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Abstract

In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating
the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered.

Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche
thickness (H ) is very much smaller than its extent parallel to the bed (L). The material is assumed to be incompressible and the mass and the
momentum equations are written in a depth averaged form.

The SHWCIN code, based on the hypothesis of isotropy of normal stresses (sxx¼ syy¼ szz), has been modified (new code: RASH3D) in order
to allow for the assumption of anisotropy of normal stresses (sxx¼ Kszz; syy¼ Kszz).

A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory
experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topog-
raphy. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada).

The carried out simulations have also underlined the importance of using a different earth pressure coefficient value (K ) for directions of
convergence and of divergence of the flux.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The evaluation of risk due to large landslides requires the
understanding of two fundamental problems: the initiation
and the runout of the event. Even though the triggering of
the landslide is a primary problem, which is not yet com-
pletely solved, the runout, which consists in the flowing and
stopping phases of the mass, is here analysed.

As a matter of fact, reliable predictions of runout are an im-
portant step in estimating the extension of the hazardous areas
and in helping to reduce losses and to avoid exceedingly
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conservative decisions regarding the development of an area
(see for instance, Wilkinson et al., 2002).

Numerical simulation should provide a useful tool for in-
vestigating, within realistic geological contexts, the runout
of large landslides.

A noteworthy type of modelling is based on a discontinuum
mechanics approach (e.g. Strack and Cundall, 1984; Cundall,
1988; Walton et al., 1988; Will and Konietzky, 1998), in which
the runout mass is modelled as an assembly of particles mov-
ing down along a surface. However, nowadays this approach
still presents some limitations that in some way compromise
a satisfactory application to large movement analysis.

The numerical models more promising from the application
point of view are today based on a continuum mechanics
approach (e.g. Hungr, 1995; Chen and Lee, 2000; Denlinger
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and Iverson, 2004; Mangeney-Castelnau et al., 2003; Pirulli,
2005).

In 1989, Savage and Hutter applied for the first time the
depth averaged Saint Venant equations to the analysis of prop-
agation of a granular mass. This was the first step to the devel-
opment of some numerical models of runout having a different
solver but all based on a continuum mechanics approach
and on Saint Venant equations (i.e. Gray et al., 1999; Chen
and Lee, 2000; Iverson and Denlinger, 2001; McDougall and
Hungr, 2004).

Continuum mechanics models treat granular materials as
a continuum. An ‘‘apparent’’ fluid, whose rheological
properties do not correspond to any of the landslide real com-
ponents, is used to simulate expected bulk behaviour of the
landslide.

It is also important to underline that there are important dif-
ferences between fluid and earth material. In a fluid the lateral
pressure coefficient K always equals 1. If the bulk of the flow-
ing mass is a dry granular material with friction, the coeffi-
cient K may range between the active and passive coefficient
Kact and Kpass (Hungr, 1995).

The value of these coefficients plays an important role in
the development of the avalanche runout and deposit shape,
as they control how much spreading and contraction of the
running mass can occur.

To simplify the resolution of the problem, existing models
make different hypotheses concerning the assumed direction
along which the shear stress is dominant.

If it is assumed that the predominant motion is in the
x-direction, it results that the dominant shearing is parallel
to the xz-plane (Fig. 7).

The x-direction is considered by Gray et al. (1999) as the
direction of steepest descent, while by McDougall and Hungr
(2004) as the direction of the movement.

The Gray et al. (1999) approach is justified for slides mov-
ing in a reasonably straight line, which tends to be oriented
downslope.

These assumptions destroy the rotational invariance of the
earth pressure coefficients, but yield a relatively simple system
of equations (i.e. Hutter et al., 1993).

Based on a continuum mechanics approach and on depth
averaged equations, the numerical model RASH3D, which is
able to run analyses of propagation on a complex topography,
is presented in this paper. The source code (SHWCIN,
Mangeney-Castelnau et al., 2003), describing granular flows
on a simplified topography, was originally developed by
Audusse et al. (2000) and Bristeau et al. (2001) to compute
Saint Venant equation in hydraulic problems.

To carry out analyses of propagation on a real topography
some fundamental changes concerning topology optimization
and gravity vector components were necessary to make in
the SHWCIN code (Pirulli, 2005).

Further, as the SHWCIN code assumed isotropy of normal
stresses, i.e. sxx ¼ syy ¼ szz, an anisotropy condition has been
also numerically implemented. Following the Iverson and
Denlinger (2001) approach, a K coefficient which applies in
the x and y direction simultaneously has been assumed. Use
of a scalar coefficient ensures frame invariance in the xey
plane and preserves the stress symmetry.

The new upgraded code (RASH3D) has been applied to
compare the behaviour of the mass during propagation in con-
ditions of both isotropy and anisotropy. In this paper the
obtained results in case of both a laboratory experiment
(Gray et al., 1999) and a case history of rock avalanche (Frank
slide; 1903, Canada) are presented in detail.

2. Continuum mechanics approach

Continuum mechanics models for rapid landslides use tech-
niques developed for analysis of the flow of fluids in open
channels, but there are important differences between fluids
and earth materials, even if the latter are saturated and highly
disturbed. In addition, landslide paths are often much steeper
and more varied than channels considered in most hydraulic
calculations and landslide motion is highly unsteady.

Granular material consists of a large assemblage of discrete
particles. If the depth and length of the flowing mass are large
compared to the dimensions of a typical particle, it is reason-
able to treat the involved material as a continuum. In this
framework it becomes fundamental to find an ‘‘apparent’’ fluid
whose rheological properties are such that the bulk behaviour
of the flowing body simulates the expected bulk behaviour of
the landslide (Fig. 1). As previously mentioned, the properties
of the equivalent fluid do not correspond to those of any of the
slide components.

Under these conditions, the motion of the avalanching mass
can be described using a model consisting of the balances of
mass and momentum, namely

V$u¼ 0 ð1Þ

r

�
vu

vt
þ u$Vu

�
¼ V$sþ rg ð2Þ

in which u(x, y, z, t)¼ (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))
denotes the three-dimensional velocity vector inside the ava-
lanche in a (x, y, z) coordinate system that will be discussed
later, s(x, y, z, t) is the Cauchy stress tensor, r the mass
density, and g (¼�g(gx, gy, gz)) the vector of gravitational

Fig. 1. (a) Scheme of a heterogeneous and complex moving mass; (b) A homo-

geneous ‘‘apparent fluid’’ replaces the slide mass (modified from Hungr, 1995).
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acceleration, defined as the projection along the i (¼x,y,z)
direction of a unit vector opposite to g.

