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[1] When not laterally confined in valleys, pyroclastic flows create their own channel
along the slope by selecting a given flowing width. Furthermore, the lobe-shaped
deposits display a very specific morphology with high parallel lateral levees. A numerical
model based on Saint Venant equations and the empirical variable friction coefficient
proposed by Pouliquen and Forterre (2002) is used to simulate unconfined granular flow
over an inclined plane with a constant supply. Numerical simulations successfully
reproduce the self-channeling of the granular lobe and the levee-channel morphology in
the deposits without having to take into account mixture concepts or polydispersity.
Numerical simulations suggest that the quasi-static shoulders bordering the flow are
created behind the front of the granular material by the rotation of the velocity field due to
the balance between gravity, the two-dimensional pressure gradient, and friction. For a
simplified hydrostatic model, competition between the decreasing friction coefficient and
increasing surface gradient as the thickness decreases seems to play a key role in the
dynamics of unconfined flows. The description of the other disregarded components of the
stress tensor would be expected to change the balance of forces. The front’s shape appears
to be constant during propagation. The width of the flowing channel and the velocity of
the material within it are almost steady and uniform. Numerical results suggest that
measurement of the width and thickness of the central channel morphology in deposits in
the field provides an estimate of the velocity and thickness during emplacement.
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1. Introduction

[2] When not laterally confined in valleys, pyroclastic
flows propagate with a tongue shape and subparallel bor-
ders, creating their own channel along a slope by selecting a
given flowing width that is strongly dependent on the
underlying topography. Furthermore, the lobe-shaped
deposits exhibit a very specific morphology with parallel
lateral levees (about 1 m high) enriched in large blocks
while the central channel is lower and composed mainly of
smaller particles [e.g., Nairn and Self, 1978; Calder et al.,
2000; Saucedo et al., 2002; Ui et al., 1999; Rodriguez-
Elizarraras et al., 1991; Wilson and Head, 1981]. Such
channeled flows leaving a levee-channel morphology in
deposits on the slope are also observed in very different

environments and for flows involving completely different
materials such as landslide deposits on Mars [Mangold et al.,
2003; Treiman and Louge, 2004] or submarine landslides
[Klaucke et al., 2004]. Although lava flows have a totally
different mechanical behavior, similar morphological fea-
tures are observed in their deposits [Sakimoto and Gregg,
2001; Quareni et al., 2004].
[3] Several explanations have been proposed for the

channeling of these unconfined flows and their levee-
channel morphology: Bingham rheology leading to lateral
static zones as is the case for lava flows [Yamamoto et al.,
1993; Quareni et al., 2004; Mangold et al., 2003], drainage
of the central part of the deposit with static levees [Rowley
et al., 1981] and differential deflation and differential
fluidization of borders during emplacement due to polydis-
persity of the particles [Rowley et al., 1981; Wilson and
Head, 1981]. The levee-channel morphology observed on
Martian landslides was first interpreted as indicating the
presence of water during emplacement [Malin and Edgett,
2000]. Similarly, assuming a Bingham rheology, Mangold
et al. [2003] deduced from the analysis of levees that the
observed gullies over large Martian dunes involve flows
with a significant proportion of fluids. On the other hand,
Treiman and Louge [2004] refer to dry flows to explain
the levee-channel morphology of Martian gullies. Field
measurements have been performed on such deposits, but
the question remains as to what extent these measurements
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Denis Diderot, CNRS, Paris, France.

2Now at Institute for Nonlinear Science, University of California,
San Diego, La Jolla, USA.
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provide information on the mechanical properties and
dynamics of the flow during emplacement. Which geo-
morphologic features (such as width or thickness of the
central channel or levees) are almost independent with
respect to time and the distance from the supply and
therefore pertinent to characterize the flow?
[4] Laboratory experiments show that the channeling of

unconfined flows and the formation of a levee-channel
morphology in deposits may be explained by referring to
dry granular flows alone [e.g., McDonald and Anderson,
1996; Félix and Thomas, 2004]. The channeling and the
formation of levees are strongly related to the free lateral
boundaries and to the highly unsteady stopping stage.
However, while the steady laterally uniform flow regime
of confined granular materials along inclined planes has
been largely characterized [Gray et al., 1999; Pouliquen,
1999], the behavior of granular materials under unsteady
and nonuniform conditions is still an open question. The
experiments of Félix and Thomas [2004] on unconfined dry
granular flows over an inclined plane show that the forma-
tion of levees results from the combination of lateral static
zones on each border of the flow (shoulders) and the
drainage of the central part of the flow after the supply
stops. Particle segregation features are also created during
the flow, corresponding to those observed in the deposits of
pyroclastic flows. When the range of sizes of the polydis-
perse material is reduced, the morphology is smoothed but
never reaches a flat surface [Félix and Thomas, 2004].
However, a perfectly monodispersed material could not be
used in experimental work, and it is therefore possible that
polydispersity is a necessary condition for the formation of
the levee-channel morphology. Moreover, it is uncertain
whether this morphology can be obtained without assuming
Bingham rheology, for example using a Coulomb friction
law, better suited to describing the flow of dry granular
matter [see, e.g., Hutter et al., 1995]. It is also unknown
how the shoulders channeling the flow are created and if the
associated spatial nonuniformity is linked to the hysteretic
character of the granular material, i.e., its capacity to be
either in a static or flowing state depending on the history of
the dynamics.
[5] The aim of this paper is to shed light on these

questions by assessing whether a simple depth-averaged
model based on Saint Venant equations and Coulomb type
friction is able to reproduce the complex behavior of
unconfined granular flows with channel formation and
levee-channel morphology in deposits. A simple hydrostatic
model involving the empirical variable friction coefficient
proposed by Pouliquen and Forterre [2002] is used here. As
the other friction laws proposed in the literature for dry
granular flows, Pouliquen and Forterre’s empirical flow rule
is obviously oversimplified to reproduce the natural com-
plexity where polydisperse, multiphase materials are in-
volved. The following simulations strongly depend on the
peculiar features of this empirical friction law. The case
treated in this paper, namely dry granular flows without
polydispersity effects over inclined plane, is very simple
and therefore quite different from typical geophysical cases
such as pyroclastic flows and debris flows involving effects
like grain size segregation and variable liquefaction or
fluidization [e.g., Iverson and Vallance, 2001]. The question

addressed here is whether self-channeling flows and levee-
channel morphology can be obtained for this simple case.
[6] Simple continuum hydrodynamic models, based on the

long-wave approximation (hereafter called LWA) [Savage
and Hutter, 1989] and Saint Venant equations, have been
shown to reproduce the basic features of both experimental
dense granular flows along inclined planes and geological
flows over real topographies [e.g., Denlinger and Iverson,
2001;Naaim et al., 1997; Pastor et al., 2002;McDougall and
Hungr, 2004; Pouliquen and Forterre, 2002; Mangeney-
Castelnau et al., 2003; Pitman et al., 2003; Denlinger and
Iverson, 2004; Iverson et al., 2004; Sheridan et al., 2007;
Lucas and Mangeney, 2007]. Continuum models are
expressed in terms of the change of the vertically averaged
velocity field and of the associated vertical length scale h, i.e.,
the avalanche thickness, and describe hydrostatic imbalance
[Mangeney-Castelnau et al., 2003] or nonhydrostatic plas-
ticity and friction effects [Savage and Hutter, 1989]. The
models assume an averaged friction dissipation described
phenomenologically by Coulomb0s friction law with a
constant [e.g., Hutter et al., 1995; Naaim et al., 1997] or
velocity- and thickness-dependent [Pouliquen, 1999;
Douady et al., 1999] friction coefficient. More sophisticated
models have been recently proposed by Denlinger and
Iverson [2004] based on Mohr-Coulomb plasticity theory.
Although the friction law describing the behavior of steady
flows has been relatively well refined by laboratory experi-
ments, the behavior of a granular mass at small Froude
numbers (i.e., at low velocities) is still an open question.
Hysteresis is an important characteristic of granular slope
stability. Indeed, a granular slope starts to flow when its
inclination reaches a typical avalanche angle qa and comes
to rest once its slope reaches another so-called repose angle
qr < qa. The hysteretic behavior occurs for inclination angles
q 2[qr, qa] [e.g., Pouliquen and Forterre, 2002; Daerr and
Douady, 1999]. The metastability of a granular slope in this
range of angles has been shown to be very complex and
requires a biphasic description of strong and weak contact
networks in the granular pile [Deboeuf et al., 2005a,
2005b]. In the macroscopic depth-averaged formulation
inherent to the long-wave approximation, the empiric
description of this metastability remains uncertain. Still,
the formation of channeling flows with the construction of
nearly static shoulders as well as the existence of levees
are likely to be strongly related to the behavior of granular
materials near the stopping or destabilization phases. Because
unconfined flows continuously juggle between static and
flowing conditions, their numerical simulation can be used
to improve the macroscopic description of the metastable
behavior of granular flows which is still an open question.
[7] We first briefly describe, in section 2, the experimen-

tal results that motivated this study. After a description of
the model and the flow law in section 3, a simulation of
experimental results of confined granular flow over an
inclined plane with constant supply and its deposit after
stopping the supply is described in section 4 in order to
check the model in a configuration much simple than the
case of free-boundary flows. A numerical simulation of the
channeling process and the formation of levees is performed
in section 5, providing new insight into the experimental
observations based on a qualitative comparison between

F02017 MANGENEY ET AL.: NUMERICAL SIMULATION OF LEVEES

2 of 21

F02017



experimental and numerical results. In section 6, the dy-
namics of the channeling flows and the forces involved are
investigated to shed light on the mechanism generating the
complex behavior of unconfined flows.

2. Experimental Evidence

[8] Félix and Thomas [2004] have shown that unconfined
flows of dry granular material over a rough inclined plane
with a constant supply reach a steady state, after which the
front propagates at a constant velocity, the thickness is
quasi-uniform and constant with time and the width of the
flow is uniform. The structure of unconfined flow has been
shown to be separated into a flowing central channel and
two static shoulders on each border of the channel. As the
supply stops, the thickness of the channel decreases while
the thickness of the static shoulders remains unchanged,
leading to a deposit with a levee-channel morphology. Glass
beads of diameter 300–400 mm have been used in the
experiments with initial flux varying from 6 g s�1 to 34 g
s�1 over an inclined plane 2 m long and 80 cm wide, with
slope angles in the range [25�,29�]. Taking a closer look at
the dynamics of unconfined flow, recent experiments have
shown that granular flow slowly enlarges while its thickness
decreases if the supply is maintained for a long duration
[Deboeuf et al., 2006].
[9] Although these studies mention the effect of polydis-

persity, it has not been determined whether segregation is a
necessary condition to obtain levees and static shoulders.
Moreover, these studies do not provide the precise velocity
field within the flow and do not explain the formation of
static shoulders at the rear of the front. It seems that the
dynamics at the front determine the width but this mecha-
nism has not been investigated. Consequently, no condition
can be deduced for the determination of the width, thickness
and velocity of the flow for a given flux. In the following,
we simulate this type of experiment numerically using a
long-wave approximation model. We investigate to what
extent such a model is able to shed light on these questions.

