũ ∂

˜Z ũ + ε2∂
˜X w̃

∂
˜Z ũ + ε2∂

˜X w̃ 2ε∂
˜Z w̃

)

, and ‖D(u)‖ = |∂Zu| /2

up to first order. Defining now the Froude number as Fr = U/
√
gH cos θ and dropping

tildes for the sake of simplicity, system (1) is written in non-dimensional form as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂Xu + ∂Zw = 0, (8a)

ρ
(

∂t u + u∂Xu + w∂Zu
) + ∂X (pT ) = 1

ε

ρ

Fr2
tan θ + ε∂X (τXX ) + 1

ε
∂Z (τXZ ), (8b)

ρε2
(

∂tw + u∂Xw + w∂Zw
) + ∂Z (pT ) = − ρ

Fr2
+ ε∂X (τZ X ) + ε∂Z (τZ Z ). (8c)

Note that the deviatoric tensor is multivalued and we only know that |τ XZ | ≤ μ(I )pT if
|D| = 0 (see e.g. [27]).

The friction condition (5) at the bottom is given by

(

τXZ , 0
)′ =

(

μ(I )pT
u

|u| , 0
)′

if |u| �= 0, at z = b, (9)

while this friction condition is multivalued if |u| = 0, where
∣

∣τ XZ |b
∣

∣ ≤ μ(I|b )pT |b in this
case.

Finally, we assume that the non-hydrostatic pressure is smaller than the hydrostatic one.
To this aim, we consider that the pressure takes the form

pT = pH + εq1 + ε2q = ρ

Fr2
(b + h − z) + εq1 + ε2q,

where q1, q are the first and second order terms of the non-hydrostatic counterpart. It leads
to the vertical momentum conservation equation

ρε2
(

∂tw + u ∂Xw + w ∂Zw
) + ε∂Zq1 + ε2∂Zq = ε∂X (τZ X ) + ε∂Z (τZ Z ), (10)

where the gravitational term has been cancelled with the hydrostatic contribution of the
pressure. Note that the previous Eq. (10) involves the first and second order terms of the
non-hydrostatic pressure q, q1 balanced by the a term related to the vertical acceleration (left
hand side) and a term coming from the stress tensor (right hand side). Now, by comparing
the terms with same order of magnitude in Eq. (10), we obtain that

∂Zq1 = ∂X (τZ X ) + ∂Z (τZ Z ), (11)

and
− ∂Zq = ρ

(

∂tw + u ∂Xw + w ∂Zw
)

. (12)

In this work, the aim is to obtain the simplest depth-averaged non-hydrostatic model, improv-
ing the results of hydrostatic models. First, from the numerical point of view, it is difficult to
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deal with the viscous terms in (11). Second, the problem of considering the vertical accel-
eration has been widely studied for shallow water flows, both from the modeling and the
numerical point of view. Thus, we are going to neglect the first order terms of the pressure
and keep the second order contribution, i.e., we keep (12) and do not consider (11). In the
numerical tests, we will show that this choice significantly improves the results compared to
the hydrostatic assumption.

Next, we derive the final model by integrating (8a),(8b) and (12) along the vertical direc-
tion. To this aim, for any variable f we define its average on the normal direction by

f = 1

h

∫ b+h

b
f d Z .

We shall use that f · g = f · g, which is true up to first order. Then, by integrating on the
normal direction equations (8a) and (12) between b and b + h, and taking into account the
Leibniz’s rule, we get

∂X (hu) + (

u|b∂Xb − w|b
) − (

u|b+h∂X (b + h) − w|b+h

) = 0,

∂t (hw) + ∂X (hu w) + w|b
(

u|b∂Xb − w|b
)

−w|b+h

(

∂t (b + h) + u|b+h∂X (b + h) − w|b+h

) = 1

ρ
q|b .

Using now the kinematic and non-penetration conditions we get

∂t h + ∂X (hu) = 0,

∂t (hw) + ∂X (hu w) = 1

ρ
q|b .

(13)

A closure relation is needed for the non-hydrostatic pressure. For the sake of simplicity, we
shall assume that pT (X , ·, t) has a linear profile. This hypothesis implies that q|b = 2q . Then,
as a consequence, the system has only one extra unknown, q . Nevertheless, other possible
choices may be made on the profile of the non-hydrostatic pressure. This would mean then
that the system will have extra unknowns and equations (see e.g. [19,25]).

We focus now on the horizontal momentum equation (8b) up to first order. Noticing that
∫ b+h

b
∂X pT dz = ρ

Fr2
h∂X (b + h) + ε2

(

∂X (hq) + q|b∂Xb
)

,

and using qb = 2q , the depth-averaged momentum conservation equation is

ρ

(

∂t (hu) + ∂X
(

hu2
) + 1

Fr2
h∂X

(

h + b + x tan θ

ε

))

= −ε2
(

∂X (hq) + 2q∂Xb
) − 1

ε
μ(I|b )pT |b

u

|u| (14)

where the friction condition (9) has been used.
Considering Eqs. (13) and (14), we have a system with 3 equations and 4 unknowns

(h, u, w, q). Then, in order to close the system, we integrate the continuity equation (8a)
between the bottom (b) and the midpoint of the layer (b + h/2), obtaining (by using the
Leibniz’s rule and the non-penetration condition)

∂X

(∫ b+h/2

b
udz

)

− u|b+h/2∂X (b + h/2) + w|b+h/2 = 0.
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Notice that

u = u|b+h/2 + O(ε2),

∫ b+h/2

b
udz = hu

2
+ O(ε) and w = w|b+h/2 + O(ε2),

thanks to the midpoint and the rectangular quadrature rule to approximate those integrals.
Then, we obtain that

w = u∂Xb − h

2
∂Xu. (15)

The resulting system is equivalent to an optimization problem consisting of the minimiza-
tion of the energy subject to the constraint (15), at least for a semi-discrete version of the
momentum equation (14) (see for example [22]). In this sense q|b = 2q̄ may be seen as the
Lagrange multiplier associated to the constraint (15).

In the final model, Eq. (15) is multiplied by h in order to write the system in terms of the
conservative variables (see (16d)).

2.3 Final Model

Collecting the equations that we have obtained in previous subsections and going back to
dimensional variables, we get the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂t h + ∂X (hu) = 0, (16a)

ρ
(

∂t (hu) + ∂X
(

hu2
) + g cos θh∂X

(

h + b +˜b
))

= −(

∂X (hq) + 2q∂Xb
) − τXZ |b , (16b)

ρ
(

∂t (hw) + ∂X (huw)
) = 2q, (16c)

hw = hu∂Xb − h

2
∂Xhu + hu

2
∂xh, (16d)

where

τXZ |b =
⎧

⎨

⎩

μ(I|b )pT |b
u

|u| if |u| �= 0,
∣

∣τXZ |b
∣

∣ ≤ μs pT if |u| = 0,
(16e)

and μ(I ) is given by (6), and

I|b = ds
∣

∣(∂zu)|b
∣

∣

√

pT|b /ρs
, with pT |b/ρs = ρ

ρs

(

g cos θh + 2
q

ρ

)

= ϕs

(

g cos θh + 2
q

ρ

)

.

(16f)

Note that the friction term is computed taking into account the total pressure, hydrostatic
and non-hydrostatic. In order to simplify system (16a), in what follows we shall redefine the
non-hydrostatic variable as q = q/ρ. In the next section, we detail the numerical scheme
proposed to approximate system (16a).

Remark 1 A hydrostatic version of model (16a) is obtained from (16a), (16b) and (16f), by
setting q̄ = 0. The resulting hydrostatic model corresponds to the one proposed in [47],
which is the Savage–Hutter model [51], where the friction coefficient is improved by using
theμ(I ) rheology. This model also matches to the one proposed in [26] when the the viscous
term ∂XτXX is removed.
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Remark 2 Concerning steady states for system (16a), we shall focus on stationary solution
when the granular flow is at rest.Writing themomentumequation (16b)with ū = w̄ = q̄ = 0,
and taking absolute values we get

ρg cos θh
∣

∣∂X
(

h + b +˜b
)∣

∣ = ∣

∣τXZ |b,u=0

∣

∣ ≤ ∣

∣μ(I|b,u=0)pT |b,u=0

∣

∣ = ρg cos θhμs .

Therefore, these stationary solutions take the form

ū = w̄ = q̄ = 0, and
∣

∣∂X
(

h + b +˜b
)∣

∣ ≤ μs . (17)

Note that previous equation corresponds to solutions at rest for classical Savage–Hutter
model. When designing a numerical scheme for model (16a) we will be interested in pre-
serving these steady states, that is, a well-balanced scheme for (17).

3 Numerical Approximation

One of the aims of this paper is to propose a simple and efficient numerical scheme to
approximate the previously introduced non-hydrostatic shallow μ(I )-model (16a). We pro-
pose a numerical approximation consisting in a three-steps method, where the main novelty
is how to deal with the Coulomb friction term together with the non-hydrostatic pressure.
The first step involves the hyperbolic part of the system and an explicit discretization of the
non-hydrostatic term. In this first step a path-conservative finite volume scheme is consid-
ered, together with a hydrostatic reconstruction in order to ensure the well-balance property.
Secondly, the Coulomb friction is added taking into account also the non-hydrostatic contri-
butions. Finally, a non-hydrostatic pressure deviation in time is computed and the velocity
field is corrected accordingly.

