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EXPLICIT SOLUTIONS TO A FREE INTERFACE MODEL FOR THE1

STATIC/FLOWING TRANSITION IN THIN GRANULAR FLOWS2

Christelle Lusso1, François Bouchut2,*, Alexandre Ern1 and3

Anne Mangeney3,4
4

Abstract. This work is devoted to an analytical description of the dynamics of the static/flowing5

interface in thin dry granular flows. Our starting point is the asymptotic model derived by Bouchut et al.6

[Comm. Math. Sci. 14 (2016) 2101–2126] from a free surface incompressible model with viscoplastic7

rheology including a Drucker–Prager yield stress. This asymptotic model is based on the thin-layer8

approximation (the flow is thin in the direction normal to the topography compared to its down-slope9

extension), but the equations are not depth-averaged. In addition to the velocity, the model includes a10

free surface at the top of the flow and a free time-dependent static/flowing interface at the bottom. In11

the present work, we simplify this asymptotic model by decoupling the space coordinates, and keeping12

only the dependence on time and on the normal space coordinate 𝑍. We introduce a time- and 𝑍-13

dependent source term, assumed here to be given, which represents the opposite of the net force acting14

on the flowing material, including gravity, pressure gradient, and internal friction. We prove several15

properties of the resulting simplified model that has a time- and 𝑍-dependent velocity and a time-16

dependent static/flowing interface as unknowns. The crucial advantage of this simplified model is that17

it can provide explicit solutions in the inviscid case, for different shapes of the source term. These18

explicit inviscid solutions exhibit a rich behaviour and qualitatively reproduce some physical features19

observed in granular flows.20
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1. Introduction23

Dense granular materials can behave like a solid or flow like a fluid. The static (solid) and flowing (fluid)24

zones are delimited by a static/flowing interface that changes with time, depending on the initial and boundary25

conditions and on the driving and resistive forces within the granular mass. This static/flowing transition is Q126
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1 Université Paris-Est, CERMICS (ENPC), F-77455 Marne-la-Vallée Cedex 2, France.
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characteristic of granular flows and plays a key role in both industrial and geophysical contexts, for instance1

in erosion/deposition processes [20,23,38]. Dry granular flows can be described by a viscoplastic rheology with2

yield stress. With this rheology, the granular material starts to flow if the stress is above a threshold value3

and otherwise remains at rest. A Drucker–Prager yield stress proportional to the pressure has been shown to4

describe granular flows well [18,20,27,31,33,40]. The proportionality coefficient 𝜇 can be constant or not, as in5

the so-called 𝜇(𝐼) rheology [31]. In particular, this relationship makes it possible to obtain a flowing layer near6

the free surface, above a static layer near the bottom, in contrast with the Bingham flow law involving a constant7

yield stress and leading to a plug zone located on top of a sheared bottom layer [6]. The time evolution of the8

static/flowing interface (also called the yield surface) is implicitly described in these models. Up to recently, no9

explicit description of the movement of this interface was found, owing to the strong nonlinear coupling of the10

different terms involved in the equations. This is, however, a key issue for practical studies.11

The aim of this work is to describe the evolution of the static/flowing interface in dry granular flows over12

inclined topography, described by the incompressible viscoplastic model with Drucker–Prager yield stress. To13

simplify the problem, we focus here on granular flows above a static layer made of the same grains such as heap14

flows (e.g. Figs. 6a and 6b of [41]) or surface flows occuring during unsteady flows (e.g. Fig. 18, 𝑡 = 0.5 s of [27]).15

In such cases, the velocity decreases almost exponentially down to zero from the flowing region to the static part.16

We make the thin-layer approximation, i.e. we assume that the flow thickness is small compared to its down-17

slope extension. This assumption is widely used in fluid dynamics and geophysics. However, as described in [15],18

a key point of our approach is that, contrary to usual thin-layer (i.e. shallow-water) models, the conservation19

equations are not depth-averaged. The flow here can depend on the normal coordinate to the topography and20

this dependence can vary with time. Indeed, because of the depth-averaging process, the static/flowing interface21

in the direction normal to the topography is often neglected in thin-layer models [12, 13, 22, 26, 37, 39], i.e. a22

column of granular material is assumed to be either fully static or fully flowing. Here our starting point is the23

thin-layer, non-averaged, asymptotic model derived recently in [15] from a viscoplastic model with Drucker–24

Prager yield stress. In this model, the unknowns are a velocity (that can depend on time, down-slope and normal25

space variables 𝑋, 𝑍) and an upper free surface and a static/flowing interface that both depend on time and26

on 𝑋. The change of momentum is driven by a source term 𝑆 (opposite of the net force acting on the flowing27

material) that takes into account the effects of gravity, hydrostatic pressure gradient, and pressure-dependent28

friction. A positive 𝑆 has a decelerating effect on the velocity, while a negative 𝑆 has an accelerating effect. The29

source term 𝑆 includes the effects of down-slope space inhomogeneities via the hydrostatic pressure gradient and30

the nonhydrostatic pressure factor in the friction term (see Eq. (2.14)). The down-slope space inhomogeneities31

are supposed to give rise to interesting dynamics, see for example [22]. However, the asymptotic model from32

[15] is still too elaborate to perform an analytical study directly.33

In the present work, we devise a simpler form of the asymptotic model from [15] that allows us to perform34

an analytic study while keeping some of the essential physical processes. Our approach is based on decoupling35

the down-slope and normal coordinates. Our key assumption is to consider that the down-slope coordinate 𝑋36

is fixed and we therefore look at the model expressed in terms of the normal variable 𝑍 only. Doing this, we37

can no longer couple the part of the source term coming from the nonhydrostatic pressure because it involves38

the 𝑋 derivative of the velocity. We therefore have to consider (at fixed 𝑋) a given source term 𝑆(𝑡, 𝑍),39

leading to a model in which the unknowns are a velocity 𝑢(𝑡, 𝑍) and a static/flowing interface position 𝑏(𝑡)40

(measured in the direction normal to the topography). The main contribution of our paper is to show that41

the 𝑍-dependence of this source term and its shape induce particularly rich dynamics on the velocity field and42

on the interface that reflects various physically relevant behaviours as further discussed below. Considering a43

source term 𝑆 that is nonconstant in 𝑍 allows us to investigate the possible effects of space inhomogeneities44

and of nonhydrostatic pressure on the flow dynamics. Our simplified model takes the form of a free-interface45

problem for the static/flowing interface. We emphasize that the dynamical equations are set only in the flowing46

domain, i.e. above the position of this interface. This free-interface problem is formulated mathematically as a47

well-posed overdetermined boundary-value problem, with one additional condition with respect to a problem48

with a fixed boundary. This additional condition governs the time evolution of the static/flowing interface. We49
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compute explicit solutions to the simplified model in the inviscid case, i.e. time-dependent velocity profiles and1

the time evolution of the interface position. We show that the time and space variations of the source term lead2

to a particularly rich structure that is able to capture several physically relevant effects from the starting to3

the arrest of the flow, including progressive starting, progressive stopping and a sudden start of a part of the4

granular mass. These are, in our opinion, important effects that come into play also when space inhomogeneities5

and nonhydrostatic terms are taken into account as in [15]. Further results on the present simplified model for6

a constant source term can be found in [35], where numerical solutions are obtained in the viscous case and7

where it is shown that important features observed in laboratory experiments of granular flow on erodible beds8

[23] can be reproduced.9

Let us finally put the present work in perspective with the literature. Several attempts have been made10

to define an equation for the static/flowing interface in thin-layer granular models (see [14, 29, 48] and refer-11

ences therein). These works describe the interface evolution directly, without referring to a precise viscoplastic12

model. Most of them are based on prescribed velocity profiles derived from ad hoc considerations, laboratory13

measurements or solutions of models under steady uniform flow conditions (e.g. the linear velocity profile in14

[3,21,32] or the 𝑆-shaped velocity profile in [17]). A steady-state velocity profile is also assumed in [4] to derive15

the static/flowing dynamics from a phase transition fluidization model. However, laboratory measurements and16

numerical simulations indicate that the velocity profile changes with time and with the down-slope space vari-17

able, in particular during the starting or stopping phase of the flow of a granular mass [8, 20, 24, 27, 42]. Since18

the dynamics of the static/flowing transition are strongly related to this velocity profile (see [15] or Eqs. (3.16)19

and (3.17)), imposing a velocity profile is only valid under very specific flow conditions. Other models in the20

literature deduce the position of the static/flowing interface from ad hoc phenomenological erosion laws (i.e.21

the exchange rate between the flowing layer and the static layer) [43] that generally appear only in the mass22

conservation equation [11, 16]. However, the effect of this mass exchange should also be accounted for in the23

momentum conservation equation [14, 25, 29]. Furthermore, defining this exchange rate independently on the24

basis of phenomenological considerations can lead to models that do not have a correct energy balance [15].25

Other methods oversimplify the problem by reducing the flow to that of a sliding block [28]. Finally, an equation26

for the static/flowing interface dynamics can be found in simple flows by defining jump conditions between the27

static and the flowing layers [29]. However, this equation involves the value of the velocity at the interface, which28

is not known in depth-averaged models without imposing a velocity profile or adding additional assumptions.29

In our approach, the velocity simply vanishes at the interface, while the dynamics of the interface and of the30

velocity are intricately coupled. More precisely, the evolution of the interface involves normal derivatives of31

the velocity up to the third order (see Eq. (3.16)), and the velocity obeys a momentum equation (3.1) with32

boundary conditions (3.3) on a moving domain. An important feature of our approach is that both the interface33

and the velocity are solved simultaneously. Our model is established under some assumptions concerning the34

flow regime, but it has no empirical input. Another fully coupled approach is proposed in [42]. In that work the35

𝜇(𝐼)-rheology is resolved nonlinearly in the flowing region and with particular initial data. However the analysis36

of the stress is not done in the static region, and as a consequence the interface condition (3.3b) is not satisfied.37

This condition is necessary because the shear stress Σ𝑋𝑍 is continuous across the interface, see Section 2 and38

