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[1] Numerical modeling of debris avalanche is presented here. The model uses the long-
wave approximation based on the small aspect ratio of debris avalanches as in classical
Saint Venant model of shallow water. Depth-averaged equations using this approximation
are derived in a reference frame linked to the topography. Debris avalanche is treated here
as a single-phase, dry granular flow with Coulomb-type behavior. The numerical finite
volume method uses a kinetic scheme based on the description of the microscopic
behavior of the system to define numerical fluxes at the interfaces of a finite element
mesh. The main advantage of this method is to preserve the height positivity. The
originality of the presented scheme stands in the introduction of a Dirac distribution of
particles at the microscopic scale in order to describe the stopping of a granular mass when
the driving forces are under the Coulomb threshold. Comparisons with analytical solutions
for dam break problems and experimental results show the efficiency of the model in
dealing with significant discontinuities and reproducing the flowing and stopping phase of
granular avalanches. The ability of the model to describe debris avalanche behavior is
illustrated here by schematic numerical simulation of an avalanche over simplified
topography. Coulomb-type behavior with constant and variable friction angle is compared
in the framework of this simple example. Numerical tests show that such an approach not
only provides insights into the flowing and stopping stage of the granular mass but allows
observation of interesting behavior such as the existence of a fluid-like zone behind a
stopped solid-like granular mass in specific situations, suggesting the presence of
horizontal surfaces in the deposited mass. INDEX TERMS: 3210 Mathematical Geophysics:

Modeling; 3230 Mathematical Geophysics: Numerical solutions; 5415 Planetology: Solid Surface Planets:

Erosion and weathering; 8499 Volcanology: General or miscellaneous; 9810 General or Miscellaneous: New
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1. Introduction

[2] Granular avalanches such as rock or debris flows
regularly cause large amounts of human and material
damages. Numerical simulation of granular avalanches
should provide a useful tool for investigating, within real-
istic geological contexts, the dynamics of these flows and of
their arrest phase and for improving the risk assessment of

such natural hazards. Risk evaluation of these events
requires the comprehension of two fundamental problems:
the initiation and the destabilization phase and in the other
hand the flowing and stopping phase. Even though the
specification of the initial conditions is a primary problem
which is not yet resolved, we concentrate here on the
description of the flowing and stopping phase. It is worth
to mention that by construction the flow models generally
do not address the problem of the initiation and the
destabilization phase of an avalanche.
[3] During a granular avalanche, the characteristic length

in the flowing direction is generally much larger than the
vertical one, e.g., the avalanche thickness. Such a long-wave
scaling argument has been widely used in the derivation of
continuum flow models for granular avalanches [e.g., Hunt,
1985; Iverson, 1997, Iverson and Denlinger, 2001; Jenkins
and Askari, 1999; Savage and Hutter, 1989; Hutter et al.,
1995; Douady et al., 1999]. This leads to depth-averaged
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models governed by generalized Saint Venant equations.
These models provide a fruitful paradigm for investigating
the dynamics and the extent of granular avalanches in the
presence of smooth topography [Hutter et al., 1995;Naaim et
al., 1997; Pouliquen, 1999]. Granular surface flow models
are closely related to other Saint Venant models used in ocean
and hydraulic engineering to describe both wave propaga-
tion, hydraulic jump and open channel flow among others.
[4] The physics and the rheology of granular avalanches

are indeed challenging problems and the subject of an active
research [e.g., Hunt, 1994; Laigle and Coussot, 1997;
Arattano and Savage, 1994; Macedonio and Pareschi,
1992; Whipple, 1997; Iverson, 1997]. Despite the lack of
a clear physical understanding of avalanche flow, useful
basic behavior of granular avalanches can be derived from
experimental approaches [e.g., Pouliquen, 1999; Douady et
al., 1999]. Without going into detailed rheological assump-
tions, which would be rather uncertain due to the lack of a
physical understanding of the actual forces acting in debris
avalanches, it is of interest here to emphasize some of the
characteristics that make such flows quite specific. The first
characteristic is that granular media has the ability to remain
static (solid) even along an inclined surface. This observa-
tion is related since Coulomb to some macroscopic solid-
like friction and the system is able to flow only when the
driving force reaches a critical value. In classical Coulomb’s
friction, the friction coefficient remains constant [e.g.,
Hutter et al., 1995; Naaim et al., 1997]. More evolved
friction models, which assume a friction coefficient that
depends on both the avalanche mean velocity and thickness,
has been recently proposed [Pouliquen, 1999; Douady et
al., 1999] on the basis of laboratory experiments and
theoretical assumptions. These models have been shown
quite useful to explain the geometry of the granular flow as
well as the observed runout of granular avalanches. In both
cases, the existence of a macroscopic friction threshold
leads to non smooth dynamics that has to be handled within
appropriate mathematical and numerical formulations.
The second characteristic is that topography along which
the avalanche is flowing can be quite steep and rough.
Long-wave approximation has therefore to be derived in a
reference frame locally tangent to the bedrock or to the free
surface of the flow, in contrast to the gravity frame of
reference used in classical Saint Venant models in hydraulic
engineering. The definition of such a tangent frame of
reference is not obvious for a realistic earth topography
and is still a challenging problem.
[5] Computational methods developed in geophysics for

solving the governing conservation laws of debris ava-
lanches have mostly focused on the resolution of shock
waves and surges. They are based on fractional step
methods and high resolution approximate Riemann solvers
like the Harten-Lax-van Leer (HLL) solver [Toro, 1997].
Most of these methods are based on conservative non-
oscillatory finite differences [Gray et al., 1999; Wieland et
al., 1999; Tai, 2000; Tai et al., 2002] or finite volumes
which do have the nice property of being conservative with
respect to the flow height [Naaim et al., 1997; Laigle and
Coussot, 1997; Denlinger and Iverson, 2001]. They are
based on an Eulerian formulation, a Lagrangian formulation
[Zwinger, 2000] or a Lagrangian-Eulerian operator splitting
[Mangeney et al., 2000]. These Riemann methods do

present significant improvements over the early Lagrangian
finite difference methods [Savage and Hutter, 1989, 1991;
Greve et al., 1994]. However, they do not preserve height
positivity, and specific numerical development has to be
introduced in the wetting-drying transition where the system
loses hyperbolicity or an artificial small height is introduced
in the regions where no fluid is present as in the work by
Heinrich et al. [2001].
[6] We consider here an alternative numerical scheme to

compute debris avalanches based on the kinetic interpreta-
tion of the system which intrinsically preserves height
positivity. Kinetic schemes have been proposed by Audusse
et al. [2000] and Bristeau et al. [2001] to compute Saint
Venant equation in hydraulic problems. A survey of
the theoretical properties of these schemes is given by
Perthame [2002]. Recently, kinetic schemes have been
extended to include stiff source term [Botchorishvilli et
al., 2000; Perthame and Simeoni, 2001]. Kinetic schemes
have been shown to preserve the height positivity and to
be able to treat the wetting-drying transition. However,
classical kinetic schemes do not allow solid/fluid-like tran-
sitions, associated with a nonsmooth friction. The idea of
the present scheme is to introduce a ‘‘zero temperature’’
kinetic approximation when the driving force is under the
Coulomb threshold (solid-like behavior).
[7] We first present here the basic equations and conser-

vation laws which govern the evolution of granular ava-
lanches along a realistic topography. In particular, using
classical scaling arguments for surface flow, we derive the
depth averaged Saint Venant equations in a reference frame
linked to the bed topography and we review some minimal
assumptions, inspired from experiments, on the character-
istics of the frictional behavior of granular avalanches. Then
we present a numerical scheme based on a finite volume
approximation of the governing set of conservation laws. At
this stage, we introduce a kinetic solver which takes into
account the existence of a friction threshold. The accuracy
of this kinetic scheme is assessed against the classical dam
break problem over an inclined plane and the validation of
the flowing and the stopping phase is performed by com-
paring the numerical results with laboratory experiments.
Finally a simple application of the model is performed by
simulating a debris avalanche over a schematic bed topog-
raphy. Comparisons between models with constant and
nonconstant friction are discussed based on the runout
distance, the shape of the deposit and the mechanism of
the stopping phase.