Regarding the computational cost of this non-hydrostatic model, it was shown that using
the strategy in Escalante et al. [18], the computational effort associated to a non-hydrostatic
model for shallow water flows is approximately 2.4 times greater than the one for the hydro-
static version of the model. Similar results are expected here for the proposed model (16a).
In what follows we shall describe each step in detail.

Let us denote by U = (h, hu, hw)
′
. We consider a usual Finite Volume discretization,

where the horizontal domain is divided in control volumes Vi = [

xi−1/2, xi+1/2
]

, for i ∈ I.
For the sake of simplicity we assume a fixed volume mesh size 	x . We denote the center of
each volume cell by xi = (

xi−1/2 + xi+1/2
)

/2. For any time t , we consider the cell averages

Ui (t) = 1

	x

∫ xi+1/2

xi−1/2

U(x, t)dx .

Regarding non-hydrostatic terms, a staggered grid is considered formed by the points
xi−1/2, xi+1/2 of the interfaces for each cell Vi . Let us denote the approximation of the
point values of the function q representing the non-hydrostatic pressure on point xi+1/2 at
time t by

qi+1/2(t) = q(xi+1/2, t).

Remark that this corresponds to a second order approximation of the cell average of the
pressure on the staggered grid [xi , xi+1]. In what follows and for the sake of simplicity, we
omit the dependence on the time t .

In order to define a numerical scheme for (18a), we have to consider the following three
key points:
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– The resulting scheme should be well-balanced for (17). This is achieved by means of a
hydrostatic reconstruction procedure, taking into account friction terms (see [24]).

– The friction contribution should be taken into account before solving the non-hydrostatic
pressure. Otherwise, the incompressibility condition is not ensured.

– Both, hydrostatic and non-hydrostatic pressures, should be considered when dealing with
the friction term.

We propose here a numerical scheme based on three steps which are described in what
follows.

Step 1: Hyperbolic Problem

The first step focuses on solving the hyperbolic system obtained when friction and non-
hydrostatic effects are removed from system (16a). Therefore, we obtain the following system
(bars are dropped for simplicity):

⎧

⎨

⎩

∂t h + ∂X (hu) = 0, (18a)

∂t (hu) + ∂X
(

hu2
) + g cos θh∂X

(

h + b +˜b
) = 0, (18b)

∂t (hw) + ∂X (huw) = 0. (18c)

We see that Eqs. (18a) and (18b) correspond to a shallow water system, combined with a
transport equation for a passive scalar (18c). In order to solve system (18a), we follow a
similar approach as in [20]. In particular, we follow the path-conservative framework [41]
to define a HLL-type method for the shallow water system in a similar way as it is done in
[24]. After that, the third equation is considered as a transport equation of a passive scalar.
For the sake of completeness, let us describe this in detail.

System (18a) and (18b) may be written in compact form as

∂tW + ∂XFc(W) + S(W)∂X
(

˜b + b + h
) = 0 (19a)

∂t (hw) + ∂X (huw) = 0, (19b)

where W = (h, hu)
′ ∈ R

2, Fc(W) = (

hu, hu2
)′

is the convective part of the flux and

S(W) = (0, g cos θh)
′
defines the source term which accounts for the hydrostatic pressure.

Then, the finite volume method is described as

Wn+1/3
i = Wn

i + 	t

	x

(

Fn
i−1/2 − Fn

i+1/2 + 1

2

(

Sn
i+1/2 + Sn

i−1/2

)

)

, (20)

with

Sn
i+1/2 = 1

2
(S(Wn

i+1) + S(Wn
i ))	ηni+1/2, (21)

where	ηni+1/2 = (

˜b + b + h
)n
i+1−(

˜b + b + h
)n
i . Finally, the numerical flux corresponding

to the convective terms Fn
i+1/2, is

Fn
i+1/2 = 1

2

(

Fc(Wn
i+1) + Fc(Wn

i )
) − 1

2
Dn
i+1/2,

where Dn
i+1/2 is the numerical diffusion of the scheme.

Here we use the framework of Polynomial Viscosity Methods (PVM) introduced in [12]
in order to define the numerical diffusion term. In particular, we use a generalization of the
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HLL scheme for non-conservative hyperbolic systems where

Di+1/2 = α0

(

̂W+
i+1/2 − ̂W−

i+1/2

)

+ α1

(

Fc(Wn
i+1) − Fc(Wn

i ) + ̂Sn
i+1/2

)

, (22)

with

̂Sn
i+1/2 = 1

2
(S(Wn

i+1) + S(Wn
i ))

(

̂h+,n
i+1/2 −̂h−,n

i+1/2

)

,

where the definition of ̂W±
i+1/2, which will be given in Eq. (24), is a key point in order to

preserve steady state solutions (17), and

α0 = SR |SL | − SL |SR |
SR − SL

, α1 = |SR | − |SL |
SR − SL

,

being SL and SR approximations of the minimum and maximum wave speed. In practice,

SL = min
(

ui − √

g cos θhi , ui+1/2 − √

g cos θhi+1/2

)

,

SR = max
(

ui+1 + √

g cos θhi+1, ui+1/2 + √

g cos θhi+1/2

)

,

where hi+1/2, ui+1/2 are the usual Roe’s averaged states for Shallow Water system.
One of the difficulties of this method is to ensure the well-balance property for (17). In

particular, we find in (17) two types of steady states. On the one hand we have the ones
corresponding of lake at rest in Shallow Water, where ∂X

(

h + b +˜b
) = 0. In this case

the well-known hydrostatic reconstruction [2] provides a tool based on reconstructed states
that would allow us to cancel the numerical diffusion in such situations, and resulting in
a well-balanced scheme. On the other hand, we have the family of steady states where
∂X

(

h + b +˜b
) �= 0, which correspond to granular flows at rest for which the friction force

is greater than pressure forces. In that case, the classical hydrostatic reconstruction is not
enough to preserve those steady states. In [4], a modification of the original hydrostatic
reconstruction is presented with the goal of canceling the numerical diffusion associated to
the approximated Riemann solver in that case, in order to ensure ∂t h = 0 when the granular
flow is at rest (u = 0). Here we use similar ideas. We define the following reconstructed
states: for every interface xi+1/2 we define

h−
i+1/2 = max(0, hi − (	Zi+1/2)+);

h+
i+1/2 = max(0, hi+1 − (−	Zi+1/2)+),

with (	Zi+1/2)+ = max(0, zb,i+1 − zb,i ).

(23)
and

̂W−
i+1/2 =

(

̂h−
i+1/2,

̂h−
i+1/2ui

)

, ̂W+
i+1/2 =

(

̂h+
i+1/2,

̂h+
i+1/2ui+1

)

, (24)

in (22), wherêh±
i+1/2 are defined as in (23), taking in this case

(	Zi+1/2)+ = max(0, zb,i+1 − zb,i + 	Ci+1/2), (25)

with 	Ci+1/2 = − fi+1/2	x/ (g cos θ) defined in terms of the Coulomb friction (see [4]).
We set

fi+1/2 = − proj
g cos θμ(I|b )

(−g cos θ(hi+1 + zb,i+1 − hi − zb,i )

	x
+ ui+1/2

	t

)

, (26)

where

proj
g cos θμ(I|b )

(X) =
⎧

⎨

⎩

X if |X | ≤ g cos θμ(I|b );
g cos θμ(I|b )

X

|X | if |X | > g cos θμ(I|b ),
(27)
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although other definitions of fi+1/2 can be used (see [4]).
Once the numerical flux for the two first components is computed, we define the third one

by

(hw)
n+1/3
i = (hw)ni + 	t

	x

(

Fhw,n
i−1/2 − Fhw,n

i+1/2

)

, (28)

where the flux for this component is

Fhw,n
i+1/2 =

[

Fn
i+1/2

]

h
w

up,n
i+1/2, with w

up
i+1/2 =

{

wi if
[Fi+1/2

]

h > 0
wi+1 if

[Fi+1/2
]

h < 0,

where
[

Fn
i+1/2

]

h
, that approximates (hu)i+1/2, denotes the first component of the numerical

flux Fn
i+1/2.

Remark 3 It is a known fact, in the context of Shallow Water, that care has to be taken in the
cases of emerging bottom. For instance, in the lake at rest configuration with hi+1 = 0 and
hi + bi < bi+1, the term 	ηi+1/2 in (21) produces an artificial pressure term at the right
cell, which makes well-balancing to fail. A posibility to overcome this difficulty is to rewrite
the bottom on the right cell to equilibrate pressure terms (see [11]). In practice, we replace
	ηni+1/2 in (21) by h+,n

i+1/2 − h−,n
i+1/2, where these reconstructed states are defined by (23).

Step 2: Coulomb Friction Term

In order to introduce the Coulomb friction term, we consider a semi-implicit scheme with
an appropriate stopping criteria. From the physical point of view, the friction is a force that
opposes the movement of the granular mass. When this friction is greater than the rest of the
forces, then the flow must stop. The numerical treatment is based on this idea, which will be
summarized in what follows. We refer the reader to [21,39] for further details.