A kinematic boundary condition is imposed on the free
surface and an impermeability condition is prescribed at the
bottom, that specifies that mass neither enters nor leaves at
the base.

During an avalanche, the characteristic length in the flow-
ing direction (L) is generally much larger than the vertical
one (e.g. avalanche thickness), H (Fig. 2). Such a long-wave
scaling argument has been widely used in derivation of contin-
uum flow models. This leads to depth averaged models gov-
erned by generalized Saint Venant equations.

Depth averaging allows us to avoid a complete three-
dimensional description of the flow: the complex rheology of
the granular material is incorporated in a single term describing
the frictional stress that develops at the interface between the
flowing material and the rough surface (bed or base).

In the last years, an increased interest on prediction of land-
slide runout has induced researchers to develop more and more
comprehensive numerical models. Based on a continuum
mechanics approach, different models have been numerically
implemented. These models mainly differ from one another
in numerical solver and type of adopted mesh.

3. Numerical model description

The SHWCIN code, based on the classical finite volume
approach for solving hyperbolic systems of equations using
the concept of cell centred conservative quantities, was origi-
nally developed by Audusse et al. (2000) and Bristeau et al.
(2001) to describe the flows in rivers, coastal areas or
floodings.

The code extension for granular flow analysis was obtained
introducing a Coulomb-type friction law and a reference sys-
tem linked to the topography by Mangeney-Castelnau et al.,
2003.

In a reference frame linked to the topography (Fig. 3) and
in the hypothesis of isotropy of normal stresses, equations of
mass and momentum in the x and y direction read

vh

vt
þ divðhuÞ ¼ 0 ð3Þ

Fig. 2. Depth averaged approximation.
v

vt
ðhuÞ þ v

vx

�
hu2
�
þ v

vy
ðhuvÞ ¼ �gxgh� v

vx

�
ggz

h2

2

�

� mggzh
ux

kuk ð4Þ

v

vt
ðhvÞ þ v

vx
ðhuvÞ þ v

vy

�
hv2
�
¼�gygh� v

vy

�
ggz

h2

2

�

� mggzh
uy

kuk ð5Þ

where u ¼ ðu; vÞ denotes the depth averaged flow velocity in
the reference frame (x, y, z) defined below, h is the fluid depth,
m ¼ tan d, where d is the basal friction angle.

Due to the isotropy condition, the assumed depth averaged
stress tensor is

s¼

0
BBBBB@

rggz

h

2
0 0

0 rggz

h

2
0

0 0 rggz

h

2

1
CCCCCA ð6Þ

and the traction vector T¼ (Tx, Ty, Tz)¼�s$nb where nb is
the unit vector normal to the bed of the sliding mass, reads

T¼

0
BBB@
�mrggzh

u

kuk
�mrggzh

v

kuk
�mrggzh

1
CCCA ð7Þ

Dissipation is described by a Coulomb-type friction law re-
lating the norm of the tangential traction kTtk at the bed to the
norm of the normal traction kTnk ¼ Tzjj ¼ szzjbj

�� at the bed,
through the factor m. In the considered coordinate system,
sc ¼ mrggzh defines the upper bound of the admissible
stresses (for detail, see Mangeney-Castelnau et al., 2003).

If kTtk � sc the mass is flowing following the dynamical
equations, if kTtk < sc the mass stops and the momentum
equations are replaced by u¼ 0. Mangeney-Castelnau et al.
(2003) introduces a Dirac distribution of particles at the micro-
scopic scale in order to describe the stopping of a granular

Fig. 3. Representation of fixed reference frame ðx; y; zÞ and of reference system

linked to the topography (x, y, z).
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mass when the driving forces are under the Coulomb
threshold.

The algorithm used in SHWCIN gives a first order of pre-
cision in both space and time.

The system of equations is in the code discretized on a gen-
eral triangular grid with a finite element data structure using
a particular control volume which is the median based dual
cell. Dual cells Ci are obtained by joining the centres of
mass of the triangles surrounding each vertex Pi (Fig. 4).
The following notations are used: Ki set of nodes Pj surround-
ing Pi, Ai area of Ci, Gij boundary edge belonging to cells Ci

and Cj, Lij length of Gij, nij unit normal to Gij outward to Ci.
The system of Eqs. (3)e(5) can be re-written as

vU

vt
þ div FðUÞ ¼ BðUÞ ð8Þ

with

U¼

0
B@

h

qx

qy

1
CA; FðUÞ ¼

0
BBBBB@

qx qy

q2
x

h
þ g

2
h2 qxqy

h

qxqy

h

q2
y

h
þ g

2
h2

1
CCCCCA;

BðUÞ ¼

0
B@

0

�ghgx � Tx

�ghgy� Ty

1
CA ð9Þ

where q¼ hu.
It is here presented the assumed numerical scheme without

details concerning friction terms, these terms are widely
treated in Mangeney-Castelnau et al. (2003).

In the finite volume scheme, Eq. (8) assumes the following
configuration

Unþ1
i ¼ Un

i �
X
j˛Ki

aijF
�
Un

i ;U
n
j ;nij

�
þDtBðUn

i Þ ð10Þ

Fig. 4. Triangular finite element mesh (from Mangeney-Castelnau et al., 2003).
with Dt, the time step

aij ¼
DtLij

Ai

Un
i y

1

Ai

Z
Ci

Uðtn; xÞdx

the approximation of the cell average of the exact solution at
time tn

BðUn
i Þy

1

Ai

Z
Ci

BðUn
i Þdx

the approximation of the cell average of the exact source term
at time tn

F
�
Un

i ;U
n
j ;nij

�
an interpolation of the normal component of the flux FðU $nij

�
along the edge Gij.

The main difficulty is to compute fluxes at the control
volumes interfaces Gij and to guarantee the overall stability
of the method. The computation of these fluxes is made using
a kinetic scheme that consists in using a fictitious description
of the microscopic behaviour of the system to define numeri-
cal fluxes. It is introduced here the main concept of the kinetic
scheme used in this model; a complete description of this
scheme and its numerical implementations are done by
Audusse et al. (2000), Bristeau et al. (2001) and Audusse
and Bristeau (2005).