3. Model

3.1. Mass and Momentum Conservation

[10] Depth-averaged continuum models have been shown
to be useful in reproducing the basic behavior of the flow on
sloping topography under experimental or natural condi-
tions [e.g., Denlinger and Iverson, 2001; Naaim et al.,
1997; Pouliquen and Forterre, 2002; Mangeney-Castelnau
et al., 2003, 2005; Pitman et al., 2003]. These models are
based on the long-wave approximation, which is appropri-
ate for granular flows over inclined topography given that
the characteristic length in the flow direction is much larger
than the vertical length, i.e., the avalanche thickness,
thereby satisfying the hydrostatic assumption.
[11] A new model has recently been derived by Bouchut

and Westdickenberg [2004] for gravity driven shallow water
flow over an arbitrary two-dimensional (2-D) topography.
The model is written in an arbitrary coordinate system for
shallow flow over a topography with small curvature.
Dimensional analysis has been performed by Bouchut and
Westdickenberg [2004] in a manner similar to that of Hutter
and coworkers. The overall idea is to develop the equations

in a fixed reference frame (x, y, z), for example horizontal/
vertical, as opposed to the equations developed by Hutter
and coworkers in a variable reference frame linked to the
topography. However, the shallowness assumptions are still
imposed in the local reference frame (X, Y, Z) linked to the
topography (Figure 1). Indeed, to satisfy the hydrostatic
assumption for shallow flow over inclined topography, it is
the acceleration normal to the topography that must be
neglected compared to the gradient of the pressure normal
to the topography. The reference frame is shown in Figure 1.
The 2-D horizontal coordinate vector is x = (x, y) 2 R

2 and
the topography is described by the scalar function b(x, y)
with a 3-D unit upward normal vector

n!¼ � rxbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jjrxbjj2

q ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jjrxbjj2
q

0B@
1CA 	 �s; cð Þ 2 R

2 � R:

ð1Þ

The scalar c = cos q is indeed the cosine of the angle
between the vertical direction and the normal n!. In our
notation, the 3-D vectors are denoted by :!, whereas the 2-D
vectors in the inclined plane tangent to the topography are
written in bold. The equations take into account all the
components of the curvature tensor contrary to the majority
of former studies which refer only to the curvature radius
Ri, i = x, y in the directions in which the equations are
written [see, e.g., Naaim et al., 1997; Gray et al., 1999;
Mangeney-Castelnau et al., 2003; Pitman et al., 2003].
The equations are written in their fully general form in
Appendix A. For flow over an inclined plane of slope
db/dx = tanq, the subject of this paper, the curvature tensor
can be reduced to the null tensor. In the horizontal/vertical
Cartesian coordinate formulation the equations reduce to

@h

@t
þ c

@

@x
huð Þ þ @

@y
hvð Þ ¼ 0 ð2Þ

@u

@t
þ cu

@u

@x
þ v

@u

@y
þ c

@

@x
ghcð Þ ¼ �g sin qþ ~ffx ð3Þ

@v

@t
þ cu

@v

@x
þ v

@v

@y
þ @

@y
ghcð Þ ¼ ~ffy; ð4Þ

where h is the thickness of the material layer in the
direction normal to the topography. The velocity is defined
by u = (u, v), where u and v are respectively the velocity in
the direction X of the steepest slope and the horizontal
velocity in the transverse direction Y. These equations
model the hydrostatic imbalance in presence of a friction
force

~
f f = ( ~f fx, ~f fy), parallel to the inclined plane.

Although equations (3) and (4) are written using terms
having the dimensions of acceleration, we will refer to them
in the following as forces. Note that introducing the
coordinate X in the inclined direction instead of x, i.e., X =
x/c, gives c@/@ x = @/@ X, and (2)–(4) can then be reduced
to the classical shallow water equations.
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[12] The friction force
~
f f is equal to the depth-averaged

value of the Z derivative of the shear stress, i.e., in one
dimension,

~ffx ¼
1

h

Z h

0

@tXZ
@Z

dZ ¼ 1

h
tXZjZ¼h � tXZjZ¼0


 �
: ð5Þ

Here tXZ corresponds to the real shear stress divided by r,
the mass density, and will be called hereafter shear stress for
sake of simplicity. The free surface condition imposes that
the component of the stress in the direction tangent to the
free surface is equal to zero at Z = h. The term tXZjZ=0,
combined with terms obtained when depth averaging the
other components of the stress tensor thus disappears from
the depth-averaged equations [see, e.g.,Mangeney-Castelnau
et al., 2003]. As a result, the value of depth-averaged
Z derivative of the shear stress is replaced by the opposite of
the value of the basal shear stress �tXZjZ=0. Once the
equations have been depth averaged, the interpretation of the
friction force ff as the friction occurring at the base of the flow
is therefore not obvious, and requires at least implicit
assumptions on the Z profile of the shear stress.

3.2. Flow Law

[13] The appropriate flow law to describe dissipation in
dry granular flows is still under debate. Among the various
attempts to tackle this problem, it is possible to distinguish
two approaches, at least when considering those used in
avalanche modeling. In the pioneer approach proposed by
Savage and Hutter [1989] (hereinafter referred to as SH),
the components of the stress tensor are deduced from the
Coulomb plasticity criterium. The resulting flow law takes
into account the anisotropy of normal stresses by the
introduction of a factor k depending phenomenologically
on both a constant basal friction angle d and a constant
internal friction angle f that are to be independently
determined experimentally. The importance of the factor k
is still an open question. In rapid granular flows in which

the surface gradients are small, the nonhydrostatic effects
(i.e., anisotropy of normal stresses) seem to be negligible
[Ertas et al., 2001]. However, under quasi-static conditions
or near the margin of developing or already-emplaced
deposits, where surface gradients can be large, these effects
are expected to be significant [Iverson et al., 2004]. Today,
an accurate derivation of the 3-D equations based on the SH
theory over an arbitrary topography is still lacking [see, e.g.,
Pirulli et al., 2007]. Furthermore, the stresses on planes
normal to the bed are commonly neglected in models of
granular flows. A more sophisticated model, motivated by
the Rankine equations, has been recently developed by
Denlinger and Iverson [2004], that involves numerical
calculation of the entire stress tensor for depth-averaged
flow. Simulations of experimental results of granular flows
over a complex topography highlight the importance of the
stresses normal to the bed [Iverson et al., 2004].
[14] The second approach uses a purely phenomenolog-

ical representation of the dissipation in granular flows. A
parameterization of the so-called ‘‘basal’’ friction coeffi-
cient m = tan d as a function of the avalanche mean velocity
and the thickness is obtained from experiments on steady
uniform flows over inclined planes [Douady et al., 1999;
Pouliquen, 1999]. This m parameterization has been intro-
duced in depth-averaged long-wave equations together with
strong assumptions on the components of the stress tensor:
isotropy of normal stresses and negligible stresses on planes
normal to the bed [Pouliquen and Forterre, 2002;Mangeney-
Castelnau et al., 2003]. In the context of granular media, this
is an exceedingly bold assumption, as experimental data and
Coulomb theory show that bed-parallel stresses in quasi-
static granular media are not simply due to hydrostatic
pressure [e.g., see Sokolovski, 1965]. Despite all these
limitations, the resulting model is able to describe the
experimental observation of steady uniform flows over a
plane for a given range of inclination angles contrary to the
SH-type models involving a constant friction angle d. Indeed,
the equation of a steady uniform flow deduced from

Figure 1. Reference frame and variables used in the model.
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equation (3) combined with the Coulomb friction law (7)
described in the following reads

m ¼ tan q; ð6Þ

indicating that the friction force exactly balances the force
of gravity. This equilibrium is also obtained with SH’s
equations even if the stresses normal to the bed are
introduced in a way similar to that of Iverson and Denlinger
[2001]. In fact, in the case of steady uniform flow @h/@x and
@h/@y are equal to zero and the terms related to anisotropy
of normal stresses or stresses on planes normal to the bed
disappear.
[15] However, the physical basis of this m parameteriza-

tion is still an open question. In particular, this parameter-
ization is obtained by assuming that all the dissipation is
described by the term

~
f f in equations (3) and (4). The

question, however, is: does this relation hold only because
the other components of the stress tensor or the friction at
the lateral walls are neglected or because the dissipation in
granular flows is more complicated than the proposed
Coulomb-type models? Despite all these uncertainties, we
try here, in a first attempt to model the process of levee
formation by unconfined granular flows, to reproduce the
observed channeling of the flow and the levee-channel
morphology by simply using this m parameterization. The
idea is to analyze the balance of the forces that governs the
mechanics of self-channeling flows when this phenomeno-
logical representation of dissipation effects is introduced in
the model. All the limitations due to the strong assumptions
related to the disregarded components of the stress tensor
have to be kept in mind when analyzing the following
results.
[16] Unlike fluids, granular materials can sustain a given

stress without deforming. The transition between a static
state (u = 0) and a flowing state is generally simply modeled
in depth-averaged models by introducing a Coulomb thresh-
old sc. The motion is allowed only if the norm of the driving
forces jj~f fjj exceeds the Coulomb threshold [Mangeney-
Castelnau et al., 2003]. In the model (3)– (4),

~
f f is

expressed as

jj ~f f jj  sc )
~
f f ¼ �gcm u

jjujj
jj ~f f jj < sc ) u ¼ 0;

ð7Þ

where sc = gcm. When the material exceeds the Coulomb
threshold, the Coulomb friction law states that when
flowing, the friction force has a direction opposite to the
averaged tangential velocity field and the amplitude of the
friction force is governed by the total overall pressure and
the friction coefficient m. The friction force