We set hn+2/3
i = hn+1/3

i , and define˜hni =
(

hni−1/2 + hni+1/2

)

/2,

σ n
c,i = μ(I n|b )

(

g cos θ˜hni + 2qni
)

, with qni =
(

qni−1/2 + qni+1/2

)

/2,

(hu)

,n+1/3
i = (hu)

n+1/3
i − 	t

(

hni (∂Xqn)i + qni ∂X (2b + hn)i
)

with

(∂Xq)i = qi+1 − qi
	x

, (∂X (2b + h))i = (2b + h)i+1 − (2b + h)i−1

2	x
.

Then, the new values at this second step for the horizontal and vertical discharges are
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(hu)
n+2/3
i = (hu)


,n+1/3
i − 	t σ n

c,i SGN
(

(hu)

,n+1/3
i

)

,

if 	t σ n
c,i <

∣

∣

∣(hu)

,n+1/3
i

∣

∣

∣ ;
(hw)

n+2/3
i = (hw)

n+1/3
i + 2	tqni ,

otherwise

(hu)
n+2/3
i = 0, and (hw)

n+2/3
i = 0,

where SGN is the sign function.
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Step 3: Non-hydrostatic Pressure Correction

In the last step the non-hydrostatic effects are added using the momentum equations (16b),
(16c) together with the incompressibility condition (16d).

Taking into account system (16a), we set hn+1 = hn+2/3 = hn+1/3 and define

q̃ = qn+1 − qn .

Then we consider a projection method and we get

(hu)n+1 = (hu)n+2/3 − 	t
(

∂X
(

hn+1q̃
) + 2q̃∂Xb

)

, (29)

(hw)n+1 = (hw)n+2/3 + 2	t q̃. (30)

and the depth-averaged incompressibility equation

(hw)n+1 = (hu)n+1 ∂Xb − hn+1

2
∂X (hu)n+1 + (hu)n+1

2
∂Xh

n+1. (31)

Now, putting Eqs. (29),(30) into (31) and after some straightforward algebra, the following
elliptic equation is deduced for q̃ ,

(

hn+1)2 ∂XX q̃ + hn+1∂Xh
n+1∂X q̃ +

(

hn+1∂XX
(

2b + hn+1) − (

∂X
(

2b + hn+1))2 − 4
)

q̃

= 1

	t

(

2 (hw)n+2/3 − (hu)n+2/3 ∂X
(

2b + hn+1) + hn+1∂X (hu)n+2/3
)

. (32)

Finally, this equation is discretized in space at the interfaces xi+1/2. Let us recall that the
variables (h), (hu), and (hw) are computed as averages in the control volumes, while (q) is
computed as point values at the interfaces. Therefore, we set

hi+1/2= hi + hi+1

2
, (hu)i+1/2= (hu)i + (hu)i+1

2
, (hw)i+1/2= (hw)i + (hw)i+1

2
,

and we approximate of the derivative of the non-hydrostatic pressure deviation by

(∂XX q̃)i+1/2 = q̃i+3/2 − 2q̃i+1/2 + q̃i−1/2

	x2
(∂X q̃)i+1/2 = q̃i+1/2 − q̃i−1/2

2	x
.

Moreover, we set

(∂Xh)i+1/2 = hi+1 − hi
	x

, (∂Xb)i+1/2 = bi+1 − bi
	x

,

and

(∂XX (2b + h))i+1/2 = minmod
(

	+
2b+h,	

c
2b+h,	

−
2b+h

)

,

where

	+
2b+h = ∂X (2b + h)i+3/2 − ∂X (2b + h)i+1/2

	x
, 	−

2b+h = ∂X (2b + h)i+1/2 − ∂X (2b + h)i−1/2

	x
,

and 	c
2b+h = (

	+
2b+h + 	−

2b+h

)

/2.
Then, a tridiagonal linear system is obtained for the unknown values {q̃i+1/2}i . Once this

linear system is solved, the values of
{

( (hu)n+1
i , (hw)n+1

i , qn+1
i+1/2 )

}

i∈I are updated using
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(29) and (30), leading to

(hu)n+1
i = (hu)

n+2/3
i − 	t

(

hn+1
i (∂X q̃)i + q̃i∂X

(

2b + hn+1)

i

)

,

(hw)n+1
i = (hw)

n+2/3
i + 2	t q̃i ,

qn+1
i+1/2 = q̃i+1/2 + qni+1/2,

with

q̃i = q̃i−1/2 + q̃i+1/2

2
, (∂X q̃)i = q̃i+1 − q̃i

	x
, (∂X (2b + h))i = (2b + h)i+1 − (2b + h)i−1

2	x
.

Theorem 1 The scheme defined by steps 1, 2 and 3 is exactly well-balanced for steady solu-
tions given by

u = w = q = 0,
∣

∣∂X
(

˜b + b + h
)∣

∣ = tan θ, with 0 ≤ θ ≤ arctanμs .

In particular, in the limit case
∣

∣∂X
(

˜b + b + h
)∣

∣ = μs .

Proof Remark that it is sufficient to prove that the steps 1 and 2 do not modify the initial
state, since from (32) the non-hydrostatic pressure is zero when the discharges are zero.

Let us focus first on the first step. From the definition of (24) and taking into account that
u = 0, it follows that ̂W+

i+1/2 = ̂W−
i+1/2. Therefore, the numerical diffusion (22) vanishes.

As a consequence, hn+1/3
i = hni from (20). Moreover, since steps 2 and 3 do not modify the

first component, we get hn+1
i = hni . Note also that (hw)

n+1/3
i = (hw)ni = 0 thanks to (28).

Let us focus now on the second component,

(hu)
n+1/3
i = (hu)ni − 1

2
g cos θ

	t

	x

(

(

hni + hni−1

)

	ηni−1/2 + (

hni+1 + hni
)

	ηni+1/2

)

.

Noticing that the profile of the free surface is linear, i.e, 	ηni+1/2/	x = tan θ and (hu)ni =0,
this leads to

(hu)
n+1/3
i = −g cos θ	t

(

hni + 1

2

(

hni−1 + hni+1

)

)

tan θ = −g cos θ	t˜hni tan θ.

In the second step, since the velocity and the non-hydrostatic pressure are both zero, we have
that

σ n
c,i = g cos θμs˜h

n
i , and (hu)


,n+1/3
i = (hu)

n+1/3
i .

Then, taking into account that tan θ ≤ μs , it yields
∣

∣

∣(hu)
n+1/3
i

∣

∣

∣ = g cos θ	t˜hni tan θ ≤ g cos θ	t˜hni μs = 	tσ n
c,i , (33)

obtaining then (hu)
n+2/3
i = (hw)

n+2/3
i = 0, and therefore (h, hu, hw)n+1

i = (h, 0, 0)ni ,
which concludes the proof. �	
Corollary 1 The scheme defined by steps 1, 2 and 3 preserves the discrete steady states at
rest, i.e., those verifying

ui = wi = qi = 0,

∣

∣

∣

∣

∣

(

˜b + b + h
)

i+1 − (

˜b + b + h
)

i

	x

∣

∣

∣

∣

∣

≤ μs for all i ∈ I.
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Table 1 Rheological parameters
considered in all the numerical
tests

ds (mm) μs μ2 I0 ϕs

0.7 tan(25.5◦) � 0.48 tan(36◦) � 0.73 0.279 0.62

Proof It follows from the proof of Theorem 1. �

Remark 4 When considering the continuous steady states (17) in the general case, we have
that

(

˜b + b + h
)

i+1 − (

˜b + b + h
)

i

	x
= [

∂X
(

˜b + b + h
)]

i+1/2 + O (

	x2
)

.

If
∣

∣∂X
(

˜b + b + h
)∣

∣ < μs , then the hypothesis of previous corollary is true for a sufficiently
small	x . Otherwise,when the equality holds, one should take carewith the proof of Theorem
1. In particular, ̂W+

i+1/2 = ̂W−
i+1/2 and inequality (33) are both true up to a second order

term in 	x .

4 Numerical Tests

In this section, we present some numerical tests in order to validate the non-hydrostatic model
and the numerical approach introduced in this paper. Comparisons with a hydrostatic version
of the proposed model (see Remark 1) will be shown.

First, we study the influence of the choice of the coordinate system (local or Cartesian)
when using the hydrostatic and the non-hydrostatic model. In a second series of tests, we
compare with experimental data of granular collapse over inclined planes described in [37].
Comparisons are carried out using both the hydrostatic and non-hydrostatic models in local
coordinates.

Notice that, in this section, whenever we speak about hydrostatic/non-hydrostatic model
in local or Cartesian coordinates, we refer to the direction along which the shallowness
approximation is applied and the depth-average procedure is performed starting from the 2D
Navier–Stokes system. This direction is normal to the reference plane˜b for local coordinates
and in the vertical z-direction for the Cartesian coordinates.

All the simulations are carried out with a constant mesh size, 	x , and an adaptive time
step, 	t , computed with

CFL = max
i∈I

(

|ui | + √

g cos θhi
) 	t

	x
= 0.5.

