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Abstract Since the collapse of the Dolomieu crater floor at Piton de la Fournaise Volcano (la Réunion)
in 2007, hundreds of seismic signals generated by rockfalls have been recorded daily at the Observatoire
Volcanologique du Piton de la Fournaise (OVPF). To study rockfall activity over a long period of time,
automated methods are required to process the available continuous seismic records. We present a set of
automated methods designed to identify, locate, and estimate the volume of rockfalls from their seismic
signals. The method used to automatically discriminate seismic signals generated by rockfalls from other
common events recorded at OVPF is based on fuzzy sets and has a success rate of 92%. A kurtosis-based
automated picking method makes it possible to precisely pick the onset time and the final time of the
rockfall-generated seismic signals. We present methods to determine rockfall locations based on these
accurate pickings and a surface-wave propagation model computed for each station using a Fast Marching
Method. These methods have successfully located directly observed rockfalls with an accuracy of about
100 m. They also make it possible to compute the seismic energy generated by rockfalls, which is then
used to retrieve their volume. The methods developed were applied to a data set of 12,422 rockfalls that
occurred over a period extending from the collapse of the Dolomieu crater floor in April 2007 to the end
of the UnderVolc project in May 2011 to identify the most hazardous areas of the Piton de la Fournaise
volcano summit.

1. Introduction

Over recent decades, seismology has proven to be a powerful tool to study the spatiotemporal evolution
of gravitational instability activity. The spontaneous nature of these often disastrous events makes direct
observations difficult. The continuous recording capability of seismology makes it possible to overcome
this difficulty. The seismic signals generated by gravitational instabilities can be used to detect such events
and, as shown by many studies [Surinach et al., 2005; Deparis et al., 2007; Dammeier et al., 2011; Hibert et
al., 2011], can provide important information on their location, dynamics, and properties. However, one of
the major constraints concerning observations over a long period of time is the large number of continu-
ous seismic records that must be processed. Accurate estimation of the volumes and locations of rockfalls
from their seismic signals requires accurate picking of signal onset and duration, which, if done manually
for thousands of events, is extremely tedious and time consuming. Automated picking methods are there-
fore required to obtain a complete analysis of the spatiotemporal evolution of rockfall activity on the basis
of seismic records.

Our study focuses on rockfalls occurring in Dolomieu crater, located at the summit of Piton de la Fournaise
volcano on Réunion Island. A major collapse of the Dolomieu crater floor occurred during a massive eruption
of Piton de la Fournaise volcano in April 2007 [Staudacher et al., 2009]. This event considerably destabilized
the crater walls and consequently increased the number of rockfalls from its edges. The dense and perma-
nent seismic network set up by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) on the
volcano (Figure 1) has recorded numerous seismic signals generated by rockfalls, making Dolomieu crater a
perfect natural laboratory to study these events.
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Figure 1. Seismic network of Piton de la Fournaise volcano. The permanent stations of the Observatoire Volcanologique
du Piton de la Fournaise (OVPF) are indicated by triangles and the ones installed for the UnderVolc project by circles. The
names of the short-period stations are highlighted in italic. The stations indicated by squares were moved after the April
2007 Dolomieu collapse: SFR became SNE and DSR became DSO. The contour interval is 100 m.

In this paper we first present a method to automatically identify the sources of the seismic signals, focus-
ing on discrimination between rockfalls and volcano-tectonic (VT) earthquakes. This method is tested on a
seismicity catalog including all the 7478 rockfalls and VT earthquakes recorded by the OVPF between 1 May
2008 and 9 January 2010. A method developed to automatically pick the emergent onset and duration of
the seismic signals generated by rockfalls is then presented. In the following section, the methods devel-
oped to accurately locate rockfalls from the automated picking of their seismic signals are discussed, and
the results are compared to rockfalls for which the location was directly observed. The automated methods
are then used to determine the location of the 12,422 rockfalls listed in the OVPF seismicity catalog for the
period going from 1 May 2007 to 31 April 2011. Accurate picking of the seismic signals also makes it possible
to estimate the seismic energy and thus the volume of the rockfalls using the method proposed by Hibert
et al. [2011]. Finally, our methods are used to obtain maps of the locations and spatial distributions of the
number and volumes of the rockfalls that occurred between May 2007 and April 2011.

2. Automated Identification of Rockfall Generated Seismic Signals

The seismic signals of the various types of events recorded by the OVPF seismic network have specific char-
acteristics that can be used to identify them manually. However, when dealing with large quantities of data,
manual classification can be extremely slow and tedious and, in addition, is always subject to some degree
of subjectivity. Automated classification, based on objective criteria, may be a better alternative.

Seismology allows near-real-time detection of gravitational instabilities in many different contexts. However,
identification of the specific seismic signature of these events is difficult, making automation a challeng-
ing task. Leprettre et al. [1998] conducted one of the first studies on this subject and proposed a method for
automatically detecting snow avalanches. They used the time and frequency characteristics of the seismic
signals as identification criteria. Their method was used on a data set comprising 280 events including 13
avalanches and allowed proper identification of 90% of the avalanches. In a volcanological context, auto-
mated classification is more difficult as many different types of events are recorded by seismic networks.
Langer et al. [2006] developed a method for automatically classifying events recorded by the seismic
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Figure 2. Seismic signals of (a) a volcano-tectonic (VT) earthquake and (b) a rockfall recorded at station DSO (500 m from
the crater center). Closeup of the onset of the signal generated by (c) a VT earthquake and (d) a rockfall. Spectrogram
(energy given in decibels) of the seismic signal generated by (e) a VT earthquake and (f ) a rockfall.

network of the observatory of the Soufriére Hills volcano (Montserrat). That method is based on an artificial
neural network and produces results that are 70% compatible with manual identifications. These authors
found that a significant portion of the error came from a priori manual misidentifications. When manual
misidentifications were corrected, the compatibility between automated and manual classification was 80%.

We present a method designed to automatically discriminate seismic signals generated by rockfalls
recorded by the OVPF seismic network (Figure 1) from those linked to volcanic or human activity. To build
and test this method, a data set containing 7478 events recorded between 1 May 2008 and 9 January 2010,
was used. The catalog of seismicity established by the OVPF classifies seismic events into nine different cate-
gories: indeterminate, rockfall, summit volcano-tectonic (VT) earthquake, deep VT earthquake, long-period,
VT earthquake outside the caldera, local earthquake, regional earthquake, T-phase (characteristic of seismic
waves propagating in water), and global earthquake. Different analysts involved in the daily identification
of events recorded by the OVPF seismic network based their analyses on the knowledge they had of the
location of the event and on its specific characteristics in terms of waveform and frequency content. Most
events have a frequency spectrum that differs from that produced by rockfalls. Therefore, a simple filtering
method can distinguish rockfalls from other events. Whereas the maximum observed energy for rockfalls
falls between 2 and 30 Hz, it is below 2 Hz for tectonic earthquakes (local, regional, and global). Discrimi-
nating between rockfalls and VT earthquakes seismic signals is impossible by simple filtering because their
frequency spectra overlap. Only 36 T-phase and 18 long-period events were identified during our obser-
vation period, so we do not focus on them. The method presented here focuses exclusively on automated
distinction between rockfalls and VT earthquakes. The method we propose is based on a selection of objec-
tive criteria for classification of events and decision-making based on fuzzy logic techniques. The first step is
to define these criteria from selected features of the seismic signals.

