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Abstract. Few ice sheet flow models have been developed that solve the complete
set of mechanical equations. Until now, these models were limited to isotropic
conditions. We present here a two-dimensional, finite difference method capable of
solving the equations for the steady flow of a viscous, incompressible, anisotropic
fluid with a free surface under isothermal conditions. It is not a standard method,
especially with respect to the time discretization of the numerical scheme, and
converges for very low Reynolds numbers. This method is applied here to the
planar flow of anisotropic ice over flat or irregular bedrock, with no-slip boundary
conditions at the ice-bedrock interface. The results are presented here for Newtonian
behavior in the vicinity of an ice divide. The ice is assumed to be isotropic at the
ice sheet surface, with continuous and prescribed development of anisotropy with
increasing depth. Going from isotropic to anisotropic situations, our results indicate
that the free surface becomes flatter and the shear strain rates larger and more
concentrated near the bedrock. The flow is less sensitive to variations of the bedrock
topography in the anisotropic case than in the isotropic case. Furthermore, a new
phenomenon appears in the anisotropic case: the partial stagnation of ice in the
holes of the bedrock. These effects have significant consequences when dating the
ice. The isochrones obtained in the anisotropic case are flatter and the anisotropic
ice is more than 10% younger above the bumps and more than 100% older within
the holes than for the isotropic ice.

mitted to Journal of Geophysical Research, 1997, here-
inafter referred to as Mangeney and Califano, submit-
ted manuscript, 1997). Furthermore, we must remem-
ber that the shallow ice approximation was not devel-
oped for anisotropic ice. The study of the effects of
anisotropy on ice sheet flow requires then the use of
a numerical model capable of solving the complete set
of mechanical equations. Only a handful of numerical
models have been developed so far. They use the finite
element method and solve the complete set of mechani-
cal equations for isotropic ice [Raymond, 1983; Paterson

1. Introduction

Ice sheet flow models generally use the shallow ice
approximation [Hutter et al., 1981; Fowler and Lar-
son, 1980; Hutter, 1993], based on the existence of a
small aspect ratio. This approximation significantly
simplifies the mechanical equations but the limits of its
application were clearly defined only very recently (A.
Mangeney and F. Califano, The shallow-ice approxima-
tion for anisotropic ice: Formulation and limits, sub-
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and Waddington, 1984; Firestone et al., 1990; Schott
Hvidberg, 1993, 1996].

We present here the first finite difference model able
to solve the complete set of mechanical equations for
the anisotropic case. As a first approach, we simplify
our study by assuming two-dimensional (2-D), isother-
mal, and steady state conditions. We neglect here the
special problem of margin evolution by restricting our-
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selves to interior domains. We solve the Navier-Stokes
equations within a bounded domain Q of boundary I’
in the vicinity of the center of the ice sheet (i.e., ice
divide). The horizontal length of the domain is fixed,
and horizontal velocities are imposed at the right and
left sides. Our calculations show that when the bound-
aries are sufficiently far from the center, there exists a
region around the ice divide where the solution is insen-
sitive to the boundary conditions. These results are in
agreement with those of Raymond [1983].

The numerical method is derived from methods that
were constructed to treat incompressible transient flows.
It is not a standard method, especially with regard to
the time discretization of the numerical scheme. To
solve the steady state, anisotropic flow problem, we in-
troduce a fictitious time derivative of the velocity into
the momentum equation, and we let the surface evolve
until a steady state is reached for both the surface ele-
vation and the velocity field. In the method used here
(very similar to the projection method), the continu-
ity equation is replaced by an elliptic Poisson equation
for the pressure. The Dirichlet boundary conditions for
the velocity at the right and left edges of the domain
and the no-slip condition at the base of the ice sheet
are replaced by Neumann conditions for the pressure.
Two major difficulties appear in the numerical treat-
ment. The first concerns the temporal discretization of
the numerical scheme for low Reynolds number flows.
The second difficulty is related to the spatial discretiza-
tion which must be such that (1) the discretized form of
the continuity equation is satisfied to a sufficient degree
of accuracy and (2) the discrete compatibility condi-
tion for the Poisson-Neumann problem for the pressure
holds.

It is well known in glaciology that the geometry of
the domain evolves on a characteristic timescale that is
much shorter than that of the velocity and strain rate
field variations [see, e.g., Hutter, 1993]. Therefore it is
possible to decouple the calculation of the surface evo-
lution and that of the mechanical equilibrium. The sur-
face evolution is calculated only to conform with a fixed
accumulation rate. We introduce a system of reduced
coordinates that leads to substantial simplification in
the treatment of the boundary conditions at the free
surface.