2. Equations

[8] Debris avalanches are described here within a contin-
uum theoretical framework as a single-phase, incompress-
ible material with constant density [e.g., Savage and Hutter,
1989; Iverson and Denlinger, 2001]. The evolution is
therefore governed at time t � 0 by the mass and momen-
tum conservation laws:

r � u ¼ 0; ð1Þ

r
@u

@t
þ u�ru

� �
¼ �r�sþ rg; ð2Þ
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where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))
denotes the three-dimensional velocity vector inside the
avalanche in a (x, y, z) coordinate system that will be
discussed later, S(x, y, z, t) is the Cauchy stress tensor, r the
mass density, and g the gravitational acceleration. The
bottom boundary, or bed, is described by a surface yb(x, y,
z, t) = z � b(x, y) = 0 and the free surface of the flow by
ys(x, y, z, t) = z� s(x, y, t)	 z� b(x, y)� h(x, y, t) = 0, where
where h(x, y, t) is the depth of the avalanche layer and s(x,
y, t) is the free surface elevation.
[9] A kinematic boundary condition is imposed on the

free and the bed surfaces, that specifies that mass neither
enters nor leaves at the free surface or at the base:

dys

dt
js ¼

@ys

@t
þ u�rys

� �
js ¼ 0; ð3Þ

dyb

dt
jb ¼

@yb

@t
þ u�ryb

� �
jb ¼ 0; ð4Þ

as well as a stress free boundary condition at the surface,
neglecting the atmospheric pressure

S�ns ¼ 0; ð5Þ

where ns denotes the unit vector normal to the free surface.
[10] Depth averaging of these equations and shallow flow

assumption require the choice of an appropriate coordinate
system. During the flow, the avalanche thickness is much
smaller than its extent parallel to the bed. In the case of
significant slopes, the shallow flow assumption is more
significant in a reference frame linked to the topography and
the classical shallow water approximation relating horizon-
tal and vertical direction is not appropriate. As in the work
by Denlinger and Iverson [2001], the equations are written
here in terms of a local, orthogonal Cartesian coordinate
system in which the z coordinate is normal to the local
topography. We define a local x axis corresponding to the
projection of an arbitrary fixed ~x direction in the local
tangent plane to the topography and y = z ^ x (Figure 1).
Note that the choice of an appropriate reference frame is
not straightforward and may lead to a nonorthonormal
coordinate system as by Heinrich et al. [2001], Assier-
Rzadkiewicz et al. [2000] or Sabot et al. [1998]. The
variation in space of a local coordinate system introduces
errors in the calculation of the derivatives requiring slow
variation of the bedrock. The equations developed in a
coordinate system linked to the topography are not
directly applicable in a fixed reference frame as was
performed by Naaim et al. [1997] and Naaim and Gurer
[1998]: appropriate rotation has to be used to transform
properly topography-linked equations in a fixed reference
frame [see, e.g., Douady et al., 1999].
[11] In the reference frame linked to the topography,

equations of mass and momentum in the x and y direction
derived by the integration of Navier-Stokes equations (1),
and (2) with boundary conditions (3)–(5) read

@h

@t
þ div h�uð Þ ¼ 0; ð6Þ

@

@t
h�uð Þ þ @

@x
hu2

� �
þ @

@y
huvð Þ ¼ gxghþ

1

r
@

@x
hsxxð Þ

þ 1

r
@

@y
hsxy
� �

þ 1

r
Tx; ð7Þ

@

@t
h�vð Þ þ @

@x
huvð Þ þ @

@y
hv2

� �
¼ gyghþ

1

r
@

@x
hsxy
� �

þ 1

r
@

@y
hsyy
� �

þ 1

r
Ty; ð8Þ

where �u = (�u;�v) denotes the depth-averaged flow velocity in
the reference frame (x, y, z) defined below, h the fluid depth,
and gi are coefficients, function of the local slope, defining
the projection of the gravity vector along the i direction. The
traction vector T = (Tx, Ty, Tz) = �S � nb, where nb is the
unit vector normal to the bed, read

T ¼
sxx @b

@x þ sxy @b
@y � sxz

sxy @b
@x þ syy @b

@y � syz
sxz @b@x þ syz @b@y � szz

0
B@

1
CA

b

; ð9Þ

where the notation fb indicates the value of f at the base (at
z = 0). Note that equations (6)–(8) are obtained without any
approximation. In the following, we will underline the
assumptions (long-wave approximation and the specifica-
tion of a friction law) leading to simplify and close the
equations.

2.1. Approximation

[12] A small aspect ratio � = H/L, where H and L are two
characteristic dimensions along the z axis and in the plane
xOy, respectively is then introduced in the depth-averaged x
and y equations (equations (7) and (8)) and in the nondepth-
averaged z equation obtained from the z projection of
equation (2). An asymptotic analysis with respect to �
[e.g., Gray et al., 1999] leads to neglect the acceleration
normal to the topography and the horizontal gradients of the
stresses in the z equation, leading to

szz ¼ rggz h� zð Þ; ð10Þ

where gz = cos q, with q defined as the angle between the
vertical axis and the normal to the topography (Figure 1).
Note that neglecting the horizontal gradients @ siz/@ xi for

Figure 1. Reference frame (x, y, z) linked to the
topography and galilean reference frame (~x;~y;~z) with q the
steepest slope angle.
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i = x, y in the z equation do not allows to neglect siz|b (at
the base) in Tx and Ty [Gray et al., 1999]. From the scale
analysis with respect to �, the normal traction reduced to
Tz = �szz|b and (@/@xi) (hsxy) can be neglected in the x and y
depth-averaged momentum equations.
[13] The shape of the vertical profile of the horizontal

velocity in debris avalanche flow is still an open question.
The conservation of the initial stratigraphy sometimes
observed in the deposits of a debris avalanche has led to
the assumption that all the deformation is essentially located
in a fine boundary layer near the bed surface, so that the
horizontal velocity is approximately constant over the depth
[e.g., Savage and Hutter, 1989; Naaim et al., 1997]. More
recently, laboratory experiments on granular flows suggest a
linear profile of the horizontal velocity [Azanza, 1998;
Douady et al., 1999]. A weak influence of the vertical
profile of the horizontal velocity has been observed by
Pouliquen and Forterre [2002] for granular flows over
inclined plane. Note that in the locally tangent frame of
reference, simple assumption for the velocity profile (e.g.,
constant or linear profile) can be made unlike in the galilean
fixed reference frame. We assume here a vertically constant
velocity so that uiuj = uiuj. In the following, the overline
will be dropped and (u, v) will represent the mean velocity
field.