2.1. Features Involving Waveform and Frequency Content
Volcano-tectonic earthquakes are generated by the fracturing of rock induced by magma and gas move-
ment within a volcano [Zobin, 2003; McNutt, 2005]. The associated seismic signals (Figure 2a) are char-
acterized by an impulsive onset (Figure 2c) and a relatively short duration, i.e., generally less than 40 s.
The spectrogram (Figure 2e) has a specific shape with a sharp energy increase followed by an exponen-
tial decay of the high-frequency content with time. VT earthquakes seismic signals are characterized by
a wide frequency band which can reach a maximum value of about 30 Hz and which slightly decreases
with the distance between the event and the station. Seismic signals generated by rockfalls (Figure 2b)

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1084



Journal of Geophysical Research: Earth Surface 10.1002/2013JF002970

Volcano-Tectonic
Envelop
Mean
Max

50 100 150
-5

0

5
x 10-6

Duration (s)
50 100 150 200200

50 100 150
Duration (s)

200

Duration (s)

50 100 150 200
Duration (s)

Rockfall

-12 -10 -8 -6 -4
0

500

1000

Log(A)
-12 -10 -8 -6 -4

Log(A)

N
um

be
r

0

200

400

N
um

be
r

Log(Amplitude) Distribution
Fitting normal law

Inc/Dec phases
t
i

t
max

t
f

Fr
eq

ue
nc

y 
(H

z)

Nro Event
0 200 400 600 800 1000

0

10

20

Fr
eq

ue
nc

y 
(H

z)
Nro Event

0 200 400 600 800 1000
0

10

20

V
el

oc
ity

 (
m

/s
)

-5

0

5
x 10-6

V
el

oc
ity

 (
m

/s
)

-5

0

5
x 10-5

V
el

oc
ity

 (
m

/s
)

-5

0

5
x 10-5

V
el

oc
ity

 (
m

/s
)

a b

c d

e f

g h

Figure 3. Seismic signal, signal envelope, signal mean, and signal maximum for (a) a rockfall and (b) a VT earthquake.
Distribution of the decimal logarithm of the envelope amplitude values and the normal distribution with the same
standard deviation and mean as the amplitude distribution for (c) a rockfall and (d) a VT earthquake. Increasing and
decreasing phases of the signal envelope, onset time (ti), time of maximum amplitude (tmax), and final time tf of the sig-
nal for (e) a rockfall and (f ) a VT earthquake. Frequency spectrum (white for high energy, black for none) for (g) 1000
rockfalls and (h) 1000 VT earthquakes. The white dashed line indicates a frequency of 10 Hz.

are usually significantly different. They typically exhibit emergent onset (Figure 2d) and have a long dura-
tion ranging from 50 to more than 200 s. In general, there is no clear maximum of the seismic signal and
P and S waves cannot be distinguished. These characteristics are probably due to the complexity of the
source mechanism and also to a dominance of surface waves in the rockfall-generated seismic signal as
shown by several studies on gravitational instabilities [Deparis, 2007; Dammeier et al., 2011; N. Rousseau,
Les signaux sismiques associes aux eboulements sur l’ole de La Reunion (Ocean Indien): Etude de 2 sites:
La Cascade de Mahavel et la Cavite de La Soufriere, Doctoral dissertation, 1999]. The frequency band
for rockfalls (Figure 2f ) ranges from 2 to 30 Hz and is centered at 5 Hz, similar to the range observed for
rockfalls on the Merapi [Ratdomopurbo and Poupinet, 2000] and Montserrat [Calder et al., 2002; Luckett
et al., 2002] volcanoes. The spectrogram for rockfalls (Figure 2f ) reveals a triangular shape, similar to the
shape observed by Surinach et al. [2005], which generally reflects a linear decay of high energy in the
higher frequencies.

To automate classification, we must translate the seismic-signal characteristics described above, commonly
used for manual identification, into objective criteria. These criteria must be both discriminating and simple
enough to ensure a short computation time. Based on characteristics identified from signal processing
techniques for each type of event, five features were selected: four waveform characteristics and one
frequency characteristic.
2.1.1. Ratio of the Maximum Amplitude to the Mean of the Envelope
The envelope of each signal is determined by computing the instantaneous amplitude of the seismic signal.
Rockfalls usually do not have a single highly differentiable peak of maximum amplitude, whereas such a
peak is always observed on the signals of VT earthquakes (Figures 3a and 3b). The ratio of the maximum
amplitude to the mean of the envelope provides information on the relative strength of the maximum in
comparison to the rest of the signal. This ratio should be high for VT earthquakes and low for rockfalls.
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2.1.2. Kurtosis of the Envelope
Kurtosis corresponds to a measurement of the “flatness” or the “peakedness” of the distribution of a random
variable with respect to a normal distribution. For a random variable X with mean 𝜇 and standard deviation
𝜎, the normalized kurtosis 𝛽2 of this variable is defined as

𝛽2 = E(X − 𝜇)4

(E(X − 𝜇)2)2
=

m4

𝜎4
, (1)

where E is the expected distribution and m4 the fourth central moment. The discrete form of equation (1)
can be written as

𝛽2 =

1
n

n+1∑
i=1

(xi − x̄)4

(
1
n

n+1∑
i=1

(xi − x̄)2

)2
, (2)

where n is the total number of samples, xi the value of the i-th sample, and x̄ the mean over n samples.
Using equation (1), the kurtosis of a normal distribution is 3. For distributions that are flatter than the nor-
mal distribution, the kurtosis values are less than 3 and the distributions are called platykurtic. On the other
hand, for distributions sharper than the normal distribution, the kurtosis values are greater than 3 and the
distributions are called leptokurtic.

As shown by the examples presented in Figures 3c and 3d, the distribution of the log-transformed enve-
lope amplitudes is normal to very slightly leptokurtic for rockfalls. For VT earthquakes, the high amplitudes
at the beginning of the signals spread out the amplitude distribution toward the higher values (Figure 3d).
Hence, despite the peak centered on the lower values, the general shape of the amplitude distribution is
“flatter” than the normal distribution that fits it. Thus, the amplitude distribution of VT earthquakes is rather
platykurtic. The variation of the distribution for rockfalls is much less abrupt than for VT earthquakes. Skew-
ness was also tested, as this statistical tool assesses the asymmetry of a distribution. Because we observed
similar discrimination capabilities for kurtosis and skewness, we decided to use only kurtosis as a criterion.
2.1.3. Signal Duration
According to our observations, the duration of the seismic signals generated by rockfalls is greater than the
duration of those generated by VT earthquakes. It is therefore logical to select this feature as a criterion for
discrimination. Duration is given by

ΔT = tf − ti, (3)

with ti the onset time and tf the final time when the signal returns to the noise level (Figures 3e and 3f).
2.1.4. Duration of the Increasing and Decreasing Phases of the Signals
Rockfall seismic signals generally exhibit a slow emergence, whereas VT earthquakes are impulsive. We
quantify this observation by taking the ratio of the signal rise time to the fall time as expressed by

IncDec =
tmax − ti

tf − tmax
, (4)

where tmax is the time at which the maximum amplitude is reached (Figures 3e and 3f).
2.1.5. Energy in the 10–30 Hz Frequency Band
Our final criterion is based upon observations made in the spectral domain. As shown in Figures 3g and 3h,
the energy at frequencies above 10 Hz is greater for VT earthquakes. We therefore compute the energy of
each signal in the 10–30 Hz band computed as

Ene HF =

30Hz

∫
f=10Hz

DFT(f ) df , (5)

where DFT(f ) is the value of the power spectrum at frequency f obtained using a discrete Fourier transform
of the seismic signal.

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1086
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Figure 4. (a) Distribution of rockfalls (blue) and VT earthquakes (red) as a function of values of the ratio of the duration of
the increasing phase to the duration of the decreasing phase of the seismic signal envelope. (b) The constructed possibil-
ity function for this ratio. (c) Distribution and (d) possibility function for the kurtosis value computed for the distribution
of the signal envelope amplitude. (e) Distribution and (f ) possibility function for the total duration of the seismic signals.
(g) Distribution and (h) possibility function for the ratio of the maximum to the mean of the signal envelope. (i) Distri-
bution and (j) possibility function for the seismic energy observed in the 10–30 Hz band of the signal spectrum. When
distributions overlap, the covered distribution is colored in purple.

2.2. Training Data Set
A training data set of 500 events was chosen to determine the probable range of criteria values for VT
earthquakes and rockfalls. Among these events, we selected those that had clear characteristics of their
respective types and for which manual identification was certain. From the initial set of 500 events, 124
rockfalls and 67 VT earthquakes were selected. The five specified criteria were computed for each of these
events. The distributions of criteria values are shown in Figure 4. Except for the total duration of signals, we
normalized the data using the logarithm of criteria values.

As shown in Figures 4c and 4g, criteria based on kurtosis and the ratio between the maximum and the
mean of the envelope are the most discriminating, with only a small portion of their distributions overlap-
ping between event types. The criteria involving the total duration (Figure 4e) and the ratio of the duration
of the increasing and decreasing phases of the envelope (Figure 4a) are discriminating, but with a more
substantial overlap of distributions. Finally, the criterion based on energy at high frequency (Figure 4i) is
the least discriminating, with the largest overlap of the distributions. However, a certain range of values,
between −2 and 0 for rockfalls and less than −2 or greater than 3 for VT earthquakes, provide a good basis
for discrimination.