~
f f is multivalued

for (u, v) = (0, 0) when the flow history is not known. For
this reason, the friction has been regularized numerically as
described in Appendix B (equations (B12) and (B16)). As a
result, for small velocities, the direction of the friction is
given by the driving forces related to the h gradient and
gravity. It is well known that the failure surface develops
within the granular mass at the initiation of the flow and that
the arrest phase involves both a horizontal and a vertical
propagation of the transition between static and flowing
materials. The above classical approach (7) to describe the

initiation or stopping of the flow by simply referring to the
‘‘basal’’ coefficient of friction is difficult to justify when
both basal and internal dissipation are taken into account in
the model.
[17] Near the transition between the static (jammed) and

the flowing (unjammed) state, the behavior of granular
material is still an open question. In this so-called metasta-
ble regime, the jammed state of the granular material is
conditionally stable and an avalanche can be triggered by
perturbations of finite amplitude [Daerr and Douady, 1999].
The different characteristic angles of stability of granular
systems reflect this metastability. In the case studied here,
where quasi-static zones develop near the margins of the
granular lobe, the behavior in the metastable regime is
expected to play a key role in the dynamics. Is it necessary
to take into account two different friction angles corresponding
to the avalanche and repose angles to simulate self-channeling
flows? Is the metastable regime involved during the formation
of self-channeling flows?
[18] These questions will be investigated here by using

the m parameterization proposed by [Pouliquen and Forterre,
2002] which takes into account the typical hysteresis behavior
of granular matter. Let us recall here the main features of this
phenomenological approach. Steady uniform flows over
rough bedrock have been observed experimentally for a range
of inclination angles, making it possible to identify a scaling
law relating the thickness and mean velocity of the flow
[Pouliquen, 1999]. This scaling law or flow rule involves
two empirical functions that are expected to contain funda-
mental information on the friction properties of the material
and of its interaction with the rough plane: (1) the function
relating the slope angle q of an inclined plane to the thickness
staying on the plane hstop(q) and (2) the function relating the
slope angle q to the minimum thickness of an initially at rest
granular layer necessary to generate a flow on the same plane
hstart(q).
[19] These empirical functions

hstop qð Þ ¼ L
tan d2 � tan q
tan q� tan d1

ð8Þ

hstart qð Þ ¼ L
tan d4 � tan q
tan q� tan d3

ð9Þ

involve the parameters di and L that can be deduced from
experiments by fitting the curves hstop(q) and hstart(q) for
inclination angle q 2 [d1, d2] and q 2 [d3, d4], respectively.
The parameters di correspond to the limiting angles for
which these measurements can be done. As an example, for
an inclination angle of the plane q = d1, the static thickness
hstop diverges and for q = d2, there is no deposit left on the
plane, i.e., hstop = 0. We use here d1 = 22�, d2 = 34�, d3 =
23�, d4 = 36�, and L = 8 � 10�4 m which are characteristic
values of the parameters determined in the experiments of
Félix and Thomas [2004]. With these parameters hstop =
2.6743 � 10�3m for q = 25� so that hstop � 7d, where d is
the typical grain diameter in the experiments and hstart =
4.9767 � 10�3m with hstart � hstop � 6d (hstart/hstop =
1.861).
[20] In the domain q 2 [d1, d2], the function hstop has been

shown to be an appropriate scaling parameter providing a
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relation between the thickness of the flow h and the Froude
number Fr = jj u jj/

ffiffiffiffiffi
gh

p
for steady uniform flow

hstop ¼ b
h

Fr þ a
ð10Þ

whatever the size of the beads. The values of b = 0.136 and
a = 0 have been measured for glass beads (b = 0.65 and a =
0.136 is found for sand particles) [Forterre and Pouliquen,
2003]. We use here the parameters measured for glass
beads, typical of the material used in the experiments of
Félix and Thomas [2004]. Relation (10) is defined when
steady flow is possible, i.e., when h > hstop or equivalently
when Fr > b.
[21] In steady uniform flows (Fr > b), the friction

coefficient m is related to the slope angle q owing to the
relation (6). Using (8) and (6), the friction coefficient can be
expressed as a function of hstop

m ¼ mstop hstop

 �

¼ tan d1 þ tan d2 � tan d1ð Þ 1
hstop
L

þ 1
: ð11Þ

Owing to relation (10), m can be related to the thickness h
and the Froude number Fr of the flow. On the other hand,
for a uniform granular layer of thickness h = hstart, initially
at rest (Fr = 0) on a plane with inclination, equations (6) and
(9) give

m ¼ mstart hstartð Þ ¼ tan d3 þ tan d4 � tan d3ð Þ 1
hstart
L

þ 1
: ð12Þ

The behavior at 0 < Fr � b corresponds to metastable
conditions, for which no measurements were available until
very recently. An empirical ad hoc fit has been proposed
by Pouliquen and Forterre [2002] to relate the behavior at
Fr > b to the measurements at Fr = 0 corresponding to
destabilization from rest. Note that recent studies have been
performed by Da Cruz [2004] providing insight into the
flow law at small Froude numbers, i.e., 0 < Fr � b.
[22] To sum up, the empirical friction coefficient m(h, Fr)

proposed by Pouliquen and Forterre [2002] and used here
is defined as

if Fr > b

m h;Frð Þ ¼ tan d1 þ tan d2 � tan d1ð Þ 1
bh
FrL

þ 1
; ð13Þ

if Fr = 0

m h;Frð Þ ¼ tan d3 þ tan d4 � tan d3ð Þ 1
h
L
þ 1

; ð14Þ

if 0 � Fr < b

m h;Frð Þ ¼ mstart hð Þ þ Fr

b

� x

mstop hð Þ � mstart hð Þ
� �

; ð15Þ

where x is a small parameter (here x = 10�3). The colored
surface represented in Figure 2 shows that for Fr > b the
coefficient of friction m increases when the Froude number
increases and when h decreases. For a given value of h, the
coefficient of friction is almost constant in the metastable
regime 0 � Fr < b and sharply increases near Fr = 0.
[23] The friction is then modeled by equation (7) with a

variable Coulomb threshold sc = gcm(h, Fr) with m defined
just above by equations (13)–(15). The friction model
allows a mass initially at rest to flow when the driving
forces due to surface slope and gravity exceed the Coulomb
threshold related to mstart. Similarly, the mass stops when the
driving forces due to inertia, surface slope and gravity drop
below the Coulomb threshold related to mstop. The model is
therefore able to describe the hysteretic behavior of granular
flows. In the case studied here, the ‘‘static’’ and ‘‘dynamic’’
friction coefficients are in the range mstart 2 [0.42, 0.73] and
mstop 2 [0.40, 0.67] respectively. Note that the flow law used
here does not describe a constant value of the basal stress as
proposed by Dade and Huppert [1998] or Kelfoun and
Druitt [2005] but rather a constant friction coefficient in
steady state owing to relation (6).

3.3. Numerical Method

[24] The numerical method used to solve the hyperbolic
system (2)–(4) and (7) relies on a finite volume formulation
together with the hydrostatic reconstruction scheme devel-
oped by Audusse et al. [2004] for Saint Venant models, and
on the apparent topography approach of Bouchut [2004] to
deal with friction. This numerical model has recently been
successfully applied to the simulation of the collapse of a
granular column over a horizontal plane by Mangeney-
Castelnau et al. [2005]. This finite volume scheme provides
second-order accuracy, in contrast with the first-ordermethod

Figure 2. Friction coefficient defined by the empirical
relation m(h, Fr) (colored surface, equations (13)–(15)).
The point (Fr = b, h = 2.2, m = 0) has been represented in
black in order to show the extension of the metastable
regime 0 < Fr < b. The colored lines represent the values
of (m(t), h(t)/hstop, Fr(t)) as time evolves at a fixed point A1

(x = 1.2 m, y = 0.1 cm) situated at the middle of the plane,
for the simulation of confined flow described in section 4
with a boundary flux Q1 = 2 � 10�4 m2 s�1 (white line) and
Q2 = 4 � 10�4 m2 s�1 (magenta line).
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used by Mangeney-Castelnau et al. [2003] and based on a
kinetic scheme. The method used is described in more detail
in Appendix B and in the work by Bouchut [2004].
[25] Alternative methods have recently been proposed by

Denlinger and Iverson [2004], based on a combination of
finite volume and finite element schemes, and by Pitman et
al. [2003], based on a finite volume scheme together with
an adaptive grid. A comparison of these different methods
would be of interest but is beyond the scope of this paper.
[26] For our purpose, we performed a series of numerical

experiments on a two-dimensional regular grid with 400 �
100 points for the simulation of confined flows (section 4)
and 400� 300 points for unconfined flows (sections 5 and 6).
At the upper boundary of the numerical model a flux and
a thickness are imposed while free boundary conditions
are prescribed on the other boundaries of the domain
(Figures 3a and 3b). The stopping of the supply is imposed
numerically by prescribing a zero flux and thickness at the
left boundary of the domain (Figure 3c).

4. Simulation of Confined Flow

[27] To test the numerical model proposed here and to
obtain an idea of its behavior, we will first simulate a case
much simpler than that of unconfined flow: the confined flow
of a transversally uniform layer of granular material over an
inclined plane with a constant supply all across the plane in its
upper part. This laboratory experiment, first performed by
Pouliquen [1999], is the basis of the friction law presented

above. Numerical simulations using this empirical friction
law have been shown to be able to reproduce granular
behavior in unsteady situations [Pouliquen and Forterre,
2002; Mangeney-Castelnau et al., 2003]. As in the work of
Mangeney-Castelnau et al. [2003], with a numerical model
based on a first-order kinetic scheme, the ability of the
model to reach the right steady state and to calculate the
thickness h = hstop once the supply is stopped is investi-
gated here. Furthermore, the behavior of this flow and its
stopping after the supply is shutdown gives a comparison
tool when simulating the more complex case of free
boundary channeling flow.
[28] Two numerical experiments are performed by im-

posing at the upper boundary, over the full width of a plane
with an inclination angle q = 25�: (1) a flux Q1 = hu =
2.10�4m2 s�1 (Figures 4a and 4c) and (2) a flux Q2 = hu =
4.10�4m2 s�1 (Figures 4b and 4d). Wall boundary conditions
are imposed on the lateral part of the numerical domain. The
numerical domain is Lx = 2.2 m long and Ly = 20 cm wide.
The supply is kept constant until a steady uniform regime
is reached. Then, the supply is stopped at ts = 70 s and ts =
60 s in the simulation with the input flux Q1 and Q2,
respectively. Finally, the final thickness of the deposit on
the inclined plane is measured.

4.1. Evolution to Steady State

[29] Numerical results show that, using the flow law
(13)–(15), the flow actually reaches a steady state (Figures 4a
and 4b). The thickness being normalized by hstop, a natural