The numerical code takes into account the anisotropy
of the material. Mechanical tests in laboratory and
strain rate measurements in ice sheets have shown that
the surface ice has an isotropic structure, while the de-
formation of deep ice strongly depends on the direction
of the applied stress. This viscoplastic anisotropy re-
sults from a preferred orientation of the crystallographic
planes of the ice crystals (texture) observed in deep po-
lar ices. The texture of polar ice is known to be a func-
tion of the thermomechanical history of ice particles
along their trajectories in the ice sheet. It is not sim-
ple to take into account the anisotropic behavior of the
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ice because this necessitates the use of an anisotropic
flow law that correctly describes the ice behavior un-
der large deformation and that is easy to integrate in
a flow model. A realistic flow law should calculate the
response of the ice polycrystal for a given texture as a
function of the imposed stress or strain rate as well as
the evolution of the texture with the thermomechan-
ical history of the material. Such a law may be ob-
tained numerically with homogenization methods [ Van
der Veen and Whaillans, 1994; Azuma, 1994; Castelnau
et al., 1996; Castelnau, 1996]. However, these methods
are able to calculate the texture development observed
in ice sheets only when the recrystallization mecha-
nisms, presently poorly understood, are taken into ac-
count [Castelnau, 1996]. Furthermore, the introduction
of such a law into a flow model results in high com-
putational costs [Beaudoin et al., 1994]. On the other
hand, analytical flow laws, even if more limited in the
physical representation of the deformation mechanisms,
have the advantage of being simple to introduce into
large-scale flow models [Liiboutry, 1993; Svendsen and
Hutter, 1996]. Up until now, no analytical flow law, -
useful in a flow model and capable of calculating the
evolution of the texture and the associated rheology, is
available. For this reason, we introduce the anisotropy
in a simple way by using an anisotropic flow law that
does not take into account the evolution of the texture
with the thermomechanical history [Lliboutry, 1993].
Lliboutry’s model gives a good approximation of the
ice anisotropic behavior, although it underestimates ice
anisotropy [Castelnau et al., 1997].

The mechanical behavior of the isotropic ice is gener-
ally described by the classical Norton-Hoff constitutive
relation called Glen’s flow law in glaciology [Nye, 1957].
For isotropic ice, Lltboutry’s [1993] anisotropic flow law
is equivalent to Glen’s flow law. The exponent n of this
power law is not accurately known [Hooke, 1981]. Even
though a value of n = 3 is generally accepted for effec-
tive stresses larger than 0.2 MPa, a value of n lower than
2 seems to be more appropriate for effective stresses
lower than approximately 0.2 MPa [Doake and Wolff,
1985; Pimienta and Duval, 1987; Alley, 1992]. The
anisotropic flow law of Lliboutry assumes such New-
tonian behavior at low stresses. We will limit the study
here to Newtonian behavior of the ice.

Results on the effects of anisotropy on the Newtonian
flow over a flat bedrock for a fixed geometry have been
discussed previously [Mangeney et al., 1996]. We will
present here what happens for a more realistic case,
when the free surface evolves in order to adjust to a
fixed accumulation rate and when perturbations of the
bedrock topograpy are introduced.

This paper is structured as follows: we first give the
equations of the model, then a description of the numer-
ical method for solving the complete set of equations,
and, finally, the results of the effects of anisotropy on
the ice flow over a flat and irregular bedrock.
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Table 1. Simulation Parameters

Description

Physical Parameters

ice density

acceleration due to gravity
activation energy

gas constant

p =900 kg m~®
g=9.81ms?

Q =7.820 x 10* J mol™!
R=28.314 J mol™! K!

Scaling Values
1

ux =0.2 m yr~ typical vertical velocity or
accumulation rate
dyx = 2500 m representative thickness

2. Equations
2.1. Mechanical Equations

The evolution of an anisotropic, viscoplastic, isother-
mal ice sheet can be studied by solving the equations
of conservation of mass and momentum coupled with a
constitutive relation for the stress tensor. We choose the
thickness d, of the ice sheet as a characteristic length
and the accumulation rate u, as a characteristic veloc-
ity. The dimensional characteristic stress is then given
by 7« = 0gd.« (here g is the density and g is the acceler-
ation due to gravity), which corresponds to the hydro-
static pressure at the base of the ice sheet (see Table 1
for numerical values). Then, the nondimensional equa-
tions read

1

(2)

where u=(ugz, u;) is the velocity vector, p’ = p — z is
the dynamic pressure, p is the fluid pressure, and S’ is
the Cauchy stress tensor given by

Va=0,
V.8 =vVyp,

1
S'=o+pl, p= ——gtr(a).

where o is the stress tensor, I is the identity tensor,
and tr is the trace operator. Notice that owing to the
very low velocities (for which typical Reynolds numbers
are of the order of ~ 1071%), the inertia terms in the
equation of motion (2) can be neglected.

2.2. Constitutive Relation

The conservation equations (1) and (2) are solved to-
gether with the constitutive relation of the ice:
S'=M : D, (3)
where M and D are the fourth-order viscosity tensor
and the second-order strain rate tensor, normalized by
Tdy /us and u,/dy, respectively. The constitutive rela-
tion used here is that of Lliboutry [1993], which gives the
viscoplastic anisotropic response of the ice for a fixed
texture.
The texture is assumed to be a function of the re-
duced depth z = (2 — B)/H (H = E — B is the ice
thickness) only; that is, it is invariant along the z direc-
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tion and it does not depend on the deformation history
of the ice. Texture development with reduced depth
was fitted on the fabric data of the recent GReenland
Ice core Project (GRIP) ice core [Thorsteinsson et al.,
1997], which represents a typical texture distribution for
ice sheets (Figure la). The texture is randomly oriented
at the surface, and the ice is then isotropic. Deeper
down, the ice crystals strongly concentrate around the
vertical in situ direction (single maximum texture). As
a consequence, the ice easily deforms when subjected to
horizontal shear, but it strongly resists all longitudinal
stresses. The rheological parameters used here are those
determined by Mangeney et al. [1996]. In this case, for
a planar flow the constitutive relation (3) takes the form