(2.8b). Numerical simulations of the full problem show however that the solution of [42] is not too far from the39

exact one. This solution of [42] can also be seen to be quite close to the solution to a partially regularised model40

of the incompressible 𝜇(𝐼)-rheology where a creep state at low inertial numbers is introduced and no precise41

interface location is needed [8].42

The outline of this paper is as follows. In Section 2, we briefly describe the non-averaged, thin-layer asymptotic43

model of [15] and review some of its essential features. In Section 3, we derive our simplified model with a given44

source term depending on time 𝑡 and on the normal space coordinate 𝑍. In addition to the velocity, it includes45

the time-dependent position 𝑏(𝑡) of the static/flowing interface as an unknown of the problem. Several properties46

of our simplified model are derived. In Section 4, we obtain explicit solutions to our simplified model in the47

inviscid case. Throughout the section, we assume that the source term has a (time-dependent) zero in space48

denoted by 𝑏⋆(𝑡), i.e. 𝑆(𝑡, 𝑏⋆(𝑡)) = 0, so that the position 𝑏⋆(𝑡) splits the flow in two layers where the net force is49
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Figure 1. Flow configuration consisting of a flowing layer over a static layer, above a rigid
bed with slope angle 𝜃 < 0. The static/flowing interface position 𝑏(𝑡, 𝑋) and the total thickness
ℎ(𝑡, 𝑋) of the material are time and space dependent.

either driving or resistive. We identify four different dynamical behaviours depending on the time evolution of1

𝑏⋆(𝑡) and on the initial data, from the starting to the arrest of the flow, including progressive starting, progressive2

stopping and a sudden start of part of the granular mass. These scenarios are expected to appear in the general3

asymptotic model when the source term is nonlinearly coupled to the velocity. In each case, we determine an4

explicit solution (normal velocity profile 𝑢 and interface position 𝑏 as a function of time), we establish some5

properties of the solution and we graphically illustrate our results. Finally, in Section 5, we conclude the paper6

by providing an overview of all the dynamical behaviours exhibited in Section 4.7

2. Non-averaged thin-layer asymptotic model8

A non-averaged thin-layer model for viscoplastic flows over an inclined rigid bed has been derived in [15]. It9

makes it possible to describe the evolution of the static/flowing interface in granular flows. It is formulated in10

the coordinates 𝑋 in the direction tangent to and 𝑍 normal to the topography (see Fig. 1 showing the case of11

flat topography).12

The thin-layer model is derived from an incompressible (div u = 0) viscoplastic rheology with Drucker–Prager13

yield stress [31]14

𝜎 = −𝑝 Id + 2𝜈𝐷u + 𝜇𝑠𝑝
𝐷u
‖𝐷u‖

, (2.1)15

where 𝜎 is the stress tensor (normalized by the density), 𝑝 the scalar pressure (also normalized by the density),16

and 𝐷u the strain rate tensor 𝐷u = (∇u + (∇u)𝑡)/2 with u the velocity vector. Here the norm of a matrix17

𝐴 = (𝐴𝑖𝑗) is ‖𝐴‖ = ( 1
2

∑︀
𝑖𝑗 𝐴2

𝑖𝑗)1/2. The coefficients 𝜇𝑠 > 0 and 𝜈 ≥ 0 are the internal friction and the18

kinematic viscosity, respectively. The viscosity 𝜈 can be time and space dependent, in order to include the case19

of 𝜇(𝐼) rheology, as described in [27]. In this case the viscosity is given by 2𝜈 = (𝜇(𝐼) − 𝜇𝑠)𝑝/‖𝐷u‖, so that20

2𝜈𝐷u+𝜇𝑠𝑝
𝐷u
‖𝐷u‖ = 𝜇(𝐼)𝑝 𝐷u

‖𝐷u‖ . In the rheological model (2.1), we recall that the ratio 𝐷u/‖𝐷u‖ is multivalued,21

meaning that it can take on an arbitrary (time and space dependent) trace-free symmetric matrix value of norm22

less than or equal to unity whenever 𝐷u = 0. It is known that the viscoplastic model (2.1) can be linearly23

well-posed or ill-posed [9, 40], depending on the data (viscosity, strain rate and pressure values). Note that for24

the inviscid model 𝜈 = 0, the 𝜇(𝐼) model defined above, as well as for the constant viscosity model 𝜈 = 𝑐𝑠𝑡 > 0,25

the system is ill-posed for small strain rate 𝐷u, and in particular close to the static/flowing interface, see26

respectively [9,40,45]. At the time being there is no incompressible model which is always well-posed and with27

comparable relevance. Some compressible models have been proposed recently [10,46].28
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Assuming that the thickness of the layer, the curvature of the topography, the viscosity, and the velocity are1

small, that the internal friction angle is close to the slope angle and that the pressure is convex with respect to2

the normal coordinate 𝑍, a formal expansion [15] of the governing equations leads to the following thin-layer3

model describing a flow including a static layer. The thickness ℎ(𝑡, 𝑋) evolves classically according to mass4

conservation as5

𝜕𝑡ℎ + 𝜕𝑋

(︃∫︁ ℎ

𝑏

𝑢 d𝑍

)︃
= 0, (2.2)6

where 𝑢(𝑡, 𝑋,𝑍) is the velocity in the direction tangent to the topography and 𝑏(𝑡, 𝑋) is the position of the7

interface between the static part 𝑍 < 𝑏(𝑡, 𝑋) (where we set 𝑢 ≡ 0) and the flowing part 𝑍 > 𝑏(𝑡, 𝑋). Considering8

a non-zero slipping velocity for the solid part (which means that 𝑢 would be constant for 𝑍 < 𝑏(𝑡, 𝑋)) would9

be of interest also, such a situation can be seen on Figure 4 of [7], but this is out of the scope of the present10

paper. The momentum balance equation writes11

𝜕𝑡𝑢 + 𝑔 sin 𝜃 − 𝜕𝑋Σ𝑋𝑋 − 𝜕𝑍Σ𝑋𝑍 = 0 for all 𝑍 ∈ (0, ℎ), (2.3)12

where 𝑔 > 0 is the gravitational acceleration, 𝜃(𝑋) < 0 the slope angle of the topography, and Σ𝑋𝑋 , Σ𝑋𝑍 the13

components of the stress 𝜎 in (2.1) in the inclined frame, expressed as14

Σ𝑋𝑋 = −𝑔 cos 𝜃(ℎ− 𝑍), Σ𝑋𝑍 = 𝜈𝜕𝑍𝑢 + 𝜇𝑠𝑝 sgn(𝜕𝑍𝑢), (2.4)15

where 𝑝(𝑡, 𝑋,𝑍) is the pressure, coupled to the velocity 𝑢 by a nonlinear relation (see (2.13) below). The inertial16

terms have been neglected in (2.3) and leading-order approximations have been invoked in (2.4). In particular,17

Σ𝑋𝑋 retains only the (opposite of the) hydrostatic part of the pressure 𝑝, whereas the whole pressure 𝑝 is kept18

in Σ𝑋𝑍 because of the 𝑍-derivative in (2.3) that makes this term dominant in view of the variations at the19

scale of the thin layer. In (2.4), the term sgn(𝜕𝑍𝑢) is multivalued, meaning that this term takes on an arbitrary20

(time and space dependent) value between −1 and 1 whenever 𝜕𝑍𝑢 = 0. This reflects the yield stress rheology21

of (2.1). The system is completed by the no-stress condition at the free surface22

Σ𝑋𝑍 = 0 at 𝑍 = ℎ. (2.5)23

Equations (2.3) and (2.4) lead to the formulation in the flowing layer24

𝜕𝑡𝑢 + 𝑆 − 𝜕𝑍

(︀
𝜈𝜕𝑍𝑢

)︀
= 0 for all 𝑍 ∈ (𝑏, ℎ), (2.6)25

where the source term 𝑆, which depends on 𝑡, 𝑋,𝑍, is the opposite of the net force (excluding the viscous force)26

in the flowing layer. Assuming a negative angle 𝜃 < 0 and an increasing velocity profile in the flowing layer, i.e.27

𝜕𝑍𝑢 > 0 for all 𝑍 ∈ (𝑏, ℎ), the source term 𝑆 is expressed as (more general formulas are (4.30) and (4.31) in28

[15])29

𝑆 = 𝑔(sin 𝜃 + 𝜕𝑋(ℎ cos 𝜃))− 𝜕𝑍(𝜇𝑠𝑝) for all 𝑍 ∈ (𝑏, ℎ). (2.7)30

The source term 𝑆 takes into account the effects of gravity, hydrostatic pressure gradient, and pressure-dependent31

friction. A positive 𝑆 has a decelerating effect on the velocity (resistive net force), while a negative 𝑆 has32

an accelerating effect (driving net force). The following boundary conditions are set for all 𝑡 > 0. At the33

static/flowing interface 𝑍 = 𝑏, the velocity vanishes and the shear stress Σ𝑋𝑍 is continuous across it, so that34

𝑢 = 0 at 𝑍 = 𝑏, (2.8a)35

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = 𝑏, (2.8b)36
37

where the values at 𝑍 = 𝑏 are to be understood as the limit as 𝑍 → 𝑏 with 𝑍 > 𝑏. At the free surface 𝑍 = ℎ,38

the viscous stress vanishes, see (2.5), hence39

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = ℎ. (2.9)40
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Since the material below the static/flowing interface is at rest, the boundary conditions (2.8) mean that the1

velocity is continuously differentiable across the interface in the viscous case 𝜈 > 0, whereas the velocity is only2

continuous across the interface in the inviscid case 𝜈 = 0. An additional “static equilibrium condition”3

𝑆(𝑡, 𝑋, 𝑏(𝑡, 𝑋)) ≥ 0 (2.10)4

completes the model. It states that the net forces at the interface 𝑍 = 𝑏 (including friction) are resistive, so as5

to maintain the static part of the flow at rest. The condition (2.10) together with the interface conditions (2.8)6

indeed replace the momentum balance (2.3) and (2.4) in the static part 0 < 𝑍 < 𝑏 and across the interface7

(which contain the yield stress formulation in the static layer). A rigorous proof of equivalence between (2.8),8

(2.10) and the momentum balance in the static layer and across the interface is provided in the appendix of9

[15]. The quantities Φ(𝑡, 𝑋), 𝜅(𝑡, 𝑋,𝑍) in that appendix correspond here to10

Φ = 𝑔(sin 𝜃 + 𝜕𝑋(ℎ cos 𝜃)), 𝜅 = 𝜇𝑠𝑝. (2.11)11

The definition (2.7) of 𝑆 corresponds thus to 𝑆 = Φ− 𝜕𝑍𝜅. From that appendix, note in particular the value of12