Figure 3. Numerical simulation showing (a, b) the creation of a self�channeling flow and (c) the
formation of levee-channel morphology.
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choice to normalize velocities is us = b
ffiffiffiffiffiffiffiffiffiffiffi
ghstop

p
= 0.022m s�1

owing to relation (10). The characteristic velocity us is
proportional to the gravity wave velocity in shallow flows
~c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh cos q

p
(us ’ b ~c here). In the first experiment with

an input flux Q1 = 2 � 10�4 m2 s�1, the steady state
velocity of the flowing material is u1 = 2.08 us = 4.58 �
10�2m s�1 and the steady state thickness is h1 = 1.63 hstop =
4.36 � 10�3m (Figure 4a).
[30] The values (h, u), i.e., the steady thickness and

velocity, corresponding to a given input flux can be calculated
without any numerical simulation owing to relation (10). In
fact, this equation can be written as

u ¼ gh
3
2 ð16Þ

with g = b
ffiffiffi
g

p
/hstop. The flux is defined as Q = h u, making

it possible to calculate

h ¼ Q

g

� 2
5

ð17Þ

and

u ¼ g
2
5Q

3
5: ð18Þ

[31] Equations (17) and (18) give exactly the values
(h1, u1) calculated above in the case of an input flux Q1 =
2 � 10�4 m2 s�1, confirming the validity of the model.
Interestingly, the numerical model makes it possible to satisfy
the relation (10) in steady uniform regime although it is only
weakly imposed. Note that, this relation does not hold in
unsteady non uniform regime as near the front as will be
discussed in section 6.2.1. In the second experiment where
the input flux is two times greater: Q2 = 4 � 10�4m2 s�1,
the steady thickness and velocity are h2 = 2.15hstop ’ 1.3 h1
and u2 = 3.16 us ’ 1.5 u1 respectively (Figure 4b). In both

experiments, the front velocity rapidly reaches a constant
value. The steady state front velocity is vf2 = 6.3 � 10�2 m
s�1 > vf1 = 4.1 � 10�2 m s�1 while the wave velocities are
~c2 = 0.23 m s�1 and ~c1 = 0.20 m s�1. Note that the front
velocity is slightly smaller than the steady state mean
velocity of the flow.
[32] Let us look at the role of the forces involved in

equations (3)–(4), represented here by their corresponding
accelerations normalized by the acceleration due to gravity
g (hereafter called force) and defined as the inertial force

f i ¼
1

g

@u

@t
þ cu

@u

@x
þ v

@u

@y
;
@v

@t
þ cu

@v

@x
þ v

@v

@y

� 
; ð19Þ

the force of gravity

fg ¼ � sin q; 0ð Þ; ð20Þ

the pressure force

fp ¼ �c
@

@x
hcð Þ;� @

@y
hcð Þ

� 
; ð21Þ

and the friction force

f f ¼ �mc
u

jjujj ;�mc
v

jjujj

� 
: ð22Þ

[33] The forces represented in Figure 5 with a positive
sign are driving forces whereas the forces with a negative
sign are resisting forces. These forces have a component in
the downslope direction X and a component in the trans-
verse horizontal direction Y. In the steady state regime,
reached after a given time, the friction force balances the
force of gravity as is shown in Figure 5. This is true over the
whole domain except near the supply, where the thickness

Figure 4. Evolution of the downslope profiles of the normalized thickness h(x)/hstop (black lines) and of
the velocity of the lobe u(x)/us (gray lines) at y = 10 cm, i.e., center of the flow, during the granular flow
created by (left) the input flux Q1 = 2 � 10�4 m2 s�1 and (right) the input flux Q2 = 4 � 10�4 m2 s�1.
Profiles are under constant supply at (a) t = 10 s (dotted lines), t = 30 s (dashed lines), and t = 50 s
(solid lines) and (b) t = 10 s (dotted lines), t = 30 s (dashed lines), and t = 50 s (solid lines) and are shown
during the draining phase at (c) t = 72 s (dashed lines), t = 81 s (dash�dotted lines), and t = 90 s
(solid lines), and (d) t = 66 s (dashed lines), t = 74 s (dash�dotted lines), and t = 82 s (solid lines).
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decreases to reach the steady flowing thickness, and near
the front where the pressure force related to the gradient of
the free surface provides an additional driving force bal-
anced by an increasing friction force. The friction force
actually increases as the thickness decreases because of its
explicit dependence on h according to relations (13)–(15).
Although the dependence on h is very different for the
pressure force (related to the gradient of the free surface
@h/@x) compared to that of the friction force, these effects
finally balance each other in order for the flow to reach a
steady state. The acceleration and inertial forces are negli-
gible here. In this case, the gradient of the free surface near
the front and the increase of friction due to the small
thickness provide a second-order balance compared to the
first-order balance between the force of friction and gravity.
However, this second-order balance may play a significant
role in other configurations as will be discussed in section 6.

4.2. Stopping Phase

[34] Once the supply is cut, the stopping phase propagates
downslope and leaves a deposit of thickness h ’ hstop on the
inclined plane for the two cases studied here (Figure 6).
Although no experimental observations are available for
this stopping phase, it is described here for the sake of
comparison with further simulations of unconfined flows.
The shape of the thickness and velocity at the rear of the
stopping material changes with the input flux (Figures 4c
and 4d).
[35] A 1-D wave generated by the stopping phase can be

observed on the deposit shown in Figure 6 at a scale much
smaller than the grain diameter. This oscillation is not
present on the flowing free surface and is clearly related
to the stopping phase. Whether or not this stopping wave is
relevant for real granular flows is not really clear. However,
one may ask what effect such a dynamic wave could have
on real granular flows. In such a situation, some density
waves would be expected within the material. Awavelength
can be defined for the deposit thickness although it is not
really constant. The wavelength of the deposit thickness
oscillation is slightly smaller in the case of a flux Q2 = 2Q1

and does not depend on the number of grid points. How-
ever, the physical or numerical nature of this oscillation
needs to be studied in more detail, which is beyond the
scope of this paper.

4.3. Dynamic Path and Flow Law

[36] It is of interest to see which part of the flow law is
investigated in this experiment. Figure 2 shows how the

values (m(t), Fr(t), h(t)/hstop) change with time for 0 � t� ts.
This so-called dynamic path is measured at the point A1(x =
1.2 m, y = 10 cm) located both in the center of the channel for
the y direction and at the middle of the plane in the downslope
direction. The white andmagenta lines represent the dynamic
path in the first experiment (Q1 = 2� 10�4 m2 s�1) and in the
second experiment (Q2 = 4 � 10�4 m2 s�1) respectively. In
the first experiment, the granular front reaches A1 at time
t ’ 25 s corresponding in Figure 2 to the beginning of the
decrease of the Froude number at very small thicknesses.
Then, the thickness increases with decreasing friction coef-
ficient and decreasing Froude number until the steady state
regime is reached, corresponding to the top of the hatpin
shape for h = h1 (white lines). The behavior of all the other
points in the uniform part of the flow (x > 80 cm) follow the
same path as point A1. In the second experiment (Q2 = 2Q1),
the path of point A1 is qualitatively the same and another
steady state h2 > h1, Fr2 > Fr1 is reached. The friction
coefficients m obtained in the steady uniform regime are
actually exactly equal to m = tan q = 0.4663 in the first and
second experiments as would be expected from equation (6).
As a result, the value of m in all steady uniform regimes,
whatever the input flux and the related steady thickness and
velocity, is equal to m = tan q = 0.4663 as would be expected
from equation (6). This strongly supports the validity of the
numerical model used here. In regions where the flow is not
uniform (i.e., near the front), equation (6) does not hold and
the friction coefficient changes because the friction force
balances the driving forces due to gravity and pressure
gradients as shown in Figure 5.
[37] When the supply stops (at the top of the hatpin shape),

the thickness strongly decreases with decreasing Froude
number and increasing friction coefficient until the regime
Fr < b is reached. The path is then deviated and the thickness
and the Froude number decrease with increasing m until the
stopping of the mass. The shape of the friction law at Fr < b
will completely determine the way of stopping and must be
investigated using the new results provided by Da Cruz
[2004]. Interestingly, after the supply is cut, the two paths
almost collapse and the stopping phase is almost identical
whatever the input flux Q, except precisely at the final stop.

5. Simulation of Unconfined Flow

5.1. Formation of Channel and Levees

[38] Let us now look at the more complex configuration
of unconfined granular flows. The aim is to study the

Figure 5. Normalized x components of the forces at times
t = 20 s, t = 30 s, and t = 40 s: fpx (solid lines), fgx (dotted
lines), and ffx (dash-dotted lines) as functions of the
downslope position x. The force of inertia is negligible
compared to the others and is not represented here.

Figure 6. Thickness h in m within the vertical range
[hstop � d, hstop + d] during the granular flow created by the
input flux Q2 = 4 � 10�4 m2 s�1 once the supply is cut at
times t = 66s (dashed lines), t = 74 s (dash-dotted lines), and
t = 82 s (solid lines). The line h = hstop (dotted line) and the
deposit obtained for the input flux Q1 (gray line) have been
added.

F02017 MANGENEY ET AL.: NUMERICAL SIMULATION OF LEVEES

9 of 21

F02017



channeling process as well as the formation of levee-
channel morphology of the deposit. While a detailed com-
parison between numerical and experimental results would
be of great interest, it is beyond the scope of this paper. We
set the initial and boundary conditions in the range of the
experimental conditions of Félix and Thomas [2004]: at the
upper boundary, corresponding to the top of the inclined
plane, a flux Q0 = hu = 2� 10�4m2 s�1 and a width w0 = 4 cm
are imposed generating a granular lobe flowing over a plane
with inclination angle q = 25�. These values give a fluxQ0 =
Q0w0 = 8 � 10�6m3 s�1, leading to a mass flux of 12 g.s�1

for glass beads of density r = 2500 kg m�3 and a mean
density of packing f � 0.6, a typical value for dense
granular materials. As in the simulation of confined flows,
the numerical domain is Lx = 2.2 m long and Ly = 20 cm
wide. The supply is stopped at ts = 145 s and the total
simulation lasts 160 s. At t = 130 s the front has already left
the plane, leaving behind a flow quasi-uniform in the
downslope direction for x  1.2 m. At the right boundary
of the domain, i.e., at the end of the plane, free boundary
conditions are imposed (the x derivative of the thickness and
velocity are set to zero).
[39] The building of shoulders channeling the flow and the

appearance of levee-channel morphology in the deposits have
been simulated numerically for the first time. The main
achievement of these simulations has been to show that
neither mixture concepts nor polydispersity are required to
explain self-channeling flows and levee formation. The
numerical simulation (Figure 7) shows the same evolution
as in the experiments. The transverse profiles h(y, t) obtained
at a distance x = 1.2 m from the supply are in very good
qualitative agreement with the experimental observations:

[40] 1. The front of the flow arrives at the chosen distance
and the thickness and width of the cross section increase
until an almost stable profile is reached (Figure 7a).
[41] 2. The profiles are globally stable with time although

the width of the flow slightly increases (Figure 7b). When
looking at the downslope velocity, two static shoulders
occur at the left and right lateral borders of the flow (see
section 6).
[42] 3. Finally, as the supply stops, the central part is

drained by the downward flow and the thickness between
the shoulders decreases. On the other hand, the thickness of
the shoulders remains almost the same (Figure 7c).
[43] Note that the shapes of the flowing lobe and the

levee-channel deposit are qualitatively similar to those
observed by Félix and Thomas [2004] for almost monodis-
perse beads. When polydispersity is increased, the flowing
lobe has a more rounded shape and the levees are more
pronounced. A series of experiments involving monodis-
perse beads would be necessary to quantitatively compare
numerical and experimental results.
[44] The front propagates and leaves behind a quasi-

uniform thickness of material with a width w defined as
the transverse extension of the granular mass as well as a
quasi-uniform flowing width wf defined as the width of
material having a nonzero downslope velocity u. In this
numerical experiment, the thickness of the granular mass is
always lower than hstart (hstart/hstop = 1, 86) as was the case
for the same input flux in the case of confined flow studied
in section 4. The maximum almost steady thickness of the
flow at x = 1.2 m is hs1 = 1.03 hstop ’ hstop. In the
experiments, the flowing thickness is significantly higher
than hstop. This small calculated value of h may be
explained by the absence of downslope shear stresses tXY.
Friction is expected to be significant in the shear zones
between the flowing material and the almost static should-
ers; however, it is neglected in LWA models. The key role
of sidewall friction on the flowing material for confined
flows is well known and empirical relations based on
experimental results have been proposed to take it into
account [Roberts, 1965; Savage, 1979; Hutter and Koch,
1991; Taberlet et al., 2003; Jop et al., 2005]. In this relation,
an additional friction force is added resulting from the
presence of walls

m0 ¼ mþ mw

h

W
; ð23Þ

where mw is related to the friction between the wall and the
flowing material and W is the width between the two walls.
The shoulders can be considered here as walls confining the
flow (W = wf). However, shear stresses on planes orthogonal
to the bed are expected to be significant also near the
margins of the flow. Such stresses have been calculated
rather simplistically by Iverson and Denlinger [2001] on the
basis of an Earth pressure coefficient approach and
assumptions concerning the orientation of principal stresses
and more rigorously by Denlinger and Iverson [2004] using
a finite element method that involved no such restrictions.
In both cases, numerical results show that these shear
stresses play an important role along the margins of flows.
The modified friction force (23) or even better a rigorous
description of the shear stresses normal to the bed would

Figure 7. Transverse profiles h(y)/hstop at x = 1.2 m during
the flow of the granular lobe (a) under constant supply at t =
60 s (dotted line), t = 70 s (dashed line), t = 80 s (dash-
dotted line), and t = 100 s (solid line); (b) under constant
supply at t = 120 s (dashed line), t = 130 s (dash-dotted
line), and t = 144 s (solid line); and (c) during the draining
phase at t = 152 s (dotted line), t = 153 s (dashed line),
and t = 154 s (solid line).
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significantly improve the quantitative results provided by
numerical simulations using LWA.