Soz mi mz2 ms 0 Dy
Syy | _ | m2 m2 mas O Dy, (@)
Sl | 7| ms mes maz O D,,
S;:z 0 0 0 N44 sz

where 7;; are functions of the texture and of the devi-
atoric stresses when non-Newtonian flow is considered
[Mangeney et al., 1996]. The dependence of the vis-
cosity matrix components 7;; on the four invariants of
the deviatoric stress tensor is given by Lliboutry [1993]
and Mangeney et al. [1996]. As a result, in the New-
tonian case, for strongly textured, anisotropic ice near
the bottom, the shear strain rate in response to a shear
stress is more than 1 order of magnitude larger than
the longitudinal strain rate in response to a longitudinal
stress for the same absolute value of the applied stress
(Figure 1b). At the surface (isotropic ice), this consti-
tutive relation (3) is reduced to the generalized Glen’s
flow law with a Newtonian and a non-Newtonian term
[Mangeney, 1996; Mangeney and Califano, submitted
manuscript, 1997]:

Dij = (Ast® + 4) Sii» (5)
where A, is the temperature-dependent rate factor:

An = Ajexp(-Q/RT), (6)

and 7 is the effective stress defined as
(7)

where n is the stress sensitivity, @) is the activation
energy for creep, R is the gas constant, and T is the
absolute temperature. In this work we consider a New-
tonian flow (A3 = 0) and we impose an ice temperature
of —20°C and the value of A; = 2.8 x 10® [Duval and
Castelnau, 1995] (A; is normalized by u./(7.d.)) This
flow law is discussed in more detail by Mangeney et al.
[1996] and Mangeney [1996].

1
T2 = 5(}1'(8/2)

2.3. Boundary Conditions

The ice sheet flow is studied in the framework of a
2-D slab geometry, where the # and z axes refer to
the horizontal and vertical directions, respectively. The
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Figure 1. Characteristic of the fabric used in the model and the associated directional viscosities.
(a) Development of the texture at 0, 1/4, 1/2, 3/4, and 1 times the depth. (b) Components of
the viscosity matrix resulting from this texture. The viscosity tensor components 7 are denoted

by symbols.

plane (z,z) is a symmetry plane for the flow (that is
0/0y = 0), with an aspect ratio equal to the inverse of
the horizontal length L = 40.
The kinematic condition at the free surface z = E(z)
is given b
is given by o8 - oF o
ot T oz
where a is the accumulation rate. If paiy, is the atmo-
spheric pressure and n; is the exterior unit normal vec-
tor at the surface, the stress free, top surface condition
reads
(9)

At the base of the ice sheet we consider an uneven, si-
nusoidal bedrock B(z), where the fluid is assumed to be
at rest [u(z, z = B(z)) = 0)], with typical irregularities
characterized by a wavenumber f and an amplitude By:

—u; = a,

on; — pagmns =0

B(z) = Bycos [27rf—z—] . (10)
At the left-hand and right-hand side of the domain we
impose the velocity profiles given by Nye [1952] corre-
sponding to “laminar” flow and satisfying the mass bal-
ance condition [see Mangeney et al., 1996]. However, we
find that the flow inside the domain of integration is in-
dependent of the left /right boundary conditions, except
close to the boundaries, where boundary layers develop.

In these layers, when the boundary conditions are not
realistic, strong horizontal pressure gradients appear.
On the other hand, at the top and bottom surfaces the
boundary conditions fit the real flow exactly.

3. Numerical Method

We shall first illustrate the numerical method used
to solve the system of equations (1)-(3); we will then
consider separately the specific treatment of the free
surface. Numerical solution schemes of the steady, in-
compressible Navier-Stokes equations have been studied
in great detail. A possible approach is the so-called arti-
ficial compressibility method, where a new term (a time
derivative of the pressure) is introduced in the continu-
ity equation [Chorin, 1967]. This term is a numerical
artifact, and the solution has physical significance only
when the stationary state is reached.

A more general approach is to solve the unsteady
Navier-Stokes equations, allowing the system to relax
until a steady state is reached. These methods have
been widely explored since they can be implemented
also when one is interested in time-dependent solutions.
In this case the procedure generally leads to the replace-
ment of the continuity equation (1) by an elliptic pres-
sure Poisson equation obtained from divergence of the
equation of motion (2). The Dirichlet boundary condi-
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tions for the velocities at the boundaries of the domain
are replaced by Neumann conditions for the pressure
field.

3.1. Time Scheme

To solve numerically the system of equations (1)-(3),
we reintroduce the time derivative of the velocity in the
momentum equation,

Lu—VYp,

ot
V-u =0,

where £ is a second-order differential operator, and let
the system evolve until a steady state is reached.