A distribution function of fictitious particles M(t, x, y, x)
with velocity x (here a rectangular function P) is introduced
in order to obtain a linear microscopic kinetic equation equiv-
alent to the macroscopic Eq. (8). The microscopic density M
of particle present at time t in the vicinity DxDy of the position
(x,y) and with a velocity x is defined as

Mðt; x; y; xÞ ¼ hðt; x; yÞ
c2

c

�
x� uðt; x; yÞ

c

�
ð11Þ

with ‘‘fluid density’’ h, ‘‘fluid temperature’’ proportional to c2

¼ gh=2 and c(u) a positive even function defined on R2

(Mangeney-Castelnau et al., 2003).
The macroscopic quantities are linked to the microscopic

function by the following relations

U¼
Z
R2

�
1
x

�
Mðt; x; y; xÞdx ð12Þ

FðUÞ ¼
Z
R2

�
x

x5x

�
Mðt; x; y; xÞdx ð13Þ

BðUÞ ¼ g$

Z
R2

�
1
x

�
VxMðt; x; y; xÞdx with g¼

�
gx;gy

�
ð14Þ
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These relations imply that the nonlinear system Eqs. (3)e
(5) is equivalent to the linear transport equation for the quan-
tity M, for which it is easier to find a simple numerical scheme
with good properties

vM

vt
þ x$VxM� gg$VxM ¼ Qðt; x; y; xÞ ð15Þ

for some collision term Q(t, x, y, x) which satisfiesZ
R2

�
1
x

�
Qðt; x; y; xÞdx¼ 0 ð16Þ

The ‘‘collision term’’ Q(t, x, y, x) in this kinetic representa-
tion of the Saint Venant equations is neglected in the numeri-
cal scheme.

Finally, the discretization of the obtained kinetic equation
allows to deduce an appropriate discretization of the macro-
scopic system. From the microscopic Eq. (15) the formulations
of the fluxes defined in Eq. (10) are obtained as follows

F
�
Ui;Uj;nij

�
¼ Fþ

�
Ui;nij

�
þF�

�
Uj;nij

�
ð17Þ

Fþ
�
Ui;nij

�
¼
Z

x$nij�0

x$nij

�
1
x

�
MiðxÞdx ð18Þ

F�
�
Uj;nij

�
¼
Z

x$nij�0

x$nij

�
1
x

�
MjðxÞdx ð19Þ

The simple form of the density function allows analytical
resolution of integrals Eqs. (18) and (19) and gives the possi-
bility to directly write a finite volume formula, which therefore
avoids using the extra variable x in the implementation of the
code. The resulting numerical scheme is consistent and
conservative.

3.1. Numerical model upgrade

Some changes in the original version (SHWCIN) of the ap-
plied code have been necessary to run analyses of propagation
on a complex three-dimensional topography.
The obtained code (RASH3D) has been validated for each
change through simulation of experimental laboratory tests
(Pirulli, 2005).

Firstly it is pointed out that some numerical problems can
occur in topology optimization. In SHWCIN a triangular reg-
ular mesh, which in the following will be called ‘‘structured
mesh’’, was usually assumed. Through a very simple three-
dimensional analysis of a hemi-spherical mass flowing on
a horizontal plane it is shown that propagation on a structured
mesh does not result symmetric, as it would be expected. The
existence of elements having all the same direction originates
a preferential direction of propagation of the mass (Fig. 5).

This mesh dependency can be reduced by increasing the
number of elements of a structured mesh through a higher
discretization. The obtained results underline a considerable
increase of the cpu-time without a complete removal of the
problem.

An important result was obtained turning to ‘‘unstructured
mesh’’, numerically implemented through a Delaunay
triangulation.

It is seen that, assuming the same initial geometry of the ex-
periment considered with a structured mesh, an unstructured
mesh is able to reduce the asymmetry of the propagation
(Fig. 6). Further, since a huge increment of number of
elements is not necessary, the cpu-time remains approximately
the same.

As a second aspect, it is underlined that runout of a mass
can be deeply influenced by changes in the slope geometry
which are very frequent in real cases of rock avalanches. In
these cases, it must be taken into account that the gravity vec-
tor components ( gx, gy, gz) modify along the path as a function
of dip and dip direction of the slope and a component having
negligible effect in a certain portion of the slope could become
predominant in another one.

In SHWCIN gravity vector components were defined for an
invariant topography in the y direction. It means that the trans-
versal extension of an assumed topography was considered as
the lateral extrusion of a given profile.

To run analyses of propagation on a complex topography it
has been necessary to modify the gravity vector components
so that a different term ( gx, gy, gz) is defined for each point
Fig. 5. (a) A structured mesh. (b) Propagation of hemi-spherical mass on horizontal plane at t¼ 0.3 s using a structured mesh.
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Fig. 6. (a) An unstructured mesh. (b) Propagation of hemi-spherical mass on horizontal plane at t¼ 0.3 s using an unstructured mesh.
of the mesh as a function of the behaviour that the topography
assumes in the vicinity of the considered point (Pirulli, 2005).

Finally the earth pressure coefficients are important to
model the mass behaviour in a correct way. As explained in
detail in Section 4, in every analysis it is necessary to distin-
guish between convergence and divergence of the mass and
it is fundamental to use a different earth pressure coefficient
value (K ) for directions of convergence and of divergence of
the flux.

A detailed description of the procedure followed to intro-
duce these aspects in the finite volume scheme assumed in
the numerical code is widely treated in Pirulli, 2005.

4. Earth pressure coefficients

4.1. Theoretical analysis

The Savage and Hutter theory, which assumes that a very
simple state of stress prevails within an avalanche, is here con-
sidered. It hypothesizes that, at the base and at the stress free
surface of the flowing mass, the normal stresses sxx and syy

can be expressed in terms of the overburden normal stress
szz through Mohr-circle considerations. Its validity through
depth is justified by the continuity requirement. The hypothe-
sis that the predominant shearing takes place in surfaces nor-
mal to the xez plane (Fig. 7) allows, as a rough approximation,
to assume that the lateral confinement normal stress syy is
close to a principal stress s1.

Furthermore, it shall be assumed that one of the other prin-
cipal stresses acting in the (x,z)-surface, s2 and s3, equals s1.
This is an ad hoc assumption that is not guaranteed by any
physical reason, but that reduces the three Mohr-circles that
describe all possible combinations of normal stresses and
shear stresses to only one Mohr-circle as in two dimensions.
Thus, to a given stress state ðsb

xx; t
b
xzÞ, at the base, two Mohr

stress circles can be constructed to satisfy both the basal slid-
ing law and the internal yield criterion simultaneously. Their
construction is shown in Fig. 8.