5.2. Relation Between Dynamics and Deposits

[45] Behind the front, the width and thickness of the flow
increases upslope until reaching a quasi constant value
(Figure 8a). Consequently a front zone can be defined,
extending upslope between the front and the quasi-uniform
flow situated at x = xr. The position xr is determined by the
location where the flowing width wf begins to be constant.
Figure 8a shows that the extension of the front zone is xf �
xr ’ 1.6 � 1 = 0.6 m for these values of slope, flux, and
rheological parameters. Near the front (1.4 m < x < 1.6 m,
at t = 80 s) the width of the flowing central channel wf is the
same as the total width indicating that all the material in the
front zone has a downslope velocity. At around 25 cm
upward from the front, the width of the flowing material
becomes smaller than the total width, marked by the
appearance of two zones bordering the flow with no
downslope velocities. These two regions defined by wf

2
<

jy � ycj < w
2
where yc = 0.1 m is the center of the plane in the

transverse direction, will be called shoulders hereafter. The
thickness as well as the total and flowing widths of the lobe
vary slightly with position. However, these variations are
very small for x  1.2 m, a distance for which the quasi
permanent regime has been reached, at time t = 144 s, a time
for which the front is far away, just before the supply stops
(Figure 8b). For example, for 1.2 m < x < 1.8 m the
thickness variation is Dh/h ’ �2%, the total width varia-
tion is Dw/w = �2%, and the flowing width variation is
Dwf /wf = 1%. The flowing thickness h along the central
axis of the plane (y = Ly/2) is stable over time but depends
on the distance from the supply. When approaching the
levees (y = 0.73Ly), this thickness is quasi-uniform as shown
by the dash-dotted line in Figure 8b, because it is less
sensitive to the thickness imposed as a boundary condition
at the supply. The width of the lobe w changes slowly with
time as is shown in Figure 9. Furthermore instabilities
develop, leading to a spatial variation of w (Figures 10d

and 10e), which will be discussed in section 6.4. As a result,
the measurement of the total width of the lobe in the field
will be difficult to link to the mechanical properties of the
granular material given that the measured width will depend
on the duration of the event and on the location where the
measurement is performed. On the contrary, the flowing
width wf is observed to very rapidly reach a quasi-uniform
value (Figure 9). The width of the central channel of the
deposit almost corresponds to the flowing width. Pertinent
field measurements are the width and thickness of the
central channel, far from the supply and far from the front,
because they do not depend on the duration nor on the
location where the field measurements are performed.
[46] Let us investigate, at a given downslope position x far

from the supply and the front, the relation between the values,
averaged over the width of the flowing channel wf, of the
thickness hf and mean velocity uf of the flowing material.
Equation (16) obtained experimentally for uniform steady flow
over an inclined plane confined between two walls gives

uf ¼ gh3=2f : ð24Þ

[47] Let us assume that this relation is valid in the quasi
uniform and steady part of the lobe. The validity of
the relation (24) actually depends on the position along
the plane and will be analyzed in detail in section 6.2.1. The
flux of material at position x is Qf = Qf wf = hf uf wf so that
equation (24) reads

wf ¼
hstop

b
ffiffiffi
g

p Qf h
�5=2
f : ð25Þ

[48] A natural choice to normalize the width is then

ws ¼
hstop

b
ffiffiffi
g

p Q0h
�5=2
stop ; ð26Þ

where Q0 is the flux at the supply defined in the previous
section. In the following, the characteristic flowing width ws

will be used to normalize the calculated widths (Figures 8
and 9). Equations (25) and (26) give

wf

ws

¼ Qf

Q0

hf

hstop

� �5=2

: ð27Þ

Numerical results show that, once the flow is established,
Qf /Q0 � 1, indicating a small exchange between the
flowing material and the quasi-static shoulders. In the
present simulation, at x = 1.5 m and t = 144 s, the calculated

Figure 8. Downslope profiles of the total width w(x)/ws

(solid gray lines), flowing width wf(x)/ws (dashed lines), and
thickness h(x)/hstop (dotted lines) at y = 0.5Ly, i.e., the center
of the plane, during the flow of the granular lobe under
constant supply at (a) t = 80 s and (b) t = 144 s. In Figure 8b
the thickness h(x)/hstop at y = 0.73 Ly has been added as a
dash-dotted line.

Figure 9. Change with time of the total width of the lobe
w(t)/ws (solid gray lines) and of the flowing width wf (x)/ws

(dashed line) at x = 1.2 m. The width of the central channel
wc/ws of the deposit has been added as a dotted line.
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normalized flowing width is wf/ws = 0.90 and the maximum
normalized thickness is hf/hstop = 1.03 so that (hf/hstop)

�5/2 =
0.93. The relation

wf

ws

¼ hf

hstop

� �5=2

ð28Þ

would therefore appear hold numerically. The numerical
values suggest that the flux Qf is slightly smaller than Q0,
indicating a nonzero contribution of the transverse velocity
to the total flux.
[49] Furthermore, the width of the central channel of the

deposit wc is almost equal to wf as shown in Figure 9. As a
result, provided (24) holds for the field granular material
and relation wf (Q0) is defined numerically or experimen-
tally (or if ws is known), and provided hstop is known, the
measurement of wc in the field will provide a first-order
estimation of the flowing thickness h and of the velocity u
during emplacement via relations (28) and (24). A more
precise investigation of the flow and deposit, especially
concerning the validity of equation (24), will be presented
in section 6.

5.3. Draining Phase

[50] When the supply stops, the draining of the central
channel is also reproduced by the numerical simulation. The
thickness staying on the plane in the central channel hc =
0.89 hstop is slightly smaller than hstop (Figure 7c), contrary
to what was observed in the experiments of Félix and
Thomas [2004] where hc ’ hstop. However, Dh = hstop �
hc ’ 3 � 10�4 m < d, where d is the grain diameter. As was
discussed in section 5.1, this numerical small thickness may
be due to the absence of lateral shear stresses in LWA
causing the expected strong dissipation between the flowing
layer and the quasi-static shoulders to be neglected. The
thickness profiles as well as the downslope velocity profiles
during the draining phase have a steeper slope than the
profiles obtained for confined flows in section 4. This
observation should be related to the much smaller flux
Qf = hf uf = 6.5 � 10�5 m2 s�1 involved here in the flowing
channel. The similar behaviors during the stopping phase of
confined and unconfined flow suggest that the shoulders
behaves almost like a wall during the draining phase. The
velocity of the stopping wave calculated from the results
presented in Figure 11 is of the same order as the wave
velocity in shallow flows ~c and slightly increases with time
as was observed for confined flow (see section 4). The
downslope oscillation observed numerically on the deposit
of confined flows and shown in Figure 6 is not present in
the case of unconfined flow (Figure 11b). The presence of
shoulders may add a degree of freedom in the system
compared to confining walls and then increase its ability
to absorb shocks through the interaction between the
shoulders and the stopping material. This interaction is
clearly reflected in the deformation of the free surface at
t = 153 s just after the supply is cut (Figure 12e).
[51] The change in the shape of the granular layer during

draining (dashed line in Figure 7c) is in very good
agreement with the experimental observations. However,
the experimental draining stage lasts much longer. Numer-
ically, the channel is completely drained in 2 s at x = 1.2 m
(Figure 7c) while it lasts a few seconds longer in the

Figure 10. View from the top of half part (y  Ly/2) of the
granular lobe showing change with time in the isovalues of
the downslope velocity u(x, y)/us as a function of the
position in the plane (x, y) at several points in time t;
15 isovalues have been represented in each plot with the
darker corresponding to zero and the lighter to the maximum
velocity equal to (a, b) umax/us = 1.92 and (c–e) umax/us =
2.07. The contour h = 4.8 � 10�4 m of the granular mass
has been added in black.

Figure 11. Downslope profiles of (a) the thickness h(x)/
hstop (black lines) and downslope velocity u(x)/us (gray
lines) at y = Ly/2 during the draining phase at t = 148 s
(dashed lines), t = 153 s (dash-dotted lines), and t = 158 s
(solid lines) and (b) the thickness h within the vertical
interval [hstop � d, hstop + d]. The line h = hstop has been
added to Figure 10b as a dotted line.
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experimental case. This observation is very similar to the
result of the comparison between numerical and experi-
mental results on the spreading of a granular column over a
horizontal plane [Mangeney-Castelnau et al., 2005]. The
stopping phase was expected to be due to complex vertical
propagation of the interface between static and flowing
grains, which is not considered at all by our model.