Thus, some parameters are very good at discriminating rockfalls from VT earthquakes and others less so. But
in all cases, the distributions of these criteria for both types of events overlap. Fuzzy logic techniques provide
a way to account for this uncertainty in the decision making process. These techniques offer a number of
advantages: they are very simple to implement, they return information that can be easily integrated into a
real-time decision process, and they require a minimum of computing resources.
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Table 1. Threshold Values Chosen for Each Criterion to
Construct the Possibility Functions 𝜋

Possibility functions =0 (VT) =1 (Rockfall)

𝜋IncDec < −2 > −1.5
𝜋Kurto < 0.5 > 1
𝜋Dur < 30 > 60
𝜋MaxMean > 1.8 < 1.4
𝜋EneHF < −2 ∗

2.3. Fuzzy Logic and Decision Rules
Fuzzy set theory was introduced by Zadeh
[1965] and makes it possible to model generally
imprecise linguistic terms like “big,” “small,” or
“important” to take into account the differences
in behavior of a variable in a particular class. Con-
sider a variable x and the linguistic term A that
qualifies x. If the behavior of x is binary, for exam-
ple either “small” or “large,” then A takes on the

values 0 or 1 for each x qualified as “small” or “large,” respectively. However, in most cases, x does not have a
binary behavior. This can result in a range of notions offered by the language, for example x can be “rather
large,” etc. Fuzzy logic allows us to model A using a so-called possibility function 𝜋A of the variable x. Each
value of x is associated with a value of 𝜋A ranging from 0 (false) to 1 (true). Each intermediate value of 𝜋A(x)
indicates that the proposal is neither totally wrong nor totally true. If we now consider several fuzzy sets,
for example, the two elementary propositions “the value of x is A” and “the value of y is B,” we can combine
these sets using logical operators and assess the possibility of more complex propositions such as “the value
of x is A and the value of y is B.” This statement can be translated as

Π(A, B) =
𝜋A ∧ 𝜋B

max(𝜋A ∧ 𝜋B)
, (6)

where 𝜋A and 𝜋B are the possibility functions of fuzzy sets A and B, and ∧ is the conjunction operator.
These methods are frequently used in geosciences, for example, for data fusion for tomographic imaging
[Grandjean et al., 2009; Hibert et al., 2012], characterization of seismic risk [Dong et al., 1987], or automatic
detection of avalanches [Leprettre et al., 1998]. In our case, we are interested in the identification of two
types of events, i.e., rockfalls and VT earthquakes. We can therefore define a hypothesis A with two options:
“event n is a rockfall” or “event n is a VT earthquake.” The values of the possibility ΠA(n) related to hypothe-
sis A are chosen arbitrarily such that ΠA(n) = 1 if the event n is a rockfall and 0 if it is a VT earthquake. It is
now necessary to define possibility functions 𝜋 with values ranging from 0 to 1 for each criterion, based on
the a priori assumptions 𝐡 on the values it would take for either a VT earthquake or a rockfall. These possi-
bility functions are then integrated into the hypothesis A. Transfer functions are built from the observations
as represented in Figure 4. Table 1 summarizes the threshold values chosen for each criterion, beyond which
the corresponding possibility function will either take on a value of 0 or 1, depending on whether the event
is a VT earthquake or a rockfall. The possibility functions 𝜋 are considered linear between these two defined
threshold values (Figures 4b, 4d, 4f, and 4h). The case of energy in the high-frequency band is somewhat
unusual because the distribution of values for rockfalls does not stand out from those of VT earthquakes.
Therefore, this function will never take on a value of 1. The maximum value is set to 0.7 at an energy value of
−1. It is for this value of −1 that the rockfall distribution is most dominant. This function takes on values of
0 below −2, i.e., values below which only the population of VT earthquakes appears. The possibility function
is set to decrease from 0 to 6 to reflect the increase of the domination of VT earthquakes for greater values.
The possibility function 𝜋EneHF is considered linear between the defined threshold values (Figure 4j).

Hypothesis A is absolutely “rockfall” when all of the possibility function values related to a priori assump-
tions are equal to their respective maximums (0.7 for the 𝜋EneHF possibility function and 1 for all the others).
On the other hand, hypothesis A is absolutely “VT” when all the values of the possibility functions related to
a priori assumptions are equal to 0. The possibility function ΠA for an event n can be expressed as

ΠA(n) =
𝜋IncDec(n) + 𝜋kurt(n) + 𝜋dur(n) + 𝜋Rmaxmean(n) + 𝜋EneHF(n)

5
. (7)

The function ΠA thus allows us to obtain a coefficient between 0 and 0.94 for each event. If we set a thresh-
old value at 0.5 below which the events are identified as “VT” and above which they are identified as
“rockfalls,” we can obtain an estimate of the uncertainty of the identification. The greater the departure of
ΠA from the threshold value, the more the identification is likely to be correct.

2.4. Application to Real Data
The proposed method has been tested on vertical component data recorded at station BOR (Figure 1).
Signals were selected using a single criterion: a signal-to-noise ratio greater than 1.5. The data set consists

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1088



Journal of Geophysical Research: Earth Surface 10.1002/2013JF002970

Figure 5. Distribution of ΠA values for the VT earthquakes
(red) and rockfalls (blue) of the selected data set.

of 3343 manually classified VT earthquakes and
4135 rockfalls. Figure 5 shows the distribution of
values of ΠA for the VT earthquakes and rockfalls
of the selected data set.

Automated identification results in correct clas-
sification of 88% of the events according to the
classifications given by the OVPF catalog, with val-
ues for the decision criterion of ΠA < 0.5 for VT
earthquakes and ΠA > 0.5 for rockfalls. In addi-
tion, 82% of rockfalls have a value of ΠA above 0.6
and 72% of the VT earthquakes have a value of
ΠA below 0.4. Regarding possible false identifica-
tion, only 6% of rockfalls have a value of ΠA below
0.4 and only 8% of VT earthquakes have a value
of ΠA above 0.6. We see three main reasons for

misidentification of events signals: (1) a poor signal to noise ratio (93% of the misidentified events have a
signal-to-noise ratio below 3, 30% below 2, and 10% below 1.6); (2) an overlapping of two or more events
with others; and (3) an a priori misidentification in the OVPF catalog. Of the 923 events misidentified by our
automated method (12% of the total data set), we observe that 31% of the events manually identified as VT
earthquakes are in fact rockfalls and 51% of the rockfalls are VT earthquakes. Thus, 379 events (5% of the
total number of manually identified events chosen for this study) were manually misidentified. If we correct
the data set of events against which we compare our automated identification method, we correctly identify
92% of the events. The identification method we have developed based on fuzzy set theory therefore seems
to effectively identify rockfalls and VT earthquakes automatically from their seismic signals. These results
suggest that the construction of a global identification method based on fuzzy logic is possible.

3. Automated Picking of the Onset of the Seismic Signals Generated
by the Rockfalls

In seismology, the most widely used tool for automated picking of the onset of the signal is the STA/LTA
method (Short-Time-Average over Long-Time-Average) [Allen, 1982]. This method is based on the ratio of
the mean of the signal amplitude computed for two sliding windows with different sizes: one short and
one long. An event is detected when this ratio rises above a given threshold. The advantage of this method
is that it is fast and can be used directly on raw signals. However, the necessity of subjectively defining a
static threshold induces a large number of bad detections. The STA/LTA method has been improved by
Baer and Kradolfer [1987], who computed the ratio using the envelope of the signal and a dynamic detec-
tion threshold. Nevertheless, methods with thresholds prove to be ineffective for emergent signals such
as those observed for rockfalls. Indeed, this kind of picker systematically picks a time after the true onset.
More recent techniques are based on the Akaike Information Criterion (AIC). The AIC can detect changes
in the temporal and spectral domains. This criterion may be used directly on the seismic signals [Maeda,
1985], but several studies combine this criterion with signal decomposition methods, using autoregres-
sive methods [Sleeman and van Eck, 1999; Leonard and Kennett, 1999; Leonard, 2000] or methods based on
wavelets [Zhang et al., 2003]. These methods are highly effective for conventional signals. However, when
the signal-to-noise ratio is low and the onsets are hard to identify, as is commonly the case with rockfalls,
the results are poor. Recently, new automated picking methods based on high-order statistics have been
introduced [Saragiotis et al., 2002; Baillard et al., 2014]. These methods are based, for example, on the com-
putation of the fourth statistical moment, kurtosis, which makes it possible to identify transitions between
Gaussianity and non-Gaussianity in a signal. Such a transition coincides with the arrival of a seismic wave,
making it detectable despite the presence of noise. Comparison with manual picks using several data sets
showed that this method is more accurate than the commonly used STA/LTA picking tools. The ability to
reduce the influence of noise led us to choose and adapt the kurtosis method for the automated picking of
arrival times of the seismic signals generated by rockfalls. Another method based on the gradient of a kurto-
sis characteristic function was recently used by Langet et al. [2014] for automated migration-based locating
of events at Piton de la Fournaise.