Since ice sheet flows are characterized by very low
Reynolds numbers, it is necessary to use an implicit,
time-advancing scheme in order to limit computational
costs in achieving the solution at the required accuracy
[Pracht, 1971]. In our case we find that when only the
diagonal part L4 of the operator £ (£ = L4 + L) is
implicit, it provides a good compromise between sta-
bility and computational costs. Such a “semi-implicit”
scheme requires minor modifications with respect to the
explicit scheme, which diverges for low Reynolds num-
ber flows.

Adopting the projection method [Peyret and Taylor,
1983], we first calculate an intermediate velocity field
at time step m,

X ot

u =
o

a4 %tagu(m), ot = 1£AtLy/2. (12)

The actual velocity field at time step m+1 is given by

At
Y=
(0%

umt) = § — yvp/mt) (13)
Here the pressure p/(™*1) is determined by solving the
Poisson equation

(Vy) VD) 4 4 v2p/(mt) = v 4, (14)

which is obtained by imposing V - u{™*1) = 0 in (13).
The boundary conditions for p’ are obtained by taking
the scalar product of (13) with the normal vector n at
the boundary I':

(% (m+1) _ _i (u(m+1)
\on ) p \ T

~ @) m,  (15)
where 7, is the projection of v on n and dr is the
value of & on I', which must satisfy the compatibility
condition for the Poisson-Neumann problem, relating
the source term of the Poisson equation to the Neu-
mann boundary conditions (Green theorem) [Fortin et
al., 1971]. This condition reads, in the explicit case,

1 1
= @dQ = —— (m+1) _ §) .ndl (16
At/ﬂVudQ At/r\(u u) n (16)

(1)
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and is identically satisfied since the velocity u(™+1) has
a total flux equal to zero on I'. The choice of the spa-
tial discretization must satisfy the discrete analogue of
(16). Note that since the coefficient v, which is directly
related to the viscosity tensor, is not constant on the
domain of integration, pressure gradients appear in the
Poisson equation (14).

3.2. Spatial Discretization

The main difficulties related to the spatial discretiza-
tion of (12)-(14) are (1) ensuring the free divergence of
the flow at a satisfactory accuracy, (2) satisfying the
compatibility condition, and, finally, (3) avoiding nu-
merical grid oscillations on the pressure field.

The two most frequently used schemes are the pro-
jection and the marker and cell (MAC) methods [see
Peyret and Taylor [1983], and references therein].  In
the first the pressure equation is obtained and then dis-
cretized, while in the second the pressure equation is
obtained by the discretized divergence of the discretized
momentum equation. The Poisson equations given by
the two different methods coincide when a staggered
grid is used. In this case all the previous requirements
are satisfied, but such a grid requires a large amount
of computer memory and introduces a high level of al-
gebraic complexity. These two disadvantages can be
avoided by using a nonstaggered (i.e., collocated) grid,
where all the fields are calculated at the same points,
but as a consequence, the three conditions, (1), (2), and
(3), are not automatically satisfied. In this case the dis-
cretized pressure equations obtained with the projection
or MAC methods are different. In particular, for the
MAC method the discretized continuity equation is sat-
isfied to within the round-off error of the machine, but
the odd-even decoupling leads to numerical oscillations
of the pressure field [Sotiropoulos and Abdallah, 1991].
For this reason, we have followed the projection method

| S
j iA : LA : LA
: S T T
: : f J i |
IR & @
: A : A i LA

> T > pY,‘,z > L= ,
: i Ux i mﬁ H ]

i
1

Figure 2. Semistaggered grid. Major meshes are repre-
sented by solid lines, and minor meshes are represented
by dotted lines.
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Figure 3. Mean divergence of the velocities for different time steps © as a function of the
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for which numerical oscillations of the pressure are eas-
ily avoided by an appropriate discretization [Abdallah,
1987a, b], even if the incompressibility and compatibil-
ity conditions, 1 and 2, respectively, must be carefully
considered. Note that use of a collocated grid leads to

a numerical mass source for the discretized continuity

equation that is proportional essentially to the fourth-
order derivative of the pressure [Sotzropoulos and Ab-
dallah, 1991].

As discussed in section 2.3, strong, horizontal, spa-
tial gradients develop close to the left and right bound-
aries. These strong gradients are an important source
of numerical error for the incompressibility condition.
Therefore we implemented a staggered horizontal grid,
while in the vertical direction we used a collocated grid
(see Figure 2). With this grid the numerical error on
the discretized continuity equation is essentially pro-
portional to the vertical fourth-order derivative of the
pressure and to the space step squared [Sotiropoulos and
Abdallah, 1991]. It is then possible to lower this error by
taking more points in the vertical direction. The preci-
sion of the value of the mean divergence of the velocities
within the numerical domain is improved by about 1 or-
der of magnitude when we take 21 points in the vertical
direction instead of 11 points (see Figure 3).

