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We present here a multilayer model for shallow grain-fluid mixtures with dilatancy effects. 
It can be seen as a generalization of the depth-averaged model presented in Bouchut 
et al. (2016) [6], that includes dilatancy effects by considering a two-layer model, a 
mixture grain-fluid layer and an upper fluid layer, to allow the exchange of fluid between 
them. In the present work the approximation of the mixture layer is improved including 
normal variations of the velocities and concentrations of the two phases thanks to the 
multilayer approach. In the model presented here dilatancy effects induce in particular 
a non-hydrostatic pressure for both phases related to the excess pore fluid pressure. 
Contrary to the single-layer model, the computation of this excess pore pressure entrains 
a serious difficulty due to the multilayer approach. We identified here one of the main 
numerical difficulty of solving two-phase shallow debris flows models: the strongly non-
linear behaviour and abrupt changes of the excess pore fluid pressure when starting from 
non-equilibrium conditions. We propose a simplified approach to approximate the excess 
pore fluid pressure in the simple case of uniform flows in the downslope direction and 
quantify the error made. Our method makes it possible to introduce two or three layers 
in the normal directions with a reasonable approximation. Analytical solutions for uniform 
grain-fluid flows over inclined planes, with and without side wall friction, are calculated 
and compared to the proposed model. The presented model preserves the total solid 
granular mass as in [6]. In the numerical results, we observe that the proposed model with 
a two layer description of the mixture accurately represents the velocity measured at the 
surface of the mixture in the laboratory experiments. This is obviously poorly represented 
by the depth-averaged velocity in single-layer models while the other quantities (solid 
volume fraction, basal excess pore fluid pressure) are similar to those obtained with single-
layer models. Our numerical results show a significant impact of the parameters involved 
in dilatancy law, in particular on the calculation of the time evolution of the excess pore 
fluid pressure.
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1. Introduction

Many efforts have been devoted to the study of granular flows (aerial, sub-aerial, debris flows,...) in recent years. Gravity 
driven flows such as landslides, submarine avalanches, or rock avalanches are important natural hazards. One of the chal-
lenges of those studies is to predict the velocity and the runout distance in rapid landslides in order to provide new tools 
for prediction and prevention systems. The physical understanding of these flows, and their theoretical description is still a 
challenge from the geophysical, mathematical and numerical point of view.
In last years, mathematical modelling has contributed to investigate granular flows. However, many questions remain open 
regarding the internal behaviour of these flows, as the rheology and the fluid-grain interaction in fluidized flows.

On the one hand, rheological laws able to explain the complex behaviour of granular flows have been widely investigated. 
Currently, the most accepted law is the so-called μ(I)-rheology, introduced in [20], and other equivalent laws that consider 
a variable friction coefficient in the definition of the stress tensor (see Capart et al. [8]). On the other hand, most of natural 
landslides involve a fluid (commonly water) mixed with the granular material. Interactions between the fluid and solid 
phases play a key role in the dynamics of these debris flows. This interaction basically depends on the pore fluid pressure, 
which determines the effective friction between the fluid and the grains. Many studies have been devoted to the study of 
dilatancy effects in granular materials. Compression/dilatation implies a decrease/increase of the fluid pressure that has a 
strong effect on the dynamics of fluidized flows (see e.g. [6,7,25]).

Most of the models in the literature describing two-phase (grain-fluid) flows are based on the Jackson’s model [18], 
which considers the buoyancy force and the friction between the phases. This model has five unknowns: the solid (grain) 
volume fraction, the fluid and solid pressures, and solid and fluid velocities. However, only four equations are used: mass 
and momentum conservation equations for each phase. Therefore, the Jackson’s model is underdetermined and a closure 
equation has to be added. It seems convenient to formulate this closure equation in term of the contraction/dilatation effect 
as discussed in [6].

As it is well known, the computational cost of solving 3D models is huge. For this reason, the thin-layer (i.e. shallow) 
approximation has been commonly used to obtain depth-averaged models from the Jackson’s model. Pitman and Le [27]
and later Petanti et al. [23] proposed a depth-averaged model where no closure relation was included but used an extra 
boundary condition instead. This approach makes it impossible to obtain a dissipative energy balance, leading therefore to 
a model that is physically meaningless. This is widely discussed in [5], where a model with a consistent energy balance is 
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proposed based on the incompressibility of the solid phase. However, the granular phase is not incompressible and dilatancy 
effects have to be accounted for.

Roux and Radjai introduced a dilatancy model in [28], namely the rate of the solid volume change is defined in terms 
of the shear rate of the granular material γ̇ and a dilatation angle ψ as −γ̇ tan ψ . Actually, they write the evolution of the 
solid volume fraction ϕ as

∂tϕ + v · ∇ϕ = −ϕ γ̇ tanψ,

where v is the solid velocity. Pailha and Pouliquen [25] used this relation as a closure of the Jackson’s model to obtain 
a depth-averaged model, but they also assume an extra boundary condition and therefore their system is overdetermined. 
When the previous equation is combined with the mass conservation equation, it leads to

∇ · v = γ̇ tanψ, (1)

which is the closure relation considered by Bouchut et al. [6,7]. A key point in that model is to consider a thin layer of fluid 
over the mixture layer. Then, the contraction/dilatation of the mixture is allowed through a fluid transference between the 
two layers. As in the Pailha and Pouliquen model [25], the dilatancy effects appear in this model in particular through an 
excess pore fluid pressure term representing a deviation from the hydrostatic solid and fluid pressures.

A different approach to two-phase models is to assume a single-phase flow (e.g. Iverson [16], George and Iverson [13,14], 
Iverson and George [17]) where the mass and velocity of the mixture, which are defined as an average in terms of the solid 
volume fraction, are used instead of the masses and velocities of each phase. Therefore, the relative motion between the 
fluid and solid is not explicit in the model. In [17] they consider dilatancy effects through a modification of the dilatancy 
law of Roux and Radjai [28] and took into account the compressibility of the granular material.

The previous depth-averaged models share an important limitation. The dilatancy effect is written in terms of the shear 
rate of the solid phase γ̇ , which strongly depends on the variations in the direction normal to the topography. Therefore, 
these “single-layer” models give a poor approximation of this term. Moreover, contraction/dilatation produces a relative 
motion of the fluid and solid phases in the normal direction that these models hardly reproduce. Multilayer models were 
introduced as an intermediate step between depth-averaged and 3D Navier-Stokes models (e.g. [3,12]). These models allow 
us to recover the normal structure of the flow, and consequently to get a better approximation of the terms that depend 
on the normal variations. Fernández-Nieto et al. [10] introduced a multilayer model for dry granular flows with the μ(I)
rheology. They showed that the rheological terms are better approximated thanks to this approach, making it possible to 
numerically reproduce relevant behaviour of dry granular flows. In particular, they recover the position and evolution of 
the flow/no-flow transition. Furthermore, their model were able to simulate naturally the change of velocity profiles from 
Bagnold to S-shaped. This was deeply investigated by Fernández-Nieto et al. [11], where side walls friction was added, 
changing significantly the flow dynamics.

The goal of this work is to propose a multilayer extension of model [6] for fluidized granular flows with dilatancy 
effects. To this aim, we start from the Jackson’s model with the closure relation (1), and the final model is obtained from 
an asymptotic analysis and the multilayer approach. Then, the velocity and solid volume fraction is no more constant along 
the normal direction. Actually, both are piecewise constant functions, with discontinuities at the internal interfaces of the 
multilayer domain. One of the key points of this work is to highlight the main numerical difficulty in such multilayer (or 
3D) models for debris flows: to deal with the strongly non-linear and abrupt changes of the excess pore fluid pressure 
when starting from non-equilibrium conditions. We propose an approximation of this excess pore fluid pressure in simple 
uniform flows and compare our numerical results with previous depth-averaged (i.e. single-layer) models and with analytical 
solutions to quantify the errors made in the proposed numerical approximation and how much adding layers in the normal 
direction improves the comparison with laboratory experiments compared to single-layer models.

The paper is organized as follows: in section 2 the governing equations and the rheology are presented. Section 3 is 
devoted to the details of the derivation of the multilayer model, from the dimensional analysis of the Jackson’s model to 
the final two-phase multilayer model. The numerical tests are presented in section 4 and some conclusions are introduced 
in section 5. The explicit expression of the excess pore pressure is done in Appendix A. Appendix B collects all the details 
of the special case of the 2 layer model preserving the granular mass, named PGM-2 model. This model is the multilayer 
model with a smaller computational cost and which we compare with depth-averaged models. We show that it reproduces 
accurately experimental data, mainly the velocity measured at the surface of the mixture, as can be seen in section 4.

2. The initial system

In this section we present the governing equations together with the closure relations and the rheology describing 
fluidized granular flows, as well as the boundary conditions of the system. As in [6], the domain consists of a grain-fluid 
mixture layer and a fluid layer on its top. The role of this upper layer is to allow the exchange of fluid V f between the two 
layers (Fig. 1) that is a key point on the dilatancy effect. This exchange is given through the kinematic boundary condition 
at the mixture interface.
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Fig. 1. Sketch of the domain. The term V f , which may be no-zero, represents the fluid transference at the mixture interface with the upper fluid domain.

2.1. Governing equations

As mentioned before, the goal of this paper is to derive a new multilayer model for fluidized granular flows that can be 
seen as an extension of the work developed in [6]. We focus on the modelling of the mixture layer and the model for the 
single upper layer is adopted from [6] since it does not change. Thus, we focus on the detailed modelling of the mixture 
layer in the following.

We consider a granular material and a fluid with constant densities ρs, ρ f . The governing equations are given by the 
Jackson’s model for fluidized granular materials. The system consists of the concatenation of the mass and the momentum 
equations for the granular and fluid phases. The equations for the solid phase are considered only in the mixture domain and 
the fluid equations are considered in both domains. We denote u f the velocity of the fluid in the top layer and v, u ∈ R2

the solid and fluid velocities respectively in the mixture layer.
Thus, for the upper layer the mass and momentum equations read:{

∇ · u f = 0,

ρ f (∂t u f + (u f · ∇)u f ) = −∇ · σ f + ρ f g,

whereas in the mixture domain, the Jackson’s complete system reads:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρs
(
∂tϕ + ∇ · (ϕv)

) = 0,

ρ f
(
∂t (1 − ϕ) + ∇ · ((1 − ϕ) u)

) = 0,

ρsϕ
(
∂t v + (v · ∇) v

)= ∇ · σ s − ϕ∇p fm + f + ρsϕg,

ρ f (1 − ϕ)
(
∂t u + (u · ∇) u

)= ∇ · σ fm + ϕ∇p fm − f + ρ f (1 − ϕ) g,

(2)

where g is the gravity force and 0 < ϕ < 1 is the solid volume fraction. The total stress tensors are

σ f = −p f I + τ f , σ s = −psI + τ s, σ fm = −p fmI + τ fm ,

with p ∈R the pressure for the solid and fluid phases in the mixture (subscript s and fm respectively), and for the fluid in 
the upper layer (subscript f ). I is the 2D identity tensor and the deviatoric stress tensors are given by

τ f = 2η f D(u f ), τ s = 2ηs D(v), τ fm = 2η fm D(u),

where η f ∈ R is the constant viscosity of the fluid phase, and the viscosity of the solid phase ηs ∈ R is defined by the 
rheological law for the granular phase. The strain-rate tensors are defined as usual by

D(u f ) = 1

2
(∇u f + (∇u f )

′), D(v) = 1

2
(∇v + (∇v)′), D(u) = 1

2
(∇u + (∇u)′).

In system (2), the terms ϕ∇p fm and f are the buoyancy and the drag forces between the phases. We consider here that

f = β (u − v) ,

where β is the drag coefficient. Following precedent works, this coefficient is defined as
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β = (1 − ϕ)2 η f

κ
, with κ = d2

s (1 − ϕ)3

150ϕ2
, (3)

where κ is the hydraulic permeability of the granular mass and ds the grain diameter [25,17,6]. The Jackson’s model is 
underdetermined and a closure equation must be added. In this work we assume the closure introduced in [6] including 
the dilatancy effects

∇ · v = 
, (4)

where the dilatancy function 
 is defined as in [25] and it is detailed in the subsection 2.2.

2.1.1. Boundary conditions
In this work we consider analogous boundary condition to [6] that we summarize here, we refer the reader to this 

reference for more details.

• At the bottom we consider the non penetration conditions

u · n = 0, v · n = 0 at the bottom,

where n is the space unit normal pointing out of the domain. This is completed with friction conditions for solid and 
fluid phases. At first, a Coulomb friction law,

(σ sn)τ = − tanμeff
v

|v| (σ sn) · n at the bottom,

where μeff is the effective friction coefficient given in terms of the rheology introduced in the next subsection and the 
subscript τ denotes the tangential projection. For the fluid phase we consider a Navier friction condition,

(σ fm n)τ = −kbu at the bottom,

for some coefficient kb ≥ 0.
• At the free surface we assume no tension for the fluid and the kinematic condition

σ f N X = 0; Nt + u f · N X = 0 at the free surface,

where N = (Nt , N X ) is a time-space normal to the free surface.
• At the interface, we consider the kinematic condition for the solid phase

Ñt + v · Ñ X = 0 at the interface,

where Ñ = (Ñt , Ñ X ) is a time-space downward normal to the interface. Since we assume that there is an exchange of 
fluid mass between the layers, it must be conserved across the interface. Thus the fluid mass leaving the upper layer is 
the same as the fluid entering the mixture. If this quantity is denoted by V f we have

V f ≡ Ñt + u f · Ñx = (1 − ϕ∗)Ñt + (1 − ϕ∗)u · Ñx at the interface,

where we write the Rankine-Hugoniot condition for equations ∇ · u f = 0 and ∂t(1 − ϕ) + ∇ · ((1 − ϕ)u) = 0. That can 
be also written in terms of the relative velocity as

− ϕ∗

1 − ϕ∗V f = (u f − u) · Ñx = −ϕ∗(Ñt + u · Ñx).

