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A mechanical and numerical model of dry granular flows is proposed that quantitatively reproduce lab-
oratory experiments of granular column collapse over inclined planes. The rheological parameters are
directly derived from the experiments. The so-called p(I) rheology is reformulated in the framework of
Drucker-Prager plasticity with the yield stress and viscosity #(||D|,p) depending on both the pressure
p and the norm of the strain rate tensor ||D||.

The granular domain, velocities, stress deviator and pressure fields are calculated using a finite element
method based on an iterative decomposition-coordination formulation coupled with the augmented
Lagrangian method.

2-D simulations using this model well reproduce the dynamics and deposits of collapsing granular col-
umns. The flow is essentially located in a surface layer behind the front, whereas it is distributed over the
whole depth near the front where basal sliding occurs. The computed runout distances and slopes of the
deposits agree very well with the values found in the experiments.

Using an easily calculated order of magnitude approximation of the mean viscosity during the flow
(n =1 Pas here), we show that a Drucker-Prager rheology with a constant viscosity gives results very
similar to the u(I) rheology and agrees with experimental height profiles, while significantly reducing
the computational cost. Within the range of viscosities 0.1 < 7 < 1 Pa s, the dynamics and deposits are
very similar. The observed slumping behavior therefore appears to be mainly due to the flow/no-flow cri-
terion and to the associated strain-independent part of the “flowing constitutive relation” (i.e. related to
plastic effects). However, the results are very different when an unrealistically large value of viscosity
(10 Pass) is used.
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1. Introduction

The mechanical behavior of dense flows of dry granular mate-
rial is of paramount importance in very different domains such
as geophysics, physics and industry. An increasing number of theo-
retical and experimental studies are devoted to this subject, in par-
ticular to infer the mechanical properties of geophysical granular
flows from field observations. Geophysical flows (rock-falls, rock
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or debris avalanches, etc.) have been simulated mostly using thin
layer depth-averaged models to reduce the high computational
costs related to the necessary description of the real topography.
Besides the prohibitive cost of the computations that would be
required to use the equations of mass and momentum con-
servation without depth-averaging and/or a thin layer approx-
imation, the lack of a well established constitutive relation for
these complex natural materials has prevented the development
such models for application in real situations. Furthermore, the
rheological parameters associated with complex natural materials
are generally very hard to measure and the properties of the mate-
rial may change significantly during the flow, in particular due to
fragmentation, segregation or entrainment processes. In this con-
text, a key point for real applications is to use constitutive relations
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with the minimum number of parameters required to describe the
mean behavior of the flow. Despite all these difficulties, developing
3D models of granular flows is crucial because certain key pro-
cesses such as the flow/no-flow transition present in particular in
erosion and deposition mechanisms are not adequately handled
in thin-layer depth-averaged models. Furthermore 3D structures
such as convection cells may play a role in the flow dynamics
[1], especially for natural landslides that are intrinsically transient
and significantly affected by topographical fluctuations. We refer
the reader to numerous reviews [2-5] for a general introduction
to granular flows.

Even though granular flows at the laboratory scale may not
involve the same physical processes as those acting at the natural
scale, they provide a very useful way to investigate and quantify
possible mechanisms and scaling laws as well as to test constitutive
relations. Moreover, the results of such a small-scale analysis are
often assumed to be valid at a large scale. In particular, the transient
flows obtained by the release of granular columns at the laboratory
scale have been largely used in recent years to investigate granular
flow dynamics and deposits. We will simulate here the collapse of
granular columns over horizontal and inclined channels as carried
out experimentally by Mangeney et al. [6]. These experiments were
along the same lines as other granular collapse experiments, mainly
performed on horizontal planes in channels (e.g. dam-break) or
over unconfined beds [7-14]. Some of them were extended to
granular collapse on rigid inclined beds [15,6,11,16] or erodible
granular beds [17,6,16]. Efforts to explain the scaling laws obtained
in these experiments have either concentrated on thin layer models
[18-21], Discrete Element Methods (DEM) [22,23,14,24| or more
recently on continuum viscoplastic models [17,25-27].

Many numerical studies have focused on reproducing the experi-
mental scaling laws for granular collapse over horizontal beds, but
few quantitative comparisons have been made between simulations
and experiments for the flow dynamics and deposits and none have
considered the viscoplastic rheology investigated here. Indeed,
although all such studies reproduced the scaling laws, they often
did not correctly reproduce the runout distance and duration of
the flow. While thin layer depth-averaged models based on a
Coulomb-type friction well reproduce quantitatively the final
deposits for aspect ratios lower than 1 using an empirical friction
coefficient slightly higher than the tangent of the friction angle of
the involved particles (¢ = 0.6), the spreading velocity during the
first moments of the collapse is significantly overestimated
[18,19,28]. On the other hand, the 2D DEM (based on contact
dynamics) proposed by Staron and Hinch [22] strongly over-
estimates the maximum extent of the deposit (by up to 40%) for
dam-break granular collapses even when a very high grain/grain
friction coefficient (x,, = 1) is used. Using a 3D DEM (based on soft
particle dynamics), Lacaze et al. [20] reproduced quantitatively a
dam-break granular collapse of small lateral width (1 or 2 particles)
using a grain/grain friction coefficient of y,, = 0.35 and an empirical
friction coefficient along the lateral wall, which surprisingly varies
significantly depending on the size of the granular particles
(u,, = 0.15 or 0.35). Similarly, a 3D DEM (soft particle dynamics)
for a wider dam-break granular collapse [24] reproduced quan-
titatively the dynamics and the deposits observed experimentally
with a grain/grain friction coefficient of u,, = 0.5, a particle-wall
friction coefficient of u,, = 0.5 and an empirical additional dissipa-
tion said to be related to the resistance of the grains to rolling along
the wall. The runout of an unconfined granular collapse was quan-
titatively reproduced by Lacaze and Kerswell [25] using a 3D DEM
(soft particle dynamics) with a grain/grain friction coefficient of
W, = 0.5. These results suggest that DEM simulations must be per-
formed in 3D to reproduce quantitatively the experimental collapse
of granular columns, even for dam-break configurations.

We propose here alternatively to use a continuum approach to
simulate dam-break granular collapse based on viscoplastic con-
stitutive relations in line with recent studies and to quantitatively
compare results with those obtained from laboratory experiments.
Crosta et al. [17] first simulated horizontal granular collapse using
an elastoplastic constitutive relation with a Mohr-Coulomb yield
rule involving a constant friction coefficient and a nonassociated
flow rule, while maintaining a slight cohesion to avoid numerical
problems. They found good agreement with the experimental scal-
ing laws for the deposit, with internal friction angles within a few
degrees of the characteristic repose and avalanche angles of the
material involved, even though the final maximum thickness of
the deposit was slightly underestimated. However, they did not
compare the experiments and the simulation in detail during the
flow (thickness profiles, front position and velocity, etc.). On the
other hand, Lacaze and Kerswell [25], using a 3D DEM, showed that
the so-called viscoplastic p(I) rheology seemed to hold during the
3D collapse of granular columns, where I is referred to as the iner-
tial number. Note that many studies have shown that the pu(I) flow
law makes it possible to describe a wide range of experimental
observations (e.g. GDR MiDi group [3], Silbert et al. [29], Jop
et al. [30,31]). More recently, Lagrée et al. [27] compared 2D con-
tinuum and DEM (contact dynamics) simulations of granular col-
lapse. In their continuum model, Lagrée et al. [27] prescribed no-
slip boundary conditions at the bottom, neglecting possible basal
sliding. They showed that for a given parameter set, the continuum
and discrete approaches gave very similar results. As already men-
tioned, the DEMs used by Lagrée et al. [27] and by Staron and
Hinch [22] strongly overestimated the runout extent of the deposit
observed experimentally. For the selected parameter set, the con-
tinuum approach predicted a shorter runout distance than the
DEM. In their study, Lagrée et al. [27] found similar scaling laws
for both approaches, but they were still much larger than those
obtained in the experiments (by more than 20%). The p(I) rheology
gave better results than a friction law with a constant friction coef-
ficient u even though, at a small aspect ratio (a = 1.42), their results
showed only very slight differences between the two laws, similar
to those obtained using p(I) with different rheological parameters
(see their Fig. 16). These differences are located near the front of
the flow, which traveled faster for u = cst.

For practical applications to natural flows, the possible rele-
vance of a simplified rheology (constant friction and/or constant
viscosity) for granular flows over inclined slopes is a critical issue
because the three parameters involved in the p(I) rheology are
very difficult to calibrate in nature and because the small viscosi-
ties involved in this rheology may induce prohibitive com-
putational times.

We will focus here on a detailed quantitative comparison of
Drucker Prager plasticity models featuring constant and variable
viscosity with experimental results on the dynamics and deposits
of dam-break granular flows. While former similar simulations
were restricted to horizontal planes, we will also investigate
granular flows over inclined topography. First, we will present
the 2D viscoplastic continuum model developed here
(Section 2.1) with the p(I) rheology reformulated in a viscoplastic
context using Drucker-Prager plasticity (pressure-dependent yield
stress) and a variable viscosity. Then, a quantitative comparison
between the simulations and laboratory experiments of granular
dam-breaks with small aspect ratios (typical of natural landslides)
over horizontal and inclined planes will be presented to investigate
the capability of the viscoplastic model to reproduce the observa-
tions (Section 3). In Section 4, we discuss the influence of the gate
and of the frictional boundary conditions. The flow properties
(velocity profile, basal sliding, yield limit distribution, yielding sur-
face, stagnant zones, evolution of the horizontal and vertical
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layers) obtained from the numerical simulations and their strong
heterogeneities within the flow are discussed in Section 5.
Finally, in Section 6, the results and their implication in terms of
rheology and practical applications are discussed. The appendix
provides a short description of the numerical scheme used in the
computations.