The Poisson equation (14) is solved on the entire nu-
merical grid, except at the top boundary, where the free
surface condition is imposed (see section 3.3). There-
fore two vertical and one horizontal, external, fictitious
meshes are added at the left, right, and bottom bound-
aries, respectively, allowing us to impose the boundary
conditions on the pressure. ‘

While in the horizontal direction the compatibility
condition is automatically satisfied, in the vertical di-
rection the gradient of the pressure must be calculated
at the middle of two points and averaged on the collo-
cated grid [Abdallah, 1987a, b]. The discretized form of

(14) reads
+1 +1
Yo itl,j = Vo i pfi‘l,ﬁ Pz('—nl,j)
Az 2Azx
+1 +1
i Yzij+1 — Yz ij-1 pz(,T-}-l) -Pz(,’; 1)
20z 2Az
+1 +1 1
. iy = 2p{5t) — plmiD
o i (Az)?
+1 +1 +1
U pl(?+1) QP(m = z(f;l 1)
Tz i (Az)?
Upit1j —Ugpij | Uyijp1 — Uzij-1
= : - 1
Az + 987 » (17)

where 7, and -, represent the projections of y into the
horizontal and vertical direction, respectively, and 7, is
the value of 4, on the major mesh, obtained by calcu-
lating the arithmetic average of the values of 4, on the
two adjacent minor mesh points (see Figure 2).

The presence of pressure gradients in the Poisson
equation (14) complicates the imposing of the bound-
ary condition in order to satisfy the compatibility con-
dition. Following the discretized form of the pressure
gradient used in the Poisson equation, we impose the
Neumann boundary conditions at the left (i = 1) and



MANGENEY ET AL.: ANISOTROPIC FREE SURFACE ICE FLOW

right (i = N,) boundaties as follows

(m41) _ (m+1)
Pti “Pils o (oot (8)
2Az o ' o
At the bottom boundary (j = N,) the same condition
reads
(m+1) (m+1)
Pij+1” —Pij—1 1
. 2Azl = = 7-—2 (uz i, u;ntjl) (19)

We found, using these conditions, that the numerical
code converges with the required accuracy for all the
cases treated. It is worthwile to emphasize that, in the
case of an implicit treatment, it is necessary to impose
the values of the velocity at time step m + 1 (instead of
m) on the right-hand side of (18) and (19). A detailed
numerical study of the convergence and the accuracy of
the code is presented by Mangeney [1996].

3.3. Free Surface

When the upper boundary of the domain is character-
ized by the presence of a free surface, the MAC method
has been primarily used. In this method the equations
are solved in a fixed Eulerian grid, and a different refer-
ence frame follows the particle’s trajectories, giving the
position of the free surface [Harlow and Welch, 1965;
Pracht, 1971; Deville, 1975]. Unfortunately, the free
surface is not exactly localized, in general, on the nu-
merical grid. As a result, it is difficult to impose the
surface boundary conditions. An alternative approach
is to use Lagrangian methods, which require frequent
reinitializations of all the physical fields leading to a
lower numerical accuracy at larger computational costs
[Morton, 1971].

In our case we use a rather different method that
allows us to fit the numerical grid on the ice sheet ge-
ometry at each time step by using a coordinate transfor-
mation [Phillips, 1957; Jenssen, 1977; Hindmarsh and
Hutter, 1988]. The physical, irregular domain in the
plane (z, 2) is transformed into a regular (rectangular),
time-independent domain in the ({,€) space. This eas-
ier and less expensive method can be used since in our
problem the free surface is not subjected to very compli-
cated phenomena such as wave breaking, for instance.
Actually, assuming that the ice sheet has a fixed hori-
zontal length, the variable transformation is limited to
the vertical direction and is given by

z—FE

‘ C - m’ 6 - H b
which gives £ = 0 at the surface and £ = 1 at the
base. The equations are then discretized in this new
rectangular domain. The derivation formulas related to
this variable change are given by Haltiner and Williams
[1980]. In what follows we present the equations in the
Cartesian reference frame (z, z) for the sake of simplic-

ity.
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To calculate the physical fields on the free surface
for a given surface elevation, the dynamic conditions,
(9), must be solved, together with the incompressibility
condition at the free surface. The projection of (9) on
the norimal direction of the free surface yields for the
pressure field

1
1-E7?

Oz
Oz
Oug Ou,

Bz '5?)] + E(20)

where E' = §E/0z. The velocity field at the free sur-
face is obtained by combining the tangential projection
with the incompressibility condition.

As already mentioned for the boundary conditions
of the pressure gradient, the use of an implicit scheme
forces us to consider the velocity field in (20) at time
(m + 1). This can be done by using the expression of
u(™+1) given by (13), which, combined with the incom-
pressibility condition, allows us to write (20) as

Ous
0z

P’ = {Mzzzx + Mz,

—E/2 (wax:c + M:c:czz

9 6pl(m+1) o1
/(m+1) —_— | = z 21
+l€a (7:0 oz ) K@x + E, ( )
1
= m [Mzzww — M2z — E” (Ml‘fm‘ - M”“z)] ’

We use the same discretization method for (21) as for
the pressure Poisson equation (14).

The incompressibility and the tangential dynamic
equations are solved at the free surface after the calcula-
tion of the velocity field inside the domain. As a result,
the surface velocities are obtained at time (m + 1) as a
function of the velocities inside the domain of integra-
tion.