Notice that the value ϕ∗ is introduced to denote the value of the solid volume fraction at the interface, which is 
discontinuous since there is no solid phase in the upper layer.
The conservation of the total momentum gives,

ρ f V f (u − u f ) + (σ s + σ fm )Ñ X = σ f Ñ X at the interface.

The energy balance through the interface yields the stress transfer condition
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σ s Ñ X =
(

ρ f

2

(
(u − u f ) · Ñ X

|Ñ X |
)2

+
(

(σ fm Ñ X ) · Ñ X

|Ñ X |2 − p fm

)
ϕ∗

1 − ϕ∗

)
Ñ X .

Finally a Navier fluid friction condition is considered at this level(σ fm + σ f

2
Ñ X

)
τ

= −ki(u f − u)τ at the interface,

where ki ≥ 0 is a friction coefficient.

2.2. Rheology for fluidized granular flows

A rheology accounting for the behaviour of immersed granular flows must be considered. For dry granular flows the 
μ(I)-rheology [20] is usually considered where the viscosity of the granular material is given by μ(I)ps

‖D(v)‖ , with μ(I) being 
the friction coefficient and I the inertial number. Dilatancy affects the friction law and can be introduced as follows (see 
[25,10]):

ηs = (μ(I) + tanψ) ps

‖D(v)‖ ,

where ‖D‖ = √
0.5 D : D and ψ is the dilatation angle as is defined by equation (10) (see [28,25,6]). We introduce μeff =

μ(I) + tan ψ the effective friction coefficient, appearing also in the Coulomb friction law.
The friction coefficient is

μ(I) = μs + μ2 − μs

I0 + I
I, (5)

which depends on the inertial number I , where I0, μ2 > μs are constant values depending on the material. The main 
difference between the dry and the fluidized case is the definition of the inertial number I (see [2]). In the case of immersed 
granular flows in the viscous regime, this dimensionless number is defined as

I = 2η f ‖D(v)‖
ps

, (6)

in contrast to Idry = 2d‖D(v)‖√
ps/ρs

that is the inertial number for the dry case with d being the particle diameter.

Following this idea, we can also consider an alternative simplified rheology where the friction coefficient is defined as

μ(I) = μs + K1 I, (7)

where K1 is a constant value. In this case, the viscosity coefficient can be written as follows,

ηs = (μs + tanψ) ps

‖D(v)‖ + 2K1η f .

Note that the viscosity coefficient is not defined in the case ‖D(v)‖ = 0. As in previous works for dry granular flows 
[10,11] we consider a regularization method (e.g. [4,22], since the results are good enough (although zero velocity is not 
obtained in static solutions, but very small velocities) and they are cheaper computationally than using a duality method 
(e.g. [15,24])). Then, the regularized viscosity coefficient is

ηs = (μ(I) + tanψ) ps√‖D(v)‖2 + δ2
, (8)

with δ > 0 the regularization parameter. Remark that other regularization techniques might be used (see e.g. [21,26]).

Finally, the dilatancy function is adopted from [25] and it is given by:


 = γ̇ tanψ (9)
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with γ̇ = 2‖D(v)‖ the shear rate, ψ the dilatation angle and

tanψ = K
(
ϕ − ϕ

eq
c
)
, ϕ

eq
c = ϕstat

c − K2 I, (10)

which allows us to rewrite (4) as

∇ · v = K
(
ϕ − ϕstat

c + K2 I
)
,

where K is the dilatation constant and K2 is a constant value, ϕstat
c is a constant volume fraction corresponding to a static 

equilibrium, and ϕeq
c the critical-state equilibrium compacity. This value determines if the current state of the granular 

medium is dilatation, contraction or equilibrium. Assuming a deformation occurs, γ̇ > 0, the solid dilates if ϕ > ϕ
eq
c and 

contracts if ϕ < ϕ
eq
c . In the dilatation case, the fluid is sucked into the fluid-solid mixture and the pore pressure decreases. In 

the other case the fluid is expelled from the mixture and the pore pressure increases. If ϕ = ϕ
eq
c then there is no dilatation 

nor contraction.

2.3. Local coordinates

We write the system for the mixture in tilted coordinates. Let ̃b(x) be an inclined fixed plane of constant angle θ with 
respect to the horizontal axis, we define the coordinates (x, z) ∈ � × R+ ⊂ R2. The x (respectively z) axis is measured 
along the inclined plane (respectively the normal direction) as depicted in Fig. 2. In this reference frame the gravity force is 
written as

g = (−g sin θ,−g cos θ)′.

We also set b(x) an arbitrary bottom topography and the layer of the fluidized material over it with thickness h(t, x), 
which are measured in the normal direction to the inclined plane ̃b(x). The fluid and granular velocities are u = (u, uz

)
and 

v = (v, vz
)

where u, v denotes the downslope velocities of the fluid and granular phase, and uz, vz the normal components 
of u, v . Finally, we set ∇ = (∂x, ∂z), the usual differential operator in the space variables.

We denote the components of the total stress tensor for the fluid phase as:

τ fm =
(

τ xx
fm

τ xz
fm

τ xz
fm

τ zz
fm

)
and D(u) = 1

2

(
2∂xu ∂zu + ∂xuz

∂zu + ∂xuz 2∂zuz

)
,

and analogously defined for the solid phase. With these definitions and embedding the mass equations into the momentum 
equations, system (2) is written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
(
∂tϕ + ∂x (ϕv) + ∂z

(
ϕvz

) )= 0,

ρ f
(
∂t (1 − ϕ) + ∂x ((1 − ϕ) u) + ∂z

(
(1 − ϕ) uz

) )= 0,

ρs
(
∂t (ϕv) + ∂x

(
ϕv2

)+ ∂z
(
ϕv vz

) )+ ∂x ps = ∂xτ
xx
s + ∂zτ

xz
s − ϕ∂x p fm

+β (u − v) − ρsϕg sin θ,

ρ f
(
∂t ((1 − ϕ) u) + ∂x

(
(1 − ϕ) u2

)+ ∂z
(
(1 − ϕ) uuz

) )+ ∂x p fm = ∂xτ
xx
fm

+ ∂zτ
xz
fm

+ϕ∂x p fm − β (u − v) − ρ f (1 − ϕ) g sin θ,

ρs
(
∂t
(
ϕvz

)+ ∂x
(
ϕv vz

)+ ∂z
(
ϕ(vz)2

) )+ ∂z ps = ∂xτ
xz
s + ∂zτ

zz
s − ϕ∂z p fm

+β
(
uz − vz

)− ρsϕg cos θ,

ρ f
(
∂t
(
(1 − ϕ) uz

)+ ∂x
(
(1 − ϕ) uuz

)+ ∂z
(
(1 − ϕ) (uz)2

) )+ ∂z p fm = ∂xτ
xz
fm

+ ∂zτ
zz
fm

+ϕ∂z p fm − β
(
uz − vz

)− ρ f (1 − ϕ) g cos θ,

(11)

and the dilatancy closure equation is

∂x v + ∂z vz = 
.

The boundary conditions are detailed directly in section 3 after the asymptotic analysis.
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3. Two-phase multilayer models with dilatancy

In this section we deduce the multilayer model for fluidized granular flows focusing on the points that are different 
from previous multilayer models (e.g. [10]). The model is obtained from a dimensional analysis and considering a multilayer 
approach of the domain in the vertical direction. We focus on the approximation of the deviatoric tensor at the internal 
interfaces, as well as the definition of the vertical velocity and the stress for both, the solid and the fluid phases.

A difficulty of this model is that the solid pressure is not purely hydrostatic: an excess pore fluid pressure appears in the 
equations as a consequence of the contraction/dilatation of the granular material (see (29)-(30)). This term also appears in 
the vertical velocities of both phases (23) and (25). Finally, the model and the explicit expressions for the mass transference 
terms are presented.

3.1. Dimensional analysis

We perform here a dimensional analysis of the system (11). We consider a shallow domain by assuming that the di-
mensionless parameter ε = H/L is small, where H and L are the characteristic height and length of the flowing mass, 
respectively. We denote as U the characteristic velocity and the characteristic time is then given by L/U . We define the 
dimensionless variables, denoted with the tilde symbol (.̃), as follows:

(x, z, t) = (L̃x, H z̃, (L/U )̃t), h = Hh̃, ρs, f = ρ0ρ̃s, f , ϕ = ϕ0ϕ̃

(u, uz) = (U ũ, εU ũz), (v, vz) = (U ṽ, εU ṽz),

ps, f = ρ0U 2 p̃s, f , ηs, f = ερ0U Hη̃s, f , κi = U κ̃i, kb = Uk̃b(
τ xx

s, f , τ
xz
s, f , τ

zz
s, f

)
= ϕ0ρ0U 2

(
ε2τ̃ xx

s, f , ετ̃
xz
s, f , ε

2τ̃ zz
s, f

)
, V f = εU Ṽ f .

Note that since

D(u) = U

H

1

2

(
2ε2∂̃xũ ε∂̃zũ + ε3∂̃xũz

ε∂̃zũ + ε3∂̃xũz 2ε2∂̃zũz

)
,

we obtain that

τ̃ xx
f = η̃∂̃xũ, τ̃ xz

f = η̃
2

(
∂̃zũ + ε2∂̃xũz

)
, τ̃ zz

f = η̃∂̃zũz,

and D(v) and the components of τs are analogously written. In this work we have considered that the characteristic velocity 
for the solid phase is equal to the one of the fluid, and we also take the characteristic solid volume fraction is ϕ0 = 1. We 
also define the Froude number

F r = U√
g H cos θ

,

and the nondimensional drag coefficient

β = ρ0U

L
εk β̃, where k =

{−1 strong friction;
0 moderate friction,

(12)

and the dilatancy function


 = U

H

̃.
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Thus, the system (11) can be rewritten using dimensionless variables as (tildes have been dropped for simplicity):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
(
∂tϕ + ∂x (ϕv) + ∂z

(
ϕvz

) )= 0, (a)

ρ f
(
∂t (1 − ϕ) + ∂x ((1 − ϕ) u) + ∂z

(
(1 − ϕ) uz

) )= 0, (b)

ρs
(
∂t (ϕv) + ∂x

(
ϕv2

)+ ∂z
(
ϕv vz

) )+ ∂x ps = ε2∂xτ
xx
s + ∂zτ

xz
s

−ϕ∂x p fm + εkβ (u − v) − ρsϕ

εF r2
tan θ, (c)

ρ f
(
∂t ((1 − ϕ) u) + ∂x

(
(1 − ϕ) u2

)+ ∂z
(
(1 − ϕ) uuz

) )+ ∂x p fm = ε2∂xτ
xx
fm

+ ∂zτ
xz
fm

+ϕ∂x p fm − εkβ (u − v) − ρ f (1 − ϕ)

εF r2
tan θ, (d)

ε2ρs
(
∂t
(
ϕvz

)+ ∂x
(
ϕv vz

)+ ∂z
(
ϕ(vz)2

) )+ ∂z ps = ε2∂xτ
xz
s + ε2∂zτ

zz
s

−ϕ∂z p fm + εk+2β
(
uz − vz

)− ρsϕ

F r2
, (e)

ε2ρ f
(
∂t
(
(1 − ϕ) uz

)+ ∂x
(
(1 − ϕ) uuz

)+ ∂z
(
(1 − ϕ) (uz)2

) )+ ∂z p fm = ε2∂xτ
xz
fm

+ε2∂zτ
zz
fm

+ ϕ∂z p fm − εk+2β
(
uz − vz

)− ρ f (1 − ϕ)

F r2
(f)

(13)

and

∂x v + ∂z vz = 1

ε

. (13g)

Before applying the multilayer approach it is suitable to write the system in matrix notation. To this aim we collapse 
all terms coming from the stress tensors under the following notation for the fluid phase (analogously for the solid phase) 
σ ε, fm = −p fmE + ετ ε, fm where the subindex ε marks the dependence of these terms on ε, as in [10], with

τ ε, fm = ηDε, fm (u), Dε, fm (u) := 1

2

(
2ε2∂xu ∂zu + ε2∂xuz

∂zu + ε2∂xuz 2 ∂zuz

)
, and E =

(
ε 0

0 1/ε

)
.

Then, defining F =
(

tan θ

F r2
,

1

εF r2

)′
, the system (13) is finally written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
(
∂tϕ + ∇ · (ϕv)

) = 0,

ρ f
(
∂t (1 − ϕ) + ∇ · ((1 − ϕ) u)

) = 0,

ρs
(
∂t (ϕv) + ∇ · (ϕv ⊗ v)

)− 1

ε
∇ · σ ε,s + 1

ε
ϕ∇ · (p fmE

)
= εkβ (u − v) − 1

ε
ρsϕF ,

ρ f
(
∂t ((1 − ϕ) u) + ∇ · ((1 − ϕ) u ⊗ u)

)− 1

ε
∇ · σ ε, fm − 1

ε
ϕ∇ · (p fmE

)
= −εkβ (u − v) − 1

ε
ρ f (1 − ϕ) F ,

∇ · v = 1

ε

.

(14)

Next we specify the asymptotic expressions of the boundary conditions described in section 2.1. Taking into account the 
asymptotic analysis up to second order performed in [6] (see its Appendixes A and B for the details), these conditions read
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(1 − ϕ∗)
(
∂th + u|z=b+h ∂x (b + h) − uz|z=b+h

)
= −V f ;

∂th + v |z=b+h ∂x (b + h) − vz|z=b+h
= 0;

p fm|z=b+h = ρ f g cos θh f , ps|z=b+h = 0.