2.2. Flow and Friction Law

[14] We consider here the minimal model by assuming
isotropy of normal stresses, i. e. sxx = syy = szz contrary to
Savage and Hutter [1989] where earth pressure coefficients
are defined as the ratio of the longitudinal stresses to the
normal stress. A relation deduced from the mechanical
behavior of the material has to be imposed between the
tangential stress Tt = (Tx, Ty), and u and h in order to close
equations (6), (7), (8). The depth-averaged mass is then
considered as an effective material submitted to an empirical
friction introduced in the tangential traction term Tt in a way
similar to the experimental approach of Pouliquen [1999].
[15] Dissipation in granular materials is generally

described by a Coulomb-type friction law relating the norm
of the tangential traction kTtk at the bed to the norm of the
normal traction kTnk = jTzj = jszz|bj at the bed, through a
factor m = tan d involving the dynamic friction angle d

k Tt k
 sc ¼ m k Tn k ¼ mjszzjbj; ð11Þ

and acting opposite to the velocity. The value of sc defines
the upper bound of the admissible stresses. In the
considered coordinate system, using equation (10), sc read

sc ¼ mrggzh: ð12Þ

The resulting Coulomb-type behavior can be summarized

k Tt k � sc ) Ti ¼ �sc
ui

k u k ; ð13Þ

k Tt k< sc ) u ¼ 0; ð14Þ

where i = x, y. The application of this behavior poses the
problem of the evaluation of Tt as will be described in
section 3.3.

[16] Laboratory experiments [Pouliquen, 1999] have
shown that laws involving constant friction angle are
restricted to granular flows over smooth inclined planes or
to flows over rough bed with high inclination angles. The
assumption of constant friction angle seems to fail for
granular flows over rough bedrock for a range of inclination
angles, for which steady uniform flows can be observed
[Pouliquen, 1999]. In this range, the frictional force is able
to balance the gravity force indicating a shear rate depen-
dence. Pouliquen [1999] proposed an empirical friction
coefficient m = tan d as a function of the Froude number
kuk/

ffiffiffiffiffi
gh

p
and the thickness h of the granular layer

m k u k; hð Þ ¼ tan d1 þ ðtan d2 � tan d1Þ exp �b
h

d

ffiffiffiffiffi
gh

p

k u k

� �
; ð15Þ

where d1, d2, and d are characteristics of the material which
can be measured from the deposit properties. d is a length
characterizing the friction law, which is scaled on the mean
diameter of particles. In the case of spherical glass particles
used in these laboratory experiments d is of the order of the
diameter of the beads and b = 0.136 [Pouliquen, 1999].
Equation (15) provides a friction angle, ranging between
two values d1 and d2, depending on the values of the
velocity and thickness of the flow. The friction coefficient m
is higher for small values of the thickness and high values of
the velocity contrary to the proposed function of Gray et al.
[1999] where lowest elevations (e.g., the rear and the front)
are subject to small friction. What this empirical law means
in terms of microscopic forces is still an open problem.
Hydraulic model using this flow law has been shown to be
able to predict the spreading of a granular mass from release
to deposit [Pouliquen and Forterre, 2002].

2.3. Governing Equations

[17] Finally, the depth-averaged stress tensor and the
traction vector involved in the x and y depth-averaged
equations reduce to

S ¼
rggz h2 0 0

0 rggz h2 0

0 0 rggz h2

0
@

1
A; ð16Þ

and if kTtk � sc

T ¼
�mrggzh

ux
kuk

�mrggzh
uy
kuk

�rggzh

0
@

1
A; ð17Þ

respectively, and the resulting set of equations reads

@h

@t
þ div huð Þ ¼ 0; ð18Þ

and if kTtk � sc, the granular mass is flowing following the
dynamical equations

@

@t
huð Þ þ @

@x
hu2
� �

þ @

@y
huvð Þ ¼ gxghþ

@

@x
ggz

h2

2

� �

� mggzh
ux

k u k ; ð19Þ
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@

@t
hvð Þ þ @

@x
huvð Þ þ @

@y
hv2
� �

¼ gyghþ
@

@y
ggz

h2

2

� �

� mggzh
uy

k u k ; ð20Þ

or if kTtk < sc, the granular mass stops and the momentum
equations are replaced by u = 0. The evaluation of Tt is
achieved by using a classical resolution method for
nonsmooth mechanics [see, e.g., Staron, 2002] and will
be developed in section 3.3.

3. Numerical Model

3.1. Finite Volume Method

[18] The model developed here is based on the classical
finite volume approach for solving hyperbolic systems
using the concept of cell centered conservative quantities.
This type of methods requires the formulation of the
equation in terms of conservation laws. The system of
equations (18), (19), and (20) can be written

@U

@t
þ divFðUÞ ¼ BðUÞ; ð21Þ

with

U ¼
h

qx
qy

0
@

1
A; FðUÞ ¼

qx qy
q2x
h
þ g

2
h2

qxqy
h

qxqy
h

q2y
h
þ g

2
h2

0
B@

1
CA; ð22Þ

BðUÞ ¼
0

gxghþ 1
r Tx

gyghþ 1
r Ty

0
@

1
A; ð23Þ

where q = hu is the material flux.
[19] The equations are discretized here on general trian-

gular grids with a finite element data structure using a
particular control volume which is the median based dual
cell (Figure 2a). The finite element grid is appropriate to
describe variable topography and refinement is performed
when strong topographic gradients occur. Dual cells Ci are

obtained by joining the centers of mass of the triangles
surrounding each vertex Pi. We use the following notations:

Ki set of nodes Pj surrounding Pi,
Ai area of Ci;
�ij boundary edge belonging to cells Ci and Cj;
Lij length of �ij;
nij unit normal to �ij, outward to Ci.
If Pi is a node belonging to the boundary � of the numerical
domain, we join the centers of mass of the triangles adjacent
to the boundary to the middle of the edge belonging to �
(see Figure 2b). Let �t denote the time step, Ui

n the
approximation of the cell average of the exact solution at
time t n

Un
i ’

1

Ai

Z
Ci

Uðtn; xÞdx; ð24Þ

and B(Ui
n) the approximation of the cell average of the exact

source term at time t n

BðUn
i Þ ’