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1089



Journal of Geophysical Research: Earth Surface 10.1002/2013JF002970

0 50 100 150 200
-4

-2

0

2

4

V
el

oc
ity

 (
m

/s
)

Time (s)
0 50 100 150 200

-4

-2

0

2

4

Time (s)
0 50 100 150 200

-4

-2

0

2

4

x 10-6

Time (s)

Noise Transition Signal

-4 -2 0 2 4
x 10-7

0

200

400

600

800

1000

Velocity (m/s)
-4 -2 0 2 4

x 10-6Velocity (m/s)

N
um

be
r

-2 -1 0 1 2
0

100

200

300

400

500

600

700

Velocity (m/s)

0

50

100

150

200

250

300
Amplitude distribution
Normal Fit

Figure 6. Distribution of the amplitudes of selected parts (identified in black) of the seismic signal and a normal distribu-
tion (red curve) computed with the same mean and variance as the corresponding distributions. Note changes in y axis
scales on the distributions.

3.1. Automated Picking Principle
The underlying principle of our method is that noise has a normal amplitude distribution that is disturbed
by the arrival of a seismic signal. It is this disturbance, and the time of the disturbance, that we want to
identify.

The distribution at the transition between noise and signal has a leptokurtic behavior (Figure 6b), whereas
the distributions of the signal amplitude and the noise are nearly normal (Figures 6a and 6c). A characteristic
function constructed from the computation of kurtosis within a sliding window will increase in value during
the transition between noise and signal (from normal 𝛽2 = 3 to leptokurtic 𝛽2 > 3). Thus, we can define a
characteristic function CF𝛽2

that will increase when a transition occurs between noise and signal for a given
seismogram s(t). The characteristic function CF𝛽2

of a seismic signal s(t) for a sliding window of size ΔT is
defined as

CF𝛽2
(t) = 𝛽2(s(t − ΔT),… , s(t)). (8)

The function CF𝛽2
adopts the expected behavior, exhibiting a maximum near the signal onset detectable by

eye (Figures 7a and 7b). However, the maximum does not coincide exactly with the onset. Rather the onset
corresponds to the time when the beginning of an increase in the values of the function CF𝛽2

is observed.
We must therefore identify that time. The solution proposed by Baillard et al. [2014] is to modify the function
CF𝛽2

to a function that will provide a local minimum at this time. The function CF𝛽2
is modified in two steps.

First, the cumulative sum of the gradient of the function CF𝛽2
is computed as

cCF𝛽2
(k) =

k∑
i=1

𝛼i with

{
𝛼i = F𝛽2 ,i+1 − F𝛽2 ,i

if (CF𝛽2 ,i+1 − CF𝛽2 ,i
) ≥ 0

𝛼i = 0 otherwise
. (9)

Thus, the inflection point of the function cCF𝛽2
indicates the time of the onset (Figure 7c). For that point to

become a local minimum, a linear correction must be applied to the function cCF𝛽2
. The slope between the

minimum and maximum of the function cCF𝛽2
is computed, and each point is adjusted so that the maximum

and minimum of the new resulting function crCF𝛽2
become 0:

crCF𝛽2
(k) = cCF𝛽2

(k) − (k − 1) ×
cCF𝛽2

(n) − cCF𝛽2
(1)

n − 1
− cCF𝛽2

(1), (10)

where n is the number of points in the window. The time corresponding to the minimum of the function
crCF𝛽2

gives us precisely the arrival time of the seismic signal.
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Figure 7. (a) Seismic signal of a rockfall and corresponding charac-
teristic function CF𝛽2

. (b) Closeup of the onset of the seismic signal
and corresponding characteristic function CF𝛽2

. (c) Seismic signal and
corresponding cumulative characteristic function cCF𝛽2

. (d) Seismic
signal and corresponding “de-trended” cumulative characteristic
function crCF𝛽2

.

The arrival time picked by this character-
istic function depends on the frequency
content f of the seismic signal and the
length ΔT of the sliding window chosen.
A small window will be more sensi-
tive to small-scale variations, whereas
larger windows will depend mostly on
large-scale variations. To mitigate the
errors caused by this dependence, the
characteristic functions are computed
simultaneously for multiple frequency
bands and different sizes of sliding win-
dows. The mean 𝜇 of all these functions
is then computed and provides a single
characteristic function that integrates all
the information. Thus, the onset time ti is
given by

ti = min(𝜇(crCF𝛽2
(ΔT , f ))) (11)

3.2. Protocol
To apply our automated picking method,
we must define three inputs: (1) the sig-
nal (in whole or part), (2) the window
sizes, and (3) the frequency bands to be
used. After numerous tests, the following
protocol was chosen. A STA/LTA detector

is first applied to a seismic signal, previously identified as an event, in order to roughly estimate the arrival
time of the signal. The function crCF𝛽2

is then computed on a portion of the signal beginning 20 s before
the arrival time picked by the STA/LTA and continuing until the time corresponding to the maximum of the
signal envelope. If this time is less than 10 s, it is set to 10 s. This gives us a preliminary arrival time. Then,
the function crCF𝛽2

is computed on 20 s of signal, centered on the preliminary arrival time, i.e., 10 s before
and 10 s after. For these two successive steps, the same parameters of window size and frequency band are
chosen: window sizes of 2, 3, 5, and 10 s and four respective frequency bands of 2–7 Hz, 5–10 Hz, 7–12 Hz,
and 10–15 Hz. Lastly, the end of the signal must be identified. Once the event onset has been identified, we
determine the level of preevent noise by computing the mean of a smoothed envelope (moving average
over 200 samples equivalent to 2 s). This mean gives a threshold value Sf which, when reached by the signal
envelope after the identified arrival of the signal, gives the final time tf of the rockfall seismic signal. In prac-
tice tf is determined when the smoothed signal envelope drops below 1.1 × Sf . An example of the results
obtained by the application of this protocol to a rockfall-generated seismic signal is shown in Figure 8.

From the picked first arrival, we can estimate the signal-to-noise ratio (SNR). In our study, we define SNR as
the ratio of the median of the signal envelope over the 20 s immediately following the picking to the median
𝜇1∕2 of the envelope of the noise observed during the 10 s before the picking. Here we prefer to use the
median because, unlike the arithmetic mean, it is not unduly influenced by a few outliers.

SNR =
𝜇1∕2(uenv(ti,… , ti + 20))
𝜇1∕2(uenv(ti − 10,… , ti))

(12)

3.3. Comparison of Automated and Manual Picking: Error Estimate
To estimate the accuracy of our time-picking method, we compared automated and manually picked
arrivals of 759 rockfalls recorded by vertical-component data at stations BOR, DSR, SFR, TCR, FER, NSR, NTR,
and PHR (Figure 1). The distribution of the time differences 𝜖p between manual and automatic picks show
that 31% of the picks have a difference of less than 0.1 s, 64% a difference less than 0.5 s and 79% a differ-
ence less than 1 s (Figure 9). These results are fairly good considering the difficulty of manually picking the
onset of seismic signals that are as emergent as those generated by rockfalls.
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The quality of the picked onset depends on the SNR: the onset of a strong signal is easier to identify both
manually and by our method (Figure 10). The relationship between pick quality and SNR can be used to
obtain a rough estimate of the inherent uncertainties when applying our automated picking method to a
large data set. The relationship between SNR and picking error (in seconds) can be approximated by the
following regression function:

𝜖p = 0.06 + 1.2 exp−0.4905 SNR (13)

Figure 9. Histogram of the distribution of the difference 𝜖p (s)
between automated and manual picking of the onset of the
rockfall seismic signals.

Despite the difficulties caused by the emergent
nature of rockfall seismic signals, the method
we propose proves to be efficient and accurate
for picking onsets of rockfall signals. This accu-
racy allows us to establish methods for locating
the rockfalls based on the onset times of
their signals.