2. Modeling granular collapse
2.1. Pressure dependent viscoplastic fluids

In contrast with a Newtonian fluid, which cannot sustain a
shear stress, a rigid viscoplastic fluid at rest (i.e. no strain rate)
can sustain a Cauchy symmetric stress ¢ belonging to a set of
admissible rigid stresses. This set is usually defined by a continu-
ous scalar function F = F(||ag||,p) that describes the flow/no-flow
condition, i.e. F(||}],p) < 0 if and only if the fluid is at rest, where
p = —1trace(o) is the pressure and ¢’ = pI + ¢ is the deviatoric

stress. Throughout the paper, ||A| = /A : A/2 denotes the second
invariant of a deviator A. If the fluid is flowing, then the stress does
not belong to the set of admissible rigid stresses and we must
define a “flowing constitutive equation”. We shall neglect the sec-
ond order effects to limit our discussion to a subclass of (incom-
pressible) viscoplastic fluids characterized by

o' = p(ID|l.p)D if D# 0,

D) —

(1)

where D = D(u) = (Vu + V'u)/2 is the strain rate tensor and u is the
velocity field. Note that in contrast with a classical fluid constitutive
equation for a rigid viscoplastic fluid/solid, the function g is discon-
tinuous at D = 0.

We will describe here a procedure to define expressions of the
constitutive functions F(||e’||,p) and B(||D||,p) such that the model
(1) is consistent (i.e. the compatibility conditions of Cazacu and
Ionescu [32] are satisfied). One technique is the so-called
superposition method (see Cazacu and lonescu [32]). The main
assumption is that the state of stress in the material, 6’, can be
represented as the sum of a viscous (rate-dependent) contribution
6" and a (rate-independent, i.e. depending only on D/||D||, and not
on ||D||) contribution S related to plastic effects,

¢ =c¢"+S. 2)

The viscous part of the stress is expressed as for a classical viscous
fluid,

6" =2n(|D|,p)D, (3)

where 7 is a viscosity coefficient that may depend on ||D|| and p. The
viscous contribution ¢V must be continuous in D and vanishes for
D=0, i.e.

n(D|,p)|ID]] — 0, as D—O0. (4)

We assume that there is flow only if the yield condition, expressed
in terms of the plastic stress deviator § and p, is satisfied, i.e.
F(||S]|,p) = 0. Since by (1) the strain rate and the plastic deviator
are colinear, the strain rate D is given though a “plastic flow rule”

S

D= D] g

with F(||S[|,p) <0, |[ID||F(||S|,p) = 0. (3)
Note that the above equation is rate-independent and for all admis-
sible plastic stress deviators § we must have F(||S||,p) < 0. In order
to express S as a function of the strain rate D, we must invert the
flow rule (5). To do this, we assume that a pressure-dependent yield

limit x =x(p) exists such that the flow/no-flow condition

F(||S|,p)=0 can be represented as |S||=x(p), Iie.
F(l6’|,p) = ||6’|| — k(p). We can now invert the flow rule to obtain

S =) iy ®)

Note that in contrast with the viscous contribution ¢", the above
stress—strain rate relation is not continuous in D, and S does not van-
ish necessarily for D = 0. Following the stress decomposition we
obtain the constitutive scalar function B(||D|,p) = 2x(||D|,p)+
K(p)/|ID||. Now we can compute |a'|| = 25(|[D||.p)||D] + x(p) and
(1) reads

if D=0,

trace(D) = £D—0
if D=0.

N {a/ =29(|D|.p)D + K(p) 5 (7)

o'l < x(p)

This formula clearly represents the decomposition of the deviatoric
stress as a sum of a rate-dependent viscous term and a rate-
independent plastic term with yield stress. We can rewrite this rela-
tion in a different form by expressing the strain rate D as a function
of the stress deviator (see also [33,28]):

1 0l

D——
2n((ID1l, p)

)

lo”]l

+

where [x], = max(0,x) is the positive part. The above expression
was used by Perzyna [34] and Duvaut Lions [35] to extend inviscid
plastic models to account for rate effects (viscoplastic regularization
method).

For x(p) = 0 the plastic effects vanish and (7) reduces to a vis-
cous fluid model. For example, if # is independent of |D| and p,
(7) reduces to the incompressible Navier-Stokes model. If the plas-
tic effects are present then different choices of yield limit x(p) can
be considered. For constant « (i.e. k(p) = ko pressure-independent
plasticity) we deal with the Von-Mises plasticity criterion
|l6’|| < Ko, introduced to describe the plasticity of metals. If # is
constant (independent of ||D|| and p), the constitutive Eq. (7) is
the classical Bingham model (see [2]).

In this paper we consider the yield limit x to be linearly depen-
dent on the pressure p, a condition referred to as the Drucker-
Prager plasticity (flow/no-flow) criterion (see [36]):

K(p) = Ko + Up, (9)

where « is the cohesion and y, = tan(J,), with J; the internal fric-
tional angle. This yield criterion was constructed as a simplification
of the Mohr-Coulomb plasticity criterion.

Here we will use two different models, one with a constant vis-
cosity 7 (i.e. independent of ||D|| and p) that we will call the “con-
stant viscosity model” (or the Drucker-Prager fluid), and the other
with a variable viscosity #(||D||,p), chosen to get the model pro-
posed by Jop et al. [31] and the inertial number I. The inertial num-
ber I, which is the square root of the Savage number or of the
Coulomb number introduced by Savage [37] and Ancey et al.
[38], respectively, can be interpreted as the ratio between two
timescales: the inertial microscopic timescale of particle
rearrangement d/./p/p, (where d is the grain diameter and p, is
the grain density) and a macroscopic strain rate time scale (1/
IDI)), ie.

,_ 2Ipjd

Vo/ps

Note that this equation is meaningful here only if we assume p > 0.
As proposed by [31], we introduce variable friction

(10)

Ky — K
1+’ (I

) = s +
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where Iy is a dimensionless constant and u, > y is the limiting
value of the friction coefficient for large I. Then the p(I) rheology
proposed in [31] can be written

o' =pulpg; if D0,

12
e’ < w(O)p if D=0. (12)

trace(D) =0, {

It can be identified with the constitutive Eq. (7) by considering the
Drucker-Prager plasticity (9) with vanishing cohesion (x, = 0) and

whp
D|,p) = ~—=—, 13
(DI, p) D] (13)
or equivalently by taking the specific dependence of the viscosity
on ||D|| and p given by 2y(|ID|,p)|D]| = (u(l) — t,)p, i.e. with (11),

(:u2 — :us)p
n(D[,p) = o ——7~—, (14)
2|+ P
where k =d,/p,. Note that this viscosity #, corresponding to the
decomposition (7), differs from the “effective viscosity” of [31]
which is /2, in relation to the decomposition (1).

2.2. Experimental setup

Let us describe briefly the granular collapse experiments of
Mangeney et al. [6]. The experimental setup consists of a narrow
channel between plexiglass walls with a spacing of W =10 cm
(around 140 particles). The planar channel is 3 m long with possi-
ble inclination angles 0 varying from horizontal up to 30° (Fig. 1). A
rectangular granular mass of thickness hy = 14 cm (around 200
particles) and of down-slope length ro = 20 cm (around 286 parti-
cles), i.e. an aspect ratio a = hy/ro = 0.7, is released from a reser-
voir at time t=0s by opening a gate. The glass beads are
subspherical, cohesionless and highly rigid with a diameter
d = 0.7 + 0.1 mm. They flow down an inclined channel, roughened
by gluing a layer of the same beads on its surface. The particle den-
sity p, = 2500 kg m 3 and volume fraction v=0.62 of the mass
were estimated, giving an apparent flow density of

x
—

Fig. 1. Experimental setup: morphometric and control parameters measured in the
experiments. The initial mass (light gray) with initial thickness hy = 14 cm and
width ro = 20 cm is released on a plane with inclination 0 by opening very rapidly a
gate at time t = 0 s. It forms a deposit with a length ry from ry (runout distance), and
a final maximum thickness h;. The gate is represented by a thick line perpendicular
to the plane.

p =vp, = 1550 kg m~>, the value used in (15). The parameter k
in the/ variable viscosity #(||D|,p) rheology (19) is k = 0.035 kg"/
2 m—1 2'

The length of the deposit r; measured from the front of the ini-
tial mass located at x = 0, i.e. the runout distance, and the final
thickness of the deposit at the back wall hy were systematically
recorded as well as the time at which the front stopped t;. The pro-
files of the granular mass were measured as a function of time
using a high-speed camera.

In the experiments, a gate is removed at the initial time to
release the granular mass. Gate removal is simulated here by con-
sidering a lifting velocity V;, = ho/t, = 2.3 ms~! (where t, = 0.06 s
is the lifting time) as measured in the experiments of Mangeney
et al. [6] and Farin et al. [16]. In the numerical scheme, the barrier
is considered as a simple rigid boundary under an assumed no
penetration condition (u - n = 0), however the position of the gate
changes at each time step. For the sake of simplicity, we neglect
here the friction between the gate and the granular material, even
though friction is expected to occur as shown for example in Figs. 6
and 14 of [6] (see Section 4.1 for a detailed analysis of the gate
effect).