The principal stresses, s2 and s3 in the xz-plane are given
by
ðs2;s3Þ ¼
1

2
ðsxx þ szzÞ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsxx � szzÞ2þ4t2

xz

q
ð20Þ

and the cross-slope principal stress syy(¼s1) equals s2 or s3,
depending on the nature of deformation. Two Mohr stress
circles can be constructed that satisfy both the basal sliding
law and the internal angle of friction at the same time.

In the original works of Savage and Hutter (1991) the basal
normal stress equals s and the shear stress equals �tb

xz. The
basal downslope normal stress sb

xx can therefore assume two
values, one on the smaller circle, sb

xx � sb
zz, and one on the

larger circle sb
xx > sb

zz, that are related to active and passive
stress states, respectively. Since there are four possible values

Fig. 7. Infinitesimal cubic element cut out of the avalanche with surface per-

pendicular to the coordinates. It is assumed that the motion predominantly is in

the direction of steepest descent (x) and the dominant shearing is parallel to the

xz-plane. This gives rise to the dominant shear stresses txz and normal pres-

sures sxx, syy, szz. Shear stresses tyz and txy also arise but much smaller

than txz. Thus syy equals approximately to s1, one of the principal stresses

(when tyz and txy vanish exactly then syy is exactly s1). The other two princi-

pal stresses, s2 and s3, act on surface elements of which the surface normals

lie in the xz-plane (from Savage and Hutter, 1989).
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for the principal stresses, sb
2 and sb

3, there are four values for
the basal cross-slope stress sb

yy.
The earth pressure coefficients Kb

x and Kb
y are defined as

follows

Kb
x ¼

sb
xx

sb
zz

; Kb
y ¼

sb
yy

sb
zz

ð21Þ

Savage and Hutter (1989) used elementary geometrical ar-
guments to determine the value of Kb

x and Hutter et al. (1993)
used the Mohr-circle representation (see Appendix) to define
Kb

y as a function of the internal (f) and basal angle (d) of fric-
tion, to derive

Kxact=pas
¼ 2 sec2f

�
1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2f sec2d

p 	
� 1 ð22Þ

Kx
yact=pas

¼ 1

2

�
Kx þ 1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKx � 1Þ2þ4tan2d

q �
ð23Þ

which are real for d� f.
To uniquely determine the value of the earth pressure coef-

ficient associated with a particular deformation the earth pres-
sure coefficient Kx is defined to be active or passive according
to whether the downslope motion is dilatational or compres-
sional as given by the following equation (Savage and Hutter,
1989)

Kb
x ¼



Kxact

; vu=vx � 0
Kxpas ; vu=vx < 0

ð24Þ

Analogously, the earth pressure coefficients in the lateral
direction are computed by considering whether the downslope
and cross-slope deformation are dilatational or compressional

Fig. 8. Mohr-circle-diagram representing the stress state within the avalanche.

The yield criterion corresponds to the two straight lines at angles �f to the

horizontal. Similarly, the Coulomb basal dry friction is indicated by the line

at an angle �d to the horizontal. The passive basal stress state is indicated

by the circle of centre a. The circle is both tangent to the yield curves and

passes through the point (szz, �szztan d). The circle of centre b represents

a second active stress state that also satisfies these conditions. - indicate

the possible stress states in the xz-plane, C show possible stress states for

syy (from Savage and Hutter, 1989).
Kb
y ¼

8>><
>>:

Kxact
yact
; vu=vx � 0; vv=vy� 0

Kxact
ypass
; vu=vx � 0; vv=vy< 0

K
xpass
yact ; vu=vx < 0; vv=vy� 0

K
xpass
ypass ; vu=vx < 0; vv=vy< 0

ð25Þ

At the traction free surface of the avalanche the downslope
and cross-slope normal surface stresses are

ss
xx ¼ 0; ss

yy ¼ 0 ð26Þ

Given the values of sxx and szz at the base and the free sur-
face, intermediate values can be now interpolated accordingly.
The Savage and Hutter theory assumes that the downslope and
cross-slope stresses vary linearly with normal stress through
the avalanche depth. This is achieved by the following
expression

sxx ¼ Kb
x szz; syy ¼ Kb

y szz ð27Þ

Substituting the normal stress szz with its equation and in-
tegrating through the avalanche depth the depth-integrated
stresses in the downslope and cross-slope direction are, respec-
tively, given by

sxx ¼ rgKb
x gzh=2; syy ¼ rgKb

y gzh=2 ð28Þ

in which, in comparison with terms written in Eq. (6) the K
coefficient is included.

Accorging to Hutter et al. (1993), these relations are valid
only when the motion is chiefly downhill and the shearing in
the (x,y) plane is small in comparison with the shearing in
the (x,z) and ( y,z) planes. When the sidewise motion is large
or when there is strong lateral confinement between rough
walls these assumptions break down.

4.2. Original versus modified version of the code

Unlike Hutter et al. (1993), where earth pressure coeffi-
cients are defined as the ratio of the longitudinal stresses to
the normal stress (see Eq. (21)), the SHWCIN code assumed
isotropy of normal stresses, i.e. sxx ¼ syy ¼ szz.

To relate the depth averaged longitudinal stresses to the
depth averaged z direction normal stress a lateral stress coef-
ficient Kact/pass has to be used.

As in Iverson and Denlinger (2001), in RASH3D a K coef-
ficient is implemented which applies in the x and y direction
simultaneously. Use of a scalar coefficient ensures frame in-
variance in the xey plane and preserves the stress symmetry.

The earth pressure coefficient K is considered in the active
or passive state, depending on whether the downslope and
cross-slope flows are expanding or contracting. The possibility
of simultaneous longitudinal contraction and lateral elongation
is neglected.

The K coefficient values are given by

Kact=pass ¼ 2
1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2f½1þ tan2d�

p
cos2f

� 1 ð29Þ
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where the þ (passive state) applies when flow is converging,
that is if vxuþ vyv < 0, and the � (active state) applies
when the flow is diverging, that is if vxuþ vyv > 0.