4. Locating Rockfalls on Piton de la
Fournaise Volcano

Event location is important information when
trying to assess hazards linked to rockfalls.
In addition, the spatiotemporal activity of
rockfalls within Dolomieu crater may carry
information on the deformation of the summit
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Figure 10. Median value of the difference of 𝜖p (s) between
automated and manual picking of the onset of the rockfall seis-
mic signals, depending on the signal-to-noise ratio (SNR), and
curve (red) of the regression function that best fits the data.

of Piton de la Fournaise volcano. However, the
characteristics of seismic signals generated by
rockfalls, i.e., slow emergence, generally low
signal-to-noise ratio, and lack of a single highly
differentiable maximum amplitude and clearly
recognizable phases, make methods usually
used in seismology difficult to apply. Another
difficulty is that rockfalls generate relatively
weak seismic signals that are recorded by only
a small number of stations. We must therefore
overcome these difficulties to establish loca-
tion methods that are accurate, robust, not very
demanding in terms of signal quality (low SNR
and few phases) and quantity, and inexpensive
in terms of computation time, because of the
large amount of data to be processed.

Few methods aimed specifically at locating
rockfalls have been developed. Among those
that exist, it is possible to distinguish two

approaches: one based on signal arrival time and an other on the energy or amplitude of the signal. Among
the studies using the first approach, Helmstetter and Garambois [2010] proposed a method based on cross
correlation of signals recorded at different stations to measure the difference between the arrivals and then
a grid search for the point that maximizes the cross-correlation traces. This method is suitable when there
is a dense network of seismometers arranged as antennas at distances very close to the initiation zones of
rockfalls (less than 100 m), which is not the case at Piton de la Fournaise. Another method, using the second
approach and proposed by Battaglia and Aki [2003], is based on a model of attenuation of the amplitude
of the seismic signal generated by rockfalls. A grid search is conducted to seek the minimum of the differ-
ence between modeled and observed amplitudes, thus providing an estimate of the location of the rockfall.
This method requires high accuracy for the observed amplitudes, which must be corrected for site effects
at each station. However at Piton de la Fournaise, there were significant changes in the seismic network
over the period of interest. In particular, two stations (SFR and DSR) were moved away from the Dolomieu
crater edges for safety reasons. The uncertainty regarding site factors and the parameters that control the
exact computation of amplitudes made the tests we conducted using this method inconclusive. As a result,
we decided to use the automated picking of arrival times because only a few parameters influence the
observable data and because an automated picking method allows us to quantify the picking and hence
the location errors.

Our approach to locating rockfalls involves two main assumptions. (1) The shallow part of the volcano,
constituted by many eruptive deposits, is very heterogeneous but insufficiently characterized to have a rea-
sonable 3D (or 2D) velocity model. Therefore, we assumed a constant average velocity and tested many dif-
ferent values for this velocity. (2) The seismic signals generated by rockfalls at Piton de la Fournaise volcano
are dominated by Rayleigh waves, as observed in other contexts by Deparis et al. [2007] and Dammeier et al.
[2011]. Therefore, we need to predict travel times of high-frequency waves propagating along the surface.
In the case of Piton de la Fournaise volcano, the prediction method must account for highly varied topog-
raphy. The location methods that we describe in this section are based on a grid search, implying that
observed and predicted travel times between all grid locations and all stations must be systematically com-
pared for many thousands of events. In this case, the best strategy is not to compute these travel times on
the fly but to use precomputed tables. These tables must be computed on a 2-D grid (X, Y) and the com-
putation must account for the difference in elevation (and possibly in local seismic velocities) between the
grid points. For this, a strategy involving three successive steps has been designed. (1) Compute a map for
each station which gives the topographical distance between it and all other points of the grid of the digi-
tal elevation model used. (2) Transform the distance maps into travel time maps by dividing by a constant
velocity. (3) Search for the best location by minimizing the discrepancy between arrival times picked by the
automated method and modeled travel times extracted from the travel time maps. The method used to
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Figure 11. Map of the RMS values computed with the RMS locating
method for a rockfall that occurred on 8 August 2008 with an optimal
velocity model of 720 m/s. The minimum RMS value is indicated by a black
diamond. The contour of the Dolomieu crater is indicated by the black
dotted line.

construct the distance maps is dis-
cussed in Appendix A. The methods
used to determine the best loca-
tion from the travel time maps are
detailed in the following sections.

4.1. Location Methods
The two methods that we propose
use the arrival times tn

obs, picked
with the kurstosis-based algorithm
described above. The first method,
that we have called “RMS,” like
the amplitude-based method by
Battaglia and Aki [2003], computes
the root mean square (RMS) dif-
ference between theoretical and
observed arrival times for each point
of a grid. The second method, that we
have called “hyperbola,” is related to
the “maximum intersection method”
by Font et al. [2004] and is also known
as the “station-pair double-difference
method” [Zhang et al., 2010; Haney,

2010]. Its simplicity greatly reduces the computation time compared to the RMS method while maintaining
satisfactory accuracy and error handling characteristics.

The first approach we propose to determine the best location is to test each point (i, j) of a grid as a potential
source. We consider distance maps that give the distance rn

ij along the topography between the point (i, j)
and the station n. The speed of propagation of the wavefront is also a search criterion. For each point, k
velocity models Vk are tested, where Vk = V0 + k ∗ dV . V0 is the lowest speed tested and dV is the constant
interval between two successive velocities tested. Assuming a homogeneous, isotropic medium in which
seismic waves propagate at a constant speed Vk , following the topography, the theoretical time it would
take for the wave at a point (i, j) to reach station n is simply

tn
comp =

rn
ij

Vk
, (14)

where rn
ij is the topographical distance between the source point (i, j) and the station n. The discrepancy

between the computed time tn
comp and the picked time tn

obs is given by equation

RMS(xi, yj, Vk) =

√√√√ 1
N

N∑
n=1

(tn
obs − tn

comp)2 (15)

The coordinates (xmin, ymin) at which equation (15) is minimized for a speed Vmin indicate the location of
the source. The RMSmin value quantifies the error in the location of the event. However, despite the use of
precomputed time maps, this method is time consuming. The optimal location (Figure 11), on a 1300× 1300
point grid with a 10 m resolution was obtained for a velocity of 720 m/s after testing six different velocity
models Vk (240, 360, 540, 660, 720, and 800 m/s). It gives a minimum RMS value of 0.49 s. The RMS value is
influenced by improper arrival time picks at one or more stations. We therefore propose a second method
based on the differences of travel times and the stacking of the resulting hyperbolas. This method will not
cover our entire grid but allows us to eliminate outlying picks.

Let tn
obs be the time picked at station n and T n

ij the whole time map for the same station, giving tn
comp at any

point (i, j) of the grid, for a speed Vk . The time map T n
ij can be computed as

T n
ij =

rn
ij

Vk
, (16)
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a

b

c

Figure 12. (a) Time map (in seconds) TBOR
ij computed for BOR sta-

tion. (b) Delay map (in seconds) ΔTBOR,DSR
ij computed for the pair of

stations BOR-DSR. (c) Hyperbola HBOR,DSR
ij showing possible source

locations for the pair of stations BOR-DSR.

These time maps are computed for the N
stations of the seismic network we want to
use (Figure 12a). Let Δtn,m = tn

obs − tm
comp

be the difference of the observed tn
obs and

computed tcompm arrival times at stations
n and m, respectively. We can define a
delay map ΔT n,m

ij (Figure 12b), computed
between each pair of stations n,m for each
grid point (i, j) from time maps defined by
equation (16):

ΔT n,m
ij = T n

ij − T m
ij (17)

By finding the value Δtn,m on the ΔT n,m
ij

map for the pair of stations n,m, a hyper-
bola will be defined (Figure 12c). In
practice, a new map Hn,m

ij is built with a
value of 1 when the value of ΔT n,m

ij is equal
to Δtn,m ± 𝛿t and 0 elsewhere:

Hn,m
ij =

{
1 if Δtn,m

obs − 𝛿t < ΔT n,m
ij < Δtn,m

obs + 𝛿t

0 otherwise
(18)

where 𝛿t is a time interval dependent
on the accuracy of the picking of the
arrival time. Each hyperbola will indicate
a potential location area of the source.
By computing Hn,m

ij maps for each pair
of stations n,m and then stacking all the
maps obtained, the hyperbolas will focus
at a point that minimizes the difference
Δtn,m

obs − ΔT n,m
i,j for each pair of stations

n,m. Finally, we can estimate the error
in the same way as for the RMS method,
but this time by computing the theoreti-
cal time from the point (imax, jmax) where
Np hyperbolas focus. Subscript p indicates
from which pair of stations the focusing
hyperbolas have been computed:

RMS(xi, yj, Vk) =

√√√√√ 1
Np

Np∑
p=1

(tp
obs − tp

imax ,jmax
)2,

(19)
where Vk is the velocity of the chosen
model. The whole process is repeated using
the velocities within the interval defined
above. The minimum value of the RMS
function is sought among all the velocity

models that give the maximum number of focusing hyperbolas (Figure 13). This “hyperbola” approach has
two major advantages over the RMS method: (1) the computation of maps is very fast because we only make
simple operations on existing grids that are reusable for different events and (2) it allows us to exclude aber-
rant observed arrival times by not using hyperbolas corresponding to the stations where the picking is bad.
In extreme cases, when the travel times are inconsistent, no point meets the requirements for the Hn,m

ij map
to take on a value of 1. Finally, the choice of the parameter 𝛿t in equation (18) accounts for uncertainties
introduced by the picking method. Equation (13) gives an estimate of the picking error 𝜖t as a function
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Figure 13. Stacking of all the computed hyperbolas using the
“hyperbola” method for locating a rockfall that occurred on
8 August 2008, using an optimal velocity model of 720 m/s.
The color bar indicates the number of overlapping hyperbolas.
The contour of the Dolomieu crater is indicated by the white
dotted line.

of signal-to-noise ratio. Let 𝜖tn and 𝜖tm be the
picking errors in the signals recorded for two
stations n,m. The parameter 𝛿tn,m for this pair
of stations is defined as the arithmetic mean of
these errors 𝛿tn,m = (𝜖tn + 𝜖tm )∕2.

The focusing of the hyperbolas giving the loca-
tion of a rockfall that occurred on 8 August 2008
is shown in Figure 13. This results was obtained
with six speeds Vk tested (240, 360, 540, 660, 720,
and 800 m/s) and a 1300 × 1300 point grid with
a resolution of 10 m. The optimum value of the
speed is 720 m/s and the RMS value is 0.087 s.
For this specific event, the “hyperbola” method
reduced the error compared to the RMS method
while offering a more coherent location, i.e., at
the edge of the Dolomieu crater. With our com-
puting capability, using the “hyperbola” method
reduces the computing time by a factor of 300
compared to the RMS method.

4.2. Location Errors
When locating events, it is important to assess the spatial accuracy of the methods used. Therefore, a rela-
tionship has to be found between errors of the methods in the form of RMS time residuals and the true
spatial error in meters. We arbitrarily define a synthetic point source in the center of the Dolomieu crater.
All other grid points are tested as potential sources. An RMS map comparing the time computed using
the model for the exact position of the source and the time computed for all other grid points is created.

RMS (s)

RMS (s)

a

b

Figure 14. (a) Mean, maximum, and minimum rockfall spatial errors in
locating rockfalls as a function of the RMS value for a velocity model of
Vk = 600 m/s. (b) Rockfall location errors as a function of the RMS value
for six different velocity models Vk .

The RMS map is then compared to
the distance map between each point
of the grid and the synthetic source.
Maximum, mean, and minimum dis-
tances from the source as a function of
the RMS values are shown in Figure 14.
The relationship between the mean spa-
tial error and the RMS value is almost
linear. The least-squares regression line
fitting the mean spatial errors gives us
the following equation linking the spa-
tial error 𝜖d and the RMS time residual, for
any speed Vk :

𝜖d = 1.56Vk × RMS (20)

Finally, we must integrate into the
location error the signal onset picking
uncertainty, given by equation (13). An
estimate of the total spatial error Ed on
the position of each event is therefore
given by

Ed = 𝜖d + Vk𝜇(𝜖p) (21)

4.3. Validation on Known Events
We tested our methods using two known
rockfalls that occurred on 23 and 24
September 2011. They were recorded by

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1096



Journal of Geophysical Research: Earth Surface 10.1002/2013JF002970

V
el

oc
ity

 (
m

m
/s

)
Time (s)

Figure 15. (a) Seismic signals generated by the 23 September 2011 rockfall recorded by stations BOR, DSO, and SNE.
(b) The best location provided by the “hyperbola” method, obtained with a velocity model of 360 m/s. (c) The best loca-
tion provided by the RMS method, obtained with a velocity model of 360 m/s. (d) Locations of rockfall determined from
each method. The magenta diamond indicates the RMS best location and the blue diamond indicates the “hyperbola”
best location. In this case, the two locations overlap. The orange diamond indicates the actual location of the rockfall
estimated from videos. The red circle has a radius of 70 m, equal to the spatial location error in given by equation (21).

seismically triggered cameras. Other rockfalls were observed by the cameras, but only these two generated
seismic signals were detected by at least three stations. We used a 1300 × 1300 point grid that covered the
entire Piton de la Fournaise area with a spatial resolution of 10 m. Nine different velocities models Vk were
tested (k = 1, 2,… , 9), with V0 = 360 and dV = 120 m/s, giving the following velocities: 360, 480, 600, 720,
840, 960, 1080, 1200, and 1320 m/s. This range of velocities is realistic for surface waves propagating in the
shallow layers of Piton de la Fournaise volcano.

The locations obtained for the 23 September 2011 rockfall are identical regardless of the method used and
are very close to the observed source area (Figure 15). The RMS value obtained by both methods is 0.092 s,
which is very low. The computed spatial error confirms the quality of the location as the circles representing
the spatial error cover the actual location. Note however that this excellent location was obtained using
a very low seismic velocity model of 360 m/s. The locations obtained for the 24 September 2011 rockfall
differ slightly depending on the method used (Figure 16). The position given by the RMS method is slightly
closer to the actual location. However, taking into account the spatial error for both methods gives circles
that include the actual position. The optimal location for this event is obtained for a seismic velocity model
of 720 m/s for both methods. The seismic velocity values obtained for the two rockfalls are different even
though these events are very close spatially. This observation is discussed further in the next section.

Despite the strong assumptions and simple propagation model used, the hyperbola approach seems to
be efficient and accurate. The computation of spatial errors in equation (21) gives accurate estimates of
locations. In addition, good results are obtained even when only three stations are used. The “hyperbola”
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Figure 16. (a) Seismic signals generated by the 23 September 2011 rockfall recorded by stations BOR, DSO, and SNE. (b)
The best location provided by the “hyperbola” method, obtained with a velocity model of 720 m/s. (c) The best location
provided by the RMS method obtained with a velocity model of 720 m/s. (d) Locations of rockfalls determined from each
method. The magenta diamond indicates the RMS best location and the blue diamond indicates the “hyperbola” best
location. The orange diamond indicates the actual location of the rockfall estimated from videos. The red circle has a
radius of 130 m, equal to the spatial location error in given by equation (21).

method fulfills all the necessary criteria to enable us to precisely study the spatial evolution of the rockfall
activity occurring in Dolomieu crater.

5. Application to the Rockfalls Occurring Within Dolomieu Crater From May 2007
to May 2011

The methods we have developed make it possible to handle large amounts of data to determine the loca-
tions of hundreds of rockfalls. We focus our study on the period ranging from the collapse of the Dolomieu
crater in May 2007 to the dismantling of the stations installed for the UnderVolc project in April 2011
[Brenguier et al., 2012]. The dates and times of all events that occurred during this period were extracted
from the catalog of seismicity provided by the OVPF. According to the OVPF catalog, 12,422 rockfalls were
identified during this period. Of these, 4270 could not be picked by our automated method at more than
two stations: either not enough stations recorded these events or the automated picking method was not
able to find consistent arrival times for them. The excluded rockfalls are likely to be the smaller ones that did
not generate a seismic signal strong enough to be recorded on more than two stations or to emerge from
the background seismic noise.

5.1. Discussion on Locations
Rockfalls were located using the “hyperbola” method. To determine the best seismic velocity model, six
were initially tested. Values for the constant seismic velocity of these models were chosen from a range
of potentially realistic values for surface waves propagating in the shallow layers of Piton de la Fournaise
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Table 2. Values of the Parametersa Used to Test the Best Velocity
Model V for Locating Rockfalls With the “Hyperbola” Method

V(m∕s) Number 𝜇(RMS) 𝜇(𝜇1∕2(Δt)) 𝜇(𝜎(Δt))

400 4356 1.56 −0.312 4.43
600 4144 1.43 −0.038 3.88
800 3865 1.36 0.014 3.63
1000 3655 1.42 0.016 3.72
1200 3446 1.39 0.011 3.70
1400 3213 1.42 0.008 3.70

aNumber of events located, average RMS value 𝜇(RMS) provided
by the “hyperbola” method, and mean over all the stations of the
median 𝜇1∕2(Δt) of the standard deviation 𝜎(Δt) of the difference
between the computed arrival times tn

comp and the observed arrival
times tn

obs
pointed for station n. Optimum values for each parameter

are indicated in bold.

volcano: 400, 600, 800, 1000, 1200, and
1400 m/s. For each of these models,
the number of events located, the aver-
age RMS value 𝜇(RMS) provided by the
method, and the average, over all the
stations, of the median 𝜇1∕2(Δt) of
the standard deviation 𝜎(Δt) of the dif-
ference Δt between the computed time
tn

comp and observed time tn
obs for a station

n were computed. Table 2 gives the val-
ues of these parameters for each velocity
model tested.