1

Ai

Z
Ci

BðUn
i Þdx: ð25Þ

Then the finite volume scheme writes

Unþ1
i ¼ Un

i �
X
j2Ki

aijF Un
i ;U

n
j ; nij

� �
þ�tB Un

i

� �
; ð26Þ

with

aij ¼
�tLij

Ai

; ð27Þ

and where F (Ui
n, Uj

n, nij) denotes an interpolation of the
normal component of the flux F(U) � nij along the edge �ij.
The treatment of the boundary conditions (i. e. the
calculation of the boundary fluxes) using a Riemann
invariant is addressed by Bristeau et al. [2001].
[20] The main difficulty is to compute fluxes at the

control volumes interfaces �ij and the overall stability of
the method requires some upwinding in the interpolation of
the fluxes [Audusse et al., 2000]. The computation of these
fluxes constitutes the major difference between the kinetic
scheme used here and Godunov-type methods which are
very accurate for shock capturing, but not well suited to deal
with vacuum front at the margins of the avalanche where the
system looses hyperbolicity (h = 0 corresponding here to
dry soils). This drawback results to the lack of definable
wave speeds in advance of a flow front. Many shock
capturing upwind schemes produce negative heights at these
points and subsequently break down or become unstable.
An artificial small height of fluid in the whole domain has to
be imposed to stabilize the scheme [e.g., Mangeney et al.,
2000]. Tai [2000] and Tai et al. [2002] overcome this
imperfection by tracking the vacuum front. Denlinger and
Iverson [2001] calculate the theoretical speed of a flow front
using the Riemann invariant of the wave emanating from
the front directed in the inner part of the mass. We follow
here an alternative approach to solve the Saint Venant
equations by using a kinetic solver, which is intrinsically
able to treat vacuum and is also appropriate to handle

Figure 2. Triangular finite element mesh for (a) dual inner
cell Ci and (b) dual boundary cell Ci.
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discontinuous solutions. These properties are of highest
importance for gravitational flow modeling. One further
important property of this scheme is that it does not require
any dimensional splitting. To our knowledge, this type of
schemes has never been applied to avalanche flow modeling
over slopping topography.

3.2. Kinetic Formulation

[21] The kinetic approach consists in using a fictitious
description of the microscopic behavior of the system to
define numerical fluxes at the interface of an unstructured
mesh. Macroscopic discontinuities disappear at the micro-
scopic scale. We will introduce here the main concept of the
kinetic scheme used in this model. A complete description
of this scheme and its numerical implementation is done by
Audusse et al. [2000] and Bristeau et al. [2001]. The
scheme will be discussed by omitting the friction term
which is further introduced using a semi-implicit scheme
(see section 3.3). In this method, fictitious particles are
introduced and the equations are considered at the micro-
scopic scale where no discontinuities occur. A distribution
function of fictitious particles M(t, x, y, X) with velocity X is
introduced in order to obtain a linear microscopic kinetic
equation equivalent to the macroscopic equations (21), (22),
and (23). The microscopic density M of particle present at
time t in the vicinity �x �y of the position (x, y) and with a
velocity X is defined as

Mðt; x; y; XÞ ¼ hðt; x; yÞ
c2

c
X� uðt; x; yÞ

c

� �
; ð28Þ

with a ‘‘fluid density’’ h, a ‘‘fluid temperature’’ proportional
to

c2 ¼ gh

2
; ð29Þ

and c(W) a positive, even function defined on <2 and
satisfying

Z
<2

cðWÞdW ¼ 1;

Z
<2

wiwjcðWÞdW ¼ dij; ð30Þ

with dij the Kronecker symbol and W = (wx, wy). This
function c is assumed to be compactly supported, i. e.

9 wM 2 <; such that cðWÞ ¼ 0 for k W k � wM : ð31Þ

where the rectangular function c given by Bristeau et al.
[2001] read

cðWÞ ¼
1
12

for jwij 

ffiffiffi
3

p
; i ¼ x; y:

0 otherwise

8<
: ð32Þ

Note that the rectangular shape of the distribution function
c imposed for the fictitious particles would change in time
if real particles where considered. Simple calculations show
that the macroscopic quantities are linked to the microscopic
density function by the relations

U ¼
Z
<2

1

X

� �
Mðt; x; y; XÞdX; ð33Þ

FðUÞ ¼
Z
<2

X

X� X

� �
Mðt; x; y; XÞdX; ð34Þ

BðUÞ ¼ gg

Z
<2

1

f X

� �
5X Mðt; x; y; XÞdX; ð35Þ

These relations imply that the nonlinear system (18), (19),
(20) is equivalent to the linear transport equation for the
quantity M, for which it is easier to find a simple numerical
scheme with good properties

@M

@t
þ X:5x M � gg:5X M ¼ Qðt; x; y; xÞ; ð36Þ

for some collision term Q(t, x, y, x) which satisfies

Z
<2

1

X

� �
Qðt; x; y; XÞdX ¼ 0: ð37Þ

As usual, the ‘‘collision term’’ Q(t, x, y, x) in this kinetic
representation of the Saint Venant equations, which relaxes
the kinetic density to the Gibbs equilibrium M, is neglected
in the numerical scheme, i. e. in each time step we project
the kinetic density on M, which is a way to perform all
collisions at once and to recover the Gibbs equilibrium
without computing it [e.g., Perthame and Simeoni, 2001].
Finally, the discretization of this simple kinetic equation
allows to deduce an appropriate discretization of the
macroscopic system. A simple upwind scheme is applied
to the microscopic equation (36) leading to the formulation
of the fluxes defined in equation (26):

FðUi;Uj;nijÞ ¼ FþðUi; nijÞ þ F�ðUj; nijÞ; ð38Þ

FþðUi;nijÞ ¼
Z
X:nij�0

X:nij
1

X

� �
MiðXÞdX; ð39Þ

F�ðUj;nijÞ ¼
Z
X:nij
0

X:nij
1

X

� �
MjðXÞdX: ð40Þ

The simple form of the density function (here a rectangle-
type function�) allows analytical resolution of integrals (39),
(40) and gives the possibility to write directly a finite
volume formula, which therefore avoids using the extra
variable X in the implementation of the code. The resulting
numerical scheme is consistent and conservative. Further-
more, it is proved that the water height positivity is preserved
under the Courant Friedrichs Levy condition [Audusse et al.,
2000]

�tmax juni j þ wMc
n
i

� �

 AiP

j2Ki
Lij

: ð41Þ

[22] In comparison with flood modeling, avalanche mod-
eling introduces a further difficulty relating to the property
of granular media able to remain static (solid) even with an
inclined free surface. This equilibrium is not intrinsically
preserved by the finite volume scheme and specific
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processing has to be introduced in the numerical scheme for
the particular case of kinetic scheme, as will be developed in
section 3.3.

3.3. Friction

[23] The friction is introduced here by using a projection
method on the domain of admissible stresses defined by the
Coulomb friction law [see, e.g., Staron, 2002]. The implicit
treatment of the friction is done by using the discretized set
of equation (26)

hnþ1
i ¼ hni �

X
j2Ki

aijF h Un
i ;U

n
j ; nij

� �
; ð42Þ

qnþ1
i ¼ qni �

X
j2Ki

aijF q Un
i ;U

n
j ;nij

� �
þ ghnþ1

i ;t�t þ 1

r
Tnþ1
ti �t;

ð43Þ

where ;t = (gx, gy), with the complementary inequality

k Tnþ1
ti k � mrggzh

nþ1
i ) Tnþ1

ti ¼ �mrggzh
nþ1
i

unþ1
i

k unþ1
i k

; ð44Þ

k Tnþ1
ti k< mrggzh

nþ1
i ) unþ1

i ¼ 0; ð45Þ

Equation (43) shows the linear variation of the traction as a
function of qi

n+1

Tnþ1
ti ¼ r

�t
qnþ1
i � r

�t

~qnþ1
i ; ð46Þ

where

~qnþ1
i ¼ qni �

X
j2Ki

aijF q Un
i ;U

n
j ; nij

� �
þ ghnþ1

i gt�t ð47Þ

(i.e., the solution of equation (43) without any friction
term). As the Coulomb friction does not change the
direction of the velocity, the flux qi

n+1 has the same
direction of the trial ~qi

n+1. Furthermore, Tt acts in the
opposite direction of the velocity. Equation (46) reduces in
the direction of the flow to a scalar equation

Tnþ1
ti ¼ r

�t
qnþ1
i � r

�t
~qnþ1
i ; ð48Þ

Figure 3 shows the admissible state of the traction Tti
defined by equations (44) and (45) and the family of straight
lines (equation (48)) with slope r/�t defining the relation
between the traction and the algebraic value of the flux
qi
n+1. Note that �(r/� t) ~qi

n+1 is the value of Tti at qi
n+1 = 0.