The ice thickness H is then calculated with the evo-
lution equation (8). This equation is solved by a semi-
implicit method with an Adams-Bashford scheme of sec-
ond order in time

At/ 3 1
H(m+1) Ui (m+1) _ 2 (m) _ 2 (m=-1)
+ =, A 2G 50 , (22)

71— )

(m) (m) _ UiaBY (pm) o

¢ro= H 4Az (H’“ 1)
(m)
+ <ai — Uy i1 — U i,1%€‘) At

where At’ is the time step of the surface evolution. The
boundary conditions for the ice thickness H are not
directly imposed. In fact, these boundary values for
the ice thickness are given indirectly by the boundary
conditions for the horizontal velocity at the right and
left sides of the domain. These velocities are calculated
at each time step to satisfy the mass balance. Note that
this method is directly applicable to unsteady situations
where climatic parameters vary with time.
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Figure 4. Flow lines and free surface elevation in the anisotropic case (solid lines) and in the
isotropic case (dash-dotted lines) versus the distance from the ice divide and the depth for a flat

bedrock.
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Figiire 5. Shear strain rates at « = 0,2,4,6 versus the normalized depth Z. The shear strain
rates are represented in the anisotropic case (D,;) by solid lines and in the isotropic case by
dash-triple-dotted lines (D% ). Dash-dotted lines show longitudinal strain rates at the ice divide
and at 2 = 6 in the anisotropic case (D), and dashed lines represent longitudinal strain rates
at the ice divide and at = 6 in the isotropic case (DL,).



MANGENEY ET AL.: ANISOTROPIC FREE SURFACE ICE FLOW

4. Results

As discussed in section 2.1, the results presented here
are obtained for a given texture and Newtonian behav-
ior.

4.1. Flat Bedrock

Mangeney et al. [1996] studied the effect of anisotropy
on flow over flat bedrock with an imposed geometry. We
consider here a more realistic case by introducing un-
even bedrock and a supplementary degree of freedom:
the surface is allowed to evolve in time to adjust to a
fixed accumulation rate. The effects of anisotropy are
then more complex, and we shall use the previous re-
sults to better understand these new results.

For a fixed geometry the shear strain rate is strongly
influenced by anisotropy; however, when the surface el-
evation evolves with time, the shape of the free surface
can modify the effects of the anisotropy on the shear
strain rate. In fact, if we let the surface evolve, the
system reacts such that the longitudinal gradient of the
pressure, which (to a leading order of the shallow ice ap-
proximation) is directly related to the surface slope (see
Mangeney and Califano, submitted manuscript, 1997),
decreases, so that the shear strain rates are relatively
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low. The effect of the vertical variation of the viscosity
is smoothed, partly by the decrease of the surface slope
and partly by the increase of the shear strain rates. To
our knowledge, no simple argument exists to predict the
quantitative variations produced by this effect.

In Figure 4 we show the surface elevation and the
flow lines versus the distance from the ice divide and the
depth z. The free surface obtained in the anisotropic
case is flatter, and the flow lines penetrate deeper into
the ice sheet, becoming more horizontal when moving
away from the ice divide. The decrease of the surface
slope in the anisotropic case has direct consequences on
the value of the basal shear stress, which, to a leading
order of the shallow ice approximation, is proportional
to the surface slope. The basal shear stress is then lower
in the anisotropic case than in the isotropic case.

The shear strain rates in the lower part of the ice
sheet are larger in the anisotropic case (see Figure 5)
than in the isotropic case as was observed with a fixed
geometry [Mangeney et al., 1996]. However, in the up-
per part of the ice sheet the shear strain rates are larger
in the isotropic case. The major part of the deforma-
tion occurs in the basal layers where, in the anisotropic
case, the flow is globally more rapid. The effects of the
anisotropy on the flow are qualitatively similar to those
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Figure 6. Isochrones in thousands of years in the isotropic case (dash-dotted lines) and in the
anisotropic case (solid lines) versus the distance from the ice divide and the depth for a flat

bedrock.
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Figure 7. Vertical profiles of the viscous dissipation of heat, multiplied by 103, versus the
normalized depth 7 at the ice divide (labeled 0), at z = 4 (labeled 4) and at z = 6 (labeled 6).
Solid lines show the profiles in the anisotropic case, and dash-dotted lines denote the isotropic

case for a flat bedrock.

observed with a fixed geometry but are quantitatively
less. For example, at a distance of four ice thicknesses
from the ice divide, the basal shear strain rate in the
anisotropic case is 1.2 times larger than the basal shear
strain rate obtained in the isotropic case (see Figure 5),
while a factor of 2 was found for a fixed geometry.