Earth pressure coefficients, as here defined, modify Eqs. (4)
and (5) as follows

v

vt
ðhuÞ þ v

vx

�
hu2
�
þ v

vy
ðhuvÞ ¼ �gxgh� v

vx

�
Kggz

h2

2

�

� mggzh
ux

kuk ð30Þ

v

vt
ðhvÞ þ v

vx
ðhuvÞ þ v

vy

�
hv2
�
¼�gygh� v

vy

�
Kggz

h2

2

�

� mggzh
uy

kuk ð31Þ

By using Eq. (29), the K active and passive values are ob-
tained as a function of the value assigned to the basal (d) and
internal (f) friction angles.

The value of K (Kact, Kpass) to be applied at each point of
the mesh is defined as a function of the divergence of the ve-
locity as weighed average by the area of the triangles.

The method can be illustrated on the mesh presented in
Fig. 4. For example, through the edge cutting PiPj the K value
is defined as follows

K ¼

8<
:

Kact; divPi
ðuÞ> 0; divPj

ðuÞ> 0
Kpass; divPi

ðuÞ< 0; divPj
ðuÞ< 0

1; divPi
ðuÞ$divPj

ðuÞ � 0
ð32Þ

5. Validation and observations

5.1. Laboratory test

5.1.1. General description
A laboratory experiment on a chute with a complex basal

topography performed by Gray et al. (1999) has been used
to test the effect of the earth pressure coefficients.

In the experiment a simple reference surface is defined,
which consists of an inclined plane (j¼ 40�) that is connected
to a horizontal runout zone (j¼ 0�) by a cylindrical zone.
Superposed on the inclined section of the chute is a shallow
parabolic cross-slope topography, y2/2R with R¼ 110 cm,
which forms a channel that partly confines the avalanche
motion (Fig. 9).

The inclined parabolic chute lies in x< 215 cm, the plane
run out zone lies in the range x> 255 cm and a transition
zone smoothly joins the two regions.

The experiment is performed with quartz chips of mean di-
ameter 2e4 mm, internal angle of friction f¼ 40� and basal
angle of friction d¼ 30�.

The granular material is released from rest on the parabolic
inclined section of the chute by means of a perspex cap that
opens rapidly at t¼ 0 s. The cap has a spherical free surface,
which is fitted to the basal chute topography. The projection
of this line of intersection onto the reference surface is
approximately elliptical in shape. The major axis of the ellipse
is of length 32 cm and the maximum height of the cap above
the reference surface is 22 cm.

5.1.2. Numerical results
Numerical results obtained by Gray et al. (1999) with a con-

stant bed-friction angle gave results showing that the ava-
lanche tail moved only a few centimetres from its initial
position and therefore the shape assumed by the material
was more elongated than in the experiments. Results presented
in Figs. 10 and 11 show a sequence of pictures at approxi-
mately 0.25 s intervals obtained by Gray et al. (1999) using
a variable bed-friction angle: in the front quarter of the ava-
lanche the bed-friction angle is assumed constant but reduces
linearly in the rear three-quarters.

The vertical lines at x¼ 215 cm and x¼ 255 cm indicate
the beginning and the end of the transition zone, respectively.
The inclined plane is on the left of each panel and the horizon-
tal run out zone is on the right. The top panel shows the initial
configuration of the avalanche and in the subsequent panels an
additional thick solid line indicates the position of the experi-
mental avalanche boundary, which provides a direct compari-
son with the computed boundary of the edge of the shaded
domains.

All the analyses carried out with RASH3D assume a constant
bed-friction angle. It is preferred to obtain a more detailed cor-
respondence between numerical and experimental results by
increasing or decreasing the constant value assigned to the
bed-friction angle for each analysis instead of introducing an
ad hoc variation of the bed-friction angle.

RASH3D numerical analyses were initially carried out
assuming isotropy of normal stresses with a constant basal
friction angle d¼ 30� (Fig. 12).

At t¼ 0.51 s the numerical and the experimental results are
acceptable even though a difference exists between the real
and evaluated position of the front of the mass. The simulated
avalanche behaviour is satisfactory along the confined inclined

Fig. 9. Experimental apparatus made of a weakly parabolic channel (Image

courtesy of S. McDougall, University of British Columbia, Canada).
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channel but when the horizontal plane is reached some prob-
lems are pointed out. In fact, at t¼ 1.00 s the maximum run
out distance is underpredicted and at t¼ 1.51 s results become
unacceptable, the deposit becoming too compact (Fig. 12).

A set of analyses assuming d¼ 27� are also run. The
obtained results are encouraging up to t¼ 1.00 s, but at
t¼ 1.51 s the problem of a too compact deposit is again
pointed out (Fig. 12).

If these results are compared to those obtained by Gray
et al. (1999) an interesting agreement emerges. In fact, when
the avalanche is in divergence the model gives the same be-
haviour as in the experiment. While, as soon as the avalanche

Fig. 10. The computed avalanche thickness is illustrated at five time intervals.

The thick solid line indicates the position of the avalanche edge in the labora-

tory experiment assuming anisotropy of normal stresses (modified from Gray

et al., 1999).
begins to converge in the run out zone a much more compact
deposit is obtained, and the maximum run out distance is
underpredicted.

In this frame the analysis of earth pressure coefficients
becomes fundamental.

In Table 1 are summarized the K values as a function of the
model hypotheses considering an internal friction angle
f¼ 40� and a basal friction angle d¼ 27� and d¼ 30�,
respectively.

As previously mentioned, the Iverson and Denlinger (2001)
approach is followed in RASH3D. Two values for K are defined
to introduce the anisotropy hypothesis (Table 1 hypothesis 2a).

Fig. 11. The computed avalanche thickness is illustrated at five time intervals.

The thick solid line indicates the position of the avalanche edge in the labora-

tory experiment assuming isotropy of normal stresses (modified from Gray

et al., 1999).
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In this hypothesis, some interesting aspects emerge com-
paring results obtained in isotropy (d¼ 30�) and anisotropy
(d¼ 30� e f¼ 40�) conditions (Fig. 13).

At t¼ 0.51 s and t¼ 1.00 s the results underline that the
general behaviour of the mass remains approximately the
same independently from the assumed hypothesis of isotropy
or anisotropy, the front position is overpredicted along the
chute and underpredicted when the horizontal plane is gained.