No optimal velocity model emerges. The
maximum number of events was located
using the slowest model. However, it is

for this model that the highest values of the average RMS and of the mean of the median difference Δt
are observed. This indicates that even though this model allows us to locate more events, it is also the one
that introduces the largest errors. The best compromise between location quantity and quality is obtained
for the 800 m/s velocity model. We therefore located these events a second time using a refined velocity
range that varied up to 20% from the optimal velocity (800 m/s). We chose a value of 20% variation because
Brenguier et al. [2007] showed that Rayleigh-wave velocities varied up to 15% at depth. We increase this vari-
ation by 5% because we expect surface layers to be even more heterogeneous. The locating algorithm is
applied as described in section 3.2, testing nine different speeds, with values of 640, 680, 720, 760, 800, 840,
880, 920, and 960 m/s. Of the 8152 events which signal onset was successfully picked on three stations or
more, 3655 rockfalls could not be located because the hyperbolas were not focused. Thus, 56% of rockfalls
recorded on more than two stations were located.

The majority of the events (about 62%) were located with an RMS value less than 1 s (Figure 17a). In addi-
tion, 59% of the events have an RMS value less than 0.5 s and 45% an RMS value less than 0.1 s, which
corresponds to 2014 events located with an accuracy of about 100 m. As shown in Figure 17b, the major-
ity of the events were located using only three or four stations. The average ratio between the number
of stations on which a picking was obtained and the number of stations used to obtain the optimal loca-
tion is 0.7. Figure 17c shows the distribution of the tested velocity values. This distribution shows that the
extreme values (640 and 960 m/s) of the velocities tested provided the best solutions. The fact that we use
a topography-adjusted, homogeneous velocity model, whereas the near-surface of Piton de la Fournaise
volcano is highly weathered and fractured, and hence seismic velocity highly heterogeneous within this
medium, may explain this observation.

To illustrate this point, we use frequency-time analysis [Levshin et al., 1989] to measure group velocities of
surface waves extracted from noise cross correlations between pairs of stations. The velocities are highly
variable, with a minimum value of 400 m/s for the SNE-UV05 path (Figure 18a) and a maximum of 1000
m/s for the SNE-UV15 path (Figure 18b), for a frequency of 3Hz. These values are similar to optimal veloc-
ity models presented in Table 2, used in rockfall locating. Furthermore, the Rayleigh waves propagating in
the shallow parts (at a maximum depth of about 100 m) of the volcanic edifice are highly dispersive and
their velocities vary greatly, depending on the frequency of the signal. The higher the frequency, the slower
the velocities. When looking at the frequency content of the two directly observed rockfalls (Figure 19), we
observe that the frequency spectrum of the second rockfall exhibits more energy in the lower frequencies,
with a peak at 1 Hz, whereas the first rockfall exhibits a peak around 5 Hz. This simple comparison shows
how the dominant frequency of the rockfall seismic source combined with the dispersive nature of the
Rayleigh waves affects the propagation velocity of the rockfall-generated seismic waves. This analysis high-
lights the strong need for a more complex velocity model. Moreover, taking into account the frequency
content of the seismic signal generated by rockfalls might also increase substantially the accuracy of the
locating methods.
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Figure 17. (a) Distribution of the RMS values provided by the “hyper-
bola” locating method applied to our data set of 12,422 rockfalls.
(b) Distribution of the number of stations used to locate rockfalls for
the period studied. (c) Distribution of the velocity models giving the
optimal locations.

5.2. Volume Estimation
The computation of rockfall volumes is
based on the work presented in Hibert et
al. [2011], who found that for the rock-
falls occurring within Dolomieu crater,
the seismic and the potential energies
of a rockfall were linked. The volume
V of an individual rockfall can be
estimated using

V =
3Es

Rs∕p.𝜌cgL(tan 𝛿 cos 𝜃 − sin 𝜃)
(22)

The density 𝜌c = co𝜌i , where 𝜌i is the
density of intact rock (2000 kg m−3)
and co is the volume fraction of the
solid material (0.6). A value of L = 500 m
was chosen for the approximate slope
length. A value of the mean angle of
the slope 𝜃 = 35◦ was chosen from the
friction coefficient estimated through
simulations presented by Hibert et al.
[2011], calibrated to give realistic mod-
eled rockfalls duration. 𝛿 is the mean
angle between the deposit and the
slope. As the deposit is almost par-
allel to the slope, 𝛿 is quasi-null, i.e.,
𝛿 = 0. Rs∕p is the average ratio between
the seismic and potential energies. A
value of Rs∕p = 5× 10−4 was used for this
parameter. A first approximation of the
seismic energy Es, assuming an isotropic
homogeneous propagation medium, a
point-force source and seismic signals
dominated by surface waves, is given by

Es =

t2

∫
t1

2𝜋r𝜌hc uenv(t)2e𝛼rdt (23)

where

uenv(t) =
√

u(t)2 + Ht(u(t))2, (24)

Figure 18. Period-velocity diagrams, showing the energy of the seismic noise normalized by period band, used to iden-
tify the group velocity dispersion of Rayleigh waves, computed between (a) stations SNE and UV05 and (b) stations SNE
and UV15, located on the edge of Dolomieu crater. The dashed line represents the dispersion curve of the dominant
energy level of the Rayleigh waves. (c) Locations of the stations used.

HIBERT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1100



Journal of Geophysical Research: Earth Surface 10.1002/2013JF002970

Figure 19. Normalized Fast Fourier Transform (FFT) of the seismic signals recorded at DSO station and generated by
(a) the 23 September 2011 and (b) 24 September 2011, rockfalls.

where t1 and t2 are, respectively, the picked onset and final times of the seismic signal, r is the distance
between the event and the recording station, h the thickness of the layer through which surface waves
propagate, 𝜌 the density of the ground, and c the group velocity of the seismic waves [Crampin, 1965;
Vilajosana et al., 2008]. uenv(t) is the amplitude envelope of the seismic signal (here the ground velocity)
obtained using the Hilbert transform (Ht) and 𝛼 is a damping factor that accounts for inelastic attenuation
of the waves [Aki and Richards, 1980]. This damping factor is frequency dependent and is computed as

𝛼 = f𝜋
Qc

(25)

We impose a frequency f = 5 Hz, because this is the center of the frequency band where most of the energy
is observed for granular flows. On the basis of the typical group velocity for surface waves in volcanic areas
and the optimal velocity given by our locating method, we assume a group velocity of c = 800 m/s and a
quality factor accounting for the attenuation of seismic wave Q = 50, which is within the range of values
obtained by Koyanagi et al. [1992] for Kilauea volcano. We assume a rock density of 𝜌 = 2000 kg m−3, a
common value for volcanic rock. For each event successfully picked by the automated method, the average
seismic energy was computed on the stations closest to the crater for the period studied: BOR, DSO(R), SNE,
UV05, and UV11. These stations were chosen because all the events were recorded on at least one of them,
which ensures consistency in the computation of the volume for the entire period. The cumulative volume
of all rockfalls that occurred during the period studied was estimated at 3.23 Mm3, with individual volumes
ranging from 1 m3 to 60 × 103 m3.

5.3. Spatial Evolution of Rockfall Activity
We can now trace the location and spatial distribution of rockfalls for a period ranging from 1 May 2007, just
after the Dolomieu crater floor collapse, to 1 April 2011. Most of the rockfalls are located on the Dolomieu
crater slopes (Figure 20a). The spatial distribution maps of the number and volumes of rockfalls (Figures 20b
and 20c) were constructed by assigning the corresponding values to circles centered on their locations.
The radii of these circles have a constant value equal to the median of the spatial rockfall locating error.
The median of the RMS values for these events is 0.14 s, and thus, the corresponding spatial error given
by equation (20) is approximately 180 m (equation (20)). This choice was made to prevent rockfalls with
high spatial errors and large volumes from dominating this representation and to provide better visibility
of all the events. The final maps are obtained by stacking all the circles corresponding to the rockfalls that
occurred during the selected period.