6. Dynamics of Unconfined Flow

6.1. Several Flow Structures Within the Lobe

[52] The distribution of velocities makes it possible to
shed light on the structure of the flow. From the very
beginning, a front zone appears, creating two zones border-
ing the flow with very small downslope velocities. These

zones appear in Figures 10a–10d behind the front between
the contour of the lobe and the darker isovalue of the
horizontal velocity corresponding to u = 0. The flow creates
its own channel by building lateral shoulders. With time,
these zones spread laterally although the spreading slows
with time. After t = 100 s, the flow structure is likely
established. Once this state is reached, at any x, except near
the front, there is a quasi-stationary state. The downslope
velocity and thickness profiles are quasi-constant with time.
Only the very slow widening prevents the state from being
really stationary. The downslope velocity u is almost
constant in the central part of the flow, and drops to 0 when
moving transversally to the lateral borders (Figure 12). With
time, the decrease to 0 becomes sharper, distinguishing two
regions: a region with quasi-uniform flow directed down-
slope and a region of quasi-static lateral material slowly
migrating in the transverse direction with no downslope
component of the velocity. In Figures 12b–12f, the trans-
verse velocity v is two orders of magnitude lower than the
downslope velocity u. The values of 100v are represented
by dotted lines in Figure 12. The slow transverse velocity v
obtained numerically at t = 100 s and t = 140 s at y > 0.16
must be studied in more detail in order to assess their
physical or numerical significance.
[53] Finally, when looking at Figures 10c, 10d, and 10e

and at the y profiles of the downslope and transverse
velocity u and v as time evolves (Figure 12), three distinct
zones appear within the granular lobe: (1) a front zone
where both horizontal and transverse velocities are present,
(2) a quasi-uniform zone bounded by quasi-static shoulders,
where the downslope velocity within the central part is
almost constant while the transverse velocity is very small,
and (3) a transition zone near the supply between boundary
conditions and self-channeling flow where strong down-
slope gradients of the transverse and downslope velocity
occur.
[54] The central flow is very similar to the confined flow

studied in section 4, the lateral walls being replaced here by
Figure 12. Downslope velocity u(y)/us (dash-dotted gray
lines) and transverse velocity v(y)/us (solid gray lines) at x =
1.2 m as functions of the transverse position y for the half part
of the lobe (y  Ly/2). The transverse profiles h/hstop are
represented by solid lines. Transverse profiles correspond to
(a–d) a constant supply and (e, f) after cutting the supply at
ts = 145 s. The values of 100 v have been added in dotted
lines (the values 100 u within the shoulders are too small to
be visible). In Figure 12f the location used to calculate wc is
shown by a gray dash-dotted line.

Figure 13. Normalized x component of the forces (see
equations (20)–(22)) fpx (black lines) and ffx � fgx (gray
solid lines), as functions of (a) the downslope direction x at
the center of the plane y = Ly/2, at times t = 37 s, t = 57 s,
t = 80 s, and t = 100 s and (b) the transverse direction y at
x = 1.2 m, at times t = 57 s, t = 58 s, and t = 60 s. Here
fpx > 0 is a driving force and ffx � fgx < 0 is a resisting force.
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quasi-static shoulders. Figure 13 shows the forces acting on the
granular mass during the flow in the x direction as functions
of x (Figure 13a) and as functions of y (Figure 13b). The
pressure force is represented together with the difference
between the friction force and the force of gravity. The
inertial force is shown to be negligible in Figure 13 except
at t = 37 s and t = 57 s where the deceleration @u/@t is
significant because of the high resisting force ffx � fgx (gray
line) compared to the driving pressure force fpx (black line).
As for confined flow, at leading order, in the x direction, the
friction force balances the force of gravity (ffx � fgx = 0)
except at the front as shown in Figure 13a where the norm
of the pressure force increases as does the difference
between the friction force and the gravity force. Initially,
the resisting friction force (ffx � fgx) is higher than the driving
pressure force fpx as is the case at t = 37 s in Figure 13a at
the front. With time, the forces at the front balance each other
in order for the flow to reach a steady state (Figure 13a). A
similar balance is observed within the granular lobe when
representing the x component of the forces as a function of
the y direction (Figure 13b). While the dissipation force
is higher than the pressure force within the granular lobe at
t = 57 s, these forces almost balance each other at t = 60 s
(Figure 13b) although the flow just at the lateral margins is
not perfectly solved numerically (see Tai et al. [2002] for
more sophisticated numerical treatment of the margins). In
our simple model, the second-order balance between the
change of the friction force and the pressure force is shown
to play a key role in the dynamics of the flow, making it
possible to reach a steady state with nonuniform thickness.
This balance would certainly change if the disregarded
components of the stresses were accounted for.

6.2. Dynamic Path and Flow Law

6.2.1. Evolution to Steady State
[55] When looking at the dynamic path (Figure 14), the

behavior is qualitatively similar to the confined case
(Figure 2). The white lines describing the change of (m(t),
h(t)/hstop, Fr(t)) at a point A1 situated within the central
channel shows that when the thickness of the granular lobe
begins to be significant, the friction coefficient decreases
until a steady state is reached corresponding to the top of the
hatpin shape. Once the supply is stopped, the thickness
decreases until the material stops (Fr = 0).
[56] Figure 14 shows that, very rapidly, the Froude

number is almost constant or decreases very slightly. As a
result, numerical simulations show that the friction coeffi-
cient essentially depends on h. Note that the assumption of
constant stress made by Dade and Huppert [1998] or
Kelfoun and Druitt [2005], although not similar to the flow
law (13)–(15), also implies a friction coefficient which
depends on the thickness. Their assumption jtXZj = mgch =
K leads to a linear decrease of m as h decreases.
[57] The steady value of the friction coefficient m =

0.4664 is slightly higher than m = tan q obtained for the
confined case. In fact, in the unconfined case, an additional
small pressure force is involved in the equilibrium due to
the small decrease of the thickness in the downslope
direction. If we look at other positions within the plane,
for example near the supply (x = 5 mm, y = 0.1 m) where

Figure 14. Friction coefficient defined by the empirical
relation m(h, Fr) (colored surface, equations (13)–(15)). The
point (Fr = b, h = 1.2, m = 0) is represented in black in order
to show the extension of the metastable conditions 0 < Fr < b.
The colored lines represent the values of (m(t), h(t)/hstop,
Fr(t)) as time changes at a fixed point: The white line
represents the dynamic path at the point A1 (x = 1.2 m, y =
Ly/2 = 0.1 cm) in the central channel, and the magenta line
refers to pointA2 within the shoulders (x = 1.2m, y = 0.165m).

Figure 15. View from the top of the granular lobe near the
front in a reference frame linked to the front (x = xf). Shown
are isovalues of (a) the normalized thickness h/hstop and
(b) the downslope normalized velocity u/us, represented at
times t = 90 s (thin lines) and t = 115 s (thick lines). Thin
and thick lines are almost superimposed, indicating the
steady state reached by the front. The contour of the lobe at
each time has been added in Figure 15b.
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@ h/@ x is higher, the calculated steady value of the friction
coefficient is actually m = 0.5678, and on the contrary, at the
end of the plane (x = 2 m, y = 0.1 m) where the thickness is
almost constant downslope, the steady friction coefficient is
m = 0.4663 which is exactly equal to tan 25� as for the case
of confined uniform flow studied in section 4.
[58] In the almost steady configuration, the relation (10)

does not fully hold. In fact, when looking at the numerical
results, we see that the relation between h and u depends on
the forces involved at the point considered, and especially
on the pressure force which was not taken into account
when establishing relation (10). Small surface gradients
could significantly change the proportionality factor b0

relating hstop to
h
Fr

hstop ¼ b0 h

Fr
: ð29Þ

As a result, the calculated friction coefficient is different
from that obtained in the uniform regime where @ h/@x = 0
owing to relation (13). Actually, if relation (29) is obtained
experimentally, it could result in a misleading interpretation
such as the existence of a new value b0 instead of the
previous value of b which corresponds to the uniform
regime in relation (10). The values of this meaningless
factor b0 could be deduced from the calculated steady value
of the friction coefficient m owing to (13) and (29) leading
to

m ¼ tan d1 þ tan d2 � tan d1ð Þ 1

b
b
0 hstop

L
þ 1

: ð30Þ

Here for example, b0 = 0.137 at x = 73 cm (m = 0.46665)
and b0 = 0.697 at x = 5 mm (m = 0.5678). If b is assumed to
be constant in relation (10), measurements of the velocity
could lead to an underestimation of the flowing thickness h,

if this value is unknown. When interpreting experimental
results, careful analysis is therefore required before
concluding that relation (10) holds.
6.2.2. Metastable Regime
[59] The change with time of (m(t), h(t)/hstop, Fr(t)) at a

point A2 situated within the shoulders (magenta line in

Figure 16. View from the top of the granular lobe near the front showing isovalues of the normalized
thickness h/hstop (a) at time t = 1 s and (b) at time t = 5 s. Zones in white rectangles are zoomed in Figure 17.

Figure 17. View from the top of particular zones defined
in Figure 16 in the region of the granular front at times
(a) t = 1 s and (b) t = 5 s. Isovalues of the normalized
thickness h/hstop are shown together with the velocity field u
represented by arrows. The lengths of the arrows are
proportional to the norm of the velocity, showing its
decrease when approaching the margins as well as the
rotation of the velocity direction.
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Figure 14) is quite different from that at a point A1 situated
within the central channel (white line Figure 14). At the
point A1, Fr > b always holds. On the other hand, the
dynamic path of point A2 (x = 1.2 m, y = 0.165 m) shows
naturally that flow within the levees is always in the
metastable regime 0 < Fr < b. Note that this part of the
flow law has been determined ad hoc. The shape of the flow
law in that regime will certainly greatly change the behavior
and shape of the shoulders and levees. However, the
dynamic path of point A2 shows that the granular material
never stops as long as the supply is maintained, as is
observed experimentally [Deboeuf et al., 2006]. This sug-
gests that the use of two friction angles, namely a static and
a dynamic friction angle, is not necessary to explain the
formation of self-channelling flows.
[60] The question is why and how this nearly steady self-

channeling flow has been created.

6.3. Creation of the Shoulders Behind the Front

[61] After a certain time (t > 60 s in Figure 10), the
structure of the front zone is clearly different from that of
the flow behind. The front moves with a constant velocity
after about 60 s when it is located at x  1.3 m. The shape
of the front and the velocity field within the front zone
becomes also constant after around t = 90 s. Figure 15
represents a view from the top of the granular lobe. The
isovalues of the normalized thickness (Figure 15a) and
downslope velocity (Figure 15b) in a reference frame linked
to the moving front at t = 90 s (thin lines) and t = 115 s
(thick lines) shows that these isovalues, at the different
times, are superimposed, reflecting the constant shape and
velocity within the front zone in the reference frame moving
with the front. With time, the front follows its own dynamics.
Behind the front, quasi-uniform flow, slightly influenced by
the supply, is established.
[62] The shape of the front seems to be responsible for the

selected width of the granular lobe. The creation of should-
ers at the rear of the front results from a strong rotation of
the velocity as shown in Figures 16 and 17 representing two
zones behind the front (white rectangles in Figure 16) on
which it was zoomed in (Figure 17). At the very beginning,
at t = 1 s and t = 5 s the velocity at the front is almost
constant and mainly directed downslope (Figure 17). When
moving upward from the front, at a given x position the
velocity decreases transversally when approaching the lat-

eral borders and switches from the downslope x direction
toward the transverse y direction (Figure 17). This rotation
is also observed at t > 90 s when the front has been
established,
[63] What makes the velocity decrease and rotate when