2.3. Problem statement

To model the granular collapse experiment described above, we
consider here the equations describing the in-plane flow of a rigid
viscoplastic fluid over the time interval (0,T),T > 0 in a domain
D(t) ¢ R? with a smooth boundary dD(t).

The notation u stands for the 2-D velocity field
(u=(uy,uy),u;=0) and o for the 3-D stress tensor field
(0x, = 0y, =0), while p= —trace(s)/3 is the pressure and
¢’ = ¢ + pl the in-plane stress deviator tensor (o}, = g, = g}, = 0).

Mass and momentum conservation. The momentum balance law
(in the Eulerian coordinates) reads

p(%+(u-V)u> —dive' +Vp=pf inD(t), (15)

where p > 0 is the mass density distribution and f denotes the body
forces (gravity for our purpose). Since we are dealing with an
incompressible fluid, we have

divu=0 inD(t). (16)
The viscoplastic fluid domain D(t) is transported with the fluid as
a1

szm+u-v1m =0, (17)

where 1p, is the characteristic function of the domain.
Constitutive laws. We will now consider the constitutive Eq. (7)
with D = D(u) = (Vu + V'u)/2 and with Drucker-Prager plasticity
(9) with vanishing cohesion (ko = 0). Two different choices of the
viscosity n will be analyzed: the constant viscosity model (# = cst)

6 =2nD+ppl if D0,
trace(D) — 0, { 0+ HoPop ! (18)
llo']l < pp if D=0,
and the variable viscosity model with # given by (14),
1= 2 ULt D if D0,
trace(D) = 0, { T s P ! ’ (19)
llo'll < pp if D=0,

with k = d,/p,, which is equivalent to the yu(I) rheology (12). Note
that the division of ¢’ and p by p, involves the dynamic viscosity
and pressure #/p,,p/p,. Consequently any of the previous rheolo-
gies can be written in terms of the dynamic variables
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6’ /ps,p/Ps, N/ P In this way the grain density p, is eliminated and
only the rheological parameters p, i,,lo/d remain.

Boundary and initial conditions. In order to complete the above
equations with boundary conditions we assume that 9D(t) is
divided into two disjoint parts 9D(t) = I'p(t) U I's(t). On the bound-
ary I',(t), the fluid is in contact with a rigid body through the
Coulomb friction law
. {GT——MC[—GHL:‘J %f ur #0, 20)

|or < fic[=0w],  ifur =0,

where p. is the Coulomb friction coefficient at the boundary, n
stands for the outward unit normal on 9D(t) and we adopt the fol-
lowing notation for the tangential and normal decomposition of the
velocity field u and surface stresses on

u=umn+ur, withu,=u-n, on=o,n+or withag,

=on-n,

where ¢ = ¢’ — pl. Note that our boundary conditions at the bottom
are different from previous studies of continuum viscoplastic sim-
ulations of granular collapse that imposed a no-slip condition
[17,27], corresponding to the limit p. — oo.

On the (unknown) free surface boundary I's(t), which is com-
puted from the advection Eq. (17), we impose a stress free
condition:

on=0 on [I(t). (21)
The initial conditions are given by
ul,_,=0, D0)=mD,. (22)

Finally the problem is to find the domain D(t), the velocity field
u(t), the pressure p(t) and the deviatoric stress tensor &’(t) satisfy-
ing Egs. (15)-(18) (or (19)) with the boundary and initial condi-
tions (20)-(22).

2.4. Rheological parameters

The parameters used in the model, which must be derived from
the experiments, are: p, i, and Ip for the #(||DJ|,p) rheology (19)
and p, and # for the constant viscosity rheology (18). For the two
rheologies, we must impose the friction at the bed p, and the fric-
tion at the plexiglass wall at the back of the reservoir p,,. Note that
as the simulations are 2D (downslope/vertical directions), the
model does not simulate friction at the two lateral walls bordering
the channel. This effect is only accounted for empirically in the
effective friction coefficients as described bellow. In Mangeney
et al. [6], the repose angle 6,=23.5°+0.5> (u, =tan6,=
0.434+0.01) and the avalanche angle 6,=255°40.5°
(u, = tan 6, = 0.48 + 0.01) of the material were measured by add-
ing material on top of a pile at a small rate and measuring the angle
of the pile with respect to the horizontal after and before an ava-
lanche, respectively.

The glass beads used by [6] are very similar to those used by
Pouliquen and Forterre [39] and Jop et al. [30] and are expected
to be characterized by the same rheological parameters. As
explained in Pouliquen and Forterre [39], the friction coefficients
in the u(I) rheology can be obtained by fitting the curve hyp(6),
where hgp is the maximum thickness of deposit resulting from
steady uniform flows. The resulting minimum and maximum fric-
tion angles fitted by Pouliquen and Forterre [39] and Jop et al.
[30] are about 65 =21° (u,=0.38) and 0, =32.8° (u,=0.64),
respectively. Slightly higher friction angles were observed in the
experiments of [6] (compare Fig. 5 of [6] and Fig. 3 of [39]). This
may result from the width of the channel that is much smaller
(W =10cm) in [6] than in [39] (W = 70 cm). Consequently, the

effect of the lateral walls can be modeled as an additional friction
coefficient with a maximum value of the order of u, h/W where
u,, is the grain/wall friction and h is the thickness of the flowing
layer (see Eq. (1) of Taberlet et al. [40] or Eq. (4.5) of Jop et al. [30]).

Assuming that the beads slip against the lateral side walls and
that the induced stress is pure solid friction with a constant coeffi-
cient of friction u,,, Jop et al. [30] measured y,, = tan(10.5°) = 0.18.
We therefore chose u,, = tan(10.5°) = 0.18 for the friction on the
plexiglass wall at the back of the reservoir. Note that this value is
also consistent with the small grain/wall friction in the DEM of
Lacaze et al. [14] but much smaller than the value used by
Girolami et al. [24]. In [6], as the maximum flowing thickness is
about 0.05 m, the additional friction contribution related to the
walls should be at most 0.18 x 0.05/0.1 =0.09, while in
Pouliquen and Forterre [39] this additional friction would be
0.18 x 0.01/0.7 = 0.0026 (see their Fig. 10 for an approximation
of the flowing depth). Therefore we expect a difference in the fric-
tion coefficients of about 0.1 between Mangeney et al. [6] and
Pouliquen and Forterre [39]. As a result, friction coefficients
corresponding to the experiments in [6] should be
U, ~038+0.1 =048 =tan(25.6°) and u, ~0.64+0.1=0.74=
tan(36.5°). Finally, we chose here u, =tan(25.5°)~0.48 and
U, =tan(36°) ~ 0.73.

The value of I, = 0.279 is taken from Pouliquen and Forterre
[39]. Our values of the 5(||D||,p) parameters (i.e. y(I)) are summar-
ized in Table 1 and are consistent with those deduced from a DEM
by Lacaze and Kerswell [25] that reproduced quantitatively the
scaling laws for axisymmetric glass beads collapses
(uy~04,u,~07 and [~0.3). Lagrée et al. [27] used
U, =032, 14, =06 and I = 0.4, overestimating the runout dis-
tances of experimental granular collapses.

Another parameter that must be chosen is the frictional coeffi-
cient u. involved in the boundary condition (20), modeling the
contact with the surrounding rigid walls. At the bed, u. =y, is
the basal friction coefficient and along the wall at the back of the
reservoir, U- = p,, is the wall friction coefficient. As the basal
roughness was provided by gluing a single layer of the same parti-
cles to the channel bed, we chose the same friction coefficient at
the basal surface as for the internal friction p, = u, = tan(25.5°).

To speed up the calculation, we must impose a minimum value
of the viscosity n=0.1Pas (i.e. a kinematic viscosity v of 4-

6 x 10> m?s~") for both rheologies. This is necessary with the
augmented Lagrangian method, even if the problem can be well-
posed (at least in the Bingham case) without viscosity [41,42].
The values of this threshold viscosity and the constant viscosity
are discussed in Section 3.

3. Variable viscosity versus constant viscosity

We will now describe some of the numerical settings we used in
the numerical simulations (see Appendix A for a brief description
of the numerical scheme). The time step was chosen to be between
At = 0.0005 s and At = 0.001 s, while the edge size of the mesh is
between hpy, = 0.0033 m and hpax = 0.01 m. Concerning the re-
meshing process, we used a variable metric/Delaunay automatic
meshing algorithm (see [43]) such that the finest meshes are
located in the zones of low pressure and high velocity (see the blue
mesh in Fig. 6). We also checked that the mass loss during the

Table 1
Rheological parameters.
Uy (35) Hp (3p) My, (Ow) Hy (62) Io k
0.48 0.48 0.18 0.73 0.279 0.035 kg"/
(25.5°)  (25.5°) (25.5°) (36°) 2m-1?




6 LR. Ionescu et al./Journal of Non-Newtonian Fluid Mechanics 219 (2015) 1-18

simulations was very small (smaller than 0.8%). The removal of the
barrier (gate) was simulated by a moving frictionless boundary
condition (see Section 4.1 for details and the gate influence).