(15)

The energy balance gives(η f

2
∂zu
)

|z=b+h

= 1

ε

((ε

2
ρ f V f − κi

)(
u f − u

))
|z=b+h

where u f is the first component of the velocity of the water in the upper layer.
At the bottom z = b the no penetration and the friction conditions read

u|z=b ∂xb = uz|z=b
; (

η f ∂zu
)
|z=b

= 1

ε
kb u|z=b ,

v |z=b ∂xb = vz|z=b
;

(ηs

2
∂z v
)

|z=b

= 1

ε

(
(μ(I) + tanψ) ps

v

|v|
)

|z=b

.

Moreover we consider that there is no transference of mass at the bottom, neither solid nor fluid.

3.2. A multilayer approach

We remind the notation of the multilayer domain in order to apply this approach to system (14). The mixture domain is 
denoted by �F (t) and

I F (t) =
{

x ∈ R; (x, z) ∈ �F (t)
}
,

is its projection on the reference inclined plane, for any time t > 0. The idea of this approach is to divide the domain 
along the direction normal to the plane in N ∈ N \ {0} shallow layers with thickness hα(t, x), such that the total height is 
h =∑N

α=1 hα (see Fig. 2). In practice, the normal partition is previously fixed by using the positive coefficient lα satisfying

hα = lαh for α = 1, ..., N;
N∑

α=1

lα = 1.

The N + 1 interfaces separating the vertical layers are denoted by �α+ 1
2
(t), and are described by z = zα+ 1

2
(t, x) for 

α = 0, 1, .., N , x ∈ I F (t). These interfaces, which are assumed to be smooth enough, shut the subdomain �α(t) up, i.e.,

�α(t) =
{
(x, z); x ∈ I F (t) and zα− 1

2
< z < zα+ 1

2

}
.

A key point of this approach is the approximation of the variables at the interfaces. Then, for an arbitrary function f and 
for α = 0, 1, ..., N , we set

f −
α+ 1

2
:= ( f |�α(t) )|�

α+ 1
2

(t) and f +
α+ 1

2
:= ( f |�α+1(t) )|�

α+ 1
2

(t) ,

where if the function f is continuous, then

fα+ 1
2

:= f |�
α+ 1

2
(t) = f +

α+ 1
2

= f −
α+ 1

2
.

Finally, the normal vectors at the interfaces are defined. For a time t ≥ 0,

nT ,α+ 1
2

=
(
∂t zα+ 1

2
, ∂xzα+ 1

2
,−1

)′

√
1 +

(
∂xzα+ 1

2

)2 +
(
∂t zα+ 1

2

)2
and nα+ 1

2
=
(
∂xzα+ 1

2
,−1

)′

√
1 +

(
∂xzα+ 1

2

)2

denote the space-time unit normal vector and the space unit normal vector to the interface �α+ 1
2
(t) outward to the layer 

�α+1(t) for α = 0, ..., N (see detail in Fig. 2).
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Fig. 2. Sketch of domain with the particular multilayer division for the mixture grain-fluid layer and its notation.

3.2.1. Weak solution with discontinuities
In order to apply the multilayer approach, we look for a particular weak solution (u, v, p fm , ps, ρ f , ρs, ϕ) of (14) (see 

[12,10]) satisfying that:

(i) (u, v, p fm , ps, ρ f , ρs, ϕ) is a standard weak solution of (14) in each layer �α(t),
(ii) (u, v, p fm , ps, ρ f , ρs, ϕ) satisfies the normal flux jump condition for mass and momentum equations for each phase, at 

the interfaces �α+ 1
2
(t), namely:

[(ρsϕ ;ρsϕv)]α+ 1
2

nT ,α+ 1
2

= 0,[(
ρ f (1 − ϕ) ;ρ f (1 − ϕ) u

)]
α+ 1

2
nT ,α+ 1

2
= 0,

(16)

[(ρsϕv;ρsϕv ⊗ v − 1

ε
σ ε,s)

]
α+ 1

2
nT ,α+ 1

2
= 0,[

(ρ f (1 − ϕ) u;ρ f (1 − ϕ) u ⊗ u − 1

ε
σ ε, fm )

]
α+ 1

2
nT ,α+ 1

2
= 0,

(17)

where [(a; b)]α+ 1
2

denotes the jump of (a; b) across the interface �α+ 1
2
(t).

In the previous normal flux jump condition for the momentum equation, we have used that the fluid pressure p fm is 
continuous and the gravitational force and friction between the phases are source terms, therefore there is no jump in the 
buoyancy term and all the terms at the interfaces.

Thus, there is no significant differences between the jump condition in [10] and our case. A particular family of test 
function is considered where the horizontal component of the velocity does not depend on z, and the vertical one is linear 
on z. Then, the velocities of the granular and the fluid phase in each layer are

u|�α(t) := uα := (uα, uz
α)′, v |�α(t) := vα := (vα, vz

α)′,

where uα, vα and uz
α, vz

α are the horizontal and normal velocities, respectively, on layer α. Then,

∂zuα = 0, ∂z vα = 0; and ∂zuz
α = d f ,α(t, x), ∂z vz

α = ds,α(t, x)

for some smooth functions d f ,α(t, x), ds,α(t, x). We also consider that the solid volume fraction is constant in each layer

ϕ|�α(t) := ϕα = ϕα(t, x).

From the jump condition for the mass equations (16) we can easily obtain the definition of the solid mass flux (Gs,α+ 1
2

) 
and the fluid mass flux (G f ,α+ 1

2
):

Gs,α+ 1
2

:= G+
s,α+ 1

2
= G−

s,α+ 1
2

and G f ,α+ 1
2

:= G+
f ,α+ 1

2
= G−

f ,α+ 1
2

with
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G±
s,α+ 1

2
= ϕ±

α+ 1
2

(
∂t zα+ 1

2
+ v±

α+ 1
2

∂xzα+ 1
2

− (vz
α+ 1

2
)±
)

, (18a)

G±
f ,α+ 1

2
= (1 − ϕ)±

α+ 1
2

(
∂t zα+ 1

2
+ u±

α+ 1
2

∂xzα+ 1
2

− (uz
α+ 1

2
)±
)

. (18b)

Note that condition (15) gives the mass transference at the top of the mixture layer z = zN+1/2(t, x), i.e. the exchange with 
the upper fluid domain,

G f ,N+1/2 = −V f and Gs,N+1/2 = 0. (19)

Now, after some straightforward calculations we get the approximation of the deviatoric tensor at the interface �α+ 1
2

using 
(17) as in [10]:

τ±
ε,s,α+ 1

2
nα+ 1

2
= τ̃ ε,s,α+ 1

2
nα+ 1

2
± 1

2

ρsGs,α+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [v]|�
s,α+ 1

2

,

where τ̃ ε,s,α+ 1
2

is an approximation of 
(
ηs Dε(vα)

)
|�

α+ 1
2

, defined by

τ̃ ε,s,α+ 1
2

= ηs,α+ 1
2

D̃ε,s,α+ 1
2

= 1

2
ηs,α+ 1

2

⎛⎜⎜⎜⎜⎜⎜⎝
2ε2∂x

⎛⎝ v+
α+ 1

2
+ v−

α+ 1
2

2

⎞⎠ D̃xz
ε,s,α+ 1

2

(
D̃xz

ε,s,α+ 1
2

)′
2VV

Z ,α+ 1
2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with

D̃xz
ε,s,α+ 1

2
= ε2∂x

⎛⎝ (vz
α+ 1

2
)+ + (vz

a+ 1
2
)−

2

⎞⎠+ VH
Z ,α+ 1

2
.

As in previous works, VZ = (VH
Z , VV

Z ) is an approximation of the derivatives in z of the velocity

VZ − ∂z v = 0, at the interfaces.

Analogously, we can define for the fluid phase τ̃ ε, fm,α+ 1
2

, D̃ε, fm,α+ 1
2

and UZ ,α+ 1
2

and get the approximation of the devia-

toric tensor of the fluid phase:

τ±
ε, fm,α+ 1

2
nα+ 1

2
= τ̃ ε, fm,α+ 1

2
nα+ 1

2
± 1

2

ρ f G f ,α+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [u]|�
f ,α+ 1

2

.

Finally, we need to approximate ηs,α+ 1
2

, the viscosity coefficient (8), up to first order in ε. We consider

‖D(v)‖α+ 1
2

≈ 1

2

∣∣∣VH
Z ,α+ 1

2

∣∣∣ ,
then, the viscosity coefficient is

ηs,α+ 1
2

=
(
μ(Iα+ 1

2
) + (tanψ)α+ 1

2

)
ps,α+ 1

2√∣∣∣VH
Z ,α+ 1

2

∣∣∣2 /4 + δ2

, (20)
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with

VH
Z ,α+ 1

2
= vα+1 − vα

hα+ 1
2

, for α = 1, . . . , N − 1,

and hα+ 1
2

the distance between the midpoints of layers α and α + 1. For the particular case α = 0 we take

VH
Z , 1

2
= λv1

h1
, (21)

with λ depending on the friction condition at the bottom, λ = 1 (friction), λ = 2 (no slip). ps,α+ 1
2

is the solid pressure at 
the interface zα+ 1

2
, whose expression will be given later, and

Iα+ 1
2

=
η f

∣∣∣VH
Z ,α+ 1

2

∣∣∣
ps,α+ 1

2

, for α = 0, . . . , N − 1. (22)

Finally, thanks to (15) we trivially have ηs,N+1/2 = 0.

Vertical velocities

The procedure to recover the vertical velocities is the same as in [12]. In order to compute the vertical velocity for the 
solid phase, we use both the solid mass transference term and the dilatancy closure equation. Firstly, since there is not 
transference of solid mass at the bottom level, we have Gs,1/2 = 0, i.e., we get

(vz
1
2
)+ = v1∂xb + ∂tb. (23a)

Now, integrating the dilatancy equation (13g) between zα− 1
2

and z ∈
(

zα− 1
2
, zα+ 1

2

)
we obtain that

vz
α(z) = (vz

α− 1
2
)+ − (z − zα− 1

2
)

(
∂x vα − 1

ε

α

)
, (23b)

and from the solid mass transference term (18a) we get

(vz
α+ 1

2
)+ = 1

ϕα+1

(
(ϕα+1 − ϕα) ∂t zα+ 1

2
+ (ϕα+1uα+1 − ϕαuα) ∂xzα+ 1

2
+ ϕα(vz

α+ 1
2
)−
)
, (23c)

with

(vz
α+ 1

2
)− = (vz

α− 1
2
)+ − hα

(
∂x vα − 1

ε

α

)
. (23d)

Computing the vertical velocity of the fluid phase is possible by using the incompressibility of the mixture

∇ · (ϕv + (1 − ϕ) u) = 0. (24)

Analogously to the procedure above, we can obtain the vertical velocity for the fluid phase using (24), (18b) and (25b), 
resulting:

(uz
1
2
)+ = u1∂xb + ∂tb, (25a)

uz
α(z) = (uz

α− 1
2
)+ −

(
z − zα− 1

2

)
(1 − ϕα)

(
∂x (ϕα vα + (1 − ϕα) uα) − ϕα∂x vα + 1

ε
ϕα
α

)
, (25b)
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(uz
α+ 1

2
)+ = 1

(1 − ϕα+1)

(
(ϕα − ϕα+1) ∂t zα+ 1

2

+ ( (1 − ϕα+1) uα+1 − (1 − ϕα) uα

)
∂xzα+ 1

2
+ (1 − ϕα) (uz

α+ 1
2
)−
)
,

(25c)

and

(uz
α+ 1

2
)− = (uz

α− 1
2
)+ − hα

(1 − ϕα)

(
∂x (ϕα vα + (1 − ϕα) uα) − ϕα∂x vα + 1

ε
ϕα
α

)
. (25d)

Explicit expression for fluid and solid pressures: p fm , ps

From the nondimensional vertical momentum equation (13f) we obtain up to first order that

∂z p fm = ϕ∂z p fm − εk+2β(uz − vz) − ρ f (1 − ϕ)

F r2
. (26)

By integrating this expression from z to b + h (thanks to the continuity of the dynamic fluid pressure), we obtain

p fm,α(z) = ρ f

F r2

(
b + h + h f − z

) + pe
f ,α, (27a)

where

pe
f ,α = pe

f ,α+ 1
2

+ εk+2

z
α+ 1

2∫
z

β

(1 − ϕ)

(
uz − vz) dz′, (27b)

with

pe
f ,α+ 1

2
= pe

f ,α+1

(
z = zα+ 1

2

)
= εk+2

N∑
γ =α+1

z
γ + 1

2∫
z
γ − 1

2

β

(1 − ϕ)

(
uz − vz) dz′. (27c)

Once we have the fluid pressure, we can obtain an explicit expression for the solid one. From the vertical momentum 
equation (13e) for the solid phase we have

∂z ps = −ϕ∂z p fm + εk+2β(uz − vz) − ρsϕ

F r2
.