approaching the lateral border of the lobe? In the vicinity of
the front, at t = 57 s, the forces acting in the y direction are
almost zero so that the velocity is mainly directed downslope.
Figure 13b shows that the x component of the pressure force
fpx is almost constant transversally at t = 57 s. The force of
gravity is obviously also constant in the x direction. On
the other hand, the friction is higher when approaching
the shoulders because of small thickness. As a result, the
downslope velocity u decreases when approaching
the lateral border of the lobe. Upward from the front
(at t = 58 s in Figure 13b), but still in the front zone, the
same trend can be observed but the x pressure force fpx also
increases transversally because of the shape of the front.
However, the effect of increasing friction overweighs the
driving effect of the pressure force and the balance of forces
also leads to a deceleration of the downslope velocity when
approaching the borders. Obviously, the y component of the
friction force ffy also increases because of small thickness
when approaching the borders (Figure 18). The y compo-
nent of the gravity force fgy is equal to zero, inertia is
negligible and the driving force is only the pressure
force (black lines in Figure 18). As already observed in the
x direction, the increase of dissipation due to friction
overweighs the increase of driving effects due to surface
gradient @h/@y when approaching the lateral margins and
the transverse velocity decreases (@v/@t < 0). However, the
deceleration in the transverse direction is much smaller than
the deceleration in the downslope direction because of the
higher driving force fpy than that in the x direction (j@h/@yj >
j@h/@xj) near the margins. The total velocity therefore
rotates toward the transverse direction and decreases with
time when approaching the lateral borders of the flow
(Figure 17). In our simple model, the increase of the friction
with decreasing thickness may then be the process respon-
sible for the creation of shoulders bordering the flow. The
complex competition between the pressure force and the
friction when the thickness decreases seems to be a key
mechanism controlling the dynamics of the front.
[64] However, would it really be necessary to include

variable bed friction to produce the force competition that
creates lateral levees if the disregarded components of the
stress tensor were introduced in the model? In fact, at least
in the SH-type approach, taking into account the anisotropy
of normal stresses would add a multiplying coefficient k in
the h gradient term that depends on the sign of the space
gradient of the velocity field. On the other hand, following
the approach proposed by Iverson and Denlinger [2001],
the shear stresses on planes normal to the bed would
introduce an additional term related to the y derivative of
the thickness h in the x momentum equation and an
additional term related to the x derivative of the thickness
h in the y momentum equation. These terms would com-
pletely change the balance of forces. In the case of the SH
theory, the creation of quasi-static zones could be explained
in a different way. In fact, the equilibrium in the y direction
behind the front involves a driving force related to the

Figure 18. Normalized y components of the forces (see
equations (20)–(22)): fpy (black solid lines) and ffy (gray
solid lines) as functions of the transverse direction y at x =
1.2 m and at times t = 58 s, t = 62 s, and t = 66 s. Here fpy > 0 is
a driving force and ffy < 0 is a resisting force. Note that the
y component of the gravity fgy is equal to zero.
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h gradient in the y direction (pressure force), a lateral
dissipation force related to the shear stress tXY involving
the h gradient in the x direction and the so-called friction
force. When moving from the center (y = 0) to the lateral
border (y = w/2) at a given position x behind the front, the
pressure force increases because of decreasing thickness,
the friction force is constant because the friction coefficient
m is constant, and the lateral dissipation force increases
because @ h/@x decreases behind the front when moving
toward the lateral borders. This analysis suggest a possible
relation between the m parameterization and the neglecting
of stresses on planes normal to the bed.

6.4. Instabilities

[65] Instabilities are observed near the supply as shown in
Figure 10e. Instabilities in the lateral part of unconfined
flow have also been observed in the experiments of Deboeuf
[2005]. Note that this phenomenon was obtained numeri-
cally using a totally different code based on a kinetic
scheme and finite volume elements with an unstructured
grid as described by Mangeney-Castelnau et al. [2003].
However, more investigations must be carried out in order
to be sure that these instabilities are not of a numerical
nature. Some oscillations are also observed near the front
but seem to be related to the discretization.
[66] The region near the supply is subjected to strong

gradients of the velocity field due to the transition between
boundary conditions and the developed flow along the
plane. After a few tens of seconds, near the supply, the
width of the lobe increases regularly until x ’ 20 cm and
stabilizes for larger values of x. An instability occurs at this
transition. One explanation could be that the expansion of
the granular mass near the supply is blocked by quasi-static
shoulders and the material is only allowed to flow in the
downslope direction. The change of direction from expan-
sion to downslope motion may be at the origin of the
initiation of the instability observed in this region. Instabil-
ity can also be observed on the dynamic path of the points
situated within the shoulders (Figure 14). As the thickness
of the shoulders increases after the front has passed the
friction decreases while the Froude number oscillates.

7. Conclusion

[67] It has been shown here that numerical simulation
using the Saint Venant approach with the empirical variable
friction law proposed by Pouliquen and Forterre [2002]
makes it possible to simulate the complex behavior of
unconfined flow. The creation of a channel with a given
width as well as the separation of the flow between an inner
quasi-steady regime in the downslope direction together with
quasi-static borders is surprisingly well reproduced. The
major achievement of these simulations has been to show
that neither mixture concepts nor polydispersity are needed to
explain self-channeling flows and levee formation.
[68] The simulation have been performed using a param-

eterization of the coefficient of friction that depends on the
thickness and the Froude number of the flow. The model is
based on strong assumptions such as the isotropy of normal
stresses and the neglecting of shear stresses on planes
normal to the bed. These assumptions are expected to affect
the interpretation of the results in the case studied here

where quasi-static zones develop near the lateral margins
and where h gradients can be large. In particular, the
absence of lateral dissipation between the flowing mass
and the quasi-static shoulders likely leads to underestima-
tion of the flowing thickness and the thickness of the
deposit in the central channel. Furthermore, Pouliquen
and Forterre’s [2002] empirical flow rule is obviously
oversimplified to describe the behavior of the complex
geological materials involved in natural avalanches.
[69] Numerical results provide a possible explanation of

the self-channeling process indicating that the shoulders are
created behind the front. The fact that the front reaches a
steady velocity and shape along the plane seems to be
responsible of the width chosen by the flow. In the simplified
model used here, the formation of shoulders channeling the
flow has been shown to result from the balance between a
friction force with a friction coefficient depending on the
thickness of the flow and the driving forces due to gravity and
surface slope. The competition between these forces leads to
rotation of the velocity vector from the downslope direction
within the central channel to the transverse direction when
approaching the lateral border of the flow. The complex
competition between the pressure force and the friction when
the thickness decreases seems to be a key mechanism
controlling the dynamics of the front. The balance of forces
would be different if stresses on planes normal to the bed
were taken into account. In that case, the increasing dissipa-
tion near the lateral borders behind the front would be
expected to be due to the increasing downslope gradient of
the thickness whenmoving from the center of the lobe toward
the lateral margins. Simulation of self-channelling flows and
analysis of the balance of forces using more sophisticated
models such as the one proposed by Denlinger and Iverson
[2004] would provide insight into the role of the different
components of the stress tensor in the creation of quasi-static
zones. Furthermore, it could be a way to understand the basis
of the m parameterization.
[70] The steady regime obtained in the central channel

appears to be very similar to that observed on uniform
laterally confined flows. The calculated flow within the
central channel almost reaches a steady state with a constant
value of the thickness and velocity at a given position. We
have investigated the variation of the friction coefficient
during the flow. The nonuniformity in space involving
surface gradients locally modifies the steady coefficient of
friction calculated by the numerical model, which appears to
be slightly different from the case of steady uniform
confined flow (m = tan q). The dependence on the velocity
of the friction coefficient appears to be weak. In fact, once
the flow has developed, the Froude number is almost
constant because the velocity varies like the wave velocity
in shallow flow. The metastable regime is thoroughly
investigated by the flow near the developing quasi-static
margins. The accurate description of this regime is therefore
essential when modeling the dynamics of these zones and
the shape of the levees. However, in the case of our model,
the granular material never stops as long as the supply is
maintained as observed experimentally [Deboeuf et al.,
2006]. This suggests that the use of two friction angles,
namely a static and a dynamic friction angle, is not
necessary to explain self-channelling flows.
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[71] The width of the flowing channel wf has been proved
to be almost constant in time and space. The width of the
central channel on the deposit wc almost corresponds to wf

and therefore provides a pertinent parameter for field
measurements. Furthermore, the thickness in the central
channel of the deposit hc almost corresponds to hstop, a
parameter containing information on the mechanical prop-
erties of the granular mass. If the relation between the
flowing width and the initial flux wf(Q0) has been deter-
mined experimentally or numerically, the measurements on
the field of the two parameters (hc, wc) would allow
estimation of the thickness and velocity of the flow during
emplacement. For pyroclastic flows, it would allow estima-
tion of the flux of material emitted by the volcano. The
detailed study of geomorphologic features observed on
deposits of gravitational flows has been shown to provide
a useful tool for the comparison of model and field
observations and sheds new light on the flow law governing
the motion of these complex granular flows.

Appendix A

[72] This appendix presents the new model used, which
takes into account the curvature tensor

H ¼ c3
@2b
@x2

@2b
@x@y

@2b
@x@y

@2b
@y2

 !
ðA1Þ

with all its components [Bouchut and Westdickenberg,
2004], although these components are equal to zero in the
simple case studied here. In one dimension, our formulation
can be reduced to the equations developed in former studies.
The flow is described by

h t; xð Þ  0; u0 t; xð Þ 2 R
2; ðA2Þ

where h is the thickness of the material layer in the direction
normal to the topography, and u0 = (u, ut) (where the
subscript t stands for transverse) is a parameterization of the
velocity. This parameterization has been defined in order to
simplify the equations when a 1-D topography b = b(x) is
considered. The real 3-D material velocity has horizontal/
vertical components

u!¼ cu0; s � vu0ð Þ: ðA3Þ

This physical velocity is tangent to the topography, u! � u! =
0, as would be expected for shallow flows and can be
expressed as a 2-D vector u = (u, v) in the (X, Y) plane
(Figure 1). In one dimension, u0 is actually the real scalar
velocity u in the plane tangent to the topography. In the case
simulated below dealing with the flow over an inclined
plane with slope in the x direction, the real physical velocity
u has coordinates in the tangent plane given by

u; vð Þ ¼ u; cutð Þ: ðA4Þ

[73] In the horizontal Cartesian coordinate formulation,
the model can be expressed as (see (2.54)–(2.55) in work
by Bouchut and Westdickenberg [2004])

@t h=cð Þ þ rx � hu0ð Þ ¼ 0 ðA5Þ

@tu
0 þ cu0 � rxu

0 þ 1

c
Id� sstð Þrx g hcþ bð Þð Þ ¼

� 1

c
u0

tHu0

 �

sþ 1

c
stHu0ð Þu0 � gmcu0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2jju0jj2 þ s � u0ð Þ2
q

� 1þ u0tHu0

gc

� 
þ
;

ðA6Þ

where rx is the gradient vector in the horizontal x, y plane
and g acceleration due to gravity. The subscript + stands
for the positive part, x+ = max(0, x). The system (A5) and
(A6), is obtained using a trick that consists of performing
an asymptotic analysis of the free surface incompressible
Navier-Stokes equations although the final model is not
based on the Navier-Stokes equations; that is, viscous
effects are not accounted for. Equations (A5) and (A6) are
obtained by this asymptotic analysis up to errors O(�3)
and O(�2) respectively for mass and velocity equations, as
the aspect ratio � approaches 0. It is obtained by assuming
that the viscosity v = O(�2), the Coulomb bottom friction
coefficient m = O(v/�), and the curvature H = O(�)
[Bouchut and Westdickenberg, 2004]. The model is
invariant with respect to rotation, admits a conservative
energy equation and preserves the steady state of a lake at
rest. For flow over an inclined plane, the case considered
here, the equations can be reduced to (3) and (4).