Σ𝑋𝑍 in the static layer13

Σ𝑋𝑍(𝑡, 𝑋, 𝑍) = 𝜅(𝑡, 𝑋, 𝑏(𝑡, 𝑋))− (𝑏(𝑡, 𝑋)− 𝑍)Φ(𝑡, 𝑋), for 0 < 𝑍 < 𝑏(𝑡, 𝑋), (2.12)14

that makes the net force in (2.3) identically vanish in the static layer. The condition (2.10) comes from (A12) in15

[15], and it expresses exactly that Σ𝑋𝑍 in (2.12) is below the yield stress 𝜅 in the static layer 𝑍 < 𝑏. The proof16

of the appendix of [15] is established under the assumption that the pressure 𝑝 is convex with respect to 𝑍, or17

equivalently that 𝜕𝑍𝑆 ≤ 0 according to (2.7). If this condition is not satisfied, the rheological model (2.1) could18

be unstable and lead to shear band instabilities such as those that can be observed in simulations, see [40]. In19

the latter case we do not expect our thin-layer model to be valid.20

An implicit assumption made here (and in the appendix of [15]) is that the velocity is continuous across the21

interface. This is obviously necessary in the viscous case 𝜈 > 0. Although one could think that it is not strictly22

necessary in the inviscid case, we nevertheless only consider continuous velocities. Laboratory experiments23

or simulations of the viscoplastic model always show continuous velocity profiles. Indeed, velocities which are24

discontinuous across a line are not allowed with the rheology (2.1), it is proved in [34] that even without viscosity,25

there is a solution for which the velocity has square integrable first-order derivatives in space. Furthermore, it26

can be observed with simulations such as those done in [28] that, as 𝜈 → 0, the (continuous) solution to the27

present thin-layer model with 𝜈 > 0 tends to the continuous solution of the thin-layer model with 𝜈 = 0. Thus if28

discontinuous solutions exist, they are unphysical and unstable by perturbation. We shall see in Section 3 that29

continuous solutions exist for all the initial conditions we consider here.30

An important observation in our above model is that the time evolution of the interface position 𝑏(𝑡, 𝑋) is31

implicitly governed by the boundary conditions (2.8)–(2.10). It is thus coupled to the evolution of the velocity32

𝑢. Note also that if 𝑆(𝑡, 𝑋,𝑍) is negative for all 𝑍, the condition (2.10) cannot be satisfied, meaning that there33

is no solution with static/flowing interface 𝑏; instead the whole granular mass should flow down immediately34

(this situation is not the object of our study). On the contrary if 𝑆(𝑡, 𝑋,𝑍) is positive for all 𝑍, then the net35

force is resistive, leading to progressive stopping of the flow.36

Because of the 𝑍-derivative in (2.7) and of variations at the scale of the thin layer (see [15] for the orders of37

magnitude), the pressure 𝑝 has to be expressed at higher order with nonhydrostatic corrections. Neglecting the38

viscosity, Theorem 4.1 of [15] gives39

𝑝 = 𝑔

(︂
cos 𝜃 + sin 𝜃𝜕𝑋ℎ− 2| sin 𝜃| 𝜕𝑋𝑢

|𝜕𝑍𝑢|

)︂
× (ℎ− 𝑍), for all 𝑍 ∈ (𝑏, ℎ). (2.13)40
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The pressure is thus coupled to the unknown velocity 𝑢 and depends nonlinearly on 𝜕𝑍𝑢. Plugging this expression1

into the expression (2.7) of 𝑆, we obtain2

𝑆 = 𝑔 (sin 𝜃 + 𝜇𝑠 cos 𝜃) + 𝑔 (𝜕𝑋(ℎ cos 𝜃) + 𝜇𝑠 sin 𝜃𝜕𝑋ℎ) + 𝑔𝜇𝑠𝜕𝑍

(︂
2| sin 𝜃| 𝜕𝑋𝑢

|𝜕𝑍𝑢|
(ℎ− 𝑍)

)︂
3

=: 𝑆1 + 𝑆2 + 𝑆3, for all 𝑍 ∈ (𝑏, ℎ). (2.14)4
5

The first term 𝑆1 is independent of 𝑍 and takes into account the gravity and the hydrostatic part 𝑔 cos 𝜃(ℎ−𝑍)6

of 𝑝 in (2.13). It is the leading term. Considering only this term in 𝑆, the static equilibrium condition (2.10) is7

reduced to | tan 𝜃| ≤ 𝜇𝑠. The second term 𝑆2 is also independent of 𝑍 and is a correction to 𝑆1 due to down-slope8

variations of ℎ. Finally, the third term 𝑆3 involves velocity derivatives and results from nonhydrostatic effects9

and down-slope space inhomogeneities. This term is responsible for the 𝑍-dependence of 𝑆. The aim of this10

paper is to investigate the possible effects on the flow of the dependence of 𝑆 on 𝑍 due to the last term 𝑆3 in11

(2.14). The relevance of the nonhydrostatic correction in (2.13) has been confirmed in VIII(B) of [40].12

If the material is flowing in a channel of width 𝑊 , friction along the lateral walls of the channel can be taken13

into account by adding a Coulomb friction term that is proportional to the pressure divided by the channel14

width (see Eqs. (19) and (17) of [40]). This should lead to an additional term in 𝑆 with 𝑍-dependency since the15

pressure depends on 𝑍. Thus in this situation, the 𝑍-dependency of 𝑆 would result both from nonhydrostatic16

effects and from lateral friction. Indeed friction increases with pressure, thus with depth, leading possibly to a17

positive 𝑆 near the bottom even though a negative 𝑆 could occur near the surface. These wall effects are not18

included in the present study because the additional momentum friction term depends on the (multivalued) sign19

of the velocity and therefore requires a special analysis of the static equilibrium conditions in the solid layer.20

Note that the asymptotics of [15] assumes that | tan 𝜃| and 𝜇𝑠 are close (the difference being at most of the21

order of the thickness of the layer). This is necessary in order for 𝑆 (indeed 𝑆1) to be of moderate amplitude and22

it is used to prove that the static/flowing interface continues to exist and to move gradually at positive times.23

Otherwise the whole material layer would flow down immediately (| tan 𝜃| ≫ 𝜇𝑠) or would stop very quickly24

(| tan 𝜃| ≪ 𝜇𝑠). In particular, if | tan 𝜃| = 𝜇𝑠 and 𝜕𝑋ℎ = 0, the source term is reduced to the third term in25

(2.14). A rough idea of the values of this third term can be obtained by considering the velocity profile derived26

in [17],27

𝑢(̂︀𝜂) =
(︂

7
3
− 35

6
̂︀𝜂3/2 +

7
2
̂︀𝜂5/2

)︂
𝑢, with ̂︀𝜂 =

ℎ− 𝑍

ℎ− 𝑏
, (2.15)28

where 𝑢 = 𝑢(𝑡, 𝑋) is an average velocity. However, the expression obtained is rather complicated and, in any29

case, this profile 𝑢(̂︀𝜂) is anyway not a solution to (2.6). The errors produced when modifying the velocity profile30

are discussed after equation (3.22).31

Since the shape in 𝑍 of the last term in (2.14) is unknown, although it should satisfy 𝜕𝑍𝑆 ≤ 0 (see the32

comments after Eq. (2.12)), we shall consider generic sources 𝑆 satisfying this condition.33

3. Simplified model with variable source term34

In this section we introduce our simplified model and prove a few of its qualitative properties.35

3.1. Derivation of the simplified model36

The key idea behind the derivation of the simplified model from the asymptotic model of the previous section37

is the decoupling of the coordinate 𝑋 in the down-slope direction from the coordinate 𝑍 in the normal direction.38

Considering that 𝑋 is fixed, the equation (2.6) with unknowns 𝑢 and 𝑏 and with boundary conditions (2.8)–39

(2.10) is a closed system in the variables (𝑡, 𝑍) set in the flowing layer 𝑏 < 𝑍 < ℎ, provided that ℎ and 𝑆 are40

known. Assuming that ℎ does not depend on time, we can consider the system in the (𝑡, 𝑍) variables in the41

flowing layer, written as follows. The equation for the velocity 𝑢 in the down-slope direction is42

𝜕𝑡𝑢(𝑡, 𝑍) + 𝑆(𝑡, 𝑍)− 𝜕𝑍

(︀
𝜈𝜕𝑍𝑢(𝑡, 𝑍)

)︀
= 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ), (3.1)43
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Figure 2. Typical velocity profile with respect to 𝑍 at fixed time 𝑡 > 0, satisfying the boundary
conditions (3.3) (the velocity is here extended by 0 for 𝑍 < 𝑏). The viscous case (𝜈 > 0) is
shown on the left and the inviscid case (𝜈 = 0) is shown on the right. For the inviscid case, the
only boundary condition is 𝑢 = 0 at 𝑍 = 𝑏(𝑡). In both cases the velocity increases over (𝑏(𝑡), ℎ).
Note that the velocity profile (2.15) from [17] exhibits a shape of the viscous type (left).

where ℎ > 0 is the fixed thickness of the domain and 𝜈 ≥ 0 is the kinematic viscosity. The viscosity 𝜈 can be1

time and space dependent, in order to include the case of 𝜇(𝐼) rheology, as described in [27]. The source term2

𝑆(𝑡, 𝑍) is assumed to be given, defined for all 𝑡 ∈ [0, 𝑇 ] and all 𝑍 ∈ [0, ℎ] and satisfying3

𝑆 is continuous within [0, 𝑇 ]× [0, ℎ]. (3.2)4

The values of 𝑆 that are meaningful are only those for 𝑏(𝑡) ≤ 𝑍 ≤ ℎ, but since 𝑏(𝑡) is unknown, we prefer to5

assume that 𝑆 is given for all 0 ≤ 𝑍 ≤ ℎ. In (3.1), the position 𝑏(𝑡) ∈ (0, ℎ) of the static/flowing interface is an6

unknown of the problem, along with the velocity 𝑢(𝑡, 𝑍) in the flowing domain 𝑏(𝑡) < 𝑍 < ℎ. We complete the7

equation (3.1) with the following boundary conditions for all 𝑡 > 0,8

𝑢 = 0 at 𝑍 = 𝑏(𝑡), (3.3a)9

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = 𝑏(𝑡), (3.3b)10

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = ℎ. (3.3c)11
12

Note that in the present formulation of the model, 𝑢 is only defined for 𝑍 ≥ 𝑏 and therefore the derivatives of 𝑢13

at 𝑏 are always understood as being taken from above, i.e. from the flowing side. In the inviscid case 𝜈 = 0, only14