Fig. 12. Analyses carried out with RASH3D assuming isotropy of normal

stresses.
However, it is important to underline that a different trend of
the mass behaviour can be pointed out. Along the chute the
overprediction is higher when assuming K¼ 1 instead of
K s 1 and on the horizontal plane the underprediction is
higher assuming K¼ 1 instead of K s 1.

From results obtained at t¼ 1.51 s and t¼ 1.79 it emerges
that the difference in the front positions on the horizontal
plane becomes large. Assuming K s 1 the longitudinal posi-
tion of the distal point approximates in a better way the exper-
imental results but some problems emerge on the deposit
width.

A good approximation of the propagation phase was
numerically obtained by McDougall and Hungr (2004) using
a rheology with d¼ 27� and f¼ 40� and 4 values of K param-
eter (Table 1 hypothesis 2.b). The predicted distribution of the
final deposit is reasonably accurate, with slightly more radial
spreading (Fig. 14).

In order to compare the results obtainable with RASH3D to
those obtained by McDougall and Hungr (2004), analyses
have been also carried out assuming the isotropy condition
with d¼ 27� and the anisotropy condition with d¼ 27� and
f¼ 40� (Fig. 15).

It emerges that at t¼ 0.51 s a large difference exists in the
position reached by the front of the mass in the two hypothe-
ses, even though an overprediction still exists it is higher in
case of K¼ 1. At t¼ 1.00 s it seems that in both cases the
mass assumes the same behaviour but an important difference
is underlined at t¼ 1.51 where by assuming K s 1 a satisfac-
tory approximation of the longitudinal position assumed by
the mass during the experiment is numerically reached. The
same is if t¼ 1.79 s is considered.

5.1.3. Observations
In order to try to explain these results, the spatial variation

of the earth pressure coefficient K during the propagation
phase was obtained by Gray et al. (1999) is quoted in
Figs. 16 and 17. The state of stress in down and cross-slope

Table 1

Earth pressure coefficients

d¼ 27� e f¼ 40� Earth pressure coefficients

1. Isotropy K¼ 1

2. Anisotropy a. Kact¼ 0.67 Kpass¼ 4.15

b. Kx,act¼ 0.67 Ky,act¼ 0.30

Ky,pass¼ 1.37

Kx,pass¼ 4.15 Ky,act¼ 0.92

Ky,pass¼ 4.23

d¼ 30� e f¼ 40� Earth pressure coefficients

1. Isotropy K¼ 1

2. Anisotropy a. Kact¼ 0.82 Kpass¼ 4.00

b. Kx,act¼ 0.82 Ky,act¼ 0.32

Ky,pass¼ 1.49

Kx,pass¼ 4.00 Ky,act¼ 0.89

Ky,pass¼ 4.10

Values of K defined as a function of the model hypotheses: (1) Isotropy of

normal stresses; (2) anisotropy of normal stresses, (a) see Eq. (27) e (b) see

Eqs. (20)e(21).
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directions is illustrated in the hypothesis of 4 values of the K
parameter (as assumed by McDougall and Hungr, 2004). Cells
are shaded to show which value of the earth pressure coeffi-
cient is activated at any given time.

The highest velocities are attained at the front of the ava-
lanche and this predominantly divergent motion gives rise to
active downslope earth pressures at t¼ 0.51 s while in the

Fig. 13. Comparison between analyses carried out with RASH3D assuming

isotropy and anisotropy of normal stresses.
cross-slope the transition from expansion to compression
originates some active and passive cells.

After 1 s has elapsed the avalanche spans all three sections
of the chute and all the earth pressure states in the downslope
and cross-slope directions are activated. The front of the ava-
lanche lies on the horizontal plane and diverges in the down-
slope direction, as does the granular material on the inclined
section of the chute. In the run out zone, the lateral confine-
ment ceases, the avalanche is free to expand laterally and
the earth pressure coefficients change accordingly.

At 1.51 s the front of the avalanche has virtually come to
rest and the whole avalanche is in downslope convergence.
In addition, since lateral confinement ceases on the run out
plane there is strong cross-slope divergence throughout most
of the avalanche, with only the tip of the tail being compressed
(Gray et al., 1999).

The model here applied with variation of the earth pressure
coefficients considers two values for K. The approach can be
considered at least qualitatively correct, limits are probably
due to the hypothesis that where vxuþ vyv < 0 the flow is con-
sidered converging and the passive state applies both in x and y
directions, if vxuþ vyv > 0 the active state applies. As

Fig. 14. Analyses of run out experiment carried out by McDougall and Hungr

(2004) with anisotropy of normal stresses (Image courtesy of S. McDougall,

University of British Columbia, Canada).
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presented in Fig. 18 this approach can originates only two
types of mass behaviours: divergence in both directions or
convergence in both directions.

At the contrary, if 4 values of K had considered (see
Eqs. (24) and (25) it would have been possible to have also
divergence in a direction and convergence in the other one
(Fig. 19).

Fig. 15. Comparison between analyses carried out with RASH3D assuming

isotropy and anisotropy of normal stresses.
The obtained results are considered encouraging and qual-
itatively corrects. Differences as to experimental results can be
explained, for example in case of d¼ 30� and f¼ 40�, as
follows.

At t¼ 0.51 s the mass accelerates in downslope direction
and the following conditions can be assumed

����vu

vx

����>
����vv

vy

����; vu

vx
> 0 ð33Þ

Considering the hypothesis 2a (Table 1, anisotropy with 2
values of K ) vxuþ vyv > 0 is obtained and Kact¼ 0.82 is ap-
plied in downslope and cross-slope directions. If the

Fig. 16. The value of the downslope earth pressure coefficient (from Gray

et al., 1999).
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Fig. 17. The value of the cross-slope earth pressure coefficient (from Gray

et al., 1999).

Fig. 18. Simultaneous longitudinal and lateral elongation (a) and longitudinal

and lateral contraction (b).
hypothesis 2b (Table 1, anisotropy with 4 values of K ) is con-
sidered, the K value in downslope direction is the same than in
case 2a, and approximately the same used in case of isotropy,
but in cross-slope direction it is possible to have
K¼ Kact¼ 0.32 or K¼ Kpass¼ 1.49. This can modify the
width of the mass along the chute.