Regarding boundary conditions, a ghost cell technique is used to impose wall boundary
conditions upstream for the hyperbolic problem, and homogeneous Neumann condition for
the elliptic problem. In all the tests shown here there is a vacuum zone downstream. In
addition, thanks to the fact that the incompressibility equation (15) is multiplied by h to
obtain (16d), the solution of the elliptic problem naturally degenerates to q̄ = 0 in vacuum
zones. This is done for all the presented tests. The rheological parameters of the granular
material are given in Table 1.
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Fig. 2 Bottom and free surface for the well-balanced test

4.1 Well-Balanced Test for Arbitrary Bottom

Let us start by checking that the proposed scheme is well-balanced for not flat solutions given
by (17). To this aim, we consider here a computational domain [−3, 1]with 300 points, where
the bottom is given by˜b = 0 and

b1(x)= 2

x + 4
− 0.5 + 0.25RAND(x), b2 = 0.6 − 6.5(x − 1.5)2, b(x)=

{

b1 + b2 if b1 < b2,
b1 otherwise,

where RAND(x) ∈ [0, 1] is a random value generated at run time. The free surface is given
by (see Fig. 2)

h(x) + b(x) = max (−0.45 − (x − 2)μs, b(x)) ,

where in this case μs = tan(20◦), and the discharges hu, hw are set to zero.
In this case, the L1 and L2 errors between the initial and final heights are 6.4×10−15 and

7.5×10−16 respectively. For hu and hw the errors are zero thanks to the treatment described
in step 2 of the numerical approximation. Moreover, we have checked that the previous initial
condition is not stationary if the angle of repose is lower that 20◦. Therefore, we can conclude
that the scheme is well-balanced for steady states given by (17).

4.2 Convergence Test

In this test we perform a convergence test showing that the proposed scheme is indeed first
order accurate for time dependent solutions.

It is well-known that non-hydrostatic simulation for shallow water equations produces an
overshooting in the presence of shock when using very fine meshes. This non-physical effect
makes it difficult to study convergence of the scheme when this situation arises. In order to
avoid this problem, we consider here a smooth initial condition for the height with no wet-dry
fronts, starting from the rest, over an slope given by b(X) = 0,

˜b(x) = (2.7 − x) tan 20◦, and h(X) = 0.02 + 0.4 e−5(X−0.25)2 ,

in the computational domain [−0.5, 2.7]. The material properties are in Table 1.
We compute the L1 errors and numerical orders for the conservative variables (h, hu, hw)

in an intermediate time, before overshooting occurs. To this aim, the reference solution is
computedwith 3200 nodes. Figure 3 shows the initial condition and the height at time t = 0.4
s, where the errors are measured. The results can be seen in Table 2, where we obtain that
the proposed scheme is first order accurate for all the variables.
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(b)(a)

Fig. 3 Height profiles at initial time (dashed green lines) and at t = 0.4 s (solid blue lines) in a local and b
Cartesian coordinates (Color figure online)

Table 2 L1 Errors and related orders for the height (h) and the discharges (hu, hw) for the solution at time
t = 0.4 s

N. cells Error h Order h Error hu Order hu Error hw Order hw

25 2.20×10−2 2.94×10−2 1.33×10−2

50 1.62×10−2 0.45 2.00×10−2 0.55 1.07×10−2 0.32

100 1.11×10−2 0.54 1.34×10−2 0.59 7.90×10−3 0.44

200 6.66×10−3 0.74 7.66×10−3 0.80 5.74×10−3 0.46

400 3.81×10−3 0.81 4.16×10−3 0.88 3.61×10−3 0.67

800 1.88×10−3 1.02 1.94×10−3 1.10 1.84×10−3 0.98

4.3 Influence of the Coordinate System

In this test, we first propose to analyze howmuch the use of local coordinates is important. To
do so, let us compare the results obtained when one uses local or Cartesian coordinates. The
simulations will be performed using the non-hydrostatic model presented here as well as its
hydrostatic counterpart. For the sake of simplicity, we consider that the bottom is defined by
the reference slope plane. In order to compute the simulation corresponding to system (16a)
in local coordinates we must set ˜bloc(x) = − tan θ (x − xend) and bloc = 0. Conversely, in
Cartesian coordinates we have to define bCart (x) = − tan θ (x − xend),˜bCart = 0, and write
g instead of g cos θ everywhere in system (16a).

Let us remark that in this case the term 2q∂Xb in the non-hydrostatic model (16b) vanishes
when themodel iswritten in local coordinates,whereas it is equal to−2q tan θ in theCartesian
version of themodel. This behavior is very different ifwe comparewith the hydrostaticmodel,
where this term is always zero.

We shall analyze the influence of the choice of coordinates by considering a numerical
test where the initial condition is well defined in both coordinate systems.

Weconsider a computational domain given by the interval [X0, Xend ]. The initial condition
is shown in Fig. 4. We shall denote by hloc(X) and hCart (x) the initial height function in
local and Cartesian coordinates respectively. The initial height in Cartesian coordinates is
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Fig. 4 Sketch of the initial condition in Cartesian (blue) and local (red) coordinates (Color figure online)

Fig. 5 Deposits at different times
of the hydrostatic (red lines) and
the non-hydrostatic (blue lines)
models computed in local
coordinates. Dashed green line
corresponds to the initial height
(Color figure online)

given by

hCart (x) = max
(

ηre f + tan θ (x − xend) , 0
)

, for x < xlim,

where ηre f is a reference level, xend is the right boundary of the computational domain and
xlim is the initial front position.

In order to define the initial condition using local coordinates we use that x = X cos θ .
Then, Xlim = xlim/ cos θ is the initial position of the front position in local coordinates. We
also use that the distance from Yb(Xlim) to the reference level (vertically measured) is

H = ηre f + sin θ (Xlim − Xend) ,

which is the maximum height of the flow when considering Cartesian coordinates. Then, the
maximum height of the initial condition defined in local coordinates is ̂H = H cos θ , located
in ̂X = Xlim − ̂H tan θ (see Fig. 4b). Using this notation we can define the initial condition
in local coordinates as follows:

hloc(X) = max(h1(X), 0), with h1(X) =
⎧

⎨

⎩

y1(X) = max
(

̂H + tan θ
(

X − ̂X
)

, 0
)

, if X ≤ ̂X ,

y2(X) = max

(

1

tan θ
(Xlim − X) , 0

)

, if X > ̂X .

In practice, we set the slope θ = 22◦ and the computational domain (in local coordinates)
X ∈ [−0.5, 2.7], with 600 nodes. At initial time, the considered granular mass is at rest,
the position of the front is assumed to be at X = 0, i.e. Xlim = 0, and the maximum
(local) height is assumed to be ̂H = 0.14 m. This is equivalent to consider a reference level
ηre f = 0.14/ cos θ + xend tan θ m.

Figure 5 shows the time evolution of hydrostatic (H) and non-hydrostatic (NH) local
models in a local view, i.e. the flow thickness h is represented in the direction normal to
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Fig. 6 Thickness profiles of the granular mass flowing on a plane of inclination θ = 22o at different times.
Blue lines correspond to local models with hydrostatic (dashed) and non-hydrostatic (solid) pressure, while
red lines are the solutions of Cartesian models with hydrostatic (dashed) and non-hydrostatic (solid) pressures.
Inset figures show zooms of the front position (Color figure online)

Fig. 7 Time evolution of the
granular front position x f
computed with the hydrostatic
and the non-hydrostatic models
in local coordinates (dashed and
solid blue line, respectively), and
the hydrostatic and the
non-hydrostatic models in
Cartesian coordinates
(dot-dashed brown and dotted red
line, respectively). Inset figure
shows a zoom at short times
(Color figure online)
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Fig. 8 Time evolution of the
relative errors of the front
position x f when changing the
coordinates system. Dashed red
line is the comparison for
hydrostatic models, and solid
blue line for non-hydrostatic
models (Color figure online)

Fig. 9 Time evolution of the relative errors computed with the local non-hydrostatic (NH) and the hydrostatic
(H) models (solid and dashed blue lines respectively), the Cartesian NH and the H models (dotted red line and
dot-dashed brown line respectively), taking as reference the results of the NH model in local coordinates with
a finer mesh for a the front position x f and b the granular mass thickness computed with L2 norm (Color
figure online)

the slope. The spreading of the granular mass simulated with the non-hydrostatic model
is slower than with the hydrostatic model. As a result the front position is always located
further downslope with the hydrostatic model, leading to significantly longer runout distance.
Concretely, it is 11.8% bigger using the hydrostatic model. The maximum thickness of the
flowing mass and of the deposit is also lower with the hydrostatic model, except at the very
beginning of the flow. In Fig. 6 we show the evolution of the flowing mass obtained with
the hydrostatic and the non-hydrostatic models, in both coordinate systems. The simulations
obtained with the hydrostatic model, both in local and Cartesian coordinates, are faster
during the first instants than non-hydrostatic models. The non-hydrostatic model in Cartesian
coordinates generate faster flows than the hydrostatic model in local coordinates for t > 0.22
s, approximately, leading to larger travelling distances of the granular front and consequently
larger runout distance. From that time, the two models in Cartesian coordinates go further
than the models in local coordinates. One of the outcome of this comparison is that the non-
hydrostatic Cartesian model does not give the same results as the local hydrostatic model,
contrary to what was assumed in [16]. This is also shown in Fig. 7, where we see the time
evolution of the granular front position. In the inset figure we see that the front position
simulated with the non-hydrostatic (NH) model in Cartesian coordinates is slightly smaller
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than the one computed with the hydrostatic (H) model in local coordinates at short times
while it is higher later on, as commented before. The final runout distance using the NH
Cartesian model and the H local model are however similar as also assumed in [16]. Note
also that the time change of the front position simulated with the NH local model exhibit a
curvature change during the first instants as observed in laboratory experiments (Figure 9a
of [37]) while is is not the case with hydrostatic models.