3.1. Collapse over a horizontal plane 0 = 0°

Fig. 2 shows that the model with variable viscosity #(||D||,p)
well reproduces the shape of the granular mass during its spread-
ing over a horizontal plane, with rheological parameters directly
derived from the experiments. The colors, representing the norm
of the velocity, show that the flow is concentrated only in a shallow
sub-domain near the free surface as observed in the experiments
and as obtained in the numerical simulations of Crosta et al. [17],
Lacaze et al. [14,25] and Lagrée et al. [27]. The computed runout
distance ry and the slope of the deposit are in very good agreement
with the experiments while the spreading of the mass is slightly
faster during the flow. This was also the case in the discrete ele-
ment simulation of Lagrée et al. [27] (their Fig. 4) when compared
to their experiments. The front is slightly more rounded in our sim-
ulation than in the experiments, an effect even more pronounced

in the simulation of Crosta et al. [17] (see their Fig. 1a). The thick-
ness of the mass near the back wall decreases slightly in the sim-
ulations while it stays constant in the experiments. Fig. 2 shows
that already at t = 0.06 s, the velocity near the upper part of the
back wall is non-zero. As a result, the final maximum thickness
of the deposit hy is about 10% smaller than in the experiments.
Similar results were obtained in the continuum and DEM sim-
ulations of Crosta et al. [17] (their Fig. 6) and Lacaze et al. [14]
(their Figs. 4, 6 and 7), respectively. In our simulation, at time
t=0.76 s, the maximum velocity norm is lower than 0.03 m/s
and at ty = 1.02 s an equilibrium configuration is reached. Over this
long period of time t € [0.76,1.02] s many slow flow events occur,
changing very slightly the shape of the granular mass before the
granular material reaches the final equilibrium state. These pro-
cesses are also observed in the experiments.

Fig. 3 shows that the viscosity varies from 0.1 Pas (minimum
threshold viscosity in the model) at the free surface to about
1.5Pas near the bed (see Eq. (14)). For example, the viscosity
within the flowing layer at t = 0.3 s is 0.1 < 17 < 0.7 Pa s. The small
viscosity at the free surface is directly related to the low pressure

VelocityNorm

0.8
0.5

j0.2
i
0

020 0.30

Fig. 2. Simulation using variable viscosity n(||D|,p) (i.e. u(I)): Comparison of the simulated granular mass and the experimental results (pink line) at different times for
granular collapse over a horizontal plane (6 = 0°). The colors represent the distribution of the norm of the computed velocity field | u | (in m/s). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Viscosity (in Pa s) calculated with the u(I) rheology at different times for granular collapse over a horizontal plane (6 = 0°).



LR. Ionescu et al./Journal of Non-Newtonian Fluid Mechanics 219 (2015) 1-18 7

Rc’reé)fDef

40
20

0

RateofDef
0 0.

40
20

0

t=0.18s

Pressure 014
1600

000

Fig. 4. Strain rate ||D|| in s~! (left column) and pressure p in Pa (right column), calculated with variable viscosity #(||D||,p) (i.e. u(I)) at different times for granular collapse
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Fig. 5. Values of I and p(I) at different times for granular collapse over a horizontal plane (6 = 0°).

in this zone (Fig. 4 right column). While the pressure distribution is
quite regular within the flowing region, the strain rate is concen-
trated near the front and near the bed (Fig. 4 left column). Its maxi-
mum value is around 70s~!, so that the first term in the
denominator of Eq. (14) is lower than 140s~!. The pressure is
already about 200 Pa near the front, which gives a second term
in the denominator of (14) equal to about 112 s~! near the front.
As a result, in regions of high strain rate, such as near the front,
the viscosity is related to both the strain rate and pressure values.
At other locations, the first term is much smaller than the second
term and the strain rate can be neglected in the viscosity formula
(14). Interestingly, while the strain rate is quite localized, the vis-
cosity varies smoothly in the flowing region. The smooth increase
in pressure with depth seems to dominate the viscosity variation.
This suggests that the strain rate can be neglected in (14), giving

1= (1~ 1) VB 23)

This approximation is equivalent to linearizing the pu(I) law (11) for
small I,

D = 1+ (o — ) (24)

The order of magnitude of the viscosity can be simply obtained from
Eq. (14) without performing the simulation, from only the initial
thickness of the granular column hy, the grain diameter and density
and the parameters of the u(I) rheology. Indeed, taking pressure
p = p,8hy/2 =2500 x 9.81 x 0.07 =1716 Pa and assuming that
the flowing layer has a thickness of about the half the initial thick-
ness, that velocity u = /ghy ~ 1.17 m's~' (see Fig. 9 of [6]) and that
the strain rate ||D|| = u/(ho/2) ~ 17 s7!, Eq. (14) gives a viscosity
n ~ 1.2 Pas. Note that, for this calculation, the strain rate in Eq.
(14) is negligible.

When looking at I and p(I), the results are more difficult to
interpret in terms of dissipation than when looking at the viscosity
(Fig. 5). The inertial number I varies only slightly between zero in
the static region and less than 0.1 in most of the flowing region,
except near the front and close to the free surface where it reaches
values of about 0.8. Near the free surface, I is not well defined
because the pressure is equal to zero (see Eq. (10)). These values
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of I lead to very high values of p(I) at the free surface. However the friction coefficient is 0.5 < u(I) < 0.54, corresponding to a fric-
because u is multiplied by p, these high values are compensated tion angle between 26.5° and 28°. u(I) increases significantly in the
by a pressure of almost zero near the surface. The same is true in front zone with values higher than 0.6 in and just behind the front.
the vicinity of the front (Fig. 5). Within most of the flowing region, The friction varies essentially from higher values near the bottom
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to lower values near the surface, except at the very top where the
meaning of u(I) is questionable as discussed above. This is different
from the viscosity, which increases regularly frontwards within the
flowing region.

For the constant viscosity rheology, we tested 7 = 1 Pa s, which
is the order of magnitude of the 'real’ viscosity derived from Eq.
(14), a 10 times smaller viscosity # = 0.1 Pa's which is the mini-
mum viscosity that we can handle with a reasonable com-
putational time, and a 10 times larger viscosity # = 10 Pa s.

For the constant viscosity rheology, we tested 7 = 1 Pa s, which
is the order of magnitude of the “real” viscosity derived from Eq.
(14), along with a 10 times smaller viscosity # = 0.1 Pa's, which
is the minimum viscosity that we can handle with a reasonable
computational time, and a 10 times larger viscosity # = 10 Pas.

Fig. 6 shows that very similar results are obtained when using a
constant viscosity # = 1 Pa s and variable viscosity #(||D||, p). With
this set of parameters, the mass flows slightly slower than with
variable viscosity and the runout distance is slightly shorter
(Fig. 6). While there is almost no difference between the sim-
ulations with the two rheologies at t = 0.18 s, the final runout dis-
tance is 5% shorter with # =1Pas. This is because the variable
viscosity is smaller than # = 1 Pas in the flowing layer and near
the front (Fig. 3)). With variable viscosity, a thinner front zone
seems to develop at the very end of the mass (t=0.3s and
t = 1.02 s in Fig. 6). Because the deposit is very thin near the front
and several saltating beads were observed in the experiments, it is
difficult to discriminate which law provides the best fit to the
experimental results at the front [6,16]. The velocity distribution
and the shape of the mass are very similar when using both con-
stant (7 = 1 Pa s) and variable viscosity. When using # = 0.1 Pass,
there are no major differences at times t < 0.3 s. However, at a
later time, while the shape of the main mass is very similar (see

Fig. 7), the front is thinner and is running faster. The final runout
distance is about 5% longer than with variable viscosity, in agree-
ment with Lagrée et al. 27]. Still the rest of the deposit behind
the front has a very similar shape with #=0.1Pas, n =1Pas,
and with variable viscosity. As a result, within this range of viscosi-
ties 0.1 < # < 1 Pa s, the dissipation due to viscous effects is much
smaller than that due to plastic deformation (i.e. strain-indepen-
dent part of the “flowing constitutive relation”). For a higher
though unrealistic viscosity (7 = 10 Pa s), however, viscous effects
strongly change the flow dynamics and deposit (see Fig. 8). Note
that the computation is much faster when using constant viscosity
n = 1 Pa's than when using variable viscosity which is in turn fas-
ter than when using # = 0.1 Pas.

3.2. Collapse over an inclined plane 6 = 16°

Up to now, simulations of granular collapse using a viscoplastic
rheology have been performed only on a horizontal plane. Here we
simulate the collapse over a moderate slope 6 = 16° using the same
set of parameters. The results are qualitatively similar to those
obtained on a horizontal plane. The simulation with variable vis-
cosity reproduces the mass spreading relatively well (Fig. 9). The
collapse of the mass at the upper end of the channel is however
too fast in the simulations and the front also advances more rapidly
than in the experiments. The shape of the final deposit is repro-
duced very well, except next to the back wall, where the computed
maximum thickness is smaller, and at the front, where the thick-
ness is slightly overestimated in the simulations. One possible
explanation is that for 6 = 16°, the flowing thickness (correspond-
ing to the warmer colors in Fig. 9) is thicker than for 0 = 0° (Fig. 2).
The maximum flowing thickness is about 0.1 m for § = 16° while it
is about 0.05 m for 0 = 0°. As a result, according to Taberlet et al.
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[40] and Jop et al. [30], the effect of lateral wall friction should be
two times greater in the experiments at 0 = 16° (see Section 2.2 for
more details). This is not taken into account in our 2D simulations
where the lateral wall friction and other friction coefficients are
considered to be constant (i.e. not dependent on the flowing
depth). Taking into account the real effect of the wall friction at
0 = 16° (3D simulations) would lead to shorter runout distances
and to a smaller deposit thickness near the back wall, which would
better match the experimental observations (see the next section).