At t¼ 1.00 s three phases can be considered

Chute

����vu

vx

����>
����vv

vy

����; vu

vx
> 0

vv

vy
< 0; vxuþ vyv> 0 ð34Þ

Transition zone

����vu

vx

����>
����vv

vy

����; vu

vx
< 0

vv

vy
> 0; vxuþ vyv< 0

ð35Þ

Horizontal plane
vu

vx
> 0

vv

vy
> 0; vxuþ vyv > 0 ð36Þ

Along the chute, as in case of t¼ 0.51 s, in cross-slope di-
rection there are both active and passive cells but elements
passive in y and active in x are in prevalence. To consider in

Fig. 19. Simultaneous longitudinal elongation and lateral contraction (a) and

longitudinal contraction and lateral elongation (b).

Fig. 20. Frank slide.
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the transition zone only one K value in both x and y directions
does not allow to underline distinction between convergence
and divergence. On the horizontal plane the hypothesis 2a
gives a K¼ 0.82 while in the hypothesis 2b K¼ 0.82 defines

Fig. 21. Location of the Frank slide area.
the propagation only in the downslope direction while in the
cross-slope K¼ 0.32 is assumed and, in fact, the width is
correctly reduced.

At t¼ 1.51 s the mass decelerates in downslope direction
and the following conditions can be assumed

����vu

vx

���� >
����vv

vy

����; vu

vx
< 0 ð37Þ

Considering the hypothesis 2a vxuþ vyv < 0 is obtained
and Kpass¼ 4.00 is applied in downslope and cross-slope
directions. If the hypothesis 2b is considered the K value in
downslope direction is the same than in case 2a but in cross-
slope direction it is K¼ Kact¼ 0.79 and the width becomes
correctly reduced.

The condition t¼ 1.79 s is complex, there are active and
passive cells but the general behaviour determine a prevalence
of active values in cross-slope direction that reduces spreading
of the mass.

The graphic comparison between isotropy and anisotropy
results helps to underline that it is useful to split the K value
in x and y directions. In fact, values as K y 4 allow reproduc-
ing the position of the front but in the cross-slope direction
becomes fundamental to use K� 1.
Fig. 22. Frank slide. (1) Map of the Turtle Mountain area. (2) Cross-section through Turtle Mountain along line AeA 0. (3) Cross-section through Turtle Mountain

along line BeB 0. (4) Cross-section along Turtle Mountain along line CeC 0 (modified from Cruden and Krahn, 1978).
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5.2. Frank slide (1903, Canada)

5.2.1. General description
A detailed description of the Frank slide is reported in

Cruden and Krahn, 1978, while the short information given
in the present paper is set out only to define the general char-
acteristics and the dynamic of the considered avalanche in
order to better understand choices made when back analyses
are carried out.

The Frank slide occurred on the morning April 29, 1903
(Fig. 20). Frank, a coal mining town of south western Alberta
(Canada), located 21 km east of the border with British
Columbia and 56 km north of the United States border is today
an old townsite (Fig. 21). The new town of Frank is about
2 km north of the old one.

The original rock mass volume is estimated at about
30� 106 m3 but the dimensions of the slide are not accurately
known because no maps existed of the area before the slide. In
Fig. 22 the reconstruction of the failed rock mass along three
section lines as made by the experts is given. Reconstruction
suggested slab thickness up to 150 m.

The structure of Turtle Mountain was described as a mono-
cline of Paleozoic limestones dipping at about 50�. The slide
probably took place on bedding surfaces with orientation of
the scarp and lateral margins of the slide controlled by joints
sets. A surface of rupture close to the toe of the slide followed
a minor thrust above the Turtle Mountain fault.

The slide debris moved down from the east face of Turtle
Mountain across the entrance of the Frank mine of the
Canadian American Coal Co., the Crowsnest River, the south-
ern end of the town of Frank, the main road from the east, and
the Canadian Pacific mainline through the Crowsnest Pass
(Fig. 23).

The separated rock mass seems to have been shattered by
impacts against the side of the mountain during its descent,
and probably long before it reached the bottom, into myriads
of fragments, some of which were flung far out into the valley.

The slide rock consists mostly of angular fragments of
limestone, ranging in size from grains up to great blocks
12 m in length. Large rocks are common everywhere, espe-
cially along the central portion of the slide.

In portions of the slide the space between the rocks are
filled with material resembling boulder clay and a number of
small mud flats are also present.

In confirmation of this, the reconstruction of the Canadian
Pacific Railway line created a cut up to 16 m high across the
deposit, giving a unique cross-section nearly the depth of the
debris. The debris shows vertical sorting. The base material
is crushed limestone, mainly of sand and gravel size, and con-
tains rounded pebbles from till or alluvial deposits on the sur-
face of separation. The upper surface of the debris is an
accumulation of large, predominantly angular boulders.
Grain-size analyses demonstrate a gradual increase in grain
size with height above the base of the cut. Such inverse grad-
ing with fines concentrated at the base of the debris indicates
that the landslide was not fluidized by gas pore pressure
(Cruden and Hungr, 1986).
In general, the great mass ploughed through the bed of the
river and carrying both water and underlying sediments along
with it, crossed the valley, climbed 145 m up the opposite side
of the valley and finally came to rest 120 m above the valley
floor with an average thickness of the debris at 13.7 m over
an area of about 3 km2.

It is difficult to reach any definite conclusion in regard to
the time occupied by the slide, as the estimates of eye wit-
nesses range all the way from 20 s to 2 min.

No estimate of the rate at which the material travelled after
it broke away can be given, but as those awakened by the roar
had scarcely time to do more than to rise from their beds
before all was over, it must have been extremely rapid
(McConnell and Brock, 1904).

The number of people killed by the slide is not known ex-
actly, but it is given at about 70. Three-quarters of the homes
in Frank were crushed like balsa wood; the people occupying
the houses in the track of the slide were all swept away with it
and destroyed. The track of the Canadian Pacific Railway was
hopelessly buried for a distance of nearly 2000 m. and the
river became a lake. The entrance and buildings of the coal
mining at the base of Turtle Mountain were buried. Seventeen
miners trapped inside performed an astonishing self-rescue.
They tunnelled upwards and broke through the surface on
the face of the mountain.

For many years, Frank was the only well-described,
historic example of what Varnes (1978) called a rockslidee
avalanche.