Using (26) in the previous equation and integrating from z to zα+ 1
2

we get

ps,α(z) = ps,α+ 1
2

+ ϕα

(
ρs − ρ f

)
F r2

(
zα+ 1

2
− z
)

− εk+2

z
α+ 1

2∫
z

β

(1 − ϕ)

(
uz − vz) dz′,

where

ps,α+ 1
2

=
(
ρs − ρ f

)
F r2

N∑
γ =α+1

hγ ϕγ − pe
f ,α+ 1

2
. (28)

We can write

ps,α(z) =
(
ρs − ρ f

)
F r2

N∑
γ =α+1

ϕγ hγ + ϕα

(
ρs − ρ f

)
F r2

(
zα+ 1

2
− z
)

− pe
f ,α, (29)
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where pe
f ,α is given by (27b). The computation of the excess pore pressure is subtle. It is carried out using the dilatancy 

equation, the mass transference terms for the solid and the fluid, and the fact that we obtain the incompressibility of the 
mixture with velocity (ϕv + (1 − ϕ) u) from the mass equations in (14). We also assume that we are in the case where the 
friction between the solid and the fluid phase is strong (k = −1 in (12)). This leads to (details in appendix A)

pe
f ,α(z) = pe

f ,α+ 1
2

− βα

h2
α −

(
z − zα− 1

2

)2

2 (1 − ϕα)2

α − βα

ϕα (1 − ϕα)2

(
zα+ 1

2
− z
) α−1∑

γ =1

ϕγ hγ 
γ , (30a)

with

pe
f ,α+ 1

2
= pe

f ,α+1

(
z = zα+ 1

2

)
=

N∑
ξ=α+1

−βξ hξ

ϕξ

(
1 − ϕξ

)2
⎛⎜⎝ ξ−1∑

γ =1

ϕγ hγ 
γ + ϕξ hξ
ξ

2

⎞⎟⎠ . (30b)

3.3. Final model

We derive the final model for the mixture by looking for a particular weak solution of system (14) with the procedure 
introduced in [12], which was applied to the case of a variable viscosity in [10]. As we mentioned before, for the upper 
layer we adopt the model derived in [6].
Finally, the resulting system must be written in dimensional variables. As conclusion, the final model reads, for α = 1, ..., N ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th f + ∂x(h f u f ) = −G f ,N+ 1
2
, (a)

ρ f

(
∂t
(
h f u f

)+ ∂x

(
h f u2

f

)
+ g cos θh f ∂x(b + b̃ + h + h f )

)
= −1

2
ρ f G f ,N+ 1

2
(u f + u) − ki(u f − u), (b)

lαϕα

(
∂th + ∂x(hvα)

)
= Gs,α+ 1

2
− Gs,α− 1

2
+ ϕαlαh
α, (c)

lα

(
∂t (hϕα) + ∂x(hϕα vα)

)
= Gs,α+ 1

2
− Gs,α− 1

2
, (d)

lα

(
∂t (h (1 − ϕα)) + ∂x(h (1 − ϕα) uα)

)
= G f ,α+ 1

2
− G f ,α− 1

2
, (e)

lα

(
ρs∂t (hϕα vα) + ρs∂x

(
hϕα v2

α

) + g cos θhϕα ∂x

(
ρs

(
b + b̃ + h

)
+ ρ f h f

)
+ g cos θh

(
ρs − ρ f

)⎛⎝ N∑
γ =α+1

hγ ∂xϕγ + hα

2
∂xϕα

⎞⎠
+g cos θh

(
ρs − ρ f

) N∑
γ =α+1

(
ϕγ − ϕα

)
∂xhγ − h (1 − ϕα)∂x pe

f ,α

)
= lαhβα (uα − vα)

+ Ks,α− 1
2

− Ks,α+ 1
2

+ 1

2
ρsGs,α+ 1

2
(vα+1 + vα) − 1

2
ρsGs,α− 1

2
(vα + vα−1) , (f)

lα

(
ρ f ∂t (h (1 − ϕα) uα) + ρ f ∂x

(
h (1 − ϕα) u2

α

)
+ρ f g cos θh (1 − ϕα) ∂x

(
b + b̃ + h + h f

)
+ h (1 − ϕα) ∂x pe

f ,α

)
= − lαhβα (uα − vα)

+ K f ,α− 1
2

− K f ,α+ 1
2

+ 1

2
ρ f G f ,α+ 1

2
(uα+1 + uα) − 1

2
ρ f G f ,α− 1

2
(uα + uα−1) , (g)

(31)

where



16 J. Garres-Díaz et al. / Journal of Computational Physics 419 (2020) 109699
βα = 1

hα

z
α− 1

2∫
z
α− 1

2

βα dz and ∂x pe
f ,α = 1

hα

z
α− 1

2∫
z
α− 1

2

∂x pe
f ,α dz, (31h)

where βα and pe
f ,α are given by (3) and (30), respectively. The mass transference terms Gs,α+ 1

2
, G f ,α+ 1

2
are given by (18), 

and

Ks,α+ 1
2

= −1

2
ηs,α+ 1

2
(VH

Z ,α+ 1
2
)VH

Z ,α+ 1
2
, Ks, 1

2
= −ρs g cos θ h

(
μ
(

I 1
2

)+ (tanψ)1/2

) v1

|v1| ,
K f ,α+ 1

2
= −η f UH

Z ,α+ 1
2
, K f , 1

2
= −kb u1,

(31i)

for VH
Z ,α+ 1

2
, ηs,α+ 1

2
defined in (20)-(22).

For the specific case of the bottom and mixture interface, we introduce the following definitions:

u0 = 0; v0 = (1 − λ)v1; uN+1 = u f ; v N+1 = 0;

notice that the definition of v0 comes from (21). Moreover, the frictions between the mixture and the upper fluid layer are 
defined by

Ks,N+ 1
2

= 0, and K f ,N+ 1
2

= ki(u f − u).

At the mixture interface we also remind that the transference terms are given in (19).
Note that although the previous system has 5N equations, only 5N − 1 are linearly independent, therefore we have a 

system with 5N − 1 equations and unknowns, which are:

(h, {ϕα,huα,hvα}α=1,...,N , {G f ,α+ 1
2
, Gs,α+ 1

2
}α=1,...,N−1).

However, an explicit expression can be found for the mass transference terms, as detailed below.

3.3.1. Explicit mass transference terms
In order to obtain explicit expressions for the solid mass transference term, we start by combining the averaged mass 

equations for the solid and fluid phase (31d)-(31e), giving

lα

(
∂th + ∂x

(
h
(
ϕα vα + (1 − ϕα) uα

)))=
(

Gs,α+ 1
2

+ G f ,α+ 1
2

)
−
(

Gs,α− 1
2

+ G f ,α− 1
2

)
. (32)

Next, denoting

Ũα = ϕα vα + (1 − ϕα) uα,

and summing up the previous equation from α = 1, . . . , N we obtain

∂th + ∂x

( N∑
α=1

lαh Ũα

)
= Gs,N+ 1

2
+ G f ,N+ 1

2
. (33)

Here we have used that there is no mass transference at the bottom, i.e. Gs, 1
2

= G f , 1
2

= 0. The transference terms Gs,N+ 1
2

and G f ,N+ 1
2

are defined in (19). Using previous equation in the averaged dilatancy equation (31c), it leads to

lα ϕα

(
− ∂x

( N∑
γ =1

lγ h Ũγ

)
+ ∂x (hvα) − h
α

)
+ lαϕα

(
Gs,N+ 1

2
+ G f ,N+ 1

2

)
= Gs,α+ 1

2
− Gs,α− 1

2
,

and summing up the previous equation from α = 1, . . . , N , it gives
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Fig. 3. Sketch of the domain in the immersed configuration and flat free surface.

Gs,α+ 1
2

=
α∑

β=1

lβ ϕβ

(
∂x

(
hvβ −

N∑
γ =1

lγ h Ũγ

)
− h
β

)
+
(

Gs,N+ 1
2

+ G f ,N+ 1
2

) α∑
β=1

lβϕβ. (34a)

Once we have an explicit expression for the solid mass transference term, we can use it in order to obtain the fluid mass 
transference term. We embed (33) in (32), and sum it up from α = 1, . . . , N , it gives

G f ,α+ 1
2

=
α∑

β=1

lβ∂x

(
h Ũβ −

N∑
γ =1

lγ h Ũγ

)
− Gs,α+ 1

2
+
(

Gs,N+ 1
2

+ G f ,N+ 1
2

) α∑
β=1

lβ . (34b)

Taking into account those expressions for the mass transference terms, system (31) can be rewritten as a system with 
3N + 1 equations and unknowns. The unknowns are now the total height (h), the solid volume fraction ({ϕα}N

α=1) and the 
solid and fluid velocities ({vα}N

α=1, {uα}N
α=1). Thus, the equations of the final system are (31d), (31f), (31g) and (33).

Note that we need a closure relation for the fluid and solid mass transference at the free surface introduced in (19). 
Moreover, some important properties of the model, as the mass conservation, depend on how these terms are defined. This 
is discussed in subsection 3.4.1.

Since the proposed model is a two-phase multilayer model, its mathematical nature would be non-hyperbolic [1,9]. 
Nevertheless, the friction between phases is considered strong which leads to obtain similar velocities. Thus we expect that 
the system is not far from being hyperbolic, which is reinforced by the fact that we do not find numerical difficulties in the 
approximation of the model. Even in simple configurations, the numerical approximation of our model involves important 
difficulties, namely when approximating the pressure. For this reason, in the following we study the particular case of 
immersed uniform flows, for which numerical tests will be presented in section 4.

3.4. Particular configuration: immersed uniform flows

We consider the analogous case to [7] for uniform flows, i.e. an immersed flow with rigid top boundary at the surface 
(see Fig. 3), in order to compare with their results. To this aim, we rewrite the derivative of the fluid depth taking into 
account that we have a rigid lid boundary (b = 0). This implies that

∂x
(
x tan θ + h + h f

)= 0.

Since we consider the case of a uniform flow we also have that ∂xh = 0. Then, from the previous equation we deduce that 
∂xh f = − tan θ .
Taking these hypotheses into account in (31c)-(31i) with u f = 0, ki = 0, we obtain the following simplified system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th = Gs,N+ 1
2

+ G f ,N+ 1
2
, (a)

∂tϕα = −ϕα
α, (b)

lα ρs ∂t (hϕα vα) = lα h βα (uα − vα) − (
ρs − ρ f

)
g sin θlαhϕα

+Ks,α− 1
2

− Ks,α+ 1
2

+ 1

2
ρsGs,α+ 1

2
(vα+1 + vα) − 1

2
ρsGs,α− 1

2
(vα + vα−1) , (c)

lα ρ f ∂t (h (1 − ϕα) uα) = − lα h βα (uα − vα)

+K f ,α− 1
2

− K f ,α+ 1
2

+ 1

2
ρ f G f ,α+ 1

2
(uα+1 + uα) − 1

2
ρ f G f ,α− 1

2
(uα + uα−1) , (d)

(35)

Note that (35b) is deduced from (31c) and (31d). We also consider the following definitions: for the drag coefficient (see 
(3))

βα = 150ϕ2
α

d2
s (1 − ϕα)

η f ,

and from (9)-(10) the dilatancy function is


α = γ̇α K
(
ϕα − ϕ

eq
c,α
)
, with ϕ

eq
c,α = ϕstat

c − K2 Iα, with γ̇α = |vα − vα−1|
hα

.

Note that in the definition of γ̇α we set a backward approximation because this is the one that gives us better results, 
namely at the bottom where the friction boundary condition must be taken into account. In particular, the central approxi-
mation produced spurious oscillations.

The system (35) is written in terms of the mass transference at the mixture interface, appearing in the first equation 
(35a). An important property of this system that is shared with the system proposed in [6] is that it preserves the solid 
mass in the mixture domain under the definitions given in (19), that is, Gs,N+ 1

2
= 0 and G f ,N+ 1

2
. In this case we get

∂th = G f ,N+ 1
2
,

hence, thanks to (33) the total solid mass is preserved:

∂t

⎛⎝ N∑
β=1

hβϕβ

⎞⎠= 0.

In order to give an expression for the mass transference terms in the multilayer domain, we first use that Gs,N+ 1
2

= 0 in 
(34a) to obtain the fluid mass transference at the free surface, so finally we have

Gs,N+ 1
2

= 0, G f ,N+ 1
2

=

N∑
γ =1

lγ ϕγ h
γ

N∑
γ =1

lγ ϕγ

. (36)

With this definition, the solid and fluid mass transference terms are written as

Gs,α+ 1
2

=
α∑

β=1

lβϕβ

(
G f ,N+ 1

2
− h
β

)
and G f ,α+ 1

2
= G f ,N+ 1

2

α∑
β=1

lβ − Gs,α+ 1
2
, (37)

for α = 1, . . . , N − 1.

From now on we refer to model (35), (36), (37) as PGM model (Preserving Granular Mass). Actually, this model is the 
multilayer extension of the model proposed by Bouchut et al. [6], where the thickness of the mixture (hm in their notation) 
is not preserved. In fact, their case is the single-layer case of the proposed model. In that case, as authors assume there is 
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no solid mass transference between these layers, therefore Gs,3/2 = 0 and from (34a) the fluid mass transference at the free 
surface remains

G f ,3/2 = h1
1 + ∂x
(
h1 (1 − ϕ1) (u1 − v1)

)
,

which matches with −V f as defined in [6], where the minus sign comes from the fact that they consider the upward 
normal vectors while we work here with downward normal vectors.

This section is organized as follows: in subsection 3.4.1 we propose a multilayer extension preserving the mixture height 
(as the Pailha and Pouliquen model [25]). An analytical solution is deduced in subsection 3.4.2, by neglecting the friction 
between the phases. In subsection 3.4.3 we deduce an analytical solution that includes the effect of the side walls friction 
for confined flows, which plays an important role in the case of granular flows, namely in laboratory experiments. The 
numerical approximation of the resulting system (35) is a difficult task even in this simple configuration of a uniform flow. 
The main difficulty is the approximation of the excess pore fluid pressure term pe

f ,α , which is necessary to define Iα . Its 
numerical approximation is a key point of the numerical scheme, which is detailed in subsection 3.4.4.

3.4.1. A multilayer model preserving the mixture height
The model in [6] preserves the total mass of the mixture. However, in Pailha and Pouliquen model the total height is 

preserved. This is one of the main differences between both models. This implies different steady state solutions for each 
model. In order to perform a similar comparison in the numerical tests we show a multilayer model that preserves the 
height instead of the granular mass in the mixture.