(3.3a) remains since the other two conditions hold trivially. Typical expected velocity profiles are presented in15

Figure 2. The initial condition is given by16

𝑢(0, 𝑍) = 𝑢0(𝑍) for all 𝑍 ∈ (𝑏0, ℎ), (3.4)17

where 𝑏0 ∈ [0, ℎ] is the given initial position of the static/flowing interface (i.e. 𝑏(0)). Indeed one would like18

that 𝑏(0+) = 𝑏0, but we shall see that this is not always possible, see in particular Section 4.5. Indeed in the19

formulation (3.1) and (3.3), there is no obvious reason for 𝑏 to be continuous with respect to time. The initial20

velocity profile 𝑢0 is assumed to satisfy21

𝑢0 ∈ C1([𝑏0, ℎ]), 𝜕𝑍𝑢0 > 0 for all 𝑍 ∈ (𝑏0, ℎ), (3.5a)22

𝑢0(𝑏0) = 0, (3.5b)23
24

so that the initial velocity increases over (𝑏0, ℎ). Whenever useful we extend 𝑢0 by zero in the interval [0, 𝑏0].25

We always assume that 𝑏(𝑡) ∈ (0, ℎ) for all 𝑡 ≥ 0. The special case where 𝑏(𝑡) reaches one of the boundaries 026

or ℎ will be discussed further on whenever it becomes relevant.27

The simplified model is completed with the “static equilibrium condition” (2.10), that becomes here28

𝑆(𝑡, 𝑏(𝑡)) ≥ 0 for all 𝑡 ∈ (0, 𝑇 ]. (3.6)29
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Remark 3.1. The most simple example of a solution to our model (3.1), (3.3), (3.4), (3.6) is obtained by1

considering a constant source 𝑆 > 0 with 𝜈 = 0, a case that has been considered in [10]. Then 𝑏(𝑡) ∈ (𝑏0, ℎ)2

is defined implicitly by the relation 𝑢0(𝑏(𝑡)) = 𝑆𝑡 (as long as 𝑆𝑡 < 𝑢0(ℎ)) and 𝑢(𝑡, 𝑍) = 𝑢0(𝑍) − 𝑆𝑡 for all3

𝑏(𝑡) ≤ 𝑍 ≤ ℎ. This is then a smooth solution to the system (3.1), (3.3), (3.4), (3.6).4

Remark 3.2. In the (𝑡, 𝑍) formulation (3.1), it is not possible to replace the source term 𝑆 by its velocity-5

dependent value (2.14). This is because 𝑋 is fixed and we cannot express the 𝑋-derivatives of ℎ and 𝑢. We thus6

have to consider an empirical source term 𝑆 that we assume to be given. This means that, in our simplified7

model, all the 𝑋-dependences are somehow hidden in the shape of the source term 𝑆(𝑡, 𝑍). The main scope of8

this paper is to describe the effect of the shape of 𝑆 in terms of 𝑍 on the dynamics of both the velocity 𝑢 and9

the interface 𝑏.10

3.2. Properties of the simplified model11

We need to set some conditions so that the simplified model (3.1), (3.3), (3.4), (3.6) with unknowns 𝑢(𝑡, 𝑍)12

and 𝑏(𝑡) defined for 𝑍 > 𝑏(𝑡) will be consistent with the original asymptotic model of Section 2. For that model,13

we expect that for all 𝑡 ∈ [0, 𝑇 ], the velocity is increasing in the flowing part (𝑏(𝑡), ℎ). This will be the case14

under the assumption that the source term is nonincreasing in space. As discussed after equation (2.12), this15

condition is necessary for the validity of our asymptotic model with a source term. More explicitly, we require16

that17

𝜕𝑍𝑆 ∈ 𝐶([0, 𝑇 ]× [0, ℎ]), 𝜕𝑍𝑆 ≤ 0 for all 𝑡 ∈ [0, 𝑇 ], and all 𝑍 ∈ [0, ℎ]. (3.7)18

Notice that we employ hereafter the following mathematical terminology. A function 𝑓(𝑍) is said to be increasing19

if 𝑍1 < 𝑍2 ⇒ 𝑓(𝑍1) < 𝑓(𝑍2) and nondecreasing if 𝑓(𝑍1) ≤ 𝑓(𝑍2). Similarly, 𝑓(𝑍) is said to be decreasing if20

𝑍1 < 𝑍2 ⇒ 𝑓(𝑍1) > 𝑓(𝑍2) and nonincreasing if 𝑓(𝑍1) ≥ 𝑓(𝑍2).21

In the results below, we assume implicitly that 𝑢(𝑡, 𝑍) is sufficiently smooth in its definition domain 𝑏(𝑡) ≤22

𝑍 ≤ ℎ. We will build such smooth solutions in Section 4.23

Lemma 3.3. Assume that the velocity 𝑢 solves (3.1), (3.3), (3.4) for some interface position 𝑏(𝑡). Moreover,24

assume that the viscosity 𝜈 is nonzero, that the initial condition satisfies (3.5a), and that the source term 𝑆25

satisfies (3.7). Then we have that26

𝜕𝑍𝑢 > 0 for all 𝑡 ∈ [0, 𝑇 ], and all 𝑍 ∈ (𝑏(𝑡), ℎ). (3.8)27

Proof. By differentiating (3.1) with respect to 𝑍, we obtain28

𝜕𝑡(𝜕𝑍𝑢) + 𝜕𝑍𝑆 − 𝜕2
𝑍𝑍(𝜈𝜕𝑍𝑢) = 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ). (3.9)29

Together with (3.7), this leads to30

𝜕𝑡(𝜕𝑍𝑢)− 𝜕2
𝑍𝑍(𝜈𝜕𝑍𝑢) ≥ 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ). (3.10)31

With the boundary conditions (3.3b), (3.3c), (3.4), (3.5a), this leads to32

𝜕𝑡(𝜕𝑍𝑢)− 𝜕2
𝑍𝑍(𝜈𝜕𝑍𝑢) ≥ 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ), (3.11a)33

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = 𝑏(𝑡), (3.11b)34

𝜈𝜕𝑍𝑢 = 0 at 𝑍 = ℎ, (3.11c)35

𝜕𝑍𝑢 > 0 at 𝑡 = 0. (3.11d)36
37

Knowing that 𝜈 > 0, this formulation is suitable for applying the strong maximum principle to the function38

𝜕𝑍𝑢. In order to deal with a time-independent interval, we perform the following change of coordinates39

R+ × [𝑏(𝑡), ℎ] → R+ × [0, 1]40

(𝑡, 𝑍) ↦→ (𝜏, 𝑌 ), (3.12)41
42
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with 𝑡 = 𝜏 and 𝑍 = 𝑏(𝜏) + 𝑌 (ℎ− 𝑏(𝜏)). This leads to the formulas 𝜕𝑌 = (ℎ− 𝑏)𝜕𝑍 , 𝜕𝜏 = 𝜕𝑡 + (1− 𝑌 )𝑏̇𝜕𝑍 where1

the dot denotes differentiation with respect to time. Denoting 𝑉 = 𝜕𝑍𝑢, (3.11a) yields2

𝜕𝜏𝑉 − (1− 𝑌 )
ℎ− 𝑏

𝑏̇𝜕𝑌 𝑉 − 1
(ℎ− 𝑏)2

𝜕2
𝑌 𝑌 (𝜈𝑉 ) ≥ 0 for all 𝑌 ∈ (0, 1), (3.13a)3

𝜈𝑉 = 0 at 𝑌 = 0, (3.13b)4

𝜈𝑉 = 0 at 𝑌 = 1, (3.13c)5

𝑉 > 0 at 𝜏 = 0. (3.13d)6
7

As 𝜈 > 0, we deduce that 𝑉 > 0, i.e. (3.8) holds true. �8

Our second result shows that in the viscous case, the “static equilibrium condition” (3.6) is automatically9

satisfied.10

Lemma 3.4. Assume that the velocity 𝑢 solves (3.1), (3.3), (3.4) for some interface position 𝑏(𝑡). Moreover,11

assume that the viscosity 𝜈 is nonzero and that (3.2), (3.5a), (3.7) hold. Then (3.6) holds.12

Proof. Differentiating (3.3a), i.e. 𝑢(𝑡, 𝑏(𝑡)) = 0, with respect to time, yields13

𝜕𝑡𝑢(𝑡, 𝑏(𝑡)) + 𝜕𝑍𝑢(𝑡, 𝑏(𝑡))𝑏̇(𝑡) = 0. (3.14)14

Using (3.3b) and the assumption 𝜈 > 0, we get 𝜕𝑡𝑢(𝑡, 𝑏(𝑡)) = 0. Then evaluating (3.1) at 𝑍 = 𝑏(𝑡) gives15

𝑆(𝑡, 𝑏(𝑡)) = 𝜕𝑍

(︀
𝜈𝜕𝑍𝑢

)︀
(𝑡, 𝑏(𝑡)). (3.15)16

Now, according to Lemma 3.3, 𝜕𝑍𝑢(𝑡, 𝑍) > 0 for 𝑍 > 𝑏(𝑡). Since, again by (3.3b), we have 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) = 0, we17

can write 𝜕𝑍(𝜈𝜕𝑍𝑢)(𝑡, 𝑏(𝑡)) = lim 𝜈𝜕𝑍𝑢(𝑡, 𝑍)/(𝑍 − 𝑏(𝑡)) as 𝑍 → 𝑏(𝑡)+, which with (3.15) yields 𝑆(𝑡, 𝑏(𝑡)) ≥ 0.18

It is also possible to write 𝑆(𝑡, 𝑏(𝑡)) = 𝜈𝜕2
𝑍𝑍𝑢(𝑡, 𝑏(𝑡)) since 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) = 0. �19