It appears from Figure 3 that if the norm of the driving force
(r/�t)~qi

n+1 is lower than the Coulomb threshold sc = mrg
gzhi

n+1, the admissible traction Tti is also lower than sc and
the mass stops, i. e.

k ~qnþ1
i k
�t

< mggz h
nþ1
i ) qnþ1

i ¼ 0: ð49Þ

On the other hand, if the driving force (r/�t)~qi
n+1 is higher

than the Coulomb threshold then the admissible value of the
traction is equal to sc and equation (43) read

qnþ1
i ¼ k ~qnþ1

i k �mggz h
nþ1
i �t

� � ~qnþ1
i

k ~qnþ1
i k

: ð50Þ

In the case of the flow variable friction law, the friction term
is linearized by taking the value of the velocity at time n in
the equation (15). Note that, numerically, the resolution
process leads to take the positive part on the right hand side
of equation (50).
[24] This threshold-type behavior is generally not taken

into account in numerical models due to the resulting
discontinuity in the velocity field even though it may be
useful for avalanches coming to rest and for the starting
phase of the avalanche. Generally, the magnitude of the
driving force and the Coulomb friction force are compared
only for parts of the flow where u = 0 [e.g.,Mangeney et al.,
2000].
[25] Classical kinetic schemes do not allow the mass

stopping when h gradients are nonequal to zero even though
its velocity is equal to zero. In fact, for the kinetic scheme
based on a rectangle-type distribution function c (see
equation (28)), perturbations propagate at velocity ~c =ffiffiffiffiffi
gh

p
even though the fluid is at rest because the ‘‘temper-

ature’’ is non equal to zero. Perturbation linked to the
h gradient of a nonflat free surface generates fluxes and
the fluid never stops if its free surface is not horizontal. In
the opposite, the Coulomb criterion imposes that under a
given threshold, a perturbation (e.g., a perturbation of the
surface elevation) does not propagate. It can be represented
by a fluid at a ‘‘temperature’’ equal to zero, so that the local
speed of propagation of disturbance relative to the moving
stream is equal to zero. It can be obtained by using a Dirac

Figure 3. Resolution of the tangential traction by projec-
tion on the admissible state imposed by the Coulomb
friction law. Solid lines represent the domain of admissible
state of the traction, dashed lines represent the family of
straight lines obtained from the momentum conservation
equation. Circles represent the solution of the problem
(three possibilities depending on the relative value of (r/� t)
~qi
n+1 and sc).

MANGENEY-CASTELNAU ET AL.: AVALANCHE MODELING USING A KINETIC SCHEME EPM 9 - 7



distribution for the function c. The idea of the present
scheme is to introduce a zero temperature fluid with a Dirac-
type density of particles M when the fluid is under the
Coulomb threshold and a nonzero temperature fluid using a
rectangular type density of particles when the fluid is over
the Coulomb threshold

k ~qi
nþ1 k � mggz h

nþ1�t < 0 ) Mðt; x; y; xÞ

¼ hðt; x; yÞd x� uðt; x; yÞð Þ; ð51Þ

k ~qi
nþ1 k � mggz h

nþ1�t � 0 ) Mðt; x; y; xÞ

¼ hðt; x; yÞ
c2

c
x� uðt; x; yÞ

c

� �
; ð52Þ

where c is the rectangular function � (equation (32). The
expression of the flux related to the edge �ij in the mass
conservation equation using equation (39) read then

k ~qnþ1
i k �mggz hnþ1�t < 0 ) Fþ

h ðUi;nijÞ ¼ hiui;nY ðui;nÞ;
ð53Þ

k ~qi
nþ1 k � mggz h

nþ1�t � 0; ) Fþ
h ðUi; nijÞ

¼ 1

2
hiui;n þ

ffiffiffi
3

p

4
hici þ

1

4
ffiffiffi
3

p hi
u2i;n

ci
; ð54Þ

where Y is the Heaviside distribution and ui,n is the velocity
in the normal direction of the edge �ij. Similar expression is
obtained for F�(Uj, nij). In the situation of equation (53)
(i.e., under the Coulomb threshold), implicit resolution
is performed by using the velocity ui,n at time n + 1 so that
ui,n = 0 and Fh

+(Ui, nij) = Fh
�(Ui, nij) = 0. Note that the Dirac

distribution does not allow to recover the momentum
equation. In fact the flux calculated for the momentum
equation using this function reads

Fþ
q ðUi;nijÞ ¼ hiu

2
i;nY ðui;nÞ ð55Þ

without the pressure gradient due to the zero temperature
fluid. However, when the fluid is under the Coulomb
threshold, the momentum equation is replaced by

q ¼ 0; ð56Þ

so that the Dirac-type function is only used in the
calculation of the fluxes in the mass conservation equation.
[26] The first step of the numerical scheme is to evaluate

the grid points that are under the Coulomb threshold using
~qn+1i . Let us look at the simple one-dimensional (1-D) case
(Figure 4) where the points P0, P1, and P2 are under the
Coulomb threshold (solid circles) and the points P3 and P4

are above this threshold (stars). In order to obtain the flux
Fh,i = Fh

+(Pi�1) + Fh
�(Pi) at the interface Mi allowing to

satisfy conservation laws, the same distribution function has
to be used in both side of the interface: a rectangular
distribution is imposed if one of the two points Pi or Pi�1

is above the Coulomb threshold and a Dirac distribution
elsewhere. As a result, the flux through the interface M3 is
calculated using a rectangular function whereas the flux
through the interface M2 is calculated using the Dirac
function. The solid/fluid-like transition is then exactly at
the point P2. At this point, the propagation of the h gradient
is allowed to the right where the fluid is above the Coulomb
threshold and forbidden to the left where the fluid is under
the Coulomb threshold. Numerical test show that this
method is mass conservative.
[27] The resulting 2-D scheme consists in evaluating at

time t the points under the Coulomb threshold, and at time
t + dt in calculating the flux Fh through an interface Mij of a
cell Ci (1) using the rectangular distribution if one of the
two points Pi, Pj situated on both sides of this interface is
above the Coulomb threshold, and (2) using a Dirac
distribution if the two points Pi, Pj are under the Coulomb
threshold. The numerical method can be illustrated on the
2-D mesh presented in Figure 5 where the points M1, M2,
M3, P2, M10, M11 surrounding the point P1 are under the
Coulomb threshold. The fluxes Fh through the interfaces
of the cell C1 is then calculated using the Dirac distribution
whereas in the cell C4, all the fluxes are calculated using the
rectangular distribution. For the cell C2, the surrounding
points P3 and M8 being above the Coulomb threshold, the
fluxes Fh through the edges cutting P2M8, P2P3 are calcu-
lated using the rectangular distribution while the fluxes Fh

through the edges cutting P2P1, P2M3, P2M9, P2M10 are

Figure 4. One-dimensional mesh and dual cell Ci with
center Pi. Circles denote the points under the Coulomb
threshold, and stars denote the points above the Coulomb
threshold.