Throughout the four years studied, the rockfall activity appears to be most intense in the western part of
Dolomieu crater, at its junction with Bory crater. There, more than 700 rockfalls had a cumulative mobilized
volume of approximately 3.5 × 105 m3 (Figures 20b and 20c). The Bory-Dolomieu junction was strongly
affected by the crater floor collapse [Michon et al., 2007; Staudacher et al., 2009]. In the months following this
catastrophic event, destruction of large parts of the cliff overlooking Dolomieu crater was witnessed [Hibert
et al., 2011]. This made the area extremely unstable and thus prone to numerous and large rockfalls. Two less
active areas are located in the south eastern and northern parts of Dolomieu crater, close to the remains of
Soufrière cavity that was destroyed by the Dolomieu crater collapse.
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Figure 20. (a) Rockfall locations given by the “hyperbola” method. Dis-
tribution of (b) the number and (c) the volume of rockfalls that occurred
between 1 May 2007 and 1 April 2011.

Maps of the quantity and volume of
rockfalls allow us to trace the spa-
tial distribution of rockfall activity
at Piton de la Fournaise volcano.
This information can be integrated
into a broader hazard assessment
strategy, which also includes direct
observations of the rockfall deposits
on the crater slopes and fissures
close to its edges, to establish which
parts of Dolomieu crater are most
dangerous. Piton de la Fournaise,
and especially Dolomieu crater, are
important tourist attractions on
Réunion Island, with thousands of
hikers reaching the summit every
year. Measures have already been
taken to forbid access to certain parts
of the Piton de la Fournaise sum-
mit. Our study confirmed that the
Dolomieu-Bory junction area is highly
hazardous and must be avoided by
the public.

6. Conclusion

Continuous seismic monitoring
allows us to trace the history of rock-
fall activity over many years. However,
the large quantity of data implies
long processing times to get useful
information from raw catalogs. Our
study presents automated methods
to identify rockfalls from their seis-
mic signals, pick their onset times,
and then estimate their locations
and volumes.

Signal processing methods have
yielded objective criteria for iden-
tifying rockfalls using their seismic
signals. We used these criteria to
build an automated method to dis-
criminate between volcano-tectonic
earthquakes and rockfalls, with a
success rate of 92%. The automated
picking method proves to be effective
even for the highly emergent signals

generated by rockfalls. It uses kurtosis to determine the precise time of transition from noise to signal. The
approach is fast, effective, and accurate. The accuracy offered by this tool allowed us to build automated
locating methods. Despite constraints imposed by the small number of stations that recorded seismic sig-
nals, the absence of a well-defined velocity model, the small signal-to-noise ratio, and the emergent onsets
of the rockfall seismic signals, our methods provide locations with satisfactory accuracy (on the order of a
hundred meters). They take into account errors due to both the locating methods themselves and the auto-
mated picking. Finally, we tested our methods on events with known locations. The results are good, with
spatial errors below 100 m, even for events detected by only three stations.
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Figure A1. (a) Map of slowness sij for a grid with a spatial resolu-
tion of 10 m, incorporating topography. (b) Map of the distances
between station DSR and each point of the grid computed by the
fast marching method. (c) Map of the distances between station
DSR and the points of the grid computed by the rough method.

We used our methods to study a database
of 12,422 rockfalls that occurred at Piton
de la Fournaise volcano after the collapse
of Dolomieu crater in May 2007. The spa-
tial distribution maps of the number and
volumes of rockfalls computed from this
data set show that the most hazardous
area is located in the south western part
of Dolomieu crater, including the junction
between Bory and Dolomieu craters. This
information is important in the context of
providing a complete hazard assessment for
the Piton de la Fournaise summit.

Several prospects arise from our study. The
tests we conducted on the velocity models
for optimally locating events indicate that
a 3-D velocity model of the shallow part of
Piton de la Fournaise volcano would greatly
improve accuracy. The data set constructed
using our methods, which includes the
locations and volumes of thousands of rock-
falls, has yet to be fully explored. Analysis
of the spatiotemporal evolution of rockfall
activity and its link with external forcing
such as rainfall and eruptive activity might
provide valuable information. Finally, the
methods designed and applied for rockfalls
occurring at Piton de la Fournaise volcano
are exportable and might be used to trace
the history of rockfall activity in other con-
texts. This data might then be integrated in
an overall strategy for mitigating hazards
caused by gravitational instabilities.

Appendix A: Constructing
Topographical Distance Maps
With a Fast Marching Method

Usually, a digital elevation model (DEM)
gives the elevation z of a point on a grid
defined by coordinates (x, y). To get the
topographical distance between two points

of this grid, the straight line between them rarely intersects the nodes of the grid, i.e., the point (x, y), for
which z is known. The simplest solution to this problem is to take the value of the closest points of the inter-
section of the straight line and the grid lines. However, this approach gives inaccurate profiles. This problem
becomes even more acute when plotting a map of the distance between one point on the grid and all
the others. To solve this problem and to obtain accurate profiles from a DEM, we developed an approach
based on the Fast Marching Method. The Fast Marching Method (FMM), introduced by Sethian [1996], is a
numerical technique that tracks a moving interface such as wavefronts on a grid. Sethian and Popovici [1999]
introduced the FMM in seismology to quickly compute the travel time of seismic waves propagating in three
dimensions. An immediate application of this method is the computation of theoretical travel times for opti-
mization of seismic tomography [Grandjean and Sage, 2004]. The premise is that the computation of an
arrival time is equivalent to following an interface propagating with a velocity normal to itself. Let us define
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a closed curve in two dimensions that propagates in (X, Y) space at a velocity V normal to the curve. t(x, y) is
the time at which the curve will cross the point (x, y). Then the surface t(x, y) will satisfy the equation

n|∇t(x, y)| = s(x, y) (A1)

where t represents travel times at points (x, y) and s the slowness function (1∕V).

We can use this method to compute the distance between a point on a grid and all the others. For a simple
case of a regular grid without topography, this could be achieved by defining a velocity function equivalent
to the spacing of the grid. Thus, the time taken to go from a given point of the grid to neighboring points
would be exactly the distance traveled. For example, if we consider a grid with a spacing of 1 m, a travel time
map of a front moving at 1 m/s will give the exact distance the front has traveled from the source (1 s = 1 m).
However, if we wish to account for the topography M(i, j) into account in this model, we must define a matrix
that will incorporate the delays depending on the gradient of the slope between each point. In this way, the
front will travel, in the same time, a longer distance for a higher difference of elevations between two points.
In other words, the effect of topography can be accounted for by introducing an effective local velocity. For
example, for a simple 1-D case of a front that propagates in a time tij , with a speed V = 1 m/s between points
i and j separated by a topographical distance of Rij, we obtain

Rij =
√

ΔZ2
ij + ΔX2

ij , (A2)

where Xij = xj −xi and Zij = zj − zi . The wavefront should travel the distance Rij in the same time it would take
to cover the distance Xij . We adjust the velocity on our 2-D grid to take into account the topography. Thus,
for a time tij which remains constant, an iteration of the FMM yields

tij =
ΔXij

V
=

Rij

VR(i, j)
. (A3)

Therefore:

VR(i, j) =
VRij

ΔXij
=

V
√

ΔZ2
ij + ΔX2

ij

ΔXij
. (A4)

If we reconsider the slowness sij for a two-dimensional case

sij =

√
ΔX2

ij + ΔY2
ij

V
√

ΔZ2
ij + ΔX2

ij + ΔY2
ij

. (A5)

The effective slowness model resulting from equation (A5) is computed in our case for a grid with a spa-
tial resolution of 10 m (Figure A1a). Hence, the effective slowness values are close to 0.1 s/m (10 m/s) when
the topography is subhorizontal and becomes much lower for places where the topography is subvertical.
The distance model obtained for station DSR exhibits realistic values and the visible structures are consis-
tent with the digital elevation model of the Piton de la Fournaise area used (Figure A1b). For comparison
purposes, we computed the equivalent model using the “closest point” approach discussed in the introduc-
tion of this section (Figure A1c). This simpler model has more artifacts (diagonal corners and smoothing)
and takes less into account the changes in the topography (this is especially visible on the edges of the
map shown in Figure A1c). This shows that the FMM takes topographical changes into account robustly and
effectively while reducing the presence of artifacts. The Fast Marching Method is used to compute maps
of the distance along the topography rn for the n seismic stations used by our locating methods which are
presented in section 4.
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