Our third result is an explicit differential equation on the interface position 𝑏(𝑡) that holds under regularity20

assumptions on the velocity and the source term.21

Lemma 3.5. Assume that the velocity 𝑢 solves (3.1) and (3.3). Then22

(1) If 𝜈 > 0 and if 𝑢 and 𝑆 are sufficiently differentiable, then 𝑆(𝑡, 𝑏(𝑡)) = 𝜕𝑍

(︀
𝜈𝜕𝑍𝑢

)︀
(𝑡, 𝑏(𝑡)) = 𝜈𝜕2

𝑍𝑍𝑢(𝑡, 𝑏(𝑡)).23

Moreover if 𝑆(𝑡, 𝑏(𝑡)) ̸= 0, then24

𝑏̇(𝑡) =

(︃
𝜕𝑍𝑆(𝑡, 𝑏(𝑡))− 𝜕2

𝑍𝑍

(︀
𝜈𝜕𝑍𝑢

)︀
(𝑡, 𝑏(𝑡))

𝑆(𝑡, 𝑏(𝑡))

)︃
𝜈. (3.16)25

(2) If 𝜈 = 0, if 𝑢 is of class C1 in space and time, and if 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) ̸= 0, then26

𝑏̇(𝑡) =
𝑆(𝑡, 𝑏(𝑡))

𝜕𝑍𝑢(𝑡, 𝑏(𝑡))
· (3.17)27

Proof. We again differentiate (3.3a) with respect to time, leading to (3.14).28

(1) If 𝜈 > 0, as in the proof of Lemma 3.4, we get (3.15) and the first identity. By differentiating the boundary29

condition (3.3b) with respect to time, we similarly obtain30

𝜕2
𝑡𝑍𝑢(𝑡, 𝑏(𝑡)) + 𝜕2

𝑍𝑍𝑢(𝑡, 𝑏(𝑡))𝑏̇(𝑡) = 0. (3.18)31

Then we differentiate (3.1) with respect to 𝑍 and evaluate it at (𝑡, 𝑏(𝑡)). We obtain32

𝜕2
𝑡𝑍𝑢(𝑡, 𝑏(𝑡)) + 𝜕𝑍𝑆(𝑡, 𝑏(𝑡))− 𝜕2

𝑍𝑍(𝜈𝜕𝑍𝑢)(𝑡, 𝑏(𝑡)) = 0, (3.19)33

thus with (3.18),34

𝜕2
𝑍𝑍𝑢(𝑡, 𝑏(𝑡))𝑏̇(𝑡) = 𝜕𝑍𝑆(𝑡, 𝑏(𝑡))− 𝜕2

𝑍𝑍(𝜈𝜕𝑍𝑢)(𝑡, 𝑏(𝑡)). (3.20)35

Using (3.15) and according to the assumption 𝑆(𝑡, 𝑏(𝑡)) ̸= 0, we obtain (3.16).36
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(2) If 𝜈 = 0, equation (3.1) is reduced to1

𝜕𝑡𝑢(𝑡, 𝑍) + 𝑆(𝑡, 𝑍) = 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ). (3.21)2

Thus, by continuity of 𝜕𝑡𝑢 and 𝑆 in space, we obtain 𝜕𝑡𝑢(𝑡, 𝑏(𝑡)) = −𝑆(𝑡, 𝑏(𝑡)). With (3.14) and the3

assumption 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) ̸= 0 this gives the result (3.17).4 �5

When the denominator does not vanish in (3.16) and (3.17), these differential equations provide valuable6

information on the nature of the interface dynamics: it is driven by the normal derivative of the velocity at the7

interface in the inviscid case and by the third normal derivative in the viscous case. However, the formulas can8

only be evaluated when the 𝑍-profile of the velocity is known, which means we must also know the solution 𝑢9

of our model. The viscous formula (3.16) can also be written as10

𝑏̇(𝑡) =
𝜕𝑍𝑆tot(𝑡, 𝑏(𝑡))
𝜕2

𝑍𝑍𝑢(𝑡, 𝑏(𝑡))
, (3.22)11

where 𝑆tot = 𝑆 − 𝜕𝑍(𝜈𝜕𝑍𝑢) is the total (opposite) net force, including the viscous force from (3.1). Equations12

(3.16) and (3.17) also indicate that, as discussed in the introduction, a model that does not approximate the13

shape of the velocity profile well (i.e. not only the mean value but also the derivatives), will not be able to14

accurately predict the position of the interface. This is illustrated in [2] where the approximate value of the15

velocity is reproduced by the model throughout the flow thickness, whereas the shape of the velocity profile is16

very different from the one calculated with discrete element models. In that case, Figure 10 of [2] shows that17

the static/flowing positions computed with the two models differ. A similar conclusion is obtained in [1] when18

comparing the interface dynamics in an Herschel–Bulkley fluid and in an averaged model.19

Finally, note that although Lemma 3.5 provides a differential equation on 𝑏(𝑡), that could be used instead of20

the overdetermined boundary conditions, it is often preferable to use the latter (see [35] where it is shown that21

only the overdetermined boundary conditions lead to numerical stability). Indeed, the overdetermined boundary22

conditions do not require strong regularity assumptions and remain valid if the denominator in (3.16), (3.17)23

vanishes. In particular, the formula (3.17) for the inviscid case gives 𝑏̇(𝑡) ≥ 0 because of (3.6). However, this24

is wrong in general: we show in Proposition 4.7 that, in the inviscid case, it is possible to have solutions with25

𝑏̇(𝑡) < 0 for all 𝑡, together with 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) = 0 and 𝑆(𝑡, 𝑏(𝑡)) = 0 (thus leading to an undetermined formula26

“0/0” in (3.17)).27

4. Analytical study of the inviscid case28

In this section we consider the simplified model (3.1), (3.3), (3.4), (3.6) in the inviscid case, i.e. when 𝜈 = 0,29

and we build an explicit solution (𝑢, 𝑏) in several configurations. We assume that the source term 𝑆(𝑡, 𝑍) admits30

a unique (time-dependent) zero 𝑏⋆(𝑡) ∈ [0, ℎ], i.e. 𝑆(𝑡, 𝑏⋆(𝑡)) = 0. We will prove below that 𝑏(𝑡) ≤ 𝑏⋆(𝑡). Thus31

the value 𝑍 = 𝑏⋆(𝑡) divides the flowing layer (𝑏(𝑡), ℎ) into an upper sublayer (𝑏⋆(𝑡), ℎ) where the net force is32

driving and a lower sublayer (𝑏(𝑡), 𝑏⋆(𝑡)) where the net force is resistive. One important outcome of the results33

presented in this section is that the function 𝑏⋆(𝑡) provides a monitoring of the position 𝑏(𝑡) of the static/flowing34

interface: as time goes on, 𝑏(𝑡) has the tendency to approach 𝑏⋆(𝑡). We investigate several types of behaviour35

for 𝑏⋆(𝑡) and initial conditions, which in turn allow us to model different possible dynamics. In each case, we36

provide an explicit solution by first building the velocity 𝑢, then the position 𝑏 of the static/flowing interface.37

Illustrations are given for a linear initial velocity profile and a source term that is linear in space.38

4.1. Simplified model in the inviscid case39

In the inviscid case, the leading equations (3.1) and (3.3) of the simplified model reduce to40

𝜕𝑡𝑢(𝑡, 𝑍) + 𝑆(𝑡, 𝑍) = 0 for all 𝑍 ∈ (𝑏(𝑡), ℎ), (4.1)41

𝑢(𝑡, 𝑏(𝑡)) = 0. (4.2)42
43
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Moreover, as in Section 3 we assume that the source term 𝑆 is continuous in time and space and is nonincreasing1

in space, i.e. (3.2), (3.7) hold. The initial condition (3.4) writes2

𝑢(0, 𝑍) = 𝑢0(𝑍) for all 𝑍 ∈ (𝑏0, ℎ), (4.3)3

where 𝑢0 satisfies (3.5) and 𝑏0 ∈ [0, ℎ] is the given initial position of the interface. We seek for a solution (𝑢, 𝑏)4

that satisfies the monotonicity condition5

𝜕𝑍𝑢 > 0 for all 𝑡 ∈ (0, 𝑇 ], and all 𝑍 ∈ (𝑏(𝑡), ℎ), (4.4)6

and the static equilibrium condition (3.6), i.e.7

𝑆(𝑡, 𝑏(𝑡)) ≥ 0 for all 𝑡 ∈ (0, 𝑇 ]. (4.5)8

The source term 𝑆(𝑡, 𝑍) is assumed to have a unique (time-dependent) zero 𝑏⋆(𝑡) ∈ [0, ℎ], hence satisfying9

𝑆(𝑡, 𝑏⋆(𝑡)) = 0. Together with the monotonicity of 𝑆 in 𝑍 resulting from (3.7), this assumption is equivalent to10

𝑆(𝑡, 𝑍) > 0 for all 𝑍 < 𝑏⋆(𝑡), (4.6a)11

𝑆(𝑡, 𝑍) < 0 for all 𝑍 > 𝑏⋆(𝑡). (4.6b)12
13

Moreover, since 𝑆 is continuous with respect to its two arguments, 𝑏⋆(𝑡) is continuous likewise. Furthermore,14

we get the following reformulation of the static equilibrium condition (4.5).15

Lemma 4.1. Assume that the source term 𝑆 is continuous with respect to its two arguments (3.2), satisfies the16

monotonicity condition (3.7) and admits a unique zero 𝑏⋆(𝑡) in space. Then, the condition (4.5) is equivalent to17

18

𝑏(𝑡) ≤ 𝑏⋆(𝑡) for all 𝑡 ∈ (0, 𝑇 ]. (4.7)19

Proof. This is immediate with (4.6). �20

Let us give some comments.21

(a) The inequality (4.7) indicates that the location where the source term vanishes at 𝑏⋆ is in the flowing part22

of the flow [𝑏(𝑡), ℎ].23

(b) If the initial position of the static/flowing interface 𝑏0 is set such that 𝑏0 > 𝑏⋆(0), then the inequality (4.7)24

implies that 𝑏(𝑡) jumps instantaneously below 𝑏⋆(0). Therefore, this leads to a discontinuous static/flowing25

interface 𝑏(𝑡). This configuration allows us to model a sudden start of a part of the initially static material.26