In order to preserve the total height of the mixture layer it is required that the solid mass leaving the mixture domain 
equals the fluid mass entering the domain, i.e., Gs,N+ 1

2
= −G f ,N+ 1

2
in the model (35). Note that in this case, the model in 

the upper layer should also take into account the granular phase.
From (35a) we obtain that

∂th = 0,

and (31d) and (34a), under the uniform flow assumption, lead to

∂t

⎛⎝ N∑
β=1

hβϕβ

⎞⎠= Gs,N+ 1
2
, with Gs,N+ 1

2
= −

N∑
β=1

lβhϕβ
β. (38)

Therefore, the solid mass of the considered mixture may be not preserved at the domain. The solid and fluid mass transfer-
ence terms (34) are

Gs,α+ 1
2

= −
α∑

β=1

lβ h ϕβ
β and G f ,α+ 1
2

= − Gs,α+ 1
2
, (39)

for α = 1, . . . , N . From now on we refer to model (35), (38), (39) as the PH model (Preserving Height).

3.4.2. Analytical solution
The analytical solution for a uniform immersed flow can be obtained with an analogous procedure to the case of a 

granular flow, i.e., Bagnold flow (see e.g. [21]). To this aim, we consider the particular case where no friction effects appear 
in the model (even β(u − v)). This allows us to obtain an explicit expression for analytical solid velocity, pressure and solid 
volume fraction. The effects of the term β(u − v) will be studied in the numerical tests (see section 4.1.1).

Firstly, since we focus on steady uniform flows, where Gs,N+ 1
2

= G f ,N+ 1
2

= 0, once the final height is computed (which 
will be different in each model), the analytical solution will be the same for both models analyzed in previous section. 
Starting from system (11) in the immersed configuration (∂xh f = − tan θ ), and assuming a steady uniform flow (tan ψ = 0), 
we obtain

∂zτ
xz
s = (ρs − ρ f

)
ϕ(z) g sin θ,

∂z ps = − (ρs − ρ f
)
ϕ(z) g cos θ.

(40)

Moreover we consider

τs(z) = μ(I(z)) ps(z), μ(I(z)) = μs + K1 I(z), and ϕ(z) = ϕ
eq
c (z) = ϕstat

c − K2 I(z).

Integrating from z > b to the free surface b + h we obtain
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ps(z) = (ρs − ρ f
)

g cos θ

b+h∫
z

ϕ(s)ds, (41)

τ xz
s (z) = − (ρs − ρ f

)
g sin θ

b+h∫
z

ϕ(s)ds.

Using that

τ xz
s (z) = μ(I(z)) ps(z),

we get

− (ρs − ρ f
)

g sin θ

b+h∫
z

ϕ(s)ds = μ(I(z))
(
ρs − ρ f

)
g cos θ

b+h∫
z

ϕ(s)ds,

so

(μ(I(z)) + tan θ)

b+h∫
z

ϕ(s)ds = 0.

This leads to a constant friction coefficient μ(I) = − tan θ . Thus, we obtain that the inertial number I(μs, �μ = μ2 −
μs, tan θ, K1) is constant

I = − tan θ − μs

�μ + μs + tan θ
I0, or I = − tan θ − μs

K1
,

depending of the considered rheology (5) or (7), and therefore the solid volume fraction

ϕ = ϕ
eq
c = ϕstat

c − K2 I,

is also constant. In addition, using the definition of the inertial number (6) we get an expression for ∂z v . Integrating from 
z = b to 0 < z < b + h and using the no-slip condition at the bottom, the velocity profile reads:

v(z) =
(
ρs − ρ f

)
I ϕ cos θ

2η f

(
(b + h)2 − (b + h − z)2

)
.

3.4.3. Side walls friction for confined flows: analytical solution
To model side wall friction the following additional viscous term is considered at the momentum solid phase (see [11]

and [24]),

− 2

W
μw ps(z)

v

|v| , (42)

where W is the width of the domain and μw the friction coefficient at the lateral walls.
In order to obtain an analytical solution in this case we start again from (40), where the side walls friction term is added

∂zτ
xz
s (z) − 2

W
μw ps(z) = (

ρs − ρ f
)
ϕ(z) g sin θ,

∂z ps(z) = − (ρs − ρs)ϕ(z) g cos θ,

where we have also assumed that sign(∂z v) = sign(v) = 1. Following the same procedure as in the previous section we get

τ xz
s (z) + 2

W
μw
(
ρs − ρ f

)
g cos θ

b+h∫
z

⎛⎝ b+h∫
s

ϕ(ξ)dξ

⎞⎠ds = − (ρs − ρ f
)

g sin θ

b+h∫
z

ϕ(s)ds, (43)
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and writing (43) in terms of ϕ(z), we obtain

(
μs + K1

ϕstat
c − ϕ(z)

K2

) b+h∫
z

ϕ(s)ds + 2

W
μw

b+h∫
z

⎛⎝ b+h∫
s

ϕ(ξ)dξ

⎞⎠ds

= − tan θ

b+h∫
z

ϕ(s)ds.

(44)

Now, deriving the previous equation, it leads to the integro-differential equation

ϕ′(z)
K1

K2

b+h∫
z

ϕ(s)ds +
(
μs + K1

ϕstat
c − ϕ(z)

K2

)
ϕ(z) + 2

W
μw

b+h∫
z

ϕ(s)ds = − tan θϕ(z).

Considering the variable

F (z) =
b+h∫
z

ϕ(s)ds,

we obtain an initial value problem with two differential equations

(
F (z)

ϕ(z)

)′
=
⎛⎜⎝ −ϕ(z)

− K2

K1 F (z)

((
μs + K1

ϕstat
c − ϕ(z)

K2

)
ϕ(z) + 2

W
μw F (z) + tan θϕ(z)

)⎞⎟⎠ ,

where

F (β + h) = ε, ε 
 1,

ϕ(b + h) = ϕstat
c + K1

K2
(tan θ + μs) .

This system is solved using a numerical ODE solver, obtaining the concentration ϕ(z) and F (z). The pressure is computed 
using (41) and the inertial number is I(z) = (ϕstat

c − ϕ(z)
)
/K2. Using the definition of I we find the analytical solid velocity 

solving the differential equation

v ′(z) = ps(z)I(z)

η f
, with v(0) = 0.

Remark 1. Note that if we take (μw = 0) in (44) we recover the previous case without side walls friction (subsection 3.4.2). 
In particular, it leads to μ(I) = − tan θ , which implies that both, the inertial number I and the solid volume fraction ϕ , are 
constant.

Remark 2. In the case of uniform flows for dry granular flows and a hydrostatic pressure it is equivalent to consider the 
additional viscous term (42) or the following modification of the friction coefficient (see [19])

μ(I) = μ(I) + μw
b + h − z

W
.

We show in what follows that for the case considered in this paper, where we deal with a two-phase flow, this modification 
of the friction coefficient, under the same hypothesis, is not equivalent but it is a second order approximation of it.

It is enough to use the trapezoidal rule to approximate the double integral in (44). We obtain, up to second order,

(
μ(I) + μw

(b + h − z)

W
+ tan θ

) b+h∫
z

ϕ(s)ds = 0.
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Note that as a consequence we can deduce an explicit expression that is a second order approximation of the analytical 
solution. We obtain the following approximation,

ϕ = ϕ
eq
c = ϕstat

c + C2
(
(b + h − z) − (b + h − h∗)

)
,

v(z)

C1
= C2

4

(
(b + h − z)4 − (b + h − h∗)4 )

− 2C2 (b + h − h∗) − ϕstat
c

3

(
(b + h − z)3 − (b + h − h∗)3 )

− ϕ
eq
c − C2 (b + h − h∗)

2

(
b + h − h∗) ( (b + h − z)2 − (b + h − h∗)2 ),

for z > h∗ , where

h∗ = (b + h) − tan θ − μs

μw
W , C1 = μw

(
ρs − ρ f

)
g cos θ

K1η f W
, and C2 = K2μw

K1W
.

Note that in this case, h∗ is the position of the static/flowing interface.

3.4.4. Numerical approximation: computation of the linearized solid pressure
We approximate the system of ODEs for uniform flows (35) (for the two cases described in section 3.4.1) using a standard 

first order semi-implicit scheme to go from a time tn to tn+1 = tn + �t as follows:

• The first equation is trivially discretized as hn+1 = hn + �tGn
f ,N+ 1

2
.

• For the equation (35b) for the solid volume fraction, we consider an explicit approximation

ϕn+1
α = ϕn

α − �tϕn
α
n

a .

We can also use an implicit discretization or the exact solution of (35b). We have chosen the explicit one for the sake 
of simplicity, since similar results are obtained with all of them.

• For the momentum equations (35c) and (35d) we use a semi-implicit scheme in order to avoid the restriction on the 
time step that the viscous terms usually involve:

ρslαhn+1ϕn+1
α vn+1

α = ρslαhnϕn
α vn

α + lαhnβα
n (

un
α − vn

α

)− (ρs − ρ f
)

lαhn ϕn
α g sin θ

+ ρsGn
s,α+ 1

2
vn
α+ 1

2
− ρsGn

s,α− 1
2

vn
α− 1

2

+ 1

2
ηn

s,α+ 1
2

vn+1
α+1 − vn+1

α

lα+ 1
2

hn
− 1

2
ηn

s,α− 1
2

vn+1
α − vn+1

α−1

lα− 1
2

hn
,

ρ f lαhn+1 (1 − ϕα)n+1 un+1
α = ρ f lαhn (1 − ϕα)n un

α − lαhnβα
n (

un
α − vn

α

)
+ ρ f Gn

f ,α+ 1
2

un
α+ 1

2
− ρ f Gn

s,α− 1
2

un
α− 1

2

+ η f
un+1

α+1 − un+1
α

lα+ 1
2

hn
− η f

un+1
α − un+1

α−1

lα− 1
2

hn
.

For α = 1 and α = N the definitions of Kα+ 1
2

must be taken into account. The new values are obtained solving a 
tridiagonal linear system with N equations and unknowns.
If the side walls friction (42) is considered, the term

− 2

W
μwhn

α pn
s,α

vn+1
α√|vn

α|2 + δ2

must be added to the right hand side of the momentum equation for the solid phase, where ps,α =
(

ps,α+ 1
2
+ ps,α− 1

2

)
/2

is the pressure in the midpoint of layer α.
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Once we have hn+1, ϕn+1
α , (hϕα vα)n+1 , (h (1 − ϕα) vα)n+1 we find un+1

α , vn+1
α . The difficulty of the scheme comes when 

computing the solid pressure at the interfaces pn
s,α− 1

2
at time tn (see (28) and (30b)):

pn
s,α− 1

2
= (ρs − ρ f

)
g cos θ

N∑
γ =α

hn
γ ϕn

γ +
N∑

ξ=α

β
n
ξ hn

ξ

ϕn
ξ

(
1 − ϕn

ξ

)2

⎛⎜⎝ ξ−1∑
γ =1

ϕn
γ hn

γ 
n
γ + ϕn

ξ hn
ξ


n
ξ

2

⎞⎟⎠ , (45a)

depending on the dilatation function


n
β = γ̇ n

β K
(
ϕn

β − ϕstat
c + K2 In

β

)
, for β = 1, . . . , N. (45b)

In previous equation the inertial number must be approximated in the middle of the layer. For the sake of simplicity in the 
computation of In

β in (45b), we approximate pn
s,α by the value in the interface below. Thus we take

In
β = η f γ̇

n
β

pn
s,β− 1

2

, (45c)

Note that this approximation follows the same idea of what it is made in single-layer models, see for example [25]. In this 
paper the basal pressure is used to define the dilatancy relation arguing that the dilatancy at the bottom gives the right 
order of magnitude of the dilatancy inside the layer. Here, this hypothesis is adopted for each layer β , thus being pn

s,β− 1
2

.

Therefore, we obtain a nonlinear system with N equations and unknowns (the solid pressures), where the main difficulty 
is the fact that the system is fully coupled, i.e., each equation depends on all the rest, and this is due to the excess pore 
pressure.

The first attempt that we carried out was to linearise the problem embedding into (45b) the pressure at the previous 
time step pn−1

s,β− 1
2

. However, due to the abrupt time variations of the excess fluid pressure, namely at short times, this 
method is inadequate. We propose to consider a numerical method that is based on an approximation of the function 
f (x) = 1/x by the first-order term of its Taylor polynomial. Thus, in (45b) we write

1

pn
s,β− 1

2

= 2

pn−1
s,β− 1

2

− 1(
pn−1

s,β− 1
2

)2
pn

s,β− 1
2

+O(pn
s,β− 1

2
− pn−1

s,β− 1
2
)2, for β = 1, . . . , N.

Thanks to this approximation, and defining the coefficients

An
α = 150ϕn

αhn
αη f

d2
s
(
1 − ϕn

α

)3 , Bn
α = ϕn

αhn
αγ̇ n

α K
(
ϕn

α − ϕstat
c

)
, Cn

α = 2
ϕn

αhn
α

(
γ̇ n
α

)2
K K2η f

pn−1
s,α− 1

2

, Dn
α = Cn

α

2pn−1
s,α− 1

2

,

the previous nonlinear system becomes, up to second order, the following N × N linear system

⎛⎜⎜⎜⎝
an

11 an
12 · · · an

1N

an
21 an

22 · · · an
2N

· · · · · · · · · · · ·
an

N1 an
N2 · · · an

N N

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

pn
s, 1

2
pn

s, 3
2· · ·

pn
s,N− 1

2

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
bn

1

bn
2

· · ·
bn

N

⎞⎟⎟⎟⎠ ,

where
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Table 1
Common physical and rheological parameter for the two-phase simulations.

ρs

(Kg/m3)
ds

(μm)
μs ϕstat

c K K1 K2

2500 160 0.415 0.582 4.09 90.5 25

Table 2
Parameter for the two-phase simulations depending on the high/low fluid viscosity and loose/dense initial con-
figuration.