The variable viscosity is slightly smaller near the static/flowing
transition than at 0 = 0° but is almost the same within the flowing
region where 0.1 < # < 0.7 Pas. The viscosity decreases towards
the front where it is less than 0.5 Pa s. For example, at t = 0.56 s,
the viscosity is lower than 0.3 Pa s over the 10 cm behind the front.

In the flowing region, the viscosity gradually increases with the
distance perpendicular to the free surface, seemingly mainly influ-
enced by the increase in the pressure. Consequently, the viscosity
mainly shows patterns similar to the pressure field (see
Section 5), masking the influence of the strain rate. The strain rate
distribution shows interesting features, with high strain rates con-
centrated initially near the bed close to the front and further
upslope along most of the flowing region. The strain rate is dis-
tributed over almost the whole thickness of the flow near the front
and over a significant thickness near the bed behind the front
(Fig. 11 left column). The constant viscosity model leads to smaller
front propagation velocities and therefore to shorter runout dis-
tances, in better agreement with experiments. At t = 0.23 s, peri-
odic patterns develop in the strain rate distribution, possibly
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related to flow instabilities (see Section 5). Similar patterns are
observed for I and p(I) (Fig. 12).

Fig. 13 shows again that the results are very similar for constant
(n = 1Pas) and variable viscosity rheologies. For the constant vis-
cosity, the mass spreads slower and the runout distance is shorter,
in better agreement with experimental results.

4. Influence of the boundary conditions

Note that, given the very similar results obtained with variable
n(||D]|,p) and constant viscosity (# = 1 Pa s) and given the shorter
computational time required for constant viscosity, we will use a
constant viscosity of # =1 Pa s in all the following simulations.

4.1. Influence of the gate

Gate removal at the start of the avalanche has always been
thought to have negligible influence on granular collapse dynamics
and deposits. To check this, we considered two scenarios: in the
first, the mass is released instantly (no gate) and in the second,
the granular mass is in frictionless contact with a gate that is

removed at a speed of V, = 2.3 m s~ ! in the direction perpendicu-
lar to the inclined bed.

In the scenario with the gate, the flow initiates near the bottom
of the granular column (dark blue in Fig. 14), while in the scenario
with no gate (light blue mesh), the mass spreads from the top of
the granular mass. As expected, at the beginning of the flow the
scenario with the gate is much closer to the experimental data
represented in pink lines.

The initial rise at the top front edge of the released mass in the
experiments (t = 0.06 s in Figs. 14 and 15) is not reproduced in the
simulations. This is because in the simulations, there is a friction-
less contact between the mass and the gate, while in reality friction
occurs at the contact.

During all the spreading, in the scenario with the gate, the front
advances less rapidly and the thickness of the mass is generally
smaller near the front than when the gate is not taken into account.
At a later time (e.g. t = 0.3 s in Fig. 14), the thickness of the mass in
the upper part of the channel is the same, but the front is still fur-
ther upstream.

We show here that the scenario with the gate better fits the
dynamics of the experimental collapse. Interestingly, the final
deposit is however the same for both two scenarios: the gate has
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Fig. 14. Influence of the gate on granular collapse over a horizontal plane § = 0°. Comparison of the thickness of the granular mass simulated with the gate (light blue) and
without the gate (blue mesh), as well as the experimental results (pink line) at different times. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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an influence on the flow dynamics that disappears in the deposi-
tion phase. The same qualitative behavior is observed for granular
collapses over inclined beds (Fig. 15). The influence of the gate is
even greater at 0 = 16° than at 0 = 0°. These results are in good
agreement with the simulations of Carbopol flows over a horizon-
tal plane performed by Martin Rentschler [44]. The influence of the
gate may explain why Lacaze et al. [14] obtained a faster front
propagation in their discrete element simulations than in their
experiments while reproducing the experimental runout distance,
even though their way of removing the gate was different (see
their Fig. 4). However, for a very slow gate removal the runout dis-
tance is significantly shorter (see Meriaux [45]).

4.2. Influence of friction on the back wall and at the bed

Increasing the friction on the back wall from g, = tan10.5° to
W, = tan25.5° in the simulations has only a very slight influence
on the flow. In particular, it does not improve the overestimation
of the collapse of the granular mass near the back wall. As already
discussed above, the pressure near the upper half of the back wall
is small and therefore the friction force is always small whatever
the friction coefficient at the wall. Near the bottom of the back
wall, the pressure is higher but their is no motion. In the experi-
ments, the presence of lateral walls may significantly change this
picture. For instance, the presence of the lateral walls may increase
the pressure in their vicinity, which may increase the friction force
near the back wall and thus reduce the vertical collapse of the mass
in its vicinity.

Our simulations indicate that part of the mass slides at the bed
near the front for a basal friction coefficient p, = 0.48 (see Figs. 2
and 8), contrary to what was assumed in other simulations where

a no-slip condition (i.e. adherence) was imposed at the bottom (e.g.
Lagrée et al. [27], Crosta et al. [17]). To investigate the influence of
the basal boundary condition, we imposed either real adherence
(zero velocity) or a very high friction coefficient at the bed.
Imposing adherence reduces the collapse of the mass near the back
wall leading to a maximum thickness of the deposit h; about 4%
higher than with the a basal friction coefficient p, = 0.48 (see
Fig. 16). It also reduces the runout distance by 10%. As a result,
the simulation with adherence better fits the results near the back
wall but underestimates the runout distance. If, instead of impos-
ing adherence, we impose a very high friction coefficient at the
bottom (1, = 4.8), we obtain a maximum thickness near the back
wall and a runout distance that are in between the simulation with
adherence and that with a basal friction coefficient of p, (Fig. 17).
In fact, the normal stress near the front is very small and even with
a very high friction coefficient, the friction force is still small
enough to produce a difference between this dissipative force
and the driving forces that allows the material to slip on the basal
surface. As a result, sliding at the bed is allowed near the front, con-
trary to the case of adherence. Note that in Lagrée et al. [27], the
mass spreads less rapidly in their continuum simulation than in
their DEM simulations. One explanation could be that in their con-
tinuum model, they imposed no-slip boundary conditions while
there is a significant slip velocity near the front.

5. Insight into the flow dynamics
5.1. Velocity distribution

Fig. 18 shows the distribution of the horizontal velocity at
0 = 0° as well as its vertical profiles at some fixed locations along
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Fig. 16. Influence of the boundary conditions at the bed on granular collapse over a horizontal plane 0 = 0°. Comparison of the thickness of the granular mass simulated in the
“no gate” scenario with friction (dark blue) and with adherence (light blue mesh), as well as the experimental results (black lines) at different times. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

0.20 0.30 0.40 0.50

Fig. 17. Influence of the boundary conditions at the bed on granular collapse over a horizontal plane 0 = 0°. Comparison of the thickness of the granular mass simulated in the
“gate” scenario with friction (light blue) and with high friction (blue mesh), as well as the experimental results (black line) at different times. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. The distributions of the horizontal velocity u, (color scale in m/s) and vertical profiles (pink lines) of the horizontal velocity u(z) at four fixed locations x = 10, 15, 30
and 40 cm along the channel, from simulations with the Drucker-Prager model with constant viscosity # = 1 Pa s over the horizontal plane 0 = 0°. Note that the vertical
profiles are represented in the plane perpendicular to the simulated flow. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the channel (at x = 10,15,30 and 40 cm) (pink lines). In the first
snapshot, at t = 0.06 s, just after the gate was lifted, the maximum
horizontal velocity is reached close to the bed. This is the result of
gate removal, which induces a flow starting near to the bottom.
Later, the flow is concentrated only in a shallow sub-domain near
the free surface as observed with the norm of the velocity field. The
maximum horizontal velocity is reached near the free surface. In
the flowing region, the horizontal velocity has a parabolic profile
with an exponential decay near the flow/no-flow transition. Near
the front, the granular mass slips at the contact with the bed sur-
face, i.e. the basal velocity is not equal to zero (for example at
t=0.22s and x=30cm or at t =0.35s and x =40 cm). Fig. 18
suggests that the horizontal velocity can change direction (i.e.
negative horizontal velocity) in the quasi-static region (e.g. at
t =0.18,0.22,0.3 s). However these negative velocities are small
and close to the expected numerical error.

The maximum downward and upward vertical velocities are
about 0.6 ms~! and 0.06 m s~ !, respectively (Fig. 19). As a result,
the downward vertical velocity can be as high as half the horizon-
tal velocity. Fig. 19 clearly shows, at t =0.18s, an interface
between a zone with no vertical velocity and a zone with a small
downward velocity. Under this rough interface, a localized zone
of upward velocity develops (dark red color and negative vertical
velocity in Fig. 19 at t=0.18,0.3 s). Within the small vertical
velocity regions underlying the main flowing layer (red colors),
the vertical velocity distribution is not regular and exhibits spa-
tio-temporal fluctuations at a scale of a few centimeters or more.