Appendix B

[74] The numerical method in the one-dimensional case
has been discussed by Mangeney-Castelnau et al. [2005],
and we will review only the formulas here before extending
the method to two dimensions.

B1. Saint Venant Problem With Topography and
Friction in One Dimension

[75] Let us first describe the 1-D scheme in order to
present the basic principles of the numerical method. The
one-dimensional Saint Venant system with topography and
friction is expressed as

@thþ @x huð Þ ¼ 0;

@t huð Þ þ @x hu2 þ gh2=2ð Þ þ hgbx ¼ hf ;

(
ðB1Þ

where b(x) represents topography and bx the derivative of b
as a function of x, and where the friction force f = f(t, x)
must satisfy

j f t; xð Þj � gm;

u t; xð Þ 6¼ 0 ) f t; xð Þ ¼ �gm
u t; xð Þ
ju t; xð Þj :

8<: ðB2Þ
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The 1-D version of the system (2)–(7) is of the form (A7)–
(A8) after a slight change of notation (from (2)–(4) and (7),
define x0 = x/c, g0 = gc, b0 = b/c, and use these new variables
in order to identify the system with (A7)–(A8)). In this
system the steady states at rest play a crucial role and are
given by u = 0, f = @x(gh + gb), or equivalently,

u ¼ 0 and j@x hþ bð Þj � m: ðB3Þ

We are interested in using well-balanced schemes, i.e.,
schemes that preserve steady states at the discrete level. The
apparent topography approach considers the source term as
a topography by defining g@x~b = �f. Consider a 1-D mesh
made of cells of size Dx. The cells are defined by

Ci ¼ �xi�1=2; xiþ1=2½ ðB4Þ

of length Dxi = xi+1/2 � xi�1/2. The cell centers are denoted
xi = (xi+1/2 + xi�1/2)/2. We consider a time stepDt and define
the discrete times by tn = nDt, with n 2 N. According to
Mangeney-Castelnau et al. [2005], this leads to the
following formulas,

Unþ1
i � Un

i þ
Dt

Dxi
Fiþ1=2� � Fi�1=2þ

 �

¼ 0; ðB5Þ

where Ui
n

Un
i ’

1

Dxi

Z
Ci

U tn; xð Þdx ðB6Þ

is an approximation of the average of the exact solution at
time tn

U ¼ h

hu

� 
ðB7Þ

over the cell Ci. The left/right numerical fluxes are
computed as

Fiþ1=2� ¼ Fl Ui;Uiþ1;Dbiþ1=2 þD~bn
iþ1=2

� �
Fiþ1=2þ ¼ Fr Ui;Uiþ1;Dbiþ1=2 þD~bn

iþ1=2

� �
;

ðB8Þ

with Dbi+1/2 = bi+1 � bi, and

gD~bniþ1=2 ¼ �f niþ1=2Dx: ðB9Þ

[76] The numerical fluxes Fl and Fr are derived by the
hydrostatic reconstruction method [Audusse et al., 2004],
and have the following form:

Fl Ul;Ur;Dbð Þ ¼ F U*l ;U
*
r

� �
þ g

2
h2l �

g

2
h2
l*

0
0@ 1A

Fr Ul;Ur;Dbð Þ ¼ F U*l ;U
*
r

� �
þ g

2
h2r �

g

2
h2
r*

0
0@ 1A;

ðB10Þ

where Ul
* = (hl*

, hl*
ul), Ur

* = (hr*
, hr*

ur), and

h
l* ¼ max 0; hl �max 0;Dbð Þð Þ

h
r* ¼ max 0; hr �max 0;�Dbð Þð Þ: ðB11Þ

[77] Here F is any entropy satisfying consistent numer-
ical flux for the homogeneous problem (i.e., without topog-
raphy and friction), that is capable of dealing with dry
states. We use a relaxation solver described by Bouchut
[2004], but other choices give similar results.
[78] Then, if f i+1/2

n is a consistent value for the friction, it
is easy to see that our scheme is consistent with (A7) and
well-balanced since it preserves the discrete steady states
satisfying ui = ui+1 = 0 and ghi+1 � ghi + gDbi+1/2 = fi+1/2Dx.
The scheme also conserves mass, is capable of computing dry
bed states and satisfies a discrete entropy inequality. For the
computation of f i+1/2

n , a good choice is

f niþ1=2 ¼ �g proj
m

hi � hiþ1 �Dbiþ1=2

Dx
þ
uiþ1=2

gDt

� 
; ðB12Þ

where

proj
m

Xð Þ ¼
X if jX j � m;

m
X

jX j if jX j > m; :

8><>: ðB13Þ

and, for example,

uiþ1=2 ¼
hiui þ hiþ1uiþ1

hi þ hiþ1

: ðB14Þ

This gives a well-balanced scheme, in the sense that data
satisfying

ui ¼ 0 and jhi � hiþ1 �Dbiþ1=2j � mDx ðB15Þ

are preserved exactly. For higher precision, a better choice is
to replace (B12) by

f niþ1=2 ¼ �g Proj
m

hi � hiþ1 �Dbiþ1=2

Dx
;
uiþ1=2

gDt

� 
; ðB16Þ

where

Proj
m

X ; Yð Þ ¼ proj
m

proj
m

Xð Þ þ 2

1þmax 1;�X � Y=mjY jð ÞY
 !

:

ðB17Þ

For models where m = m(h, u), the definitions can easily be
extended using local values mi+1/2 in (B12) or (B17). The
numerical processing of the friction presented above leads to
a regularization of the friction for small velocities. Actually,
in the case of small velocity, equations (B12) or (B17)
compute a friction force directed opposite to the sum of h and
b gradients (i.e., the gradient of pressure added to the force of
gravity) and set its norm equal to the norm of this sum.
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B2. Two-Dimensional Scheme

[79] The two-dimensional Saint Venant system with
topography and friction is written

@thþ @x huð Þ þ @y hvð Þ ¼ 0

@t huð Þ þ @x hu2 þ gh2=2ð Þ þ @y huvð Þ þ hg@xb ¼ hfx

@t hvð Þ þ @x huvð Þ þ @y hv2 þ gh2=2ð Þ þ hg@yb ¼ hfy;

8><>: ðB18Þ

where b(x, y) represents the 2-D topography and where the
friction force f(t, x, y) = (fx, fy) must satisfy

jjf t; x; yð Þjj � gm

u t; x; yð Þ 6¼ 0 ) f t; x; yð Þ ¼ �gm
u t; x; yð Þ

jju t; x; yð Þjj ;

8<: ðB19Þ

with u = (u, v). As explained in section 9.1 The system (2)–
(4) and (7) is of the form (B18)–(B19) after a slight change
of notation. As in the 1-D case, we will describe the scheme
for (B18)–(B19). In this system the steady states at rest are
given by u = 0, f = rx(gh + gb), or, equivalently,

u ¼ 0 and jjrx hþ bð Þjj � m: ðB20Þ

[80] As usual, the 2-D finite volume method is performed
using the 1-D scheme interface by interface. Note that the
1-D system corresponding to (B18) is (A7) with the
addition of the advection equation @t(hv) + @x(huv) = 0.
[81] Consider a two-dimensional mesh made of rectangles

of sizesDx,Dy. The rectangles shall be defined by subscripts
(i, j), and the interfaces between two adjacent rectangles by
(i + 1/2, j) and (i, j + 1/2). The approximate value of

U ¼
h

hu

hv

0@ 1A ðB21Þ

over the rectangle (i, j) is denoted by Uij
n, where n refers to

the time level (not always indicated here for simplicity). The
solution U and the numerical fluxes F are 3-D vectors but
will be written here in bold symbols for the sake of
simplicity. Then, the two-dimensional scheme is written

Unþ1
ij � Un

ij þ
Dt

Dx
Fiþ1=2�;j � Fi�1=2þ;j


 �
þDt

Dy
Fi;jþ1=2� � Fi;j�1=2þ

 �

¼ 0;
ðB22Þ

where the interface fluxes are computed via

Fiþ1=2�;j ¼ Fl=r Uij;Uiþ1;j;Dbiþ1=2;j þD~biþ1=2;j


 �
Fi;jþ1=2� ¼ bFl=r

bUij; bUi;jþ1;Dbi;jþ1=2 þD~bi;jþ1=2

� �
:

ðB23Þ

[82] In (B23), we denote Dbi+1/2,j = bi+1,j � bij,Dbi,j+1/2 =
bi,j+1 � bij, bU = (h, hv, hu) if U = (h, hu, hv). The 2-D
numerical fluxes are defined as follows if Ul = (hl, hlul, hlvl)
and Ur = (hr, hrur, hrvr),

Fl=r Ul;Ur;Dbð Þ ¼ Fl=r hl; hlul; hr; hrur;Dbð Þ



� Fh
l=r hl; hlul; hr; hrur;Dbð Þv

*
Þ; ðB24Þ

where Fl/r are the one-dimensional fluxes (B10)–(B11), the
power h refers to the first component (note that Fl

h = Fr
h),

and

v* ¼
vl if Fh

l=r hl ; hlul; hr; hrur;Dbð Þ  0

vr if Fh
l=r hl; hlul ; hr; hrur;Dbð Þ � 0:

(
ðB25Þ

The apparent topography terms are related to the friction
forces by

gD~biþ1=2;j ¼ � fiþ1=2;j


 �
x
Dx

gD~bi;jþ1=2 ¼ � fi;jþ1=2


 �
y
Dy;

ðB26Þ

where the indices x and y relate to the x and y components
respectively. According to the multidimensional finite
volume formulation of well-balanced schemes of Bouchut
[2004], note that the x fluxes in (B22) involve the x
component of f, while the y fluxes involve the y component
of f. Finally, the friction terms are computed by the
projections

f iþ1=2;j ¼ �g Proj
m

hij � hiþ1;j �Dbiþ1=2;j

Dx
; 0

� �
�
uiþ1=2;j

gDt


f i;jþ1=2 ¼ �g Proj

m
0;
hij � hi;jþ1 �Dbi;jþ1=2

Dy

� �
�
ui;jþ1=2

gDt


;

ðB27Þ

where Proj is still defined by (B23) but with X, Y two-
dimensional vectors, and

uiþ1=2;j ¼
hijuij þ hiþ1;juiþ1;j

hij þ hiþ1;j

ui;jþ1=2 ¼
hijuij þ hi;jþ1ui;jþ1

hij þ hi;jþ1

:

ðB28Þ
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