Figure 5. Triangular mesh and dual cell C1, C2, C3, C4.
Circles denote the points under the Coulomb threshold, and
stars denote the points above the Coulomb threshold.
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calculated using the Dirac distribution. With this scheme
preserving mass conservation at the machine accuracy, the
fluid is able to stop.

4. Validation

[28] The precision and performance of the numerical
model is tested by comparing numerical results with those
of an analytical solution which takes into account a Cou-
lomb-type friction at the base of the flow, provided the
angle of friction is smaller than the slope angle and the fluid
never stops on the inclined plane [Mangeney et al., 2000].
The test case consists of the instantaneous release of a fluid
mass of 1 m high on a dry flat bottom, infinitely long in
the negative x direction. The numerical domain ranges from
0 m to 2000 m. Note that the aspect ratio of the geometry
considered here is � = 10�3, so that the long-wave approx-
imation is valid. All 1-D numerical experiments are carried
out with the 2-D model using the same number of points in
the transversal direction (101 points with the same space
step as in the flow direction).
[29] From Figures 6 and 7, showing the comparison

between analytical and numerical solution for two grid steps
(dx = 20 m and dx = 2 m), it can be observed that the
numerical model provides a good representation of the dam
break problem as well without and with a friction law. The
main difference between analytical and numerical results is

located at the front position and at the corner of the dam as
was observed by Mangeney et al. [2000] with a Godounov-
type numerical model. Note that the deviation from the
analytical solution is qualitatively the same with the God-
ounov-type model and the kinetic model: the corner at the
left discontinuity is rounded and the position of the front is
lower than the position of the analytical front after a few
seconds: the shock is smoothed as usual with a first-order
scheme as was observed by Audusse et al. [2000].
[30] Finally, the results are expressed in terms of the mean

relative error dh

dh ¼ � h� hað Þ2

�h2a
; ð57Þ

where ha is the analytical solution for h, and � represents
the sum over a fixed interval including the points where 0 <
h < h0. Figure 8 shows that when the space step is reduced
by a factor 10, the mean relative error is reduced by a factor
about 4 which is compatible with other general convergence
rates that can be proved for simple models in the presence of
singularities [e.g., Perthame, 2002]. Similar results are
obtained when the error on hu is considered.

5. Simulation of Experimental Results

[31] Simulation of the experimental results of Pouliquen
[1999] have been performed in order to evaluate the ability

Figure 6. (a) Fluid height h and (b) discharge flux hu versus distance obtained for d = 0� and q = 0�, at
times t = 37 s and t = 137 s calculated with the analytical solution (dotted lines) and with the numerical
model for dx = 20 m (dashed lines) and dx = 2 m (solid lines).
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of the model to reach correct steady state, to be able to deal
with shocks and to reproduce the arrest phase. In these
experiments, glass beads are released from a reservoir
through a gate and flow down an inclined plane. These
simulations have been performed by imposing solid wall
conditions (i.e., u � ny = 0, where ny is the unit outward
normal to the y boundary) at the y boundaries of a
rectangular domain 2 m long in the x direction and 70 m
wide in the y direction. The experimental setup consists of
granular material of diameter 0.5 mm ± 0.04 over a rough

bed obtained by gluing one layer of particles with the
same diameter on the inclined surface. For angles ranging
between d1 = 20.7 and d2 = 32.8 (see equation (15)) this
unsteady situation evolves toward a steady state. The
friction law (15) has been deduced from these steady flows
leading to the fitting parameter d = 0.98 mm. The imple-
mentation of this flow law in the numerical model allows to
reproduce exactly the observed steady states reached by the
unsteady initial flow (Figure 9a). Furthermore, simulation
exactly reproduces the arrest phase obtained by suddenly

Figure 7. (a) Fluid thickness h and (b) discharge flux hu versus distance obtained for d = 0�, d = 1�, and
d = 4� for inclination angle q = 5�, at time t = 35 s calculated with the analytical solution (dotted lines) and
with the numerical model for dx = 20 m and dx = 2 m (solid lines).

Figure 8. Mean relative error �h for the dam break problem for dx = 20 m (symbols) and dx = 2 m
(solid lines with symbols) for inclination angle of the bottom q = 5� with various angle of friction d = 0�,
d = 1� and d = 4� and mean relative error �h for q = 0� (dx = 20 m solid lines; dx = 2 m dashed lines).
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closing the gate of the reservoir once a thick flow has
developed. The shock introduced by suddenly setting the
height equal to zero at the left x boundary of the domain is
well handled by the numerical model. Figure 9b shows that
the final deposit hstop left on the plane is exactly simulated
by the model. Note that the flow law (15) has been obtained
for values of the Froude number Fr > b. The simulation of
the arrest phase requires the interpolation of the empirical
flow law (15) for low Froude number (Fr < b) to verify h =
hstop for u = 0.

6. Simulation Over Simplified Topography

[32] To illustrate the capability of the numerical model, a
series of numerical experiments have been performed using
the above described friction laws over simplified trans-
versally uniform 2-D geometry. These simulations are only
for demonstration purposes. If the schematic character of
the numerical experiment do not allows to determine the
best rheology explaining the flow of natural avalanches, it
highlights some specific properties of each friction law and
provides a way to analyze the details of the forces within the
avalanche.
[33] As an example, let us consider an exponential shape

for the topography z = b(x) with characteristic dimensions of
the order of real topographies (e.g., the White River valley
in Montserrat island (Lesser Antilles)) and uniform in the
y direction. Let us investigate the influence of the various
flow law in the range of parameters allowing the mass to
stop around the position x = 4500 m corresponding approx-
imately to some observed runout distances in volcanic areas
(e.g., the Boxing Day debris avalanche in Montserrat). The
altitude of this topography decreases from roughly 900 m at
the top with a maximum slope inclination of 35� to 0 m with
slope inclination of a few degrees (almost horizontal in the
right part) at x = 4500 m (Figure 10a). The corresponding
angle is defined by

qðxÞ ¼ q0 exp � x

a

� �
; ð58Þ

with q0 = 35� and a = 1750 m (Figure 10b). The results are
presented in the coordinate system (x, z) linked to the
topography. The initial conditions are defined by the
instantaneous release of a parabolic mass over a rigid
topography represented in Figure 10a in the coordinate
system (x, z)

hðx; t ¼ 0Þ ¼ K l � x� x0ð Þ2
� �

; ð59Þ

Figure 9. (a) Dimensionless velocity u/
ffiffiffiffiffi
gd

p
as a function of h/d for different inclination angles.

(b) Froude number u/
ffiffiffiffiffi
gh

p
as a function of h/hstop(q) for different inclinations (experimental results of

Pouliquen [1999] in open symbols and numerical results in solid symbols).