Such a configuration will be investigated in Section 4.5 below.27

(c) The complete stop of the flow corresponds to the case where the position 𝑏(𝑡) of the static/flowing interface28

reaches the height ℎ of the domain. Then it is natural to set 𝑏(𝑡) = ℎ and 𝑢(𝑡, 𝑍) = 0 for all 𝑡 ≥ 𝑡stop, where29

𝑡stop stands for the first stopping time. Therefore, when assuming30

𝑏⋆(𝑡) < ℎ for all 𝑡 ∈ [0, 𝑇 ], (4.8)31

the inequality (4.7) provides a barrier for the static/flowing interface that prevents the flow from reaching32

a full stop.33

With the above assumptions, we are now going to provide an explicit solution (𝑢, 𝑏) to (4.1)–(4.5), in several34

configurations. First we investigate the case of a nondecreasing zero 𝑏⋆, with the initial condition 𝑏0 < 𝑏⋆(0)35

and we seek for a continuous and nondecreasing 𝑏(𝑡). Next, we consider a decreasing zero 𝑏⋆, with 𝑏0 = 𝑏⋆(0)36

and we seek for a continuous and decreasing 𝑏(𝑡). Then, we handle a more general case than the previous one37

by considering a decreasing zero 𝑏⋆, but with 𝑏0 < 𝑏⋆(0) and we seek for a continuous 𝑏(𝑡). Finally, we consider38

a nondecreasing zero 𝑏⋆, with 𝑏0 > 𝑏⋆(0). In this last case, the position 𝑏(𝑡) of the static/flowing interface is39

discontinuous at the initial time, with 𝑏(0+) = 𝑏⋆(0).40
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Figure 3. Position 𝑏 of the static/flowing interface with respect to time 𝑡, starting from
an initial position 𝑏0. The flowing domain where (4.1) holds is filled with oblique lines. The
integration path for computing the velocity is depicted with stars.

4.2. Nondecreasing zero 𝑏⋆(𝑡) and 𝑏0 < 𝑏⋆(0)1

We here investigate the case of a nondecreasing zero 𝑏⋆(𝑡) of the source term 𝑆 and we look for a position 𝑏(𝑡)2

of the static/flowing interface that is also nondecreasing. This configuration allows us to model a progressive3

stopping of the flow.4

We consider a source term 𝑆 with a unique zero 𝑏⋆(𝑡) (i.e. (4.6)) that satisfies5

𝑏⋆(𝑡) is nondecreasing, (4.9a)6

𝑏0 < 𝑏⋆(0). (4.9b)7
8

We seek for a continuous function 𝑏(𝑡), with 𝑏(0) = 𝑏0. We first build the velocity 𝑢 solution to the evolution9

equation (4.1), under the assumption that the position 𝑏(𝑡) of the static/flowing interface is nondecreasing.10

Then, we deduce explicitly the static/flowing interface position 𝑏(𝑡) by analyzing the boundary conditions. The11

following lemma provides the explicit expression of the velocity.12

Lemma 4.2. Assume (3.2), (3.5), (3.7) and that 𝑢 solves (4.1), (4.3) for some continuous nondecreasing 𝑏(𝑡)13

satisfying 𝑏(0) = 𝑏0. Then, for all 𝑡 ∈ [0, 𝑇 ] and for all 𝑍 ∈ [𝑏(𝑡), ℎ], one has14

𝑢(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏. (4.10)15

Proof. We would like to integrate (4.1) in time on [0, 𝑡], for 𝑡 fixed in [0, 𝑇 ] and 𝑍 fixed in [𝑏(𝑡), ℎ]. In order for16

(4.1) to be valid over the interval of integration (𝜏, 𝑍), 𝜏 ∈ [0, 𝑡], we need that 𝑏(𝜏) ≤ 𝑍 for all 𝜏 ∈ [0, 𝑡]. Since 𝑏17

is nondecreasing, this condition reduces to 𝑏(𝑡) ≤ 𝑍. The integration path is presented in Figure 3. Integrating18

(4.1) yields (4.10). �19

Next, in order to determine 𝑏(𝑡), we consider an extended velocity defined on [𝑏0, ℎ] and denoted by 𝑢̃. The20

extended velocity is the right-hand side of (4.10), that is21

𝑢̃(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏0, ℎ]. (4.11)22
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Lemma 4.2 says that 𝑢 is equal to 𝑢̃ for all 𝑍 ∈ [𝑏(𝑡), ℎ]. Since 𝑏(𝑡) is nondecreasing, we are looking for1

𝑏(𝑡) ∈ (𝑏0, ℎ). In order to get the boundary condition (4.2), 𝑏(𝑡) must satisfy 𝑢̃(𝑡, 𝑏(𝑡)) = 0. We note that the2

assumptions (3.7) and (3.5a) imply that 𝜕𝑍 𝑢̃ > 0 for all 𝑍 ∈ (𝑏0, ℎ), hence (4.4) is automatically satisfied. The3

equations (4.1) and (4.3) are also consequences of the formula (4.10). Therefore, it remains only to clarify if one4

can find a continuous nondecreasing function 𝑏(𝑡) such that 𝑢̃(𝑡, 𝑏(𝑡)) = 0, which satisfies 𝑏(0) = 𝑏0 and (4.5).5

This is what gives the following lemma.6

Lemma 4.3. Assume (3.2), (3.5), (3.7), (4.6), (4.9). Then there exists a unique 𝑏(𝑡) ∈ [𝑏0, ℎ] such that7

𝑢̃(𝑡, 𝑏(𝑡)) = 0, with 𝑢̃ defined by (4.11). Moreover,8

(1) 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑇 ],9

(2) 𝑏(𝑡) is continuous, nondecreasing and 𝑏(0) = 𝑏0.10

Proof. The uniqueness follows from the previously stated property 𝜕𝑍 𝑢̃ > 0. Then, we note that 𝑢̃ is continuous11

in both 𝑡 and 𝑍 and that by (4.9) we have 𝑏⋆(𝑡) > 𝑏0. Hereafter, we prove the existence of 𝑏(𝑡) ∈ [𝑏0, 𝑏⋆(𝑡)) such12

that 𝑢̃(𝑡, 𝑏(𝑡)) = 0. Indeed, we show that 𝑢̃(𝑡, 𝑏0) < 0 for 𝑡 > 0 and 𝑢̃(𝑡, 𝑏⋆(𝑡)) > 0. At first, by (3.5b), we have13

𝑢̃(𝑡, 𝑏0) = −
∫︁ 𝑡

0

𝑆(𝜏, 𝑏0) d𝜏. (4.12)14

Therefore, since 𝑏⋆(𝑡) > 𝑏0 and using (4.6), we deduce that 𝑆(𝜏, 𝑏0) > 0 for all 𝜏 ∈ [0, 𝑇 ]. Hence 𝑢̃(𝑡, 𝑏0) < 0 for15

all 𝑡 > 0, while 𝑢̃(0, 𝑏0) = 0, giving 𝑏(0) = 𝑏0. Then,16

𝑢̃(𝑡, 𝑏⋆(𝑡)) = 𝑢0(𝑏⋆(𝑡))−
∫︁ 𝑡

0

𝑆(𝜏, 𝑏⋆(𝑡)) d𝜏. (4.13)17

Using again 𝑏⋆(𝑡) > 𝑏0 and (3.5), we get 𝑢0(𝑏⋆(𝑡)) > 0. Moreover, by (4.9a), 𝑏⋆(𝜏) ≤ 𝑏⋆(𝑡) for all 𝜏 ∈ [0, 𝑡], thus18

according to (4.6) we have 𝑆(𝜏, 𝑏⋆(𝑡)) ≤ 0. Therefore 𝑢̃(𝑡, 𝑏⋆(𝑡)) > 0 as claimed. We deduce the existence of 𝑏(𝑡)19

and it only remains to prove that it is continuous and nondecreasing. Since 𝑢̃(𝑡, 𝑏(𝑡)) = 0 with 𝑢̃ continuous, we20

infer the continuity of 𝑏. Then, differentiating with respect to 𝑡 gives 𝜕𝑡𝑢̃(𝑡, 𝑏) + 𝜕𝑍 𝑢̃(𝑡, 𝑏)𝑏̇ = 0. Since 𝜕𝑡𝑢̃ = −𝑆,21

we have 𝜕𝑡𝑢̃(𝑡, 𝑏(𝑡)) = −𝑆(𝑡, 𝑏(𝑡)) ≤ 0 by Lemma 4.1 and since 𝜕𝑍 𝑢̃ > 0, we get 𝑏̇ ≥ 0. �22

The synthesis of Lemmas 4.2 and 4.3 is stated in the following main result of this subsection.23

Proposition 4.4. Assume (3.2), (3.5), (3.7), (4.6), (4.9). Then there exists a unique solution (𝑢, 𝑏) to (4.1),24

(4.2), (4.3), (4.4), (4.5), such that the position 𝑏(𝑡) of the static/flowing interface is nondecreasing, continuous25

and 𝑏(0) = 𝑏0. Moreover, the velocity 𝑢 is given by (4.10), and the position 𝑏(𝑡) of the static/flowing interface26

is determined by the equation27

𝑢0(𝑏(𝑡)) =
∫︁ 𝑡

0

𝑆(𝜏, 𝑏(𝑡)) d𝜏, (4.14)28

and satisfies 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑇 ].29

Illustration30

For the purpose of illustrating our results, we investigate the most simple case of linear data. They are31

written in dimensionless units, meaning that appropriate rescaled variables have to be used. On the one hand32

we consider a linear initial velocity33

𝑢0(𝑍) = 𝑍 − 𝑏0 for all 𝑍 ∈ [𝑏0, ℎ], (4.15)34

where 𝑏0 is the initial position of the static/flowing interface. On the other hand, we consider a linear and35

decreasing with respect to 𝑍 source term,36

𝑆(𝑡, 𝑍) = 𝑏⋆(𝑡)− 𝑍 for all 𝑡 ∈ [0, 𝑇 ], and all 𝑍 ∈ [0, ℎ], (4.16)37
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Figure 4. Illustration of the behaviour of the solution (𝑢, 𝑏) in the case of nondecreasing zero
𝑏⋆ of the source and 𝑏0 < 𝑏⋆(0). The source and initial velocity are linear, given by (4.16) and
(4.15), with ℎ = 6, 𝑏0 = 3.5, 𝑏⋆ = 5. Left: velocity profiles 𝑢 at times 𝑡 = 0, 𝑡 = 2, 𝑡 = 4, 𝑡 = 6
(the velocity 𝑢(𝑡, 𝑍) is extended by 0 for 0 < 𝑍 < 𝑏(𝑡)). Right: position 𝑏(𝑡) of the static/flowing
interface with respect to time.