It is well-known that models in local coordinates are more appropriate than model in
Cartesian coordinates, since local models compute the velocity in the direction tangent to the
topography, which is the relevant direction for these dense granular flows. As a result, we
will calculate the error made when using Cartesian coordinates instead of local coordinates.
In the same way, we will chose as a reference the NH local model for which the shallow
approximation and depth-integration is performed in the good direction and that includes
some non-hydrostatic contribution.

In Fig. 8 we show the relative error of the front position between the results obtained
in Cartesian coordinates compared to the local coordinates for both the hydrostatic and
non-hydrostatic models. We can observe that hydrostatic models are more dependent on
the coordinate system. That is an expected behavior as fully 3D non-hydrostatic results are
independent of the choice of the coordinate system. In Fig. 9a, b we show relative errors on
the front position and height along the domain computed with the different models compared
to the reference solution obtained with the NH local model with a finer mesh computed with
1200 nodes, i.e., ˜	x = 	x/2. As expected, the errors corresponding to the solution of the
Cartesian hydrostatic model are the biggest one, reaching 400% during the first instants up
to 28% on the runout distance. These errors are lower when looking at the height along the
domain. This error is greater also for the H Cartesian model, being approximately 23% at
final time, whereas it is 14% and 11%, approximately, for the NH Cartesian and H local
models, respectively. This behavior is also seen in Fig. 7. Finally, these figures show also the
errors between the NH model with the coarse and finer meshes. We see a peak of this error
at a very short time, but it is lower than 1% for t > 0.22 s, being zero (approximately 10−6)
for the runout distance. When looking at the height along the domain, this error is always
lower than 3.5%, being approximately 1.5% at final time. We can conclude that hydrostatic
models in Cartesian coordinates predict a much too long runout distance. Nevertheless,
and interestingly, the Cartesian non-hydrostatic model and the local hydrostatic model give
similar deposits even though the dynamics is different, as shown in Figs. 7 and 9. This partly
supports the assumption of [16] but only for the deposit. Indeed, these authors proposed a
hydrostatic model in Cartesian coordinates with a correction of the pressure accounting for
an approximation of the vertical acceleration. They showed that their model produces similar
results to the ones obtained with the hydrostatic local model for the analytical solution of a
dam break problem (see their Fig. 4b).

This last resultmotivates the next test, where these twomodels (H-local andNH-Cartesian)
are compared in a more general case, with a more complex topography.

4.4 Hydrostatic Local Model vs Non-hydrostatic CartesianModel

The goal of this test is to show a qualitative comparison of the hydrostatic local and the
non-hydrostatic Cartesian model for flows on a complex topography. We consider here a
granular mass, with the same rheological properties (see Table 1) as in previous test, in the
computational domain [−3, 3]. In this casewe take 640 nodes for the horizontal discretization.
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Fig. 10 Initial height (solid red line), bottom topography (solid black line) and reference plane with the mean
slope used for the local model (dashed gray line) (Color figure online)

The topography, in Cartesian coordinates, is given by˜bCart = 0 and

bCart (x) = 1 − tanh(x) + 0.3e−10(x−1)2 + 0.5e−10(x−3)2 , (34)

and the initial height is

hCart (x)=max(η(x) − bCart (x), 0), with η(x)=
{

y0 − 1 + e−0.5(x−x0)8 , if x ≤ 0,
0, otherwise,

with x0 = −1.53 m and y0 = 1.91 m.
Defining this initial configuration in local coordinates is not a simple task. First, a reference

plane ˜bloc(x), whose slope is the mean slope of the topography, is defined. In our case,
˜bloc(x) = −0.7 − tan(25◦)(x − 3). Then, the topography bloc(X) is defined as the distance
from˜bloc(x) to bloc(X), measured in the normal direction to the reference plane˜bloc (see Fig.
10). Analogously, the height hloc(X) is the distance from bloc(X) to hloc(X). The granular
mass is supposed to be initially at rest. After some time the grains stop, leading to three
separate regions of material at rest.

Figure 11 shows the height at times 0.5, 1.5, 2.5 s and the final deposit. We show the
results of the non-hydrostatic local, the hydrostatic local, the hydrostatic Cartesian and the
non-hydrostatic Cartesian models. We see that the hydrostatic Cartesian model is the fastest
one, and the non-hydrostatic local model is the slowest one as observed previously. We also
see that the results of the hydrostatic local model and the non-hydrostatic Cartesian models
are close for t > 2.3 s. Actually, the final deposits computed with both models are similar
even though the dynamics differ. Moreover, the solution of the hydrostatic Cartesian model
widely differs from the other models.

These results confirm that the hydrostatic local model and the non-hydrostatic Cartesian
model produce similar deposits even though the dynamics is different, but not too different
in this test. Moreover, in view of the results, the non-hydrostatic Cartesian model proposed
here is an improvement of the model introduced in [16], in the sense that our model computes
the vertical acceleration while their model uses an estimate of this acceleration by taking the
average of the vertical velocity deduced from the free surface and bottom boundary condition.

In the rest of the paper, we shall only use local models.
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Fig. 11 Height of the flowing mass at different times. Blue lines correspond to local models with non-
hydrostatic (solid) and hydrostatic (dashed) pressure, while red lines are the solutions of Cartesian models
with hydrostatic (dashed) and non-hydrostatic (solid) pressures. Inset figures show zooms of the front position
(Color figure online)

4.5 Comparison with Experimental Granular Collapses

In this section we compare the results of the hydrostatic and the non-hydrostatic models with
experimental data detailed in [37]. In these experiments, we have a granular column of height
h0 = 14 cm and length L = 20 cm, which is initially confined in a tank. The gate is opened
so that the material is released from rest and flows over an inclined plane with slope θ ≥ 0.
We consider here five different slopes, θ = 0◦, 9.78◦, 16◦, 19◦ and 22◦. The bed is made of
the same particles glued on it.

The computational domain is [−0.2, 3] m with 640 points and the initial height is given
by

h0(x) =
{

0.14 if x ≤ 0;
0 otherwise.

Let us remark that the gate removal induces a vertical velocity to the material that is located
near the front, in contact with the gate. This cannot be reproduced by hydrostatic models,
but using non-hydrostatic models we can impose the initial vertical velocity induced by the
gate removal. This is an advantage of the non-hydrostatic model.

To do that, we consider an initial vertical velocity defined by

Wb(x) =
{

Vb if − 0.025 < x < 0;
0 otherwise,

(35)
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Fig. 12 Time evolution of the granular mass with slope θ = 0◦, for the laboratory experiments (solid-circle
blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green line) and the
non-hydrostatic model with gate effect (dashed black line) (Color figure online)

Fig. 13 Time evolution of the granular mass over a plane with slope θ = 9.78◦, for the laboratory experiments
(solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green
line) and the non-hydrostatic model with gate effect (dashed black line) (Color figure online)

where Vb, is the estimated velocity at which the gate is removed. In the experiment it is
estimated that Vb = 2.3 m/s (see [27]). Imposing this velocity to the grains is different to
what was done in [27] where they prescribed this velocity to a friction-free moving wall
confining the domain and not directly to the grains. What we do here lead to overestimate the
grain velocity because their motion should be slower than the uplifting velocity of the gate.
This, together with the fact that they solved the full 2D Navier–Stokes system, allows them
to obtain better results. However, the computational effort is much bigger. In order to show
how the non-hydrostatic model could be used to study the effect of the gate, we also have
performed these numerical tests using this initial vertical velocity, which will be analyzed
later.
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Fig. 14 Time evolution of the granular mass over a plane with slope θ = 16◦, for the laboratory experiments
(solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green
line) and the non-hydrostatic model with gate effect (dashed black line) (Color figure online)

Fig. 15 Time evolution of the granular mass over a plane with slope θ = 19◦, for the laboratory experiments
(solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green
line) and the non-hydrostatic model with gate effect (dashed black line) (Color figure online)

Figures 12, 13, 14, 15 and 16 show the thickness of the granular mass at different times,
and the final deposit obtained with the hydrostatic and the non-hydrostatic model for slopes
θ = 0◦, 9.78◦, 16◦, 19◦ and 22◦. We shall in particular focus on the solutions at short times.
The reason is that when the gate is opened and the material starts to flow, the non-hydrostatic
effects are strong because the mass is not shallow, involving strong gradients of the free
surface. The non-hydrostatic effects decrease as the mass spreads and gets closer to a shallow
layer. One of the known consequences of these non-hydrostatic effects is that the granular
mass does not start moving as fast as when using models based on the hydrostatic assumption
(see e.g. [23,38]).
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Fig. 16 Time evolution of the granular mass over a plane with slope θ = 22◦, for the laboratory experiments
(solid-circle blue line), the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green
line) and the non-hydrostatic model with gate effect (dashed black line) (Color figure online)

We indeed observe that the solution of the non-hydrostatic model is slower andmore accu-
rate than the solution obtained with the hydrostatic model in all the studied configurations,
as detailed below. The final deposits obtained with the non-hydrostatic model are in good
agreement with the experiments, in particular for θ = 9.78◦, 16◦ (see Figs. 13, 14).