5.2. Yield limit distribution and stagnant zones

The yield limit x = pp, which has the same distribution as the
pressure p (plotted in Fig. 4 (right)), has an almost gravitational
distribution. The distribution of the stress deviator |a’||, plotted
in Fig. 20 (right), is rather different. The maximum value is reached
around mid-depth in the granular material and decreases rapidly
near the free surface and towards the bed at the back wall. Note

VerticalVelocity
.06
0

t=0.06 s

f0.2
£.0.4

06

t=0.22 s

that, except near the bed at the back wall, the yield stress and
stress deviator have the same order of magnitude (i.e. the same
color on the color scale), which means that the yielding surface
separating flow and no-flow zones could change significantly dur-
ing the experiment. For t =0.3s and ¢t =0.42s, the yield limit
(pressure) distribution presents an unexpected zone of weakness
(low pressure). This (non-static) sucking zone, which is localized
on a sloping line, appears before the granular mass reaches a con-
figuration close to equilibrium and is associated with a slightly
positive vertical velocity.

The static/flowing transition can be seen in the left side of
Fig. 20, where we have plotted the distribution of the yield func-
tion F(o) := ||6’|| — u,p. The zone corresponding to a positive yield
function (dark red) represents the flowing region of the granular
mass, while the evolution of the strain rate is plotted in Fig. 4 (left).
Note that for t =0.18 s and t = 0.30 s, the regions with a high
strain rate are located near the tip of the granular mass, near the
bed surface. In these regions, the inertial and gravitational forces
are opposed by the frictional forces, producing a high shear in
the granular mass. As we can see by comparison with Fig. 20
(right), these high deformation regions are not related to high
stress deviator zones. This confirms the nonlinear character of
the constitutive law (7). Furthermore, Fig. 4 (left) shows the devel-
opment of shear bands during the beginning of the spreading.

For t =0.3s and t = 0.42 s, the yielding surface is not clearly
determined. Indeed, we remark that behind the main flowing
region (in front of the granular mass near the free surface) there
are some zones corresponding to a non-vanishing strain rate in
Fig. 4 (left). These small regions are related to the “weakness
zones” of low yield limit (or pressure) described above. Note that
for all the computations presented above, we did not use any spe-
cial techniques for tracking the yield surface. A more detailed
investigation of the static/flowing transition could be carried out
using the re-meshing techniques developed for stationary flows
(see for instance [46,47]) at each time step. This would however
imply a major increase in computational effort.

t=0.18 s

t=0.3s

Fig. 19. The distribution of the vertical velocity u, (color scale in m/s) and vertical profiles (blue lines) of the vertical velocity u,(z) at three fixed locations x = 10, 15 and
30 cm along the channel, from simulations with the Drucker-Prager model with constant viscosity # = 1 Pa s over the horizontal plane 6 = 0°. Note that the vertical profiles
are represented in the plane perpendicular to the simulated flow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 20. The distribution of the yield function F(¢) := ||6’|| — k (left, color scale in Pa) and of the stress deviator ||¢’| (right) in the granular mass D(t) for different times (color
scale in Pa). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Deformation of the initially horizontal layers (left) and initially vertical layers (right) calculated for granular collapse on a horizontal plane 0 = 0° (color scale in m).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.3. Deformation of horizontal and vertical layers

Fig. 21 shows how artificial initially horizontal and vertical lay-
ers deform during the flow. At time t = 0.18 s, the top horizontal
layers near the back wall are collapsing vertically more rapidly
than between x = 0.05 and 0.1 m. Further towards the front, the
top layers become thinner and appear to converge toward a stamp
point at the surface, corresponding to the advancing top front edge
of the initial column. Under and next to this point, the horizontal
layers bend, first downwards while thinning and then upwards
while thickening towards the front. Interestingly, the deposit in

the first two thirds of the channel is made of the same succession
of layers as the initial mass, even though these layers are
deformed. On the other hand, in the final third of the channel,
the deposit behind the front is made of the layers initially located
below mid-depth of the initial column. This may be different for
columns with high aspect ratios (see Thomson and Huppert
[48]). This observation may be important in the interpretation of
real deposits. The deformation of the artificial initially vertical lay-
ers is very similar to that obtained by Lagrée et al. [27] using the
u(I) rheology (see their Fig. 9), except near the bed where the
boundary conditions are different (sliding friction here and no-slip
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in their simulations). As a result, the deformations of the inner ver-
tical layers are not specifically related to the p(I) rheology.

6. Discussion and conclusion

We propose a mechanical and numerical model for granular
flows based on Drucker-Prager plasticity (pressure-dependent
yield stress) with either a constant viscosity or a variable viscosity
n(||D|),p) depending on both the pressure p and the norm of the
strain rate tensor ||D||, based on the reformulation of the so-called
u(I) rheology.

We have shown here that the Drucker-Prager plasticity criter-
ion and a variable or constant viscosity reproduce quantitatively
the dynamics and deposits of the granular collapse of columns
with small aspect ratios (here a = 0.7) over horizontal and inclined
planes, using rheological parameters derived from experiments,
without any fitting procedure. Note that we have taken into
account the initial removal of the gate that releases the granular
column. The Drucker-Prager rheology with constant viscosity
(n =1 Pas) and variable viscosity #n(||D||,p) (i.e. the p(I) rheology)
provide very similar results. The numerical simulation shows that
the main differences are located near the front. Indeed, the
parameter [ of the pu(I) rheology varies mainly in this region.
Interestingly, the region near the front is characterized by thin
flows over a rigid bed, a situation close to that for which the u(I)
rheology was established. While variable-viscosity #(||D|, p) rheol-
ogy may be crucial to simulate different regimes such as the col-
lapse of high aspect ratio columns [27], the strong similarity of
the two rheologies in the case studied here is an important result
in terms of application to natural landslides that have typical
aspect ratios lower than 1 (see Lucas et al. [49] for a compilation
of real data). An intermediate linearized approach (23) and (24)
can also be used. Indeed, for the Drucker-Prager rheology with
constant viscosity, only two rheological parameters are needed,
compared to three for variable viscosity (and two for the linearized
law). Furthermore, calculations with a constant viscosity of
1 = 1Pa s requires much less computational time (at least for the
numerical approach presented here). A crucial contribution of the
expression of the viscosity 7(||D|,p) (Eq. (14)) derived from the
u(I) rheology is to provide the order of magnitude of the viscosity
in a specific situation without performing simulations. For exam-
ple, Eq. (14) gives a constant value of viscosity (7 = 1 Pas here)
that makes it possible to reproduce the experimental results, while
numerical simulations show that the variable viscosity ranges from
values up to # = 1.5 Pa s in the deep quasi-static regions down to
zero near the free surface. Discriminating constant and variable
viscosity rheologies in the regimes of granular collapse of small
aspect ratio columns on inclined beds would necessitate more a
detailed comparison with measured velocity profiles.

The gate has a significant impact on the flow dynamics but the
deposits obtained with and without the gate are almost the same.
The deposit seems thus to depend only on the initial energy of the
column and on the mean dissipative forces at work during the flow,
provided gate removal is not too slow [45].

As the slope of the bed increases, these models slightly over-
estimate the flow velocity and runout distance. This may be due
to lateral wall friction that increases with increasing thickness of
the flowing layer at higher slopes. This effect is not accounted for
in the 2D simulations. As in discrete element modeling, 3D vis-
coplastic modeling of the wall effect will certainly increase the
dissipation due to the wall as the slope increases but will also
increase the pressure, in particular near the wall at the back of
the reservoir, thus increasing the friction in this region. This will
certainly reduce the overestimated collapse of the columns near
the back wall. On the other hand, simulations show that there is

significant sliding of the mass on the bed near the front. As a result,
imposing adherence near the bed, as in previous studies, would
seem to be inappropriate. To confirm this, we investigated the
influence of the friction on the back wall and at the bed. For the
bed, we imposed either real adherence (zero-velocity) or a very
high friction coefficient. Imposing adherence at the bed reduces
the collapse of the mass near the back wall but also reduces the
runout distance by 10%. As a result, the simulation with adherence
better fits the results near the back wall but underestimates the
runout distance. By choosing a very high friction coefficient at
the bed, sliding is allowed near the front and the computed runout
distance is in between the simulation with adherence and that
with normal friction. Note that the normal stress is very small near
the front and therefore even with a very high friction coefficient,
the friction force is still small enough to produce a difference
between this dissipative force and the driving forces that allows
basal sliding.

Except at the very start during the gate removal period, the
yield limit has an almost gravitational distribution while the stress
deviator reaches its maximum value at mid-flow height. The “con-
stitutive” flowing region (i.e. with a positive yield function) near
the free surface is globally well delimited and corresponds to a
non-vanishing velocity zone and a non-vanishing strain rate zone.
However, during the flow, the yield limit distribution presents a
zone of weakness (low pressure), localized on a sloping line and
associated with a slightly positive vertical velocity.

The regions with high strain rates are located behind the front
tip of the granular mass, near the bed, where high shear of the
granular mass is expected as a result of the action of the driving
(inertial and gravitational) forces and the frictional forces. These
high deformation regions are not related to high stress deviator
zones, confirming the strong nonlinear character of the viscoplastic
law. Furthermore, the development of shear bands during the
beginning of the spreading on an inclined plane is observed. The
coherent blocks of material observed on the upslope deposits of
some large landslides could be the result of such shear bands [60].