where 𝑏⋆(𝑡) is continuous and satisfies (4.9).1

According to Proposition 4.4, we have a unique solution to our problem. The velocity is written, for all2

𝑡 ∈ [0, 𝑇 ],3

𝑢(𝑡, 𝑍) = (1 + 𝑡)𝑍 − 𝑏0 −
∫︁ 𝑡

0

𝑏⋆(𝜏) d𝜏 for all 𝑍 ∈ [𝑏(𝑡), ℎ]. (4.17)4

The expression of 𝑏(𝑡) is determined by (4.14), leading to5

𝑏(𝑡) =
𝑏0 +

∫︁ 𝑡

0

𝑏⋆(𝜏) d𝜏

1 + 𝑡
for all 𝑡 ∈ [0, 𝑇 ]. (4.18)6

In accordance with our result, the function defined by (4.18) is nondecreasing, as can be checked directly with7

the assumption (4.9).8

Let us consider a constant value 𝑏⋆(𝑡) = 𝑏⋆ > 𝑏0 for all 𝑡 ∈ R+. Then (4.17) and (4.18) give9

𝑢(𝑡, 𝑍) = (1 + 𝑡)𝑍 − (𝑏0 + 𝑡𝑏⋆) for all 𝑍 ∈ [𝑏(𝑡), ℎ], (4.19)10

and11

𝑏(𝑡) =
𝑏0 + 𝑡𝑏⋆

1 + 𝑡
for all 𝑡 ∈ R+. (4.20)12

The expression (4.20) satisfies 𝑏0 < 𝑏(𝑡) < 𝑏⋆ for all 𝑡 > 0 and 𝑏(𝑡) → 𝑏⋆ as 𝑡 →∞. We remark that evaluating13

(4.19) at 𝑍 = 𝑏⋆ yields14

𝑢(𝑡, 𝑏⋆) = 𝑢0(𝑏⋆) for all 𝑡 ∈ R+, (4.21)15

meaning that the velocity profiles intersect at 𝑍 = 𝑏⋆ for all 𝑡 ∈ R+. The solution (𝑢, 𝑏) is plotted in Figure 4.16

Since 𝑏(𝑡) < 𝑏⋆ < ℎ, the static/flowing interface never reaches the top of the domain, modelling a flow that does17

never reach a complete stop.18
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4.3. Decreasing zero 𝑏⋆(𝑡) and 𝑏0 = 𝑏⋆(0)1

We assume here that the zero 𝑏⋆(𝑡) of the source term 𝑆 is decreasing, starting from the initial position2

𝑏0 of the static/flowing interface. This configuration allows us to model a progressive start of the flow with a3

thickening fluid part.4

We consider a source term 𝑆 with a unique zero 𝑏⋆(𝑡) (i.e. (4.6)) that satisfies5

𝑏⋆ ∈ C1([0, 𝑇 ]), 𝑏⋆(𝑡) < 0 for 𝑡 > 0, (4.22a)6

𝑏0 = 𝑏⋆(0). (4.22b)7
8

Let us first state a property on the position of the static/flowing interface that needs no hypothesis on 𝑏⋆.9

Lemma 4.5. Assume (3.2), (3.5), (3.7), (4.6) and that (𝑢, 𝑏) is a solution to (4.1), (4.2), (4.3), (4.4), (4.5)10

with 𝑏 continuously differentiable on (0, 𝑇 ]. If there exists a time 𝑡0 > 0 such that 𝑏̇(𝑡0) ≤ 0, then we have11

𝑏(𝑡0) = 𝑏⋆(𝑡0), 𝜕𝑍𝑢(𝑡0, 𝑏(𝑡0))𝑏̇(𝑡0) = 0. (4.23)12

Proof. By differentiating (4.2) i.e. 𝑢(𝑡, 𝑏(𝑡)) = 0 with respect to 𝑡, we obtain13

𝜕𝑡𝑢(𝑡, 𝑏(𝑡)) + 𝜕𝑍𝑢(𝑡, 𝑏(𝑡))𝑏̇(𝑡) = 0. (4.24)14

According to (4.1) and (4.5) we have 𝜕𝑡𝑢(𝑡, 𝑏(𝑡)) = −𝑆(𝑡, 𝑏(𝑡)) ≤ 0 and by (4.4) we have 𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) ≥ 0. Since15

𝑏̇(𝑡0) ≤ 0, the equality (4.24) with the given signs leads to 𝑆(𝑡0, 𝑏(𝑡0)) = 0 and 𝜕𝑍𝑢(𝑡0, 𝑏(𝑡0))𝑏̇(𝑡0) = 0. Since 𝑆16

has a unique zero by (4.6), we obtain (4.23). �17

We can now identify the solution (𝑢, 𝑏) under the hypothesis (4.22).18

Lemma 4.6. Assume (3.2), (3.5), (3.7), (4.6), (4.22). If (𝑢, 𝑏) solves (4.1), (4.2), (4.3), (4.4), (4.5) with 𝑏 ∈19

C1([0, 𝑇 ]) with 𝑏(0) = 𝑏0, then20

𝑏(𝑡) = 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑇 ], (4.25)21

and for all 𝑡 ∈ [0, 𝑇 ] the velocity is given by22

𝑢(𝑡, 𝑍) = −
∫︁ 𝑡

(𝑏⋆)−1(𝑍)

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏(𝑡), 𝑏⋆(0)], (4.26a)23

𝑢(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏⋆(0), ℎ]. (4.26b)24

25

Proof. Setting ∆(𝑡) = 𝑏(𝑡)− 𝑏⋆(𝑡), by Lemma 4.1 we have ∆ ≤ 0, while by (4.22b) ∆(0) = 0. For proving (4.25),26

assume by contradiction that there exists a time 𝑡1 > 0 such that ∆(𝑡1) < 0. By the mean value theorem, there27

exists a time 𝑡0 ∈ (0, 𝑡1) such that ∆(𝑡0) < 0 and ∆̇(𝑡0) < 0. Thus 𝑏̇(𝑡0) < 𝑏̇⋆(𝑡0) ≤ 0 by (4.22a), and according28

to Lemma 4.5 this implies that ∆(𝑡0) = 0, hence a contradiction. This proves (4.25).29

Next, by (4.22a) we get for all 𝑡 > 0 that 𝑏⋆(𝑡) < 𝑏⋆(0). The value of 𝑍 being fixed in [𝑏(𝑡), 𝑏⋆(0)] = [𝑏⋆(𝑡), 𝑏⋆(0)],30

we integrate (4.1) in time between 𝑡′ and 𝑡, where 𝑡′ ∈ [0, 𝑡] is such that 𝑍 = 𝑏⋆(𝑡′), i.e. 𝑡′ = (𝑏⋆)−1(𝑍). This is31

possible because for all 𝜏 ∈ [𝑡′, 𝑡], 𝑏(𝜏) ≤ 𝑏(𝑡′) = 𝑍. The integration path for computing the velocity is presented32

in Figure 5. We obtain33

𝑢(𝑡, 𝑍) = 𝑢(𝑡′, 𝑍)−
∫︁ 𝑡

𝑡′
𝑆(𝜏, 𝑍) d𝜏. (4.27)34

But since 𝑏(𝑡′) = 𝑏⋆(𝑡′) = 𝑍, we infer that 𝑢(𝑡′, 𝑍) = 𝑢(𝑡′, 𝑏(𝑡′)) = 0 by (4.2), giving (4.26a). Simi-35

larly, for a fixed 𝑍 in [𝑏⋆(0), ℎ], we are allowed to integrate (4.1) between 0 and 𝑡, therefore with (4.3)36

we obtain (4.26b). �37
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Figure 5. Position 𝑏 = 𝑏⋆ of the static/flowing interface with respect to time 𝑡, starting from
𝑏0 = 𝑏⋆(0). The flowing domain where (4.1) holds is filled with oblique lines. The integration
path for computing the velocity is depicted with stars.

In the following proposition, we check that the velocity and the position of the static/flowing interface given1

by (4.25) and (4.26) provide a solution to (4.1), (4.2), (4.3), (4.4), (4.5), under the hypothesis that the source2

term is decreasing. We also establish an additional boundary condition at 𝑍 = 𝑏(𝑡),3

𝜕𝑍𝑢(𝑡, 𝑏(𝑡)) = 0 for all 𝑡 > 0, (4.28)4

hence recovering in the context of (4.22) the boundary condition (3.3b) of the viscous case.5

Proposition 4.7. Assume (3.2), (3.5), (3.7), (4.6), (4.22) and that 𝜕𝑍𝑆 < 0. Then there is a unique solution6

(𝑢, 𝑏) to (4.1), (4.2), (4.3), (4.4), (4.5) such that 𝑏 ∈ C1([0, 𝑇 ]) with 𝑏(0) = 𝑏0. Moreover, (𝑢, 𝑏) is given by7

(4.25), (4.26) and verifies the boundary condition (4.28).8

Proof. The uniqueness is given by Lemma 4.6. For existence, define (𝑢, 𝑏) by (4.25) and (4.26). Then since 𝑏 = 𝑏⋆
9

and by (4.22b), one has 𝑏(0) = 𝑏0. The assumption (4.22) enables to define 𝑢 by (4.26a) and (4.26b), indeed the10

two formulas match at 𝑍 = 𝑏⋆(0) because of (3.5b). Thus 𝑢 is continuous. It obviously satisfies (4.3) according11

to (4.26b). Then, (4.1) is obtained easily by differentiating (4.26) with respect to 𝑡. Next, (4.2) is immediate by12

(4.26a). The condition (4.5) is obviously satisfied since 𝑆(𝑡, 𝑏(𝑡)) = 𝑆(𝑡, 𝑏⋆(𝑡)) = 0. Let us show the condition13

(4.4). For 𝑍 ∈ (𝑏⋆(0), ℎ] it is immediate by (3.5a) and (3.7). For 𝑡 > 0 and 𝑍 ∈ [𝑏⋆(𝑡), 𝑏⋆(0)], since 𝑏⋆ ̸= 0 by14