η f case ρ f

(Kg/m3)
η f

(Pa/s)
θ

(◦)
h0

(mm)
ϕ0

(loose)
ϕ0

(dense)

High 1041 96 × 10−3 −25 4.9 0.562 0.588
Low 1026 9.8 × 10−3 −28 6.1 0.576 0.592

aij = D j

⎛⎝ N∑
k= j+i

Ak + A j

2

⎞⎠ , if i < j,

a jj = 1 + D j

⎛⎝ N∑
k= j+i

Ak + A j

2

⎞⎠ ,

aij = D j

N∑
k=i

Ak, if i > j,

and

b j = (ρs − ρ f
)

g cos θ

N∑
ξ= j

hξϕξ +
N∑

ξ= j

⎛⎝Aξ

ξ−1∑
γ =1

(
Bγ + Cγ

)+ Aξ

2

(
Bξ + Cξ

)⎞⎠ ,

that can be solved using a direct method.

4. Numerical tests for uniform flows

In this section we present some numerical results in order to validate our model. In this work we only deal with 
uniform immersed flows and consider dilatancy effects by starting with initially loose or initially dense configurations. With 
the purpose of comparing the results of the proposed model with model in [6], we consider the rheology given by (7), i.e., 
μ(I) = μs + K1 I , in the immersed configuration.

First, we compare the results obtained for the proposed model with the analytical solution with and without side walls 
friction. For sake of simplicity, we only use in this case the model preserving the total height (PH model). The reason is that 
it is more simple since the final height is known and therefore we can directly compute the velocity and the solid volume 
fraction profiles.

In a second step, we show that the method proposed to approximate the pressure in the previous section 3.4.4 makes it 
possible to recover the appropriate root of the non-linear system defined by (45), for the particular cases N = 1, 2. However, 
the error made when approximating the pressure increases with the number of layers, so we decide to use the PGM model 
with only 2 layers to compare with experimental data (see section 4.2.1). Then, we briefly analyse the influence of the 
dilatation constant K (see (10)) and compare the results of the 2 layer PGM model with previous depth-averaged single-
layer models in the literature, namely the models introduced in [6,25] and with laboratory experiments in [25]. For this 
comparison we use the model preserving the total solid mass because this is the only physically relevant model.

For the tests presented in this section we set the same values for the parameters than in [6], i.e., the ones proposed in 
[25] for low and high fluid viscosity. For each case a dense and a loose initial configuration is simulated. The physical and 
rheological parameters that are common for these tests are detailed in Table 1. The specific parameters in the high or low 
viscosity cases and for the loose or dense initial conditions are shown in Table 2. In all the presented tests, we consider 
no-friction with the bottom for the fluid phase, kb = 0, and a no-slip condition (see (21)) for the solid one. At the mixture 
interface, no friction between the fluid in the mixture layer and the fluid in the upper layer is also assumed, i.e., ki = 0.



J. Garres-Díaz et al. / Journal of Computational Physics 419 (2020) 109699 25
Fig. 4. Time evolution of the maximum (vmax , brown lines) and averaged (v̄ , green lines) velocities in the (a) low and (b) high viscosity case. Dashed (resp. 
solid) lines are the solution starting from a loose (resp. dense) configuration, and the dash-dotted (resp. dashed) grey line is the analytical averaged (resp. 
maximum) velocity. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

4.1. Comparison with analytical solution

In this test we focus on steady uniform flows, where G f ,N+ 1
2

= Gs,N+ 1
2

= 0. Therefore, once the final height is computed 
(which will be different from the proposed PGM model and from the PH model described in subsection 3.4.1), the analytical 
solution is the same for both models PH model and PGM model. For the sake of simplicity, we only consider in the com-
parison with the analytical solution and the PH model, which is simpler than the PGM model since the height is prescribed 
by the initial condition.

We simulate a uniform flow initially at rest (uα = vα = 0, for α = 1, . . . , N), with height h0, and initial solid volume 
fraction ϕα = ϕ0 for α = 1, . . . , N , until a steady state is reached.

In the low viscosity case we use 50 vertical layers and a time step �tL = 10−5 while 20 layers are used in the high 
viscosity case and �tH = 10−6. Note that �tH = �tL/10, i.e., we need a smaller time step for the high viscosity case, and 
therefore 20 layers are used in that case because the time needed to complete the simulation is huge. Concretely, we need 
35.6 minutes to simulate t f = 300 s for the low viscosity case with 20 layers, whereas the high viscosity case takes 28.9
hours to complete t f = 1500 s of simulation. Finally, the low viscosity case with 50 layers takes 5.1 hours. These CPU times 
correspond to an Euler semi-implicit time discretization (see section 3.4.4) and have been measured on a Mac Mini with 
Intel®Core™ i7-4578U and 16 GB of RAM. Remark that although some differences can be found in the transient regime, the 
steady solution is the same in both cases (20 or more layers).

4.1.1. No side walls friction
Firstly, we compare our results with the analytical solution for a flow without side walls friction. In Fig. 4 we show that 

the model approximate properly, with loose and dense initial configuration, the analytical maximum velocity (the one on 
the top of the flow) and the averaged velocity v̄ =∑N

α=1 lα vα . We can see that the convergence in time is much slower in 
the high viscosity case than in the low viscosity case. This fact, together with the use of a smaller time step, justifies the use 
of 20 vertical layers instead of 50 as in the low viscosity case. The main advantage of multilayer models is that the vertical 
structure of the flow can be recovered. We show these profiles and the analytical profile of velocity in Fig. 5, where the 
steady states reached for the loose/dense initial configuration are the same. In these figures we only show the velocity of 
the solid phase because we obtain that both, the solid and the fluid velocities, are equal with a relative error of order 10−4.

In Fig. 6(a) we show the convergence in time of the averaged solid volume fraction (ϕ̄ =∑N
α=1 lαϕα ) and the equilibrium 

concentration (ϕ̄eq
c =∑N

α=1 lαϕ
eq
c,α ) towards its steady state.

In the inset in Fig. 6(a.2) we also show that the solid volume fraction go to the equilibrium concentration quickly 
(we don’t show the loose case because the dynamics towards equilibrium is even quicker in that case). Fig. 6(b) shows 
the normal profile of solid volume fraction. In this case with no lateral friction, when the friction between the phases 
βα(uα − vα) is not considered in system (35), and the analytical profile of the solid volume fraction is constant. This is 
properly reproduced by our model except for the first layer (the closest to the bottom). Moreover, when increasing the 
number of vertical layers, we obtain the same behaviour. This loss of accuracy in Fig. 6(b) is due to the friction between the 
solid and fluid phases. Actually, we have checked that if the term β̄α (uα − vα) is neglected in the momentum equations 
then the constant profile of solid volume fraction is obtained, (red-crossed solution in 6(b)). In addition, a convergence test 
in the number of vertical layers has been performed in this case. We see that the method is second order accurate for the 
velocity (see Table 3 and Fig. 8). For the solid volume fraction, we always obtain an estimated error of 4.63 × 10−8, which 
confirms the fact that the friction between the solid and the fluid phases is the responsible for not obtaining the constant 
profile in Fig. 6(b).

Fig. 7 shows the pressure and the excess pore pressure at the bottom. We see that the numerical solutions go to the 
analytical one in all the configurations, and that there is no excess pore pressure in the steady state.
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Fig. 5. Normal profile of downslope velocity in the (a) low and (b) high viscosity case. Green crosses (resp. brown squares) are the solution in the dense 
(resp. loose) initial configuration, and the dashed grey line is the analytical profile of velocity.

Fig. 6. (a) Time evolution of the averaged solid volume fraction (green lines) and equilibrium concentration (brown lines). Dashed (resp. solid) lines are the 
solution starting from a loose (resp. dense) configuration, and the dashed grey line is the analytical averaged solid volume fraction. The inner figure in (a.2) 
is the difference 

∣∣ϕ̄ − ϕ̄
eq
c

∣∣ in the dense initial configuration. (b) Normal profiles of solid volume fraction in the (b.1) low and (b.2) high viscosity case. The 
dash-dotted grey line is the analytical normal profile of the solid volume fraction. Red-crossed are the simulation neglecting the friction term βα (uα − vα)

in the momentum equation.

Fig. 7. Time evolution of (a) the pressure and (b) the excess pore pressure at the bottom in the (x.1) low and (x.2) high viscosity case. Dashed (resp. solid) 
lines are the solution starting from a loose (resp. dense) configuration, and the dashed grey lines are the analytical steady states.
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Table 3
Order of the error for the velocity of the analytical solution without side walls friction and neglecting the friction term βα (uα − vα).

N(�z = 1/N) L1 - error L1 - order L2 - error L2 - order L∞ - error L∞ - order

2 1.25 × 10−1 – 1.17 × 10−1 – 9.09 × 10−2 –
4 3.12 × 10−2 2.00 2.87 × 10−2 2.02 2.12 × 10−2 2.09
8 7.81 × 10−3 2.00 7.14 × 10−3 2.00 5.23 × 10−3 2.02
16 1.95 × 10−3 2.00 1.78 × 10−3 2.00 1.30 × 10−3 2.00
32 4.88 × 10−4 1.99 4.45 × 10−4 2.00 3.25 × 10−4 2.00
64 1.22 × 10−4 1.99 1.11 × 10−4 1.99 8.15 × 10−5 1.99
128 3.05 × 10−5 1.99 2.79 × 10−5 1.99 2.04 × 10−5 1.99
256 7.67 × 10−6 1.99 7.00 × 10−6 1.99 5.21 × 10−6 1.97

Fig. 8. Relative errors of the velocity for the analytical solution without side walls friction and neglecting the friction term βα (uα − vα).

Fig. 9. Normal profiles of excess pore pressure for the low viscosity case, in the (a) loose and (b) dense configurations, at times t = 0.1, 1, 5, 10,

20, 30, 50, 70, 100, 400 s.

Figs. 9 and 10 show the normal profiles of excess pore pressure at different times. We see that the profiles are approxi-
mately linear at short times, when the excess pore pressure is larger, except near the bottom.

4.1.2. Side walls friction
In subsection 3.4.3 the analytical solution is obtained in the case of a flow that is confined in a channel whose width is 

W . In that case, the side walls friction has an important effect on the dynamics of the flow. Mainly, the normal profile can 
become S-shaped instead of Bagnold type (see [11]) leading to the appearance of a flow/no-flow transition.

We consider a flow with the same physical and rheological properties as in previous subsection in the low viscosity 
regime and loose initial condition, and we add the side walls friction term with the friction coefficient μw = tan (13.1◦). In 
this case we use 20 layers in the multilayer system since the computational cost, until reaching the stationary solution, is 
very high.
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Fig. 10. Normal profiles of excess pore pressure for the high viscosity case, in the (a) loose and (b) dense configurations, at times t = 0.1, 10, 50, 75,

100, 150, 250, 400, 600, 1500 s.

Fig. 11. Normal profiles of velocity (a) and solid volume fraction (b) for different widths W . Dashed lines correspond to the simulations and black crosses 
to the analytical solutions. Blue symbols and red dash-dotted lines in figure (b) are the simulations for widths W = 31ds, 47ds and μ̂w = 2μw , additionally 
cyan dash-dotted lines are the simulations for this case with 160 vertical layers.

Fig. 11 shows the normal profiles of velocity and solid volume fraction in the presence of lateral walls, for several channel 
widths W = 0.005, 0.0075, 0.01, 0.012, 0.015, 0.02, 0.03, 0.05, 0.1, 1, 10 m. These values correspond to α layers of granular 
particles, W = αds , with α = 31, 47, . . . , 62500, approximately. For the velocity profiles, the dynamics is similar to the case 
of a dry granular flow (see [11]). In the case of the solid volume fraction, a constant profile is obtained for large widths, 
similar to the case of no lateral wall friction.

However, looking at the analytical solution (see Remark 2) we see that the analytical profile of the volume fraction 
is always linear, starting from the equilibrium volume fraction ϕeq

c at the top of the mixture layer. Actually, the linear 
counterpart is K2μw z/(K1W ). Therefore, when W is large, this contribution is nearly zero and we obtain an (almost) 
constant profile. As observed on Fig. 11(b), wall friction makes the solid volume fraction vary linearly with a slope increasing 
when the channel width W decreases. An interesting remark is that when a flow/no-flow transition appears in the velocity 
profile, the solid volume fraction becomes a constant, whose value is ϕstat

c = 0.582, from the flow/no-flow position to the 
bottom representing a region of rigid material (zero velocity). It decreases from the flow/no-flow transition up to the upper 
surface of the mixture. In Fig. 11 we also see the influence of the friction parameter μw . For widths W = 31ds, 47ds we 
have simulated the same flow but taking as friction coefficient at the lateral walls μ̂w = 2μw . It makes the friction force 
increase (similar effect is obtained by decreasing the channel width) and the solid volume profile becomes constant almost 
everywhere in the normal direction, decreasing just close to the mixture upper surface (see blue symbols and red dash-
dotted lines in Fig. 11(b)).

In Fig. 11 we remark that errors between the analytical and the numerical solutions are bigger than the expected ones, 
specially for the solid volume fraction and a small channel width (see e.g. red dash-dotted lines in Fig. 11(b)). This is due 
to the fact that we have used 20 layers to reproduce steady state solutions with a strong variation in the normal direction 
and the multilayer approach is based on a constant profile in each layer. In order to clarify that, we have performed a 
convergence test for W = 94ds , also neglecting the term βα (uα − vα), since it is not considered for the analytical solution. 
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Table 4
Order of the error for (a) the velocity and (b) the solid volume fraction of the analytical solution with side walls friction, W = 94ds , and neglecting the 
friction term βα (uα − vα).