The numerical simulation of the 2D collapse of granular col-
umns shows that the flow involves only a shallow layer of granular
material. Despite the heterogeneities observed within the flow,
especially near the static/flowing transition, the velocity profiles
essentially exhibit a typical shape with a maximum velocity at
the free surface, a Bagnold-like to linear profile and an exponential
decrease of the velocity near the static/flowing transition. The
pressure seems to be close to hydrostatic in this flowing region.
These results provide new constraints for developing thin layer
models with a flowing layer overtopping a static zone (see e.g.
Bouchut et al. [50,51]).
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Appendix A. Numerical method

We propose here a numerical algorithm to solve the dynamic
flow problem described above. We use a time implicit (backward)
Euler scheme for the time discretization of the field equations,
which gives a set of nonlinear equations for the velocity u, the
deviatoric stress tensor ¢’ and the pressure p. At each iteration in
time, an iterative algorithm is used to solve these nonlinear
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equations. Note that in the case of the proposed viscoplastic model,
numerical difficulties arise from the non-differentiability of the
viscoplastic and friction terms. This means that the numerical
techniques developed for Navier-Stokes fluids cannot be used. To
overcome these difficulties, the iterative decomposition—coor-
dination formulation coupled with the augmented Lagrangian
method of [52,53] is adapted here.

To include frictional effects in the algorithm, we first regularize
the friction law (20). This can be done (see also [33,54]) by intro-
ducing a small frictional viscosity #; < 1 in the Coulomb friction
law and writing (20) as

w— L [1 —MLGT, (25)

where, as before, [ ], is the positive part. Note that using this regu-
larization, the friction law has the same mathematical structure as
the viscoplastic constitutive Eq. (8) and we can use the same itera-
tive decomposition-coordination formulation. For all the com-
putations for the present paper, the regularization frictional
viscosity coefficient was chosen to be 7, = 0.1 Pas mL

An ALE (Arbitrary Lagrangian-Eulerian) description is used to
compute the evolution of the fluid domain D. For the sake of sim-
plicity, we will not present here the ALE formulation of the numeri-
cal scheme. As a matter of fact, the numerical algorithm proposed
here deals only with a Stokes-type problem at each time step and
the implementation of the Navier-Stokes equations in an ALE for-
mulation is rather standard (see for instance [55-58]).

A.1. Time discretization

Let At be the time step and u¥, ¢’* and p* be the values of the
unknowns u(kAt), 6’ (kAt) and p(kAt). Let us also assume that we
have computed all these variables at time t = (k — 1)At.

The time implicit (backward) Euler scheme for the field Egs.
(15), (16) and (8) gives the following nonlinear equations for the
unknowns u¥, ¢’* and p*

ut — ! k k s ik k :
Pl HU -Vu* ) —dive™ +Vp“=pf in D, (26)
divw*)=0 in D, (27)
1 K] i
D uk _ _ o.rc7 28
M) = o | e (@8)

while the boundary conditions read

6‘n=0 on T, (29)

ek
u.n=0, u’;zl[1“5[a"]+} 6%, on T} (30)

Ul | o

A.2. The algorithm at each time step

Let us fix the iteration in time, k. In order to describe the algo-
rithm, let r,r; > 0 be the augmented Lagrangian coefficients. We
start with u*® = u*-1 g0 = g1 6%° — g1 and let ut"-1 g1
and ¢%"' be known. We also assume that the strain rate multipli-
ers y*"-1 . D — R¥3 and slip rate multipliers 8" : I', — R? intro-
duced below are known. Convergence is achieved when the
difference between uk" g’ pkn gk and ukn-1, gkn-1 pkn-1 ghn-1

is sufficiently small.

Step 1. The first step consists in solving the following linear
equation of the Stokes type for the velocity field u*" and the pres-
sure pkn:

div(u") =0, (31)

uk,n _ uk—l
p (7A —+ ukn-t. Vu"-”) —div(rD(u*")) + Vpho

— div(a/k,n—l _ r.j)k,n—l) + pf7 (32)
with the boundary conditions

(rD(u"=”) _ pk,nl + o./k‘n—] _ r?k‘n—l)n — O, on I—*57

u“".n=0, on I},
(rD(u"'”) _pk‘nl + o./k‘n—l _ rj)k‘n—l)_r

k.n—1
T

= "+ ek on T

Step 2. First we wupdate the viscosity coefficient
n = n(||[D@*™)||, p*") and the yield limit k = x(p*"). Then, we com-
pute the strain rate multipliers %" and the slip rate multipliers 5"

. 1 K
k, sk n—1 k,
= 2n+r {1 h lekn=1 + rD(ukn) || +(6 ), 33)
1 fel—okm ] } k-1 k
5k.n - _ _ N n +n (O' -1 rf" ,n), (34)
Ny +1y | op" ! —rpup" || ! r

according to the decomposition-coordination formulation coupled
with the augmented Lagrangian method.
Step 3. Finally, we update the stress deviator ¢’*" and the tan-

gential stress a";'” using

o./k.n _ o./l<,n—1 + r(D(uk,n) _ .)']k.ﬂ)7

kn _ _kn-1 k.n k.n
oy =0y —rp(ur” —45").

Solving the Stokes type problem at step 1 is a standard problem
in fluid mechanics and many techniques are available for this (see
for instance [59]). Here, D is discretized using a family of triangu-
lations (7,), made of finite elements (h > 0 is the discretization
parameter representing the greatest diameter of a triangle in 7).
V, is the FE space for the velocity field u*", W, the FE space for
the pressure field p*",Q,, the FE space for the stresses deviators
¢ and strain rate multipliers %" and R, the space for the for slip

rate multipliers 6" and tangential stresses ¢+". Note that these
finite element spaces cannot be chosen independently. For
instance, in two dimensional computations, if V, =[continuous
P2] (i.e. the space of continuous functions which are second degree
polynomials on each triangle), then we must choose W} =[con-
tinuous P1], Qj = [discontinuous P1] and Rj =[continuous P2].
This choice is used in all simulations presented in this paper.
Note that if convergence is achieved, then the iterative solution
of the algorithm satisfies the nonlinear system (26)-(30). Indeed, if

the convergence criterion ¢*" = g*"-1,gk" = gk"1 is satisfied,

then D(u*") = y*" and ut" = 5", From (33), we determine that
the pair D(u*") and ¢*" satisfies the flow rule (28) and the pair
u*" and o*" satisfies the friction law (20). Moreover we find that
D(u*") = D(u*"-'), which means that wu*"=u*"1 and

uk = ukn g% = gk gk = gk" p* — pkn is a solution of (26)-(30).



18 LR. Ionescu et al./Journal of Non-Newtonian Fluid Mechanics 219 (2015) 1-18

References

[1] N. Brodu, P. Richard, R. Delannay, Shallow granular flows down flat frictional
channels: steady flows and longitudinal vortices, Phys. Rev. E 87 (2013)
022202, http://dx.doi.org/10.1103/PhysRevE.87.022202.

[2] E.C. Bingham, Fluidity and Plasticity, Mc Graw-Hill, New-York, 1992.

[3] GDR MiDi group, On dense granular flows, Eur. Phys. ]. E14 (2004) 341-365.

[4] C. Ancey, Plasticity and geophysical flows: a review, J. Non-Newton. Fluid
Mech. 142 (2007) 4-35.

[5] B. Andreotti, Y. Forterre, O. Pouliquen, Les milieux granulaires, entre fluide et
solide, Savoirs Actuels, EDP Sci. (2011).

[6] A. Mangeney, O. Roche, O. Hungr, O. Mangold, G. Faccanoni, A. Lucas, Erosion
and mobility in granular collapse over sloping beds, ]. Geophys. Res. — Earth
Surf. 115 (2010) F03040.

[7] E. Lajeunesse, A. Mangeney-Castelnau, J.-P. Vilotte, Spreading of a granular
mass on a horizontal plane, Phys. Fluids 16 (2004) 2371-2381.

[8] E. Lajeunesse, ].B. Monnier, G.M. Homsy, Spreading of a granular mass on a
horizontal plane, Phys. Fluids 17 (2005) 103302.

[9] G. Lube, H.E. Huppert, R.S.J. Sparks, M. Hallworth, Axisymmetric collapse of
granular columns, J. Fluid Mech. 508 (2004) 175.

[10] G. Lube, H.E. Huppert, R.S. Sparks, A. Freundt, Static and flowing regions in
granular collapses down channels, Phys. Fluids 19 (2007) 043301.

[11] G. Lube, H.E. Huppert, R. Sparks, A. Freundt, Granular column collapses down
rough, inclined channels, ]. Fluid Mech. 675 (2011) 347-368.

[12] N.J. Balmforth, R.R. Kerswell, Granular collapse in two dimensions, ]. Fluid
Mech. 538 (2005) 399.

[13] S. Siavoshi, A. Kudrolli, Failure of a granular step, Phys. Rev. E 71 (2005)
051302.

[14] L. Lacaze, J. Phillips, R.R. Kerswell, Planar collapse of a granular column:
experiments and discrete-element simulations, Phys. Fluids 20 (2008) 063302.

[15] AJ. Hogg, Two dimensional granular slumps down slopes, Phys. Fluids 19
(2008) 093301.

[16] M. Farin, A. Mangeney, O. Roche, Fundamental changes of granular flow
dynamics, deposition, and erosion processes at high slope angles: insights
from laboratory experiments, ]. Geophys. Res. Earth Surf. 119 (2014) 504-532.

[17] G.B. Crosta, S. Imposimato, D. Roddeman, Numerical modeling of 2-D granular
step collapse on erodible and non-erodible surface, . Geophys. Res. 114 (2009)
F03020, http://dx.doi.org/10.1029/2008]F001186.

[18] A. Mangeney-Castelnau, F. Bouchut, J.-P. Vilotte, E. Lajeunesse, A. Aubertin, M.
Pirulli, On the use of Saint-Venant equations to simulate the spreading of a
granular mass, J. Geophys. Res. 110 (2005) B09103, http://dx.doi.org/10.1029/
2004JB003161.