Defining the region of the ice divide as a region where
the shear strain rate at the base is 10 times smaller than
the longitudinal strain rate at the surface, it appears
that this region is smaller in the anisotropic case. In
fact, this region is defined by |z| < 9 in the anisotropic
case and by |z| < 10.5 in the isotropic case. A difference
of two ice thicknesses was found with a fixed geometry
[Mangeney et al., 1996]. Because the flow in the ice di-
vide region is essentially vertical and so the trajectory
of ice particles is easy to calculate, the ice divide re-
gion was thought to be a good place for coring. This
is untrue, however, when the ice divide position evolves
with time. If the flow localized in the present position
of the ice divide was dominated by shear strain rates in
the past, the trajectory of ice particles will be difficult
to calculate. This difficulty will be accentuated in the
anisotropic case. ,

It is worth pointing out that the normalized profiles of
the velocity are the same as those obtained in the case of
a fixed geometry for the flow over flat bedrock. This fact
can be easily understood when looking at the expres-
sion for the velocity field to leading order of the shallow

ice approximation (Mangeney and Califano, submitted
manuscript, 1997). At zero order the horizontal velocity
of the shallow ice approximation reads
_ _90F o / e

u(z, z) 2 2 H v dé (23)
Therefore the values of the velocity normalized with
respect to its value at the surface only depend on the
shear viscosity My,z,.

The effect of anisotropy on the flow modifies signif-
icantly the dating of ice cores. In the anisotropic case
the isochrones are flatter and the ice at a specific depth
is younger (see Figure 6). Close to the bedrock, the
computed age of the ice in the anisotropic case is more
than 10% below the age calculated for isotropic ice.

These results would be modified by the calculation of
the real, coupled, thermomechanical model. To appreci-
ate its significance, we have calculated here only the vis-
cous dissipation of heat, W = Sl’-j D;;, which plays a key
role in the heat equation. Contrary to the case of fixed
geometry, the viscous dissipation of heat is smaller in
the anisotropic case than in the isotropic case, except at
the ice divide in the lower part of the ice sheet (see Fig-
ure 7). Incorporation of heat effects will lead to global
acceleration of the flow; the larger advection of cold ice
to the bottom, coupled with the diminution of the heat
dissipation, should then make the basal ice colder, de-
creasing the concentration of shear strain rate in the
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Figure 8. Flow lines and free surface elevation in the anisotropic case (solid lines) and in

the isotropic case (dash-dotted lines) for f = 7.

The line at the bottom represents the bedrock

topography; the bedrock ondulations have an amplitude of 0.2 and a wavelength of approximately

four ice thicknesses.

basal layers of the ice sheet. The resolution of the heat
equation should then diminish the effect of anisotropy
on the flow. Then, the effects of the anisotropy should
influence the free surface, the temperature field, and
the flow. However, we emphasize that these are only
conjectures to be checked by future calculations of the
thermomechanical equations.

4.2. Irregular Bedrock

Real ice sheets never flow over flat bedrock. The
problem of ice sheet flow over an irregular bedrock is
today very relevant: for example, at a distance of 30
km from the future European Project for Ice Coring in
Antarctica (EPICA) drilling site at Dome C (Antarc-
tica), the bedrock topography varies from -600 m to
more than +800 m above sea level. This leads to a
vertical variation of the bedrock topography of ~ 50%
of the ice thickness over 10 km (i.e., less than four ice
thicknesses).

Two questions arise. Will the anisotropy of the ice in-
crease or decrease the effect of the bedrock topography
on the flow and on the free surface? Is the preceding re-
sult, i.e., the acceleration of the flow in the anisotropic
case, still valid? To study these effects, we have im-
posed a sinusoidal bedrock; see (10). We present here
the tests for f = 7 and By = 0.2, corresponding to
vertical variations of the bedrock topography of 40% of

the ice thickness over a distance of approximately 2 ice
thicknesses. Different tests have been made with sev-
eral values of amplitude By and wavenumber f, leading
qualitatively to the same conclusions.

In Figure 8 we show the free surface and the flow lines
obtained in the isotropic case (dash-dotted lines) and in
the anisotropic case (solid lines). The surface is flatter
and the flow lines are less sensitive to the bedrock topog-
raphy in the anisotropic case. Anisotropic ice “dives”
less deeply into a hole and “climbs” less highly over a
bump. The surface slope, the velocities, and all the
fields are less sensitive to the bedrock topography; that
is, they are more homogeneous in the horizontal direc-
tion z (see Figure 9). The anisotropic ice appears to
flow over an effective bedrock less irregularly than the
real bed.

A new phenomenon appears here: the partial stag-
nation of the ice in the holes of the bedrock. This
phenomenon is easily visible when looking at the iso-
values of the shear strain rate, which are shown in Fig-
ures 10a and 10b. In the isotropic case the values of
the shear strain rate increase with depth everywhere
along the flow line, except near the hole, where a slight
slowing down of the flow occurs. In the anisotropic
case the same phenomenon occurs over the bump of
the bedrock, but over the holes the shear strain rate
increases down to a depth of Z ~ 0.2 and then de-
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Figure 9. (a) Surface slope, (b) horizontal velocity at the surface and (c) vertical velocity at
the surface versus distance from the ice divide. Solid lines represent the results in the anisotropic
case, and dash-dotted lines represent the results in the isotropic case; the bedrock ondulations

have an amplitude of 0.2 and a wavelength of approximately four ice thicknesses.

creases. In the isotropic case the flow lines follow the
bedrock topography: ice is subjected to significant lon-
gitudinal strain rates near the bottom. However, in the
anisotropic case the ice resists all longitudinal strain
rates and is globally more difficult to deform. In this
case a kind of boundary layer occurs near the bottom.