(a) Velocity

N(�z = 1/N) L1 - error L1 - order L2 - error L2 - order L∞ - error L∞ - order

2 1.94 × 10−1 – 1.84 × 10−1 – 1.74 × 10−1 –
4 1.45 × 10−1 0.47 1.42 × 10−1 0.37 1.34 × 10−1 0.37
8 9.65 × 10−2 0.59 9.44 × 10−2 0.59 8.78 × 10−2 0.61
16 5.69 × 10−2 0.76 5.52 × 10−2 0.77 5.06 × 10−2 0.79
32 3.10 × 10−2 0.87 2.99 × 10−2 0.88 2.72 × 10−2 0.98
64 1.61 × 10−2 0.94 1.55 × 10−2 0.94 1.42 × 10−2 0.93
128 8.20 × 10−3 0.98 7.88 × 10−3 0.97 7.34 × 10−3 0.95
256 4.06 × 10−3 1.01 3.93 × 10−3 1.00 3.80 × 10−3 0.94

(b) Solid volume fraction

N(�z = 1/N) L1 - error L1 - order L2 - error L2 - order L∞ - error L∞ - order

2 1.57 × 10−2 – 1.63 × 10−2 – 1.97 × 10−2 –
4 9.79 × 10−3 0.68 1.00 × 10−2 0.69 1.18 × 10−2 0.74
8 5.49 × 10−3 0.83 5.59 × 10−3 0.85 6.03 × 10−3 0.96
16 2.89 × 10−3 0.92 2.92 × 10−3 0.93 3.01 × 10−3 1.00
32 1.48 × 10−3 0.96 1.48 × 10−3 0.97 1.49 × 10−3 1.00
64 7.42 × 10−4 0.99 7.44 × 10−4 0.99 7.43 × 10−4 1.01
128 3.66 × 10−4 1.01 3.67 × 10−4 1.02 3.65 × 10−4 1.02
256 1.76 × 10−4 1.05 1.77 × 10−4 1.05 1.78 × 10−4 1.03

Fig. 12. Relative errors of (a) the velocity and (b) the solid volume fraction for the analytical solution with side walls friction and W = 94ds .

We see that the method is first order accurate in this case, for both, the velocity and the solid volume fraction (see Table 4
and Fig. 12). In addition, for the two configurations for which the side wall friction is stronger, namely W = 31ds, 47ds , we 
have also added the corresponding solutions using 160 layers in Fig. 11(b) (cyan dash-dotted lines). The analytical solution 
is properly reproduced in that case.

In Fig. 11 we have used 20 layers in the simulation in order to properly reproduce complex vertical profiles of velocity 
and solid volume fraction. However, if the number of layers is reduced, although the profile is not exactly reproduced, its 
shape and mean variation is well approximated. In Fig. 13 we show these vertical profiles for two representative channel 
widths W = 62ds, 62500ds , computed with the multilayer model with 2, 3 and 20 vertical layers. In the first case, the side 
walls friction has a strong effect on the vertical profiles, leading to a rigid zone with zero velocity close to the bottom. We 
see that this solution is well reproduced with 20 layers. The models with 2 and 3 layers give also a good approximation. 
Even the position of the flow/no-flow interface is also reasonably well approximated. The mean variation of the profile is 
also even better reproduced if the side walls friction is smaller, as shown for W = 62500ds .

4.2. Comparison with other models and laboratory experiments

In this section we compare the results of the PGM model with the results of the model in Bouchut et al. (2016) [6] and 
Pailha and Pouliquen (2009) [25] (hereafter B-2016 and PP-2009 respectively). However, before that, we evaluate in the next 
subsection the appropriate model that we propose to use in practice, since the approximation of the solid pressure entrains 
serious difficulties in the multilayer framework, as we mentioned before.
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Fig. 13. Normal profiles of velocity and solid volume fraction for two representative widths (a) W = 62ds and (b) W = 62500ds , for different number of 
vertical layers. Dashed blue lines correspond to the simulations with 20 layers, red circled dash-dotted lines with 3 layers, green square dotted lines with 
2 layers and black crosses are the analytical solutions. Notice that symbols for 2 and 3 layers correspond to the values in the middle of each layer.

Fig. 14. Time evolution of exact (solid lines) and computed (blue symbols) solid pressures for the case of a single layer ((a) and (b)) and two layers ((c) and 
(d)) in the multilayer system, in the low ((a) and (c)) and high ((b) and (d)) viscosity case with dense initial configuration. Dotted lines in the two layer 
case are the pressures at the internal interface z = z3/2, while solid lines are the pressures at the bottom z = z1/2. Inset figures are the long time exact 
solutions.

4.2.1. Choice of the model
In this section the simulated cases, as well as the physical and rheological parameters, take the same values as in the 

previous section. We focus on the dense case for both the high and low viscosity cases because it is the more complex case, 
since the convergence to the steady solution is slower and it differs far more from other analyzed models, as it is shown in 
following subsections.

Firstly, we check that the proposed linearization to compute the pressure gives good results. Note that equations (45)
lead to a non-linear system with N equations and unknowns, where each of them is a quadratic equation, and the system 
is fully coupled due to the excess pore pressure. Therefore, for a configuration with N vertical layers, there exist 2N vector 
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Fig. 15. Low viscosity case with dense initial condition. Time evolution of the velocity of each layer for the multilayer model with 2, 3, 4 and 10 layers. 
Solid red lines are computed with dilatation constant K = 4.09 and dashed blue lines are with K = 8.18. The black-squared solid line is the solution of the 
single-layer model B-2016, and grey line is the velocity measured at the surface of the mixture in laboratory experiments.

solutions of the system. In particular, for N = 1, at each time step, once the rest of variables are computed, the pressure at 
the bottom, pn

s, 1
2

, is a root of the quadratic equation resulting from (45) with N = 1. That equation can be exactly solved, 

obtaining two different roots for pn
s, 1

2
. However, one of them becomes negative and therefore there is only one solution 

with a physical meaning. In Fig. 14(a), (b) we show that the proposed method in 3.4.4 gives as result an approximation to 

this appropriate solution. Analogously, for N = 2, system (45) has 4 different solutions for the vector 
(

pn
s, 1

2
, pn

s, 3
2

)
at each 

time step, corresponding to the pressure at the interfaces z 1
2

and z 3
2

. Again, the system obtained by (45) with N = 2 can 
be exactly solved, where just one of the roots is relevant, since the others become negative. Fig. 14(c), (d) shows that the 
proposed method approximates this solution. Nevertheless, we did not manage to calculate an accurate approximation of 
this solution at short times where the variation and effect of the excess pore pressure are strong.

Our results show that it is very difficult to calculate the excess pore pressure when we have a large number of layers 
because the system is fully coupled, i.e. each pressure depends on all the pressures in the other layers. In Figs. 15 and 16
we see a comparison of the velocity at short times with the multilayer model with 2, 3, 4, and 10 layers, and the velocity 
measured at the surface of the mixture in the laboratory experiments in [25], for the low and high viscosity cases and the 
dense initial configuration.

We observe that the model with 2 or 3 layers better reproduces the experimental results than the model with 10 layers, 
in particular at the beginning, when the velocity is very small. The 10 layers model predicts that the velocity grows up too 
fast in both cases, with low and high viscosity. We see that the single-layer model B-2016 better predicts the time when 
the velocity starts to grow up, while the model with 2, 3 layers captures the maximum (i.e. surface) velocity much better 
than the single layer model.

We conclude that the lack of accuracy at short times when using a large number of layers is due to the approximation of 
the pressure detailed in subsection 3.4.4 and the fact that the non-linear system to solve is strongly coupled, i.e., the errors 
approximating the pressure in each layer accumulate within the whole domain. A more accurate method to approximate 
the pressure should be developed if more than 2-3 layers are used. As a result, we will mainly use the 2-layer model in the 
following. It is also justified looking at Fig. 13, where we have shown that, despite of the fact that we need many layers to 
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Fig. 16. High viscosity case with dense initial condition. Time evolution of the velocity of each layer for the multilayer model with 2, 3, 4 and 10 layers. 
Solid red lines are computed with dilatation constant K = 4.09 and dashed blue lines are with K = 8.18. The black-squared solid line is the solution of the 
single-layer model B-2016, and grey line is the velocity measured at the surface of the mixture in laboratory experiments.

give an accurate approximation of the vertical profiles of velocity and solid volume fraction, the models with 2 and 3 layers 
are able to capture surprisingly well the mean variation of these profiles.

Figs. 15 and 16 show the influence of the dilatation constant K (see (10)), which has been calibrated for single-layer 
models. If we compare the results obtained with two values of K by showing also the results obtained with K ′ = 2K
(dashed blue lines), we observe a strong sensitivity of the results to this parameter. This is the case in particular for the 
high viscosity system (see the case with 10 layers in Fig. 16) for the velocity behaviour in particular at the beginning when 
the velocity starts to grow up. These results suggest that this constant should be calibrated for 3D models (or at least for 
multi-layer cases).

Therefore, in the following we keep only the model with two layers (Preserving Granular Mass two-layers model, denoted 
PGM-2 model hereafter) because it is the simplest case giving an appropriate solution, although we could choose also the 
one with 3 layers. In appendix B, we write this particular case for the reader that is interested on using this particular 
model, and not on the general multilayer case. In the following subsection we finally compare this two-layer model with 
previous models in the literature and experimental data.

4.2.2. PGM-2 model vs other models
We compare here the results of the proposed two-layer model (PGM-2 model) with the results of models B-2016 and PP-

2009. These depth-averaged models only compute the averaged velocity and solid volume fraction, while the PGM-2 model 
allows us to compute two values of these quantities in the normal direction. In particular, in the configuration considered 
here, the velocity in the bottom layer is lower than the velocity in the top layer, further called the maximum velocity. As 
previously, the physical and rheological parameter are fixed in Tables 1 and 2.

In Figs. 17 and 18 we see the time evolution of the maximum and the averaged velocities, the pressure at the bottom, 
the concentration, the solid mass and the height for all the models in both, the loose and dense initial configuration, for the 
high and low viscosity cases. All the models give similar results at the steady state although the time evolution can differ. 
We see that the results of the proposed PGM-2 model and the B-2016 model are very close for the pressure, averaged 
solid volume fraction and height, whereas the velocities are slightly different. The behaviour is very similar, for example, 
the steady velocity for the dense initial configuration is greater that the one for the loose configuration. However, with the 
2-layers model the obtained maximum velocity in the top layer is much closer to the velocity measured at the surface of 
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Fig. 17. Time evolution of (a) velocity, (b) pressure at the bottom, (c) averaged solid volume fraction, (d) solid granular mass in the high viscosity case.

the mixture in the experiments (see Fig. 21). Therefore, the main advantage of this model with respect to the previous 
depth-averaged models B-2016 and PP-2009 is the approximation of the velocity field.

Both PGM-2 and B-2016 models preserve the granular mass 
(∑N

α=1 hαϕα

)
, contrary to the PP-2009 model for which 

the total height (h) is preserved (see Figs. 17(c)(d) and 18(c)(d)). Note that a multilayer model preserving the total height 
has been also obtained in subsection 3.4.1. Imposing mass conservation leads to different velocity, pressure, and solid mass 
in steady state for initially loose and dense cases (PGM-2 and B-2016 models), while the steady state reached with PP-2009 
model does not depend on the initial dense/loose configuration. These results are the expected following the analysis of the 
proposed model and the one presented in subsection 3.4.1.

Figs. 19 and 20 show the convergence of the solid volume fraction to the equilibrium concentration in the high and low 
viscosity cases. This convergence is much slower in the dense configuration than in the loose one, as commented before. 
In fact, we can see in Fig. 19b that for the loose configuration the solid volume fraction ϕ̄ goes to ϕ̄eq

c at very short times 
(t ∼ 10−3).

In Fig. 21 we show the velocity and excess pore pressure with models PP-2009, B-2016 and PGM-2, and also the lab-
oratory experiments in Pailha et al. 2009 [25], in both the high and low viscosity case. Looking at the averaged velocities 
computed with the depth-averaged models, we see that they cannot predict the velocity observed at the mixture surface in 
the experiments. However, the maximum velocity computed by the proposed two-layers model has the order of magnitude 
of the surface velocity in the experiments. On the other hand, having two layers instead one layer does not significantly 
change the calculated excess pore pressure. As expected, this excess pore pressure goes to zero after some time in all 
models.

Finally, in Fig. 22 we see the evolution of the fluid transference, G f ,N+ 1
2

, at the interface between the mixture layer and 
the upper fluid layer. We recall that G f ,N+ 1

2
have the opposite sign to V f in previous work [6] (see (19)). For the high 

viscosity case (Fig. 19(b)) we see very clearly the dynamics. When the mixture starts to flow in the initially dense case, we 
have ϕ > ϕ

eq
c , leading to a positive dilatation angle tan ψ = K

(
ϕ − ϕ

eq
c
)
> 0 and therefore to dilatation. As a consequence 
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Fig. 18. Time evolution of (a) velocity, (b) pressure at the bottom, (c) averaged solid volume fraction, (d) solid granular mass in the low viscosity case.

Fig. 19. (a) Time evolution of the averaged volume solid fraction and equilibrium concentration for the high viscosity case and (b) time evolution at short 
times.
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Fig. 20. (a) Time evolution of the averaged volume solid fraction and equilibrium concentration for the low viscosity case and (b) time evolution at short 
times.

Fig. 21. (a), (c) Time evolution of the averaged velocity; (b), (d) the excess pore pressure at the bottom in the high viscosity case ((a), (b)) and the low 
viscosity case ((c), (d)). Grey lines are the experiment data.
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Fig. 22. Time evolution of the fluid transference at the interface between the mixture and the upper fluid layer in the (a) low and (b) high viscosity cases, 
with dense/loose initial condition.