Immediately after the slide an inspection was made by the
Geological Survey of Canada. Their report gave a general

Fig. 23. Plan of the Frank slide debris deposit from an overlay on the National

Air Photo Library’s vertical air photo A 13077-102 (from Cruden and Hungr,

1986).
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Fig. 24. Analysis of the Frank slide with RASH3D. Plan of the simulated flow position at 20 s intervals (0 se20 se40 se60 se80 s) in condition of (a) anisotropy

and (b) isotropy of normal stresses. The flow depth contours are at 3 m intervals. The sliding surface contours are at 50 m intervals. The dashed line indicated the

extent of the real event.
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survey of the geology of the mountain. They concluded that
the slide occurred across rather than along bedding planes
and believed that the primary cause for the slide was to be
found in the structure of the mountain. In their opinion any
further danger of slides came from the north peak (Cruden
and Krahn, 1978) since its structure is similar to the portion
which fell away.

On the other hand, people pointed to the role of the mine as
one of the causes of the catastrophe. Water action in summit
cracks and severe weather conditions may have also contrib-
uted to the disaster.

5.2.2. Numerical results
No before-event maps existed of the area affected by the

Frank slide but using detailed digital elevation data provided
by the Geological Survey of Canada as well as historical pho-
tographs and maps, experts had been able to give a reconstruc-
tion of the topography and an estimate of volume involved
together with boundaries of the triggering area.

A complex rheology should be used given the complexity
of the analysed event and the high heterogeneity of the type
of material involved. On the other hand it would be impossible
to calibrate the high number of parameters that a complex rhe-
ology requires (see Pirulli, 2005).

The aim of this work is to have a tool that is applicable to
the back analysis of real cases, where a detailed description is
usually difficult to be obtained, and the prediction of the evo-
lution of a potential event. For these reasons the motion of the
avalanche has been simulated turning to a simple frictional
model in which the only rheological parameter to be set is
the basal friction angle (d) and the internal friction angle (f)
in case of anisotropy of normal stresses.

RASH3D has been applied using a frictional rheology both
in the hypothesis of isotropy and of anisotropy of stresses.
Results obtained assuming a basal friction angle d¼ 14�

and a f¼ 40� in case of anisotropy have been compared.
A so low value of the basal friction angle can be considered
index of heterogeneity of the involved material and of
influence of water on propagation, which is not known in
this case.

In Fig. 24 results are compared superposing the obtained
runout of the mass with RASH3D, in the assumed hypotheses
of both isotropy and anisotropy, on the boundaries of the area
as surveyed on site.

Numerical results clearly underline a difference in the be-
haviour assumed by the mass during propagation. It is not
easy to say which behaviour can be considered as more real-
istic but from the analysis of the different recorded frames it
emerges that in case of anisotropy the material assumes
a more compact and regular behaviour (Fig. 24a) than in
case of isotropy (Fig. 24b).

6. Conclusions

The SHWCIN code has been extended in this paper to
model the flow of granular avalanches over a complex three-
dimensional topography. This has been achieved by changing
the type of the adopted mesh, from structured to unstructured,
and by implementing the code so that the effect of a real to-
pography on the gravity vector components can be taken
into account.

The SHWCIN code has the possibility of analysing the
propagation of a fluid with an earth pressure coefficient K al-
ways equals 1. As previously explained, if the bulk of the flow-
ing mass is a dry granular material with friction, the
coefficient K may range between the active and passive coef-
ficient Kact and Kpass and this can widely modify the avalanche
shapes; as it controls how much spreading and contraction
occur.

The SHWCIN code has been upgraded. The obtained new
code (RASH3D) gives the possibility of using, as in Iverson
and Denlinger (2001), a K coefficient which applies in the x
and y direction simultaneously. Use of a scalar coefficient en-
sures frame invariance in the xey plane and preserves the
stress symmetry.

To compare the difference among results obtainable in con-
dition of both isotropy and anisotropy, the RASH3D code has
been applied in case of a laboratory experiment and a back
analysis of the case history of Frank slide.

In both cases, differences due to the K coefficient mainly
emerge when the topography does not constrain the mass to fol-
low a given path. That is, when the mass abandons the inclined
parabolic chute and gains the horizontal plane in case of the lab-
oratory apparatus and when the mass abandons the slope and
reaches the flat bottom of the valley in case of the real slide.

It is underlined that to determine a general converging or
diverging condition of the whole mass is not enough. To guar-
antee best results it would be important to apply a different K
value, at the same time, along directions of convergence and
directions of divergence.

Further developments of the research work undertaken are
needed. These have to be done by keeping in mind the final
objective, which is to provide a tool whose application could
give useful information for investigating, within realistic geo-
logical contexts, the dynamics of real flows and of their arrest
phase.
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Appendix

Stress tensor is defined in the reference frame (x,y,z) intro-
duced in Fig. 3. It is assumed that the Mohr circle tangential to
the failure envelope is that describing the stress state in the xz-
plane and that txz ¼ �sxxtan d, with d the basal friction angle.
In Mohr plane, the failure envelope, assuming a Coulomb-type
behaviour with cohesion equal to zero and internal friction
angle f, is a line passing through the origin O and having
dip equal to f.
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Two circles pass through the point ðszz; szztan dÞ and are
tangent to the failure envelope, as it is underlined in Fig. 8.

Assuming s and t as the coordinate of the centre of the cir-
cle along the s-axis and the radius of the circle, respectively,
conditions of tangency and of passage through ðszz; szztan dÞ
can be written as follows

t ¼ s sin f ð38Þ

s2
zzþ ðszztan dÞ2¼ t2 ð39Þ

Solving the system of Eqs. (38) and (39), two solutions are
obtained

s¼ 1

cos2f

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2f

cos2d

r !
szz ð40Þ

t ¼ sinf

cos2f

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2f

cos2d

r !
szz ð41Þ

where þ corresponds to the passive state and � to the active
state.

Earth pressure coefficients in the direction of steepest
descent can then be obtained as follows

Kx;act=pass¼
sxx

szz

¼2s�szz

szz

¼ 2

cos2f

 
1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2f

cos2d

r !
�1 ð42Þ

Due to the hypotheses of a cross-slope stress that is princi-
pal (syy¼ s1) and that is equal to one of the other principal
stresses acting in the (x,z)-surface (s1¼ s2) it is possible to
obtain Ky as follows

Ky ¼
syy

szz

¼ s1

szz

¼ s2

szz

ð43Þ

Since s2 is defined as quoted in Eq. (20), Ky becomes

Kx
y;act=pass ¼

1

2

�
Kx þ 1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKx � 1Þ2þ4 tan2d

q �
ð44Þ
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