Figure 10. (a) Bed topography in the Cartesian coordi-
nates (~x;~z) and initial volume of the granular mass in the
topography-linked coordinates (x, z) and (b) slope angle q(x)
of the bed in degrees in the topography-linked coordinates
(x, z).
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uðx; t ¼ 0Þ ¼ 0; ð60Þ

with K = 1.26� 10�3 m�1, l = 1.6� 105 m2 and x0 = 500 m.
Initially, the maximal thickness of the mass is 200 m in the
direction perpendicular to the topography with a length of
800 m close to the estimations of the Boxing Day debris
avalanche destabilized mass [Sparks and Young, 2002]. The
numerical domain is discretized using 880 points in
the x direction with a space step of 6.25 m and 220 points
in the y direction with the same space step. Solid wall
boundary conditions (u.ny = 0) are imposed in the left and
right y limits of the numerical domain.

6.1. Curvature Effects

[34] Note that the equations (19) and (20) are obtained by
neglecting the first-order curvature terms. At first order for
transversally uniform topography in the y direction, curva-
ture effects lead to an additional friction force linked to
centrifugal acceleration. According to the scale analysis of
Gray et al. [1999] this first-order curvature effect is taken
into account by a term involving the curvature radius of the
bed profile R in the momentum equation

@

@t
huð Þ þ @

@x
hu2
� �

þ @

@y
huvð Þ ¼ gxghþ

@

@x
ggz

h2

2

� �

� mh ggz þ
u2

R

� �
ux

k u k : ð61Þ

@

@t
hvð Þ þ @

@x
huvð Þ þ @

@y
hv2
� �

¼ gyghþ
@

@y
ggz

h2

2

� �

� mh ggz þ
u2

R

� �
uy

k u k : ð62Þ

When either m or l = L/Rc, where Rc is a characteristic value
of the curvature radius, or both are smaller than O(�

1
2) and

when u does not become too large, then this term may be
dropped in comparison with the others terms [Greve and
Hutter, 1993].
[35] Numerical tests show that the first-order curvature

effects involved in the last term of equations (61) and (62) is
not too large in our case, where the radius of curvature is

relatively high. Note that in the present case, � is of order
0.1, m = 0.27 for d = 15� is of order �

1
2 and l is lower than

4 � 10�3. Figure 11 shows that the results with and without
this curvature term are close to each other for a simple
friction law with d = 15�, especially during the flow.
Furthermore, the fluid stops almost at the same time (t =
86.4 s without curvature effects and t = 86 s with curvature
effects) and the maximum elevation of the deposit is the
same (hmax = 67.8 m without curvature and hmax = 68 m
with curvature). However, a difference of 156 m (5% of the
deposit length) is observed in the runout distance. These
curvature effects may be important in most real situations
(R. P. Denlinger, personal communication, 2003). When the
curvature effects are not taken into account, i.e., when the
exponential shape does not slow down the granular mass,
the front is located further away. The empirical nature of the
friction angle in such a model is well illustrated in this
example. In fact, curvature effects are difficult to take into
account in two dimensions when the geometry is not trans-
versally uniform due to the existence of various curvature
radii. Dropping these effects leads to unverifiable error in
the determination of the well fitted friction angle because
the tuned parameter obtained for fitting a runout distance
may be dependent on these local effects. In the following
simulations, the first-order curvature effects have been taken
into account.

6.2. Coulomb Friction Law

[36] Let us first look at the results obtained by using the
friction law with a constant angle d. Sensitivity study is
performed just by varying the value of this angle. The
avalanche deposit extends further for lower values of d as
shown in Figure 12 where the geometry of the deposits is
obtained when the flow comes to rest. A difference of
approximatively 740 m on the front position is obtained
when d varies from 14� to 16� and a difference of
approximatively 1060 m when d varies from 16� to 20�.
Furthermore, the length of the deposit is larger and the
maximum elevation lower when the friction angle
decreases. The deposit extends along 2900 m when d =
14� with a maximum elevation h = 65 m while the
extension is only 2290 m when d = 20� with a maximum
elevation h = 75 m. It appears that only low values of the
friction angle around 15� are appropriate to reproduce the

Figure 11. Fluid thickness h at t = 25 s, t = 45 s, and t = 87 s (i.e., when the fluid stops) with and
without the curvature term for a simple friction law with d = 15�. The dash-dotted lines represent the
result without curvature effect, and the corresponding solid lines represent those with curvature effect at
the same time. Note that the fluid stops at approximatively the same time.
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great mobility of real debris avalanche as was generally
observed in the simulations of real avalanches. The low
value of d is a consequence of the widely observed ability
of large avalanches to travel distances much larger than
expected from classical models of slope failure. Note that
in spite of the extreme simplification of this test the
calculated values are in the range of the deposit’s elevation
estimated from geological observation [Sparks and Young,
2002]. The x position of the maximum elevation is situated
toward the rear of the mass. In fact, with a constant
friction angle, in the accelerating stage, the fluid flows
with higher velocity near the front than near the rear due
to a driving negative h gradient. The positive h gradient

near the downhill rear of the fluid plays a braking role in
the balance of forces by slowing the flow as the frictional
force fx do (Figure 13). It is worth pointing out that the
force due to the pressure gradient (i. e. the h gradient) is
relatively small compared with the other forces as well at
t = 25 s as at t = 65 s in the rest of the mass. This feature
may explain the weak effect of the earth pressure coef-
ficients involved in the pressure gradient when noniso-
tropy of normal stresses is assumed [see, e.g., Pouliquen
and Forterre, 2002].
[37] For this configuration of initial mass and such a

topography, the inertial forces are important during the flow
contrary to those obtained in the simulation over low angle

Figure 12. Profile of the mass at the time when the fluid stops for various values of the friction angle d
using the simple friction law.

Figure 13. Forces involved in the x momentum equation for a simple friction law with d = 15� versus
distance (a) at time t = 25 s and (b) at t = 65 s, fx represents the frictional force.
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inclined plane close to the experimental setup presented in
section 5. In our case the influence of the vertical profile
choosen for the horizontal velocity should not be negligible.

6.3. Pouliquen’s Friction Law

[38] We propose to use here the recent law developed
empirically by Pouliquen [1999] (see section 2.2). Contrary
to the one parameter simple friction law, three parameters
have to be determined: two friction angles d1 and d2 and the
coefficient d. Debris avalanches are composed of particles
with sizes varying from less than a millimeter to tens of
meters. It is therefore difficult to estimate the value of d in
the model. However a value of d = 1.5 m allows the mass
reaching x = 4500 m for the tuned values d1 = 13� and d2 =
20� (Figure 14). Note that the well-fitted angle d = 15�
obtained with the constant angle friction law range between
these tuned values. Only such low values of d1 and d2
(compared to the angles obtained experimentally) allow to
reproduce the expected runout distance. The variation of d
with the position is represented in Figure 15 at the instants
t = 25 s and t = 65 s for d = 1, d = 1.5 and d = 2. The friction
angle evolves in time as a function of the flow parameters
(h, hu) (Figure 15). Note that for low value of d the results
are similar to those obtained for simple friction law with d =
13� and for high values of d the results are close to those
obtained using a simple friction law with d = 20�. In this