Fig. 23. Time evolution of the (a) fluid transference at the interface between the mixture and the upper fluid layer, and (b) the solid volume fraction at 
short times for the low viscosity case and loose initial condition.

the fluid is sucked into the mixture (V f = −G f ,N+ 1
2

< 0) and the height of the mixture increases (see inset in Fig. 17c). On 
the contrary, in the initially loose case, ϕ < ϕ

eq
c , leading to tan ψ = K

(
ϕ − ϕ

eq
c
)
< 0 and therefore to contraction. The fluid 

is thus expelled from the mixture (V f = −G f ,N+ 1
2

> 0) and the mixture height decreases.

Focusing now on the low viscosity case, we observe the same behaviour for the initially dense case, but not for the loose 
case. Fig. 23 shows the loose case at very short times, where the material contracts at the beginning as expected, i.e. the 
fluid is expelled (−G f ,N+ 1

2
> 0) and the height decreases. However we see that after some time ϕ2 < ϕ

eq
c,2 (contraction) 

in the top layer (layer 2) whereas ϕ1 > ϕ
eq
c,1 (dilatation) in the bottom layer (layer 1). Moreover, it makes that the fluid 

transference at the top changes its sign and becomes negative at time t ≈ 5.1 × 10−3, and therefore the fluid is sucked 
and the height increases. That is, a different contraction/dilatation situation could occur in each layer in the multilayer 
configuration.

Physically, it could mean that when the fluid is expelled at the beginning, the lower part is the first one that remain 
with less fluid (because each layer is expelling fluid toward the upper layer, but receiving it from the layer below), and 
therefore it becomes to a dense situation. After that, the lower part dilates and the upper part contracts, going to a globally 
dilatation situation, as we can see in Fig. 23.

5. Conclusions

In this work we deal with dilatancy effects in granular models of fluidized flows. A multilayer extension of the two-
phase model proposed by Bouchut et al. (2016) [6] has been presented. It is derived from a dimensional analysis and the 
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multilayer approach following an analogous procedure to [10]. This model is in principle able to recover the structure of the 
fluid in the direction normal to the topography. This is essential to improve the description of friction and viscous terms 
when considering a complex rheology compared to depth-averaged single-layer models, as showed in [10,11]. In particular, 
it allows to recover the normal velocity profiles, but also the normal profiles of the solid volume fraction and pore fluid 
pressure.

The proposed two-phase model behaves as the B-2016 [6] model, preserving the total solid mass. In addition, a model 
that behaves as the PP-2009 model [25] −preserving the total mixture height− has been also obtained for a particular 
closure relation for the solid mass transference at the mixture upper interface. That closure relation allows us to obtain 
either a model (PH) preserving the total height (and maybe loosing solid mass) or a model (PGM) preserving the total solid 
mass (the height varies depending on the contraction/dilatation of the solid). This last model is the physically meaningful 
model that we further compare with laboratory experiments.

The main difficulty of the proposed two-phase model is the excess pore fluid pressure that appears in particular in the 
solid pressure, which is no more hydrostatic even with the thin layer approximation. This pressure varies strongly in time 
when starting from non-equilibrium conditions due to dilatation or contraction of the granular medium. It further goes 
to zero when reaching steady states. Dealing with this strongly varying, non-linear term is shown to be a real numerical 
challenge to approximate the model when variations in the normal direction are considered. For this reason, we only deal 
with uniform flows in the numerical tests in this work, although the model is deduced for general flows, and simulation of 
x-dependent flows could be part of a forthcoming work.

Even in the case of uniform flows, where the model is reduced to a system of ODEs, the numerical approximation is not 
easy and a specific numerical scheme is necessary. As consequence of this pore excess pressure term, the pressure cannot 
be easily computed, even in the single-layer case where the pressure at the bottom is one of the two roots of a quadratic 
equation. A numerical scheme based on the first-order Taylor polynomial has been proposed to approximate the pressure.

We have validated the model by comparing with the analytical solution for two-phase uniform flows. In this case we 
have chosen the PH model because computing the analytical solution in that case is simpler than for the PGM model, since 
the height is directly obtained. We have seen that the steady solution does not depend on the dense/loose initial value of 
the solid volume fraction for the PH model (also PP-2009 model), where the solid mass varies in time, in contrast with the 
results obtained with the PGM model (also B-2016 model), where the solid mass is preserved and the steady states for the 
velocity and pressure depend on the initial solid volume fraction.

For these tests, a constant profile of solid volume fraction has been obtained. Furthermore, an analytical solution for 
confined flows, where side wall friction notably changes the dynamics of the flow, has been deduced from the resolution 
of a integro-differential equation. In that case, the velocity profile goes from a Bagnold profile to a S-shaped profile, very 
similar to the case of dry flows (see [11]). It is interesting that the profile of solid volume fraction is not constant in 
this case, but linear, and when a flow/no-flow transition is observed in the velocity profile, then the solid volume fraction 
becomes constant in the no-flow (i.e. rigid) zone. In addition, we see that including side wall friction as in Jop et al. [19] is 
a good approximation for shallow flows. An interesting feature of this approach is that it allows to give an approximation 
of flow/no-flow transition which is obviously not the case for depth-averaged single-layer models. Furthermore, for the 
analytical solutions (with and without side wall friction) we have also shown convergence tests depending on the number 
of vertical layers. In particular, for solutions with a strong vertical structure (the case of a narrow channel width) the 
analytical solution is perfectly recovered when increasing the number of layers.

We have shown that the approximation of the pressure with the proposed method is acceptable, in the sense that it 
approximates the good solution from the 2N possible solution vectors for the pressure. However, this approximation is not 
accurate enough at short times and the error notably increases with the number of layers in the normal direction. We 
have seen that the model with 2 or 3 layers gives reasonable results when compared with experimental data, allowing to 
make the quantities (velocity, volume fraction, pore pressure, etc.) vary in the normal direction. The pore pressure estimated 
however is getting less and less accurate when increasing the number of layers due to the accumulation of the numerical 
error for this full coupled models. This problem will be encountered also if solving the complete Jackson’s equation for any 
3D method. Another conclusion of this work is that the dilatation constant should be fitted for 3D models, since it has a 
strong influence on the results, in particular when using a large number of layers.

The model with two layers (PGM-2 model) has been chosen for further comparison with experimental results. We 
conclude that a more accurate method to compute the pressure is necessary in order to approximate the solution at short 
times. An interesting alternative could be to use an adaptive multilayer method, which uses few layers at short times giving 
a good approximation of the solid pressure, and increases the number of layers when the excess pore pressure becomes 
small. That would allow us to get a better approximation of the velocity profile at latter times and will be investigated in 
the future.

We compare the results of the PGM-2 model with the model of Bouchut et al. (2016) [6] (B-2016) and Pailha and 
Pouliquen (2009) [25] (PP-2009). We see that our results are similar to the B-2016 model, except for the velocity. Actually, 
these previous depth-averaged models were not able to predict the velocity measured at the mixture surface, while the 
maximum velocity calculated at the top layer with the PGM-2 model is closer of this observed velocity. More differences 
are found when comparing the proposed model with the PP-2009 model as expected, since this model preserves the total 
height instead of the mass and therefore the steady states of the loose/dense initial condition are the same, in contrast with 
models B-2016 and PGM-2 models.
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Appendix A. Explicit expression of the excess pore pressure

In this appendix we detail the computation of the excess pore pressure in equation (27)

pe
f ,α = pe

f ,α+ 1
2

+ εk+2 βα

(1 − ϕα)

z
α+ 1

2∫
z

(
uz − vz) dz′, (46)

with

pe
f ,α+ 1

2
= pe

f ,α+1

(
z = zα+ 1

2

)
= εk+2

N∑
γ =α+1

βγ(
1 − ϕγ

)
z
γ + 1

2∫
z
γ − 1

2

(
uz − vz) dz′. (47)

Firstly, we integrate the dilatancy equation (13g) between zα− 1
2

and z ∈
(

zα− 1
2
, zα+ 1

2

)
as it is made for the calculation of 

the vertical velocity, resulting

vz
α(z) = (vz

α− 1
2
)+ − (z − zα− 1

2
)

(
∂x vα − 1

ε

α

)
. (48)

We can also integrate equation (24) regarding the incompressibility of the mixture, obtaining

ϕαuz
α(z) + (1 − ϕα) uz

α(z) = (1 − ϕα) (uz
α− 1

2
)+ + ϕα(vz

α− 1
2
)+

−
(

z − zα− 1
2

)
∂x (ϕα vα + (1 − ϕα) uα) .

(49)

Now, by considering equation (49) minus equation (48) and dividing the result by (1 − ϕα), we get

uz
α(z) − vz

α(z) = (uz
α− 1

2
)+ − (vz

α− 1
2
)+ −

(
z − zα− 1

2

)
(1 − ϕα)

(
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(
(1 − ϕα) (uα − vα)

)
+ 1

ε

α

)
.

Once we have the explicit expression for the difference of the vertical velocities, we have to compute the integrals in 
(46)-(47). Tanking into account that

z
α+ 1

2∫
z

(
z′ − zα− 1

2

)
dz′ =

h2
α −

(
z − zα− 1

2

)2

2
,

we obtain that
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(50)
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In this work we are interested on the case of a strong friction between the fluid and granular phases. This case is more 
suitable for natural context applications as discussed in [6], and moreover it is simpler than the moderate friction choice, 
involving only first-order derivatives in the momentum equations. Therefore we take k = −1 in previous equation, leading 
to

pe
f ,α = pe

f ,α+ 1
2

+ ε
βα

(1 − ϕα)

(
zα+ 1

2
− z
)(

(uz
α− 1

2
)+ − (vz

α− 1
2
)+
)

− βα

h2
α −

(
z − zα− 1

2

)2

2 (1 − ϕα)2

α +O(ε).

Using the mass transference terms (18) we obtain

(uz
α− 1

2
)+ − (vz

α− 1
2
)+ =

Gs,α− 1
2

ϕα
−

G f ,α− 1
2

(1 − ϕα)
+ (uα − vα) ∂xzα− 1

2
,

and using the expression for the solid and fluid mass transference terms (34), we get

ε
βα

(1 − ϕα)
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zα+ 1

2
− z
)(
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2
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2
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)

= −βα

ϕα (1 − ϕα)2

(
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2
− z
) α−1∑
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ϕγ hγ 
γ + O(ε).

Note that here we have used the nondimensional expression of the mass transference terms, whose leading order is 1/ε, 
corresponding to the term involving the dilatancy function. As a result, we get the following explicit expression for the 
excess pore pressure
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In this case, we consider the moderate friction regime by fixing k = 0 in (50), the excess pore pressure results
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where pe
f ,α+ 1

2
= pe

f ,α+1

(
z = zα+ 1

2

)
, and Gs , G f are given by (34). Note that this expression is more complicated because it 

involves second order derivatives in the momentum equations.

Appendix B. Preserving granular mass two-layers model (PGM-2 model)

This appendix is devoted to presenting the two-layer model, which we have used in section 4.2.2 to compare our results 
with previous models in the literature: Bouchut et al. (2016) [6] and Pailha and Pouliquen (2009) [25], for readers that are 
interested on using this model without look at the detail of the multilayer case.
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Thus, the PGM-2 model is written as (G f , 1
2

= Gs, 1
2

= 0, kb = 0 and ki = 0)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1,

l1 ρs ∂t (hϕ1 v1) = l1 h β1 (u1 − v1) − (
ρs − ρ f

)
g sin θl1hϕ1

+Ks, 1
2

− Ks, 3
2

+ ρsGs, 3
2

v2 + v1

2
,

l1 ρ f ∂t (h (1 − ϕ1) u1) = − l1 h β1 (u1 − v1)

−K f , 3
2

+ ρ f G f , 3
2

u2 + u1

2
,

l2 ρs ∂t (hϕα v2) = l2 h β2 (u2 − v2) − (
ρs − ρ f

)
g sin θl2hϕ2

+Ks, 3
2

− ρsGs, 3
2

v2 + v1

2
,

l2 ρ f ∂t (h (1 − ϕ2) u2) = − l2 h β2 (u2 − v2)

+K f , 3
2

+ ρ f G f , 5
2

u2 − 1

2
ρ f G f , 3

2

u2 + u1

2
,

where

βα = 150ϕ2
α

d2
s (1 − ϕα)

η f , for α = 1,2,

the mass transference terms are

G f , 5
2

= l1ϕ1
1 + l2ϕ2
2

l1ϕ1 + l2ϕ2
h, Gs, 3

2
= l1

(
ϕ1G f , 5

2
− ϕ1h
1

)
, G f , 3

2
= l1

(
(1 − ϕ1) G f , 5

2
+ ϕ1h
1

)
,

and the dilatancy function is


α = γ̇α K
(
ϕα − ϕ

eq
c,α
)
, with ϕ

eq
c,α = ϕstat

c − K2
η f γ̇α

ps,α− 1
2

, for α = 1,2

with

γ̇1 = λ |v1|
l1h

, γ̇2 = |v2 − v1|
l2h

,

with λ = 1 (friction) or λ = 2 (no slip). The viscous terms are

Ks, 3
2

= −1

2
ηs, 3

2

v2 − v1

l1h
, Ks, 1

2
= −ρs g cos θ h

(
μ
(

I 1
2

)+ tanψ1/2

) v1

|v1| ,

K f , 3
2

= −η f
u2 − u1

l1h
, K f , 1

2
= 0,

with ηs, 3
2

and I 1
2

defined by (20) and (22). Finally, the solid pressures at the continuous level are written

ps, 1
2

= ps, 3
2

+ (ρs − ρ f
)

g cos θl1hϕ1 + β1 l1h

ϕ1 (1 − ϕ1)
2

ϕ1l1h
1

2
,

ps, 3
2

= (ρs − ρ f
)

g cos θl2hϕ2 + β2 l2h

ϕ2 (1 − ϕ2)
2

(
ϕ1l1h
1 + ϕ2l2h
2

2

)
,

where 
1 and 
2 depend on p 1 and p 3 and cannot be explicitly computed. They are computed as in section 3.4.4.
s, 2 s, 2
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