We see this behavior even more clearly in Fig. 17, where the position of the front at
different times is represented. It is observed that the front position computed with the non-
hydrostatic model is closer to the one obtained in the laboratory experiments up to a certain
time, even though at the final instants the front position simulated with the NHmodel may be
less accurate than with the H model as also observed on Fig. 17a, showing the final runout r f
as function of the slope. Indeed in Fig. 17a, c, e the experimental runouts for θ = 9.78◦ and
θ = 19◦ are closer to the hydrostatic model than to the non-hydrostatic one. Nevertheless,
for θ = 9.78◦, looking at the final deposit in Fig. 13, we see that the experimental front has a
very small thickness. If we do not consider these very small thicknesses, the observed runout
distance gets closer to the NH results than to the H simulations. For θ = 19◦, even though
the runout distance is underestimated with the NH model, the whole granular thickness is
better approximated with the NH model (see Fig. 15), as explained below and as represented
in Fig. 18.

In order to quantify how accurately the models reproduce laboratory experiments when
including non-hydrostatic terms, we represent in Fig. 18 the relative error on the mass thick-
ness between the simulation and the experiments averaged over all the domain at a given
time. This error is computed at a given short time tini (chosen as a time for which the flow
is initialized and we have experimental data) and at the final time t f . We see that the error
obtained with the non-hydrostatic model is smaller than the one obtained with the hydrostatic
model for all slopes and for both the short and the final times. In particular, for θ = 9.78◦ at
final time, the error computed with the non-hydrostatic model is 7% approximately, whereas
this error is greater than 15% with the hydrostatic model. Figure 18 also shows that the error
is smaller at the final time than at the short time. One of the source of the error is related
to the depth-averaged process as shown in [23,24]. In particular the rounded shape of the
front obtained in the simulations disappears when multi-layer models are used, i. e. when
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(a) (b)

(d)(c)

(e) (f)

Fig. 17 a Normalized runout for all the slopes; b–f time evolution of the normalized position of the front
computed with the hydrostatic model (dot-dashed red line), the non-hydrostatic model (solid green line), the
non-hydrostatic model with the effect of the gate at initial times (dashed black line), and experimental data
(solid-circle blue lines). h0 = 0.14 m and τc = √

h0/(g cos θ) s (Color figure online)

no depth-averaging is performed (compare e. g. Fig. 16 of the present paper to Figure 14 of
[23]). Note that the error seems to increase with increasing slope. This may be due to wall
effects that are more and more important as the slope angle increases as shown in [40].

In the figures, we see a small peak in the experiments at very short times. This results from
the gate opening when releasing the granular material. Figures 12, 13, 14, 15, 16 and 17 also
show the results obtainedwhen imposing an initial vertical velocityw0(x) at the front position
where the gate is located. We see that the results obtained with w0(x) �= 0 are similar to the
non-hydrostatic model starting from rest (w0(x) = 0) at large times, whereas they differ for
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Fig. 18 Relative errors of the
height along the domain
computed with the hydrostatic
(dot-dashed lines) and
non-hydrostatic (solid lines)
models. Filled-symbols lines
correspond to the errors at final
times t f = 1.06 (0◦),
1.32 (9.78◦), 1.62 (16◦),
1.5 (19◦), 2.3 (22◦) s, while
empty-symbols lines are the
errors at time tini =
0.24 (0◦, 9.78◦), 0.36 (16◦),
0.32 (19◦, 22◦) s

Fig. 19 Time evolution of the normalized velocity of the front computed with the hydrostatic model (dot-
dashed red line), the non-hydrostatic model (solid green line), the non-hydrostatic model with the effect of
the gate at initial times (dashed black line), and experimental data (solid-circle blue lines). h0 = 0.14 m,
v0 = √

h0g cos θ m/s and τc = √
h0/(g cos θ) s (Color figure online)

short times. We also see in Fig. 17 that the evolution of the front position improves for short
times when including the vertical velocity mimicking the gate removal, while this has almost
no effect at final times. Moreover, we see that the influence of the gate is stronger for small
slopes (θ = 0◦, 9.78◦) than for larger slopes (θ = 16◦, 19◦, 22◦). The results obtained here
differ from those of [27], which used the full 2D Navier–Stokes equations (i. e. fully non-
hydrostatic pressure) and described the gate as a moving boundary without friction. Indeed,
in their simulation, gate effects make the front propagate more slowly at the beginning as
observed here. However, their runout distance is independent of the gate, in contrary to what
is obtained here for θ = 0◦ and θ = 9.78◦ (see Figs. 12 and 13, respectively).

Figure 19 shows the velocity of the front for all the slopes. In the experiments we see that
the velocity grows up at the beginning, and it decreases after an intermediate time, describing
thus a parabolic profile. This behavior is reproduced with the non-hydrostatic model. On the

123



   25 Page 30 of 35 Journal of Scientific Computing            (2021) 86:25 

(a) (b)

Fig. 20 a Time evolution of the maximum of the vertical velocity for θ = 0◦, 22◦ computed with the
hydrostatic (dot-dashed red lines) and the non-hydrostatic (solid green lines) model. h0 = 0.14 m, v0 =√
h0g cos θ m/s and τc = √

h0/(g cos θ) s. b Maximum on time of the differences of estimations of the
energy between hydrostatic and non-hydrostatic models for all the slopes. max(·) = maxt,x (·) and ̂(·) =
maxt

(∑

1≤i≤N (·)/N)

(Color figure online)

contrary, the front velocity computed with the hydrostatic model starts from its maximum
value and then decreases. This is an important improvement of NH models. Indeed, despite
of being a simple model which neglects the first order contribution of the non-hydrostatic
pressure (11), the shape of the front velocity is much better reproduced than with hydrostatic
models.

In Fig. 19we also see that the front velocity is smaller during the first instants for themodel
including an initial vertical velocity w0 �= 0. Next, its growth is faster and the maximum
velocity of the front is larger than the one computedwithw0 = 0. Interestingly, themaximum
velocity is reached at similar times for both models.

Figure 20 shows the time evolution of the maximum vertical velocity, which is reached
close to the front, for the smallest and biggest studied slopes θ = 0◦, 22◦. This velocity,
when computed with the hydrostatic model, is bigger than with the non-hydrostatic model.
This figure also shows the differences of estimated potential energy (gh) and kinetic energy
(V 2) between the hydrostatic and the non-hydrostatic model, for all the slopes. In order to
approximate the kinetic energy (V 2) we use the downslope velocity u or the velocity vector
(u, w). For each case, we take the maximum on time, and the maximum or the average on
space of V 2. Next, we compute the (relative) difference between the values computed with
the hydrostatic and the non-hydrostatic model for a fixed slope. We see that, for small slopes,
the difference between the models is significantly greater for the kinetic energy than for the
potential one (which also represents the differences on the height), and these are of the same
order of magnitude for all the slopes. However, the difference of the kinetic energy are greater
for small values of the slope. We could conclude that the difference between the two models
is bigger for small slopes.

5 Conclusions

In this work a non-hydrostatic depth-averaged model for dry granular flows has been pro-
posed. The model considers a friction term based on the μ(I ) rheology, where the friction
coefficient depends on both the pressure (hydrostatic and non-hydrostatic) and the velocity.
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For the sake of simplicity, we assume that the non-hydrostatic pressure has a linear profile.
For other profiles, the system would have extra unknowns and equations resulting in more
complexity from the computational point of view (see e.g. [25]).

The proposed model notably improves the results of hydrostatic models, in particular
when comparing our results with dam break laboratory experiments. The model can be seen
as a correction of classical Savage–Hutter type models with aμ(I ) friction law. Its numerical
discretization can also be adapted for any existing hydrostatic code by adding two additional
steps to the numerical scheme. In addition, we have proven that the proposed scheme is
well-balanced in the sense that it preserves discrete steady states whose slope is lower than
the angle of repose. In particular, it is exactly well-balanced for solution with constant slope
verifying that.

We performed numerical tests to study the order of convergence and the well-balanced
properties of the numerical scheme.Wehave also analyzed the influence of the coordinate sys-
tem (Cartesian or local) for the hydrostatic and non-hydrostatic model. The non-hydrostatic
models (both Cartesian and local) predict a slower motion of the granular front at the begin-
ning. However, the front positions computed with both Cartesian models are longer after
some time, as expected. It is due to the fact that Cartesian model use the horizontal velocity
instead of the velocity tangent to the topography. The biggest differences between the NH
local model with a finer mesh and the H local, NH Cartesian, and H Cartesian models are
found for short times (see Fig. 9a). Namely, the maximum of this difference is around 400%
for the H Cartesian and 170% for the NH Cartesian models at time t = 0.03 s, whereas it is
72% for the H local model at t = 0.04 s.