[19] R.R. Kerswell, Dam break with coulomb friction: a model for granular
slumping, Phys. Fluids 17 (2005) 057101.

[20] E. Larrieu, L. Staron, E.J. Hinch, Raining into shallow water as a description of
the collapse of a column of grains, J. Fluid Mech. 554 (2006) 259.

[21] E.E. Doyle, H.E. Huppert, G. Lube, H.M. Mader, R.S.J. Sparks, Static and flowing
regions in granular collapses down channels: Insights from a sedimenting
shallow water model, Phys. Fluids 19 (2007) 106601.

[22] L. Staron, EJ. Hinch, Study of the collapse of granular columns using 2D
discrete-grains simulation, J. Fluid Mech. 545 (2005) 1.

[23] R. Zenit, Computer simulations of the collapse of a granular column, Phys.
Fluids 17 (2005) 031703.

[24] L. Girolami, V. Hergault, G. Vinay, A. Wachs, A three-dimensional discrete-
grain model for the simulation of dam-break rectangular collapses:
comparison between numerical results and experiments, Granul. Matter 14
(2012) 381-392.

[25] L. Lacaze, R.R. Kerswell, Axisymmetric granular collapse: a transient 3D flow
test of viscoplasticity, Phys. Rev. Lett. 102 (2009) 108305.

[26] C. Meruane, A. Tamburrino, O. Roche, On the role of the ambient fluid on
gravitational granular flow dynamics, J. Fluid Mech. 648 (2010) 381.

[27] P.-Y. Lagrée, L. Staron, S. Popinet, The granular column collapse as a
continuum: validity of a two-dimensional Navier-Stokes model with a u(I)-
rheology, J. Fluid Mech. 686 (2011) 378-408.

[28] LR. Ionescu, Viscoplastic shallow flow equations with topography, J. Non-
Newton. Fluid Mech. 193 (2013) 116-128.

[29] L.E. Silbert et al., Granular flow down an inclined plane: Bagnold scaling and
rheology, Phys. Rev. E 64 (2001) 051302.

[30] P. Jop, Y. Forterre, O. Pouliquen, Crucial role of sidewalls in dense granular
flows: consequences for the rheology, J. Fluid Mech. 541 (2005) 167-192.

[31] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows,
Nature 441 (2006) 727-730.

[32] O. Cazacu, LR. lIonescu, Compressible rigid visco-plastic fluids, J. Mech. Phys.
Solids 54 (2006) 1640-1667.

[33] LR. Ionescu, Onset and dynamic shallow flow of a viscoplastic fluid on a plane
slope, J. Non-Newton. Fluid Mech. 165 (19-20) (2010) 1328-1341.

[34] P. Perzyna, Fundamental problems in viscoplasticity, in: H.L. Dryden (Ed.),
Advances In Applied Mechanics, 9, Academic Press, 1966, pp. 243-377.

[35] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod,
Paris, 1972.

[36] D.C. Drucker, W. Prager, Soil mechanics nd plastic analysis of limit design,
Quart. Appl. Math. 10 (1952) 157-175.

[37] S.B. Savage, The mechanics of rapid granular flows, Adv. Appl. Mech. 24 (1984)
289-366.

[38] C. Ancey, P. Coussot, P. Evesque, A theoretical framework for very concentrated
granular suspensions in steady simple shear flow, J. Rheol. 43 (1999) 1673-
1699.

[39] O. Pouliquen, Y. Forterre, Friction law for dense granular flows: applications to
the motion of a mass down a rough inclined plane, J. Fluid Mech. 453 (2002)
133-151.

[40] N. Taberlet, P. Richard, A. Valance, R. Delannay, W. Losert, J.M. Pasini, J.T.
Jenkins, Super stable granular heap in thin channel, Phys. Rev. Lett. 91 (2003)
264301.

[41] F. Bouchut, R. Eymard, A. Prignet, Convergence of conforming approximations
for inviscid incompressible Bingham fluid flows and related problems, J. Evol.
Eq. 14 (2014) 635-669.

[42] C. Lusso, Modélisation numérique des écoulements gravitaires viscoplastiques
avec transition fluide/solide, PhD thesis, Université Paris-Est, Champs-sur-
Marne, 2013.

[43] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251-265.

[44] Martin Rentschler, PhD, 2009.

[45] C. Meriaux, Two dimensional fall of granular columns controlled by slow
horizontal withdrawal of a retaining wall, Phys. Fluids 18 (2006) 093301.

[46] P.Saramito, N. Roquet, An adaptive finite element method for viscoplastic fluid
flows in pipes, Comput. Methods Appl. Mech. Eng. 190 (2001) 5391-5412.

[47] O. Cazacu, LR. lonescu, T. Perrot, Steady-state flow of compressible rigid-
viscoplastic media, Int. J. Eng. Sci. 44 (2006) 1082-1097.

[48] E.L. Thompson, H.E. Huppert, Granular column collapses: further experimental
results, J. Fluid Mech. 575 (2007) 177-186.

[49] A. Lucas, A. Mangeney, ].-P. Ampuero, Frictional weakening in landslides on
Earth and on other planetary bodies, Nat. Commun. 5 (2014) 3417.

[50] F. Bouchut, LR. Ionescu, and A. Mangeney, An analytic approach for the
evolution of the static-flowing interface in viscoplastic granular flows, 2014.

[51] C. Lusso, F. Bouchut, A. Ern, A. Mangeney, A Simplified Model of Thin Layer
Static/Flowing Dynamics for Granular Materials with Yield, submitted for
publication (2014).

[52] R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator Splitting
method in Non-Linear Mechanics, SIAM Stud. Appl. Math. (1989).

[53] M. Fortin, R. Glowinski, Méthodes de Lagrangien augmenté, application a la
résolution de problémes aux limites, Dunod, 1982.

[54] LR. lonescu, Augmented Lagrangian for shallow viscoplastic flow with
topography, J. Comput. Phys. 242 (2013) 544-560.

[55] T. Hughes, W. Liu, T. Zimmermann, Lagrangian-Eulerian finite element
formulation for incompressible viscous flows, Comput. Methods Appl. Mech.
Eng. 29 (1981) 329-349.

[56] B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes
equations with a free surface, Int. ]. Comput. Fluid Dyn. 6 (1996) 175-188.

[57] V. Maronnier, M. Picasso, J. Rappaz, Numerical simulation of three dimensional
free surface flows, Int. J. Numer. Method Fluids 42 (2003) 697-716.

[58] F. Duarte, R. Gormaz, S. Natesan, Arbitrary Lagrangian-Eulerian method for
Navier-Stokes equations with moving boundaries, Comput. Methods Appl.
Mech. Eng. 193 (2004) 4819-4836.

[59] O. Pironneau, Finite Element Methods for Fluids, John Wiley & Sons Ltd.,
Chichester, 1989.

[60] K. Kelfoun, T.H. Druitt, Numerical modeling of the emplacement of Socompa
rock avalanche, Chile, ]. Geophys. Res. 110 (2005) B12202.


http://dx.doi.org/10.1103/PhysRevE.87.022202
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0010
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0010
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0015
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0020
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0020
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0025
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0025
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0030
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0030
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0030
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0035
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0035
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0040
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0040
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0045
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0045
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0050
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0050
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0055
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0055
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0060
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0060
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0065
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0065
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0070
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0070
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0075
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0075
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0080
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0080
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0080
http://dx.doi.org/10.1029/2008JF001186
http://dx.doi.org/10.1029/2004JB003161
http://dx.doi.org/10.1029/2004JB003161
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0095
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0095
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0100
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0100
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0105
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0105
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0105
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0110
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0110
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0115
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0115
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0120
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0120
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0120
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0120
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0125
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0125
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0130
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0130
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0135
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0135
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0135
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0135
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0140
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0140
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0145
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0145
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0150
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0150
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0155
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0155
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0160
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0160
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0165
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0165
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0170
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0170
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0170
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0170
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0175
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0175
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0175
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0180
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0180
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0185
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0185
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0190
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0190
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0190
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0195
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0195
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0195
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0200
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0200
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0200
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0205
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0205
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0205
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0215
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0225
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0225
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0230
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0230
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0235
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0235
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0240
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0240
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0245
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0245
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0260
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0260
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0265
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0265
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0265
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0270
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0270
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0275
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0275
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0275
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0280
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0280
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0285
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0285
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0290
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0290
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0290
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0295
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0295
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0295
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0300
http://refhub.elsevier.com/S0377-0257(15)00041-5/h0300

	Viscoplastic modeling of granular column collapse with  pressure-dependent rheology
	1 Introduction
	2 Modeling granular collapse
	2.1 Pressure dependent viscoplastic fluids
	2.2 Experimental setup
	2.3 Problem statement
	2.4 Rheological parameters

	3 Variable viscosity versus constant viscosity
	3.1 Collapse over a horizontal plane ? 
	3.2 Collapse over an inclined plane ? 

	4 Influence of the boundary conditions
	4.1 Influence of the gate
	4.2 Influence of friction on the back wall and at the bed

	5 Insight into the flow dynamics
	5.1 Velocity distribution
	5.2 Yield limit distribution and stagnant zones
	5.3 Deformation of horizontal and vertical layers

	6 Discussion and conclusion
	Acknowledgements
	Appendix A Numerical method
	A.1 Time discretization
	A.2 The algorithm at each time step

	References