range of values, the flow is governed by d2 near the front
and rear of the flow and by d1 in the inner part of the mass.
Difference of more than 1 degree is observed on d when
d value goes from 1 to 2 leading to strong difference in the
deposit (Figure 14). Figure 14 shows that the shapes of the
flowing mass at t = 25 s are similar both for various values
of d and for the simple friction law. During the flowing
stage, the friction force does not play the leading role as it is
illustrated in Figure 16a at t = 25 s. During the deceleration
stage, the importance of the friction force increases
(Figure 16b) to the stopping stage where the friction force
balanced by the gravity force dominates the other forces.
Concerning the deposit, not only the runout distance
changes with d but the shape too. As d increases the front
becomes more marked and the rear finer. Such a shape
seems to be closer to real observed front of avalanches.
The shape of the deposit using Pouliquen’s friction law with
d = 1.5 is quite different from this obtained by simple
friction law with d = 15� even though the runout distance is
the same and the extension of the deposit is similar (see
Figure 14). The downhill part of the deposit using this
variable friction angle is 18 m high 250 m from the rear and
35 m high for constant friction angle. Contrary to simple
friction law, the maximum thickness is situated near the
front for Pouliquen’s flow law due to low friction for high
elevation in the inner part of the avalanche. As was

Figure 14. Fluid thickness at t = 25 s, and when the fluid stops for various values of d in the
Pouliquen’s flow law with d1 = 13� and d2 = 20� and for a simple friction law with d = 15�. The dash-
dotted lines represent the result for the Pouliquen’s flow law and the corresponding solid lines represent
those for the simple friction law.

Figure 15. Friction angle d versus position x in Pouliquen’s flow law with d1 = 13� and d2 = 20� and d = 1
(solid lines), d = 1.5 (dotted lines) and d = 2 (dashed lines) at times t = 25 s and t = 65 s. At the rear and the
front, i.e., for small values of h, the friction angle tends to d2.
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observed for simple friction law, the force due to the
pressure gradient is relatively small compared with
the other forces as well at t = 25 s as at t = 65 s except at
the front (Figure 16).

6.4. Mass Stopping

[39] The major originality of this model is the explicit
introduction of the stopping in the kinetic scheme. Let us
look with more details at this stopping stage illustrated in
Figures 17 and 18 for simple friction law and Pouliquen’s
flow law, respectively. For simple friction law (d = 15�),
the mass stops at t = 86 s and for Pouliquen’s flow law
(d1 = 13�, d2 = 20�, d = 1.5) at t = 97.6 s. With these
rheological parameters, the runout distance for both simple
friction law and Pouliquen’s flow law is approximatively
4500 m. With the constant angle friction law, the front,
encountering low slope begins to stop. The stopping
propagates toward the rear of the mass until the whole fluid
stops. The asymmetric shape becomes more pronounced
when the fluid stops due to this downward propagation of the
stopping stage.
[40] Note that with this topography and with this initial

released mass, the Coulomb threshold is never reached in
the rear of the flow for friction angle higher than d = 23�.
For such high friction, the front stops and this stopping
propagates toward the rear. However, the driving force and
in particular the gravity near the rear of the flow is still
higher than the Coulomb threshold due to high slope of the
topography. In this case, the h gradient may play a signif-
icant role by controlling the balance of forces. As an

example, at t = 70 s for d = 24�, the whole fluid is stopping
except a 150 m long part in the rear of the mass. What is
really meant is that this uphill part of the avalanche, under
the Coulomb threshold, behaves like a fluid in the sense that
is relaxes to equilibrium with horizontal free surface sug-
gesting the existence of horizontal surfaces in the deposit.
This is possible because it is stopped by a solid-like part
farther downslope. The presence of a fluid-like zone behind
a rigid mass would be an interesting point to verify by
comparing numerical results derived from mathematical
models with empirical or geological observation of deposits.
The stopping scenario is not the same for Pouliquen’s flow
law where the central part of the fluid is stopping first
(Figure 18). In this case, the friction angle is not constant as
was observed in the preceding section. The difference in the
stopping behavior of a mass controlled by simple friction
law or Pouliquen’s flow law can be a useful test to
determine the more appropriate flow law.
[41] The presence of a fluid-like zone behind a solid-like

mass is also observed for example with rheological parame-
ters d1 = 12�, d2 = 20� and d = 10. Further analysis of this
phenomenon require the development of a model reproduc-
ing the equilibrium of a fluid at rest [see, e.g., Perthame and
Simeoni, 2001]. Such a newmodel preserving the equilibrium
of a lake at rest has been proposed by Bouchut et al. [2003].

7. Conclusion

[42] Numerical modeling of debris avalanche has been
presented here based on Savage and Hutter’s equations.

Figure 16. Forces involved in the x momentum equation for Pouliquen’s flow law with d1 = 13� and
d2 = 20� and d = 1.5 versus distance at times (a) t = 25 s and (b) t = 65 s; fx represents the frictional force.
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Granular avalanche behavior has been described using a
Coulomb-type friction law with constant and flow variable
friction angle.
[43] The numerical model is based on a kinetic scheme.

The main idea was to introduce two different descriptions of
the microscopic behavior of the system suggested by the
ambivalence of the solid/fluid-like behavior of granular
material. The resulting solver appears to be stable and
preserves height positivity, contrary to several Godounov-
type methods. Efficiency of this model has been tested by
comparing with analytical solution of dam break problem
and with experimental results. The numerical scheme
remains stable in spite of the introduction of the discontin-
uous Coulomb criterium. Furthermore, the discretization on
a finite element mesh is well suited to simulate avalanches
over real complex topographies.
[44] Preliminary simulations on a simplified geometry

have allowed us to test the capability of the numerical
model and to compare constant and variable angle friction
laws. The shape of the deposit strongly depends on the used
friction law. Pouliquen’s flow law with a friction angle
depending on the height and velocity leads to steepest front
of the granular deposit with more elongating rear. Further-
more, the stopping stage differs depending on the flow law.

While the stopping propagates from the front to the rear
when a constant friction angle is used, the inner part of the
mass begins to stop when Pouliquen’s flow law is used.
This feature may be a useful tool to determine the best fitted
flow law when comparing with experimental results.
[45] Numerical modeling of debris avalanche provides

the only way to estimate typical velocities and relative
weight of the involved forces. The above analysis shows
that the h gradient force does not play a significant role in
the studied example except at the rear and front of the
granular mass. The friction force begins to be a leading
force only when the granular mass approaches the stopping
stage. A better understanding of avalanche flow and stop-
ping dynamics and the evaluation of the appropriate flow
law will improve prediction of the stopping location, flow
velocity and impact pressures.
[46] The numerical tests show the possible existence of a

fluid-like zone in the deposit under particular conditions. In
such situations, part of the fluid remains over the Coulomb
threshold subjected for example to high gravity forces. It is
still blocked by the down slope deposit and relaxes to
equilibrium like a fluid suggesting the existence of hori-
zontal surfaces in the deposit. Observation of such features
in real or experimental deposits would be interesting and

Figure 17. Fluid thickness (solid lines) versus distance at (a) t = 75 s, (b) t = 80 s, and (c) t = 87 s during
the stopping stage for simple friction law with d = 15�. A value of 0 is allocated to the fluid under the
Coulomb threshold, and a value of 20 is allocated to the fluid above the Coulomb threshold.
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may provide information on the mechanical behavior of a
granular mass.
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