In addition, the deposits obtained with the local hydrostatic model and the Cartesian
non-hydrostatic models are similar even though the dynamics differs. These results partly
support the assumption made by [16] where a hydrostatic Cartesian model with a correction
of the pressure based on an approximation of the vertical acceleration is proposed with
the aim to avoid working in local curvilinear coordinates. In that sense, our non-hydrostatic
Cartesianmodel is an improvement of the one proposed in [16], since the vertical acceleration
is computed and not estimated. This has been studied in test Sect. 4.4, where a complex
topography has been used, obtaining similar conclusions. We have also observed that the
non-hydrostatic models are less dependent on the coordinate system than the hydrostatic
models, which is also an expected result.

Comparisons have been made with laboratory experiments, and also with a hydrostatic
model (Savage–Hutter model with a μ(I ) friction coefficient). The non-hydrostatic model
improves the results of the hydrostatic one, in particular at short times, which is clear by
looking at the time evolution of the position of the front. The shape of the flowing mass
and of the deposit is also always closer to the experiments when using non-hydrostatic
models. The importance of non-hydrostatic terms is higher for smaller slopes, as expected.
The approximation of the front position is also improved when using the non-hydrostatic
model, making it possible to slow down the too fast propagation of the front observed in
hydrostatic models ([38], and figure 9 of [37]. Moreover, we have shown that the thickness
distribution is always better reproduced by the NH model compared to the H model, both at
short and final times. For example, as shown in Fig. 18, for θ ≤ 16◦ (θ = 22◦, respectively)
the relative error between simulated and observed thickness distribution is around 15% for
the H model while it is approximately 7% for the NH model (27% and 17%, respectively).

By using this non-hydrostatic model we may impose a vertical velocity at initial time,
which mimics the effect of the gate opening. The gate opening has a strong influence on the
dynamics at short times. However, this has almost no effect on the final deposit as shown by
[27], where they use the full Navier–Stokes equations and impose the movement of the gate
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as a moving wall boundary condition. With the model proposed here, we also obtain this gate
effect at initial time for small slopes (θ = 0◦, 9.78◦), whereas the results are almost identical
for large slopes (θ = 16◦, 19◦, 22◦).

An important result is the fact that our non-hydrostatic model predicts the parabolic
shape of the velocity of the front as a function of time, as observed in the experiments.
This is not reproduced at all by hydrostatic models where the velocity of the front starts
from its maximum. Such improvement is obtained even though our model is only weakly
non-hydrostatic, in the sense that we do not take into account the contribution of the stress
tensor in the non-hydrostatic pressure. In the future it would be interesting to include viscous
terms, as well as the extension of the presented model using a vertical discretization such
as the multilayer approach, which gave promising results for hydrostatic granular flows (see
[23,24]) and also for non-hydrostatic inviscid fluids [25].A further study on how to implement
a breaking mechanism for the model studied here will be interesting as well.

Acknowledgements This research has been partially supported by the Spanish Government and FEDER
through the research projectsMTM2015-70490-C2-2-RandRTI2018-096064-B-C22, andby theERCcontract
ERC-CG-2013-PE10-617472 SLIDEQUAKES. The authors would like to thank Cipriano Escalante for the
interesting discussions related to this work.

References

1. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge Univer-
sity Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139541008

2. Audusse, E., Bouchut, F., Bristeau, M., Klein, R., Perthame, B.: A fast and stable well-balanced scheme
with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

3. Baker, J.L., Barker, T., Gray, J.M.N.T.: A two-dimensional depth-averaged μ(I)-rheology for dense gran-
ular avalanches. J. Fluid Mech. 787, 367–395 (2016). https://doi.org/10.1017/jfm.2015.684

4. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And
Well-Balanced Schemes for Sources. Springer, Berlin (2004)

5. Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model
for fluidized granular flows with dilatancy effects. J. Fluid Mech. 801, 166–221 (2016). https://doi.org/
10.1017/jfm.2016.417

6. Bouchut, F., Ionescu, I., Mangeney, A.: An analytic approach for the evolution of the static-flowing
interface in viscoplastic granular flows. Commun. Math. Sci. 14(8), 2101–2126 (2016)

7. Bouchut, F.,Westdickenberg,M.:Gravity driven shallowwatermodels for arbitrary topography.Commun.
Math. Sci. 2(3), 359–389 (2004)

8. Bouzid, M., Trulsson, M., Claudin, P., Clément, E., Andreotti, B.: Nonlocal rheology of granular flows
across yield conditions. Phys. Rev. Lett. (2013). https://doi.org/10.1103/physrevlett.111.238301

9. Bristeau, M.O., Mangeney, A., Sainte-Marie, J., Seguin, N.: An energy-consistent depth-averaged Euler
system: derivation and properties. Discrete Contin. Dyn. Syst. Seri. B 20(4), 961–988 (2015)

10. Brunet, M., Moretti, L., Le Friant, A., Mangeney, A., Fernández Nieto, E.D., Bouchut, F.: Numerical
simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano
flank collapse to submarine emplacement. Nat. Hazards 87(2), 1189–1222 (2017). https://doi.org/10.
1007/s11069-017-2815-5

11. Castro, M.J., González-Vida, J.M., Parés, C.: Numerical treatment of wet/dry fronts in shallow flows with
a modified Roe scheme. Math. Models Methods Appl. Sci. 16(06), 897–931 (2006). https://doi.org/10.
1142/s021820250600139x

12. Castro Díaz,M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers:
PVM methods. SIAM J. Sci. Comput. 34(4), A2173–A2196 (2012)

13. Casulli, V.: A semi-implicit finite difference method for non-hydrostatic free-surface flows. Int. J. Numer.
Methods Fluids 30(4), 425–440 (1999). https://doi.org/10.1002/(sici)1097-0363(19990630)30:4<425::
aid-fld847>3.0.co;2-d

14. Delannay, R., Valance, A., Mangeney, A., Roche, O., Richard, P.: Granular and particle-laden flows: from
laboratory experiments to field observations. J. Phys. D Appl. Phys. 50(5), 053001 (2017)

123

https://doi.org/10.1017/CBO9781139541008
https://doi.org/10.1017/jfm.2015.684
https://doi.org/10.1017/jfm.2016.417
https://doi.org/10.1017/jfm.2016.417
https://doi.org/10.1103/physrevlett.111.238301
https://doi.org/10.1007/s11069-017-2815-5
https://doi.org/10.1007/s11069-017-2815-5
https://doi.org/10.1142/s021820250600139x
https://doi.org/10.1142/s021820250600139x
https://doi.org/10.1002/(sici)1097-0363(19990630)30:4<425::aid-fld847>3.0.co;2-d
https://doi.org/10.1002/(sici)1097-0363(19990630)30:4<425::aid-fld847>3.0.co;2-d


Journal of Scientific Computing            (2021) 86:25 Page 33 of 35    25 

15. Delgado-Sánchez, J., Bouchut, F., Fernández-Nieto, E., Mangeney, A., Narbona-Reina, G.: A two-layer
shallowflowmodelwith two axes of integration,well-balanced discretization and application to submarine
avalanches. J. Comput. Phys. 406, 109186 (2020). https://doi.org/10.1016/j.jcp.2019.109186

16. Denlinger, R., Iverson, R.: Granular avalanches across irregular three-dimensional terrain: 1. Theory and
computation. J. Geophys. Res. Earth Surf. (2004). https://doi.org/10.1029/2003jf000085

17. Edwards, A.N., Gray, J.M.N.T.: Erosion-deposition waves in shallow granular free-surface flows. J. Fluid
Mech. 762, 35–67 (2015). https://doi.org/10.1017/jfm.2014.643

18. Escalante, C., de Luna, T.M., Castro, M.: Non-hydrostatic pressure shallow flows: GPU implementation
using finite volume and finite difference scheme. Appl. Math. Comput. 338, 631–659 (2018)

19. Escalante, C., Morales de Luna, T.: A general non-hydrostatic hyperbolic formulation for boussinesq
dispersive shallow flows and its numerical approximation. J. Sci. Comput. 83(3), 1 (2020). https://doi.
org/10.1007/s10915-020-01244-7

20. Fernández-Nieto, E., Bresch, D., Monnier, J.: A consistent intermediate wave speed for a well-balanced
HLLC solver. C. R. Math. 346(13–14), 795–800 (2008). https://doi.org/10.1016/j.crma.2008.05.012

21. Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Castro Díaz, M.J., Mangeney, A.: A new Savage–Hutter
type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227(16), 7720–7754
(2008). https://doi.org/10.1016/j.jcp.2008.04.039

22. Fernández-Nieto, E.D., Gallardo, J.M., Vigneaux, P.: Efficient numerical schemes for viscoplastic
avalanches. Part 1: The 1D case. J. Comput. Phys. 264, 55–90 (2014). https://doi.org/10.1016/j.jcp.
2014.01.026

23. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: A multilayer shallow model
for dry granular flows with the μ(I ) rheology: application to granular collapse on erodible beds. J. Fluid
Mech. 798, 643–681 (2016)

24. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: 2D granular flows with the
μ(I ) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. 356,
192–219 (2018). https://doi.org/10.1016/j.jcp.2017.11.038

25. Fernández-Nieto, E.D., Parisot, M., Penel, Y., Sainte-Marie, J.: A hierarchy of dispersive layer-averaged
approximations of Euler equations for free surface flows. Commun. Math. Sci. 16(5), 1169–1202 (2018).
https://doi.org/10.4310/cms.2018.v16.n5.a1