These effects of the anisotropy on the flow have a
great influence on the dating of ice. The isochrones
obtained for the anisotropic case are less sensitive to
bedrock topography as observed for all the fields (see
Figure 11a). If the ice is assumed isotropic, the age
would be overestimated by more than 10% above the
bumps of the relief and significantly underestimated
(with an error of more than 100%) above the holes (see
Figure 11b).

It is worth pointing out that the horizontal gradients
of the longitudinal stresses in the basal layers are much
higher in the anisotropic case than in the isotropic case
(see Figures 10c and 10d). These gradients can reach
values larger than those of the surface slope (when con-
sidering quantities without dimensions). For example,
at x = 5 the horizontal gradient of the longitudinal
stress at the base is equal to 8 x 10~* and the surface

slope is equal to 5x 10~% in the anisotropic case, while in
the isotropic case this gradient has a value of 1.4 x 10~*
and the surface slope has a value of 1.5 x 1073, In the
anisotropic case the horizontal gradient of the longitu-
dinal stress is then no longer negligible with respect
to the horizontal pressure gradient in the first equa-
tion of the mechanical balance (2). Over such irregular
bedrock, the zeroth order of the shallow ice approxima-
tion, generally used in ice sheet modeling, is then not
applicable to the flow of anisotropic ice (see Mangeney
and Califano, submitted manuscript, 1997) and must
be extended to at least the next nontrivial, higher-order
terms.

5. Conclusions

We have shown here that to solve the complete set of
mechanical equations of ice sheet flow, a careful anal-
ysis of the spatial and temporal discretization of the
numerical scheme is necessary to obtain a converging
solution. The use of the numerical code presented here
is, however, not limited to ice sheet flow modeling. It
can be applied to all materials for which linear rheolog-
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ical properties are known. It converges in all situations
with very low Reynolds numbers. With slight modifica-
tions it may be used to solve transient flow, with time-
dependent climatic parameters. The calculation of the
transient flow can bé performed using the coordinate
system proposed by Hindmarsh and Hutter [1988], cou-

pled to a power series of the flow near the margins [Ben-
ney and Timson, 1980]. The numerical code is written
in primitive variables (velocity and pressure) and can
be extended to three-dimensional situations.

The resolution of the heat equation, the calculation
of transient flow, and the use of a more realistic flow



22,762 MANGENEY ET AL.: ANISOTROPIC FREE SURFACE ICE FLOW

a.

B
B

1.5

-0.5 n L . L ! . . 1 L L . L
0 5 10 15
X

Figure 11. (a) Isochrones in thousands of years in the isotropic case (dash-dotted lines) and
in the anisotropic case (solid lines). (b) Difference in percent between the calculated age for an
anisotropic flow and the age calculated in the isotropic case versus the distance from the ice divide
and the depth. Bedrock ondulations have an amplitude of 0.2 and a wavelength of approximately
four ice thicknesses.

law are fundamental steps that must be achieved before The main results obtained when comparing isotropic
drawing “realistic” conclusions. Here we have made a and anisotropic flows over a flat bedrock calculated with
first step toward understanding the effects of anisotropy a steady flow model under isothermal conditions and for
on the ice sheet flow. a given textire are as follows.
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1. The effects of anisotropy are partly smoothed out
by the deformation of the free surface which is flatter
and by the shear strain rates which are larger and more
concentrated near the bedrock in the anisotropic case
than in the isotropic case.

2. The flow is globally faster in the anisotropic case,
but it is less than the flow obtained when a fixed geom-
etry is imposed.

3. The ice divide region, where the longitudinal strain
rates are significant, is less extensive in the anisotropic
case than in the isotropic case.

4. The isochrones are flatter in the anisotropic case,
and anisotropic ice at fixed depth is younger than isotro-
pic ice, by more than 10% in the basal layers.

When irregular bedrock is considered in the anisotro-
pic case, we observe that (1) the flow is less sensi-
tive to the variations of bedrock topography than in
the isotropic case; (2) the fields and the isochrones in
the horizontal direction z are more homogeneous than
in the isotropic case; (3) the flow is faster above the
bumps, and the ice is stagnant in the holes of the
bedrock; and (4) above the bumps the ice is younger
by more than 10% compared with the isotropic ice, and
in the holes of the relief it is older by more than 100%.

These results are obtained with a fixed texture and
without recrystallization layers at the base of the ice
sheet. The presence of recrystallization processes leads
to a layer of isotropic ice near the bedrock of several
hundred meters. The presence of this layer will cer-
tainly decrease the phenomenon of stagnation of the ice
within the holes of the relief. For the time being, it is
not known whether this phenomenon will remain if the
evolution of the texture is taken into account.

We have shown that surface elevation, flow, and dat-
ing are very sensitive to the texture distribution in
the ice sheets. Consideration of anisotropy effects will
change the values of rheological and climatic parame-
ters that are determined by inverse models using surface
elevation measurements [Remy et al., 1996] or the posi-
tion of isochrones, where the age is known [Dahl-Jensen
et al., 1993].

It is evident that the effects of anisotropy have sig-
nificant practical consequences since they change the
dating of ice cores. In particular, consideration of these
effects may have a major impact on the choice of drilling
locations.
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