26. Gray, J.M.N.T., Edwards, A.N.: A depth-averaged μ(I)-rheology for shallow granular free-surface flows.
J. Fluid Mech. 755, 503–534 (2014)

27. Ionescu, I.R., Mangeney, A., Bouchut, F., Roche, R.: Viscoplastic modeling of granular column collapse
with pressure-dependent rheology. J. Non Newton. Fluid Mech. 219, 1–18 (2015). https://doi.org/10.
1016/j.jnnfm.2015.02.006

28. Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving
dilatancy. I. Physical basis. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2170), 20130819 (2014). https://
doi.org/10.1098/rspa.2013.0819

29. Iverson, R.M., Logan,M., Denlinger, R.P.: Granular avalanches across irregular three-dimensional terrain:
2. Experimental tests. J. Geophys. Res. Earth Surf. (2004). https://doi.org/10.1029/2003jf000084

30. Jackson, R.: The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics. Cambridge
University Press, Cambridge (2000)

31. Jop, P., Forterre,Y., Pouliquen,O.:A constitutive law for dense granular flows.Nature 441(7094), 727–730
(2006)

32. Jop, P., Forterre, Y., Pouliquen, O.: Initiation of granular surface flows in a narrow channel. Phys. Fluids
19(8), 088102 (2007)

33. Kelfoun, K., Druitt, T.H.: Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J.
Geophys. Res. (2005). https://doi.org/10.1029/2005jb003758

34. Lagrée, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-
dimensional Navier–Stokes with a μ(I)-rheology. J. Fluid Mech. 686, 378–408 (2011)

35. Lucas, A., Mangeney, A., Ampuero, J.P.: Frictional velocity-weakening in landslides on Earth and on
other planetary bodies. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4417

36. Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J.P., Bristeau, M.O.: Numerical modeling of self-
channeling granular flows and of their levee-channel deposits. J. Geophys. Res. Earth Surf. 112(F2),
F02017 (2007). https://doi.org/10.1029/2006JF000469

37. Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.: Erosion and mobility in
granular collapse over sloping beds. J. Geophys. Res. Earth Surf. 115(F3), (2010). https://doi.org/10.
1029/2009JF001462

38. Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the use
of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. Solid (2005).
https://doi.org/10.1029/2004JB003161

123

https://doi.org/10.1016/j.jcp.2019.109186
https://doi.org/10.1029/2003jf000085
https://doi.org/10.1017/jfm.2014.643
https://doi.org/10.1007/s10915-020-01244-7
https://doi.org/10.1007/s10915-020-01244-7
https://doi.org/10.1016/j.crma.2008.05.012
https://doi.org/10.1016/j.jcp.2008.04.039
https://doi.org/10.1016/j.jcp.2014.01.026
https://doi.org/10.1016/j.jcp.2014.01.026
https://doi.org/10.1016/j.jcp.2017.11.038
https://doi.org/10.4310/cms.2018.v16.n5.a1
https://doi.org/10.1016/j.jnnfm.2015.02.006
https://doi.org/10.1016/j.jnnfm.2015.02.006
https://doi.org/10.1098/rspa.2013.0819
https://doi.org/10.1098/rspa.2013.0819
https://doi.org/10.1029/2003jf000084
https://doi.org/10.1029/2005jb003758
https://doi.org/10.1038/ncomms4417
https://doi.org/10.1029/2006JF000469
https://doi.org/10.1029/2009JF001462
https://doi.org/10.1029/2009JF001462
https://doi.org/10.1029/2004JB003161


   25 Page 34 of 35 Journal of Scientific Computing            (2021) 86:25 

39. Mangeney-Castelnau,A., Vilotte, J.P., Bristeau,M.O., Perthame, B., Bouchut, F., Simeoni, C., Yerneni, S.:
Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J. Geophys.
Res. Solid Earth 108(B11), 2527–2544 (2003). https://doi.org/10.1029/2002JB002024

40. Martin, N., Ionescu, I.R., Mangeney, A., Bouchut, F., Farin, M.: Continuum viscoplastic simulation of
a granular column collapse on large slopes: μ(I) rheology and lateral wall effects. Phys. Fluids 29(1),
013301 (2017). https://doi.org/10.1063/1.4971320

41. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM
J. Numer. Anal. 44(1), 300–321 (2006)

42. Peruzzetto, M., Komorowski, J.C., Le Friant, A., Rosas-Carbajal, M., Mangeney, A., Legendre, Y.: Mod-
eling of partial dome collapse of La Soufrière of Guadeloupe volcano: implications for hazard assessment
and monitoring. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-49507-0

43. Peruzzetto,M.,Mangeney,A.,Bouchut, F.,Grandjean,G., Levy,C., Thiery,Y., Lucas.A.: Topography cur-
vature effects in thin-layer models for gravity-driven flows without bed erosion. hal-03039631 (Preprint,
2020). https://hal.archives-ouvertes.fr/hal-03039631, https://hal.archives-ouvertes.fr/hal-03039631/file/
JGR_curvature_2019.pdf

44. Peruzzetto, M., Mangeney, A., Grandjean, G., Levy, C., Thiery, Y., Rohmer, J., Lucas, A.: Operational
estimation of landslide runout: comparison of empirical and numerical methods. Geosciences 10(11), 424
(2020). https://doi.org/10.3390/geosciences10110424

45. Pirulli, M., Mangeney, A.: Results of back-analysis of the propagation of rock avalanches as a function
of the assumed rheology. Rock Mech. Rock Eng. 41(1), 59–84 (2008). https://doi.org/10.1007/s00603-
007-0143-x

46. Pitman, E., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. Lond. A
Math. Phys. Eng. Sci. 363(1832), 1573–1601 (2005). https://doi.org/10.1098/rsta.2005.1596

47. Pouliquen, O.: On the shape of granular fronts down rough inclined planes. Phys. Fluids 11(7), 1956–1958
(1999). https://doi.org/10.1063/1.870057

48. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548
(1999)

49. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass
down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

50. Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Philos. Trans. R. Soc. AMath.
Phys. Eng. Sci. 367(1909), 5091–5107 (2009). https://doi.org/10.1098/rsta.2009.0171

51. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid
Mech. 199, 177–215 (1989). https://doi.org/10.1017/S0022112089000340

52. Staron, L., Lagrée, P.Y., Popinet, S.: The granular silo as a continuum plastic flow: the hour-glass vs the
clepsydra. Phys. Fluids 24(10), 103301 (2012). https://doi.org/10.1063/1.4757390

53. Stelling, G., Zijlema, M.: An accurate and efficient finite-difference algorithm for non-hydrostatic free-
surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 43(1), 1–23 (2003)

54. Yamazaki, Y., Kowalik, Z., Cheung, K.: Depth-integrated, non-hydrostatic model for wave breaking and
run-up. Numer. Methods Fluids 61, 473–497 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

J. Garres-Díaz1 · E. D. Fernández-Nieto2 · A. Mangeney3,4 · T. Morales de Luna1

B J. Garres-Díaz
jgarres@uco.es

E. D. Fernández-Nieto
edofer@us.es

A. Mangeney
mangeney@ipgp.fr

T. Morales de Luna
tomas.morales@uco.es

123

https://doi.org/10.1029/2002JB002024
https://doi.org/10.1063/1.4971320
https://doi.org/10.1038/s41598-019-49507-0
https://hal.archives-ouvertes.fr/hal-03039631
https://hal.archives-ouvertes.fr/hal-03039631/file/JGR_curvature_2019.pdf
https://hal.archives-ouvertes.fr/hal-03039631/file/JGR_curvature_2019.pdf
https://doi.org/10.3390/geosciences10110424
https://doi.org/10.1007/s00603-007-0143-x
https://doi.org/10.1007/s00603-007-0143-x
https://doi.org/10.1098/rsta.2005.1596
https://doi.org/10.1063/1.870057
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.1017/S0022112089000340
https://doi.org/10.1063/1.4757390
http://orcid.org/0000-0003-2013-6127


Journal of Scientific Computing            (2021) 86:25 Page 35 of 35    25 

1 Dpto. Matemáticas, Edificio Einstein - U. Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
2 Dpto. Matemática Aplicada I, ETS Arquitectura - U. Sevilla, Avda. Reina Mercedes S/N,

41012 Seville, Spain
3 Institut de Physique du Globe de Paris, Seismology Team, U. Paris-Diderot, Sorbonne Paris Cité,

75238 Paris, France
4 ANGE Team, CEREMA, INRIA, Lab. J. Louis Lions, 75252 Paris, France

123


	A Weakly Non-hydrostatic Shallow Model for Dry Granular Flows
	Abstract
	1 Introduction
	2 Derivation of a Non-hydrostatic Shallow µ(I)-Model
	2.1 Initial System
	2.2 Dimensional Analysis and Derivation of the Model
	2.3 Final Model

	3 Numerical Approximation
	Step 1: Hyperbolic Problem
	Step 2: Coulomb Friction Term
	Step 3: Non-hydrostatic Pressure Correction

	4 Numerical Tests
	4.1 Well-Balanced Test for Arbitrary Bottom
	4.2 Convergence Test
	4.3 Influence of the Coordinate System
	4.4 Hydrostatic Local Model vs Non-hydrostatic Cartesian Model
	4.5 Comparison with Experimental Granular Collapses

	5 Conclusions
	Acknowledgements
	References