(4.22a), we compute15

𝜕𝑍𝑢(𝑡, 𝑍) = −
∫︁ 𝑡

(𝑏⋆)−1(𝑍)

𝜕𝑍𝑆(𝜏, 𝑍) d𝜏 + 𝑆((𝑏⋆)−1(𝑍), 𝑍)𝜕𝑍((𝑏⋆)−1(𝑍)). (4.29)16

Denoting 𝑡′ = (𝑏⋆)−1(𝑍), one has 𝑆((𝑏⋆)−1(𝑍), 𝑍) = 𝑆(𝑡′, 𝑏⋆(𝑡′)) = 0. Therefore,17

𝜕𝑍𝑢(𝑡, 𝑍) = −
∫︁ 𝑡

𝑡′
𝜕𝑍𝑆(𝜏, 𝑍) d𝜏 for all 𝑡 > 0, 𝑍 ∈ [𝑏⋆(𝑡), 𝑏⋆(0)]. (4.30)18

Since we assumed 𝜕𝑍𝑆 < 0, we get 𝜕𝑍𝑢 > 0 if 𝑡′ < 𝑡, i.e. 𝑍 > 𝑏⋆(𝑡), and (4.4) holds. For 𝑍 = 𝑏(𝑡) one has 𝑡′ = 𝑡,19

thus the latter equality provides the additional boundary condition (4.28) (it is also possible to use (4.23)). We20

can remark additionally that for 𝑡 > 0, the limits of 𝜕𝑍𝑢 on both sides of 𝑏⋆(0) = 𝑏0 differ,21

𝜕𝑍𝑢(𝑡, 𝑏0+)− 𝜕𝑍𝑢(𝑡, 𝑏0−) = 𝜕𝑍𝑢0(𝑏0) ≥ 0. (4.31)22

Therefore, as long as 𝜕𝑍𝑢0(𝑏0) > 0, the velocity 𝑢 is not continuously differentiable at 𝑏0. �23
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Figure 6. Illustration of the behaviour of the solution (𝑢, 𝑏) in the case of decreasing zero 𝑏⋆ of
the source and 𝑏0 = 𝑏⋆(0). The source and initial velocity are linear, given by (4.16) and (4.15),
with ℎ = 6, 𝑏0 = 3.5, 𝑏⋆ given by (4.32). Left: velocity profiles 𝑢 at times 𝑡 = 0, 𝑡 = 1, 𝑡 = 2,
𝑡 = 4, 𝑡 = 6 (the velocity 𝑢(𝑡, 𝑍) is extended by 0 for 0 < 𝑍 < 𝑏(𝑡)). Right: position 𝑏(𝑡) of the
static/flowing interface with respect to time; it coincides with the zero 𝑏⋆(𝑡) of the source.

Illustration1

In order to illustrate the configuration of Proposition 4.7, we consider linear initial data and source term in2

the form (4.15) and (4.16), for some 𝑏⋆ satisfying (4.22). We take for 𝑏⋆
3

𝑏⋆(𝑡) =
𝑏0 + 𝑡2

1 + 𝑡2
, (4.32)4

where 1 < 𝑏0 < ℎ. Then 𝑏 = 𝑏⋆(𝑡) and the velocity is determined for all 𝑡 ∈ [0, 𝑇 ], by5

𝑢(𝑡, 𝑍) = (𝑍 − 1)

⎛⎝𝑡−

√︃
𝑏0 − 𝑍

𝑍 − 1

⎞⎠+ (1− 𝑏0)

⎛⎝arctan 𝑡− arctan

√︃
𝑏0 − 𝑍

𝑍 − 1

⎞⎠ for all 𝑍 ∈ [𝑏(𝑡), 𝑏0], (4.33)6

𝑢(𝑡, 𝑍) = (1 + 𝑡)𝑍 − (𝑏0 + 𝑡) + (1− 𝑏0) arctan 𝑡 for all 𝑍 ∈ [𝑏0, ℎ]. (4.34)7
8

At a fixed time 𝑡, these expressions lead to nonlinear profiles in [𝑏(𝑡), 𝑏0] and linear profiles in [𝑏0, ℎ], as illustrated9

in Figure 6.10

4.4. Decreasing zero 𝑏⋆(𝑡) and 𝑏0 < 𝑏⋆(0)11

We now handle a more general case than previously in Section 4.3. We consider still a decreasing zero 𝑏⋆(𝑡) of12

the source term, but starting from an initial value 𝑏⋆(0) larger than the initial position 𝑏0 of the static/flowing13

interface. This configuration allows us to model a change of variation in the static/flowing interface position,14

from an initial thickening to a progressive thinning of the static part of the flow.15

We consider a source term 𝑆 with a unique zero 𝑏⋆(𝑡) (i.e. (4.6)) that satisfies16

𝑏⋆ ∈ C1([0, 𝑇 ]), 𝑏⋆(𝑡) < 0 for 𝑡 > 0, (4.35a)17

𝑏0 < 𝑏⋆(0). (4.35b)18
19

We seek for a continuous function 𝑏(𝑡) with 𝑏(0) = 𝑏0. Let us first state a general result which follows from20

Lemma 4.5.21
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Lemma 4.8. Assume (3.2), (3.5), (3.7), (4.6) and that (𝑢, 𝑏) is a solution to (4.1), (4.2), (4.3), (4.4), (4.5). If1

𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ 𝐼 where 𝐼 is a time interval not containing 0 where 𝑏 is C1, then 𝑏̇(𝑡) > 0 for all 𝑡 ∈ 𝐼.2

Proof. According to Lemma 4.1, one has 𝑏(𝑡) ≤ 𝑏⋆(𝑡) for all 𝑡 > 0. Thus the assumption 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ 𝐼3

means that 𝑏(𝑡) ̸= 𝑏⋆(𝑡) for 𝑡 ∈ 𝐼. Arguing by contradiction, the result is immediate with Lemma 4.5. �4

In the context of (4.35) and for a continuous 𝑏 with 𝑏(0) = 𝑏0 < 𝑏⋆(0), one has necessarily 𝑏(𝑡) < 𝑏⋆(𝑡) for 𝑡5

small enough. Then there are two possible situations:6

(i) 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑇 ],7

(ii) there exists a time 𝑡⋆ > 0 such that 𝑏(𝑡⋆) = 𝑏⋆(𝑡⋆) and for all 𝑡 ∈ [0, 𝑡⋆), 𝑏(𝑡) < 𝑏⋆(𝑡).8

Case (i) means that there is no intersection between the graphs of 𝑏 and 𝑏⋆. In case (ii), there is an intersection9

at a time 𝑡⋆. Then, from 𝑡 ≥ 𝑡⋆ we encounter the situation of Section 4.3. Herein, we focus on case (ii), that can10

be formalized as11 {︂
𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑡⋆),
𝑏(𝑡) = 𝑏⋆(𝑡) for all 𝑡 ≥ 𝑡⋆.

(4.36)12

Therefore, the position 𝑏 of the static/flowing interface is increasing over [0, 𝑡⋆] and is decreasing over [𝑡⋆, 𝑇 ].13

In what follows, we first build the velocity 𝑢 under the assumption (4.36), then we determine the position14

𝑏(𝑡) of the static/flowing interface.15

Lemma 4.9. Assume (3.2), (3.5), (3.7), (4.6), (4.35) and that (𝑢, 𝑏) solves (4.1), (4.2), (4.3), (4.4), (4.5) with16

𝑏 continuous in [0, 𝑇 ], piecewise C1 with 𝑏(0) = 𝑏0. We suppose that there exists 𝑡⋆ ∈ (0, 𝑇 ) such that (4.36)17

holds. Then, for all 𝑡 ≥ 𝑡⋆, the velocity is given by18

𝑢(𝑡, 𝑍) = −
∫︁ 𝑡

(𝑏⋆)−1(𝑍)

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏(𝑡), 𝑏⋆(𝑡⋆)], (4.37a)19

𝑢(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏⋆(𝑡⋆), ℎ]. (4.37b)20

21

For all 𝑡 ∈ [0, 𝑡⋆], the velocity is given by22

𝑢(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏(𝑡), ℎ]. (4.38)23

Proof. The geometric setting is presented in Figure 7. The domain 𝑍 ≥ 𝑏(𝑡) where the velocity 𝑢 is defined is24

filled with oblique lines. It is split in three sets A, B, C corresponding to (4.37a), (4.37b), (4.38) respectively. If25

𝑡 ≤ 𝑡⋆ then 𝑏(𝑡) is increasing, therefore the velocity is given by Lemma 4.2, which gives (4.38). If 𝑡 ≥ 𝑡⋆, we are26

in the configuration of Section 4.3. Applying Lemma 4.6 we deduce the formula (4.37a) and27

𝑢(𝑡, 𝑍) = 𝑢(𝑡⋆, 𝑍)−
∫︁ 𝑡

𝑡⋆

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏⋆(𝑡⋆), ℎ]. (4.39)28

But according to (4.38) applied for 𝑡 = 𝑡⋆, we have29

𝑢(𝑡⋆, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡⋆

0

𝑆(𝜏, 𝑍) d𝜏 for all 𝑍 ∈ [𝑏⋆(𝑡⋆), ℎ]. (4.40)30

Replacing the value of 𝑢(𝑡⋆, 𝑍) given by (4.40) in (4.39) gives (4.37b). �31

The determination of the solution (𝑢, 𝑏) is completed through the following result giving the position 𝑏(𝑡) of32

the static/flowing interface for 𝑡 ≤ 𝑡⋆ and the crossing time 𝑡⋆. The position 𝑏 of the static/flowing interface33

is determined by the boundary condition 𝑢(𝑡, 𝑏(𝑡)) = 0 and as in Lemma 4.3, we extend the formula (4.38) by34

defining 𝑢̃, for 𝑍 ∈ [𝑏0, ℎ] and 𝑡 ∈ [0, 𝑇 ] by (4.11).35
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Figure 7. Position 𝑏 (thick dark) of the static/flowing interface with respect to time 𝑡, starting
from an initial position 𝑏0 < 𝑏⋆(0). The flowing domain where (4.1) holds is filled with oblique
lines. It is split into three sets 𝐴 : 𝑡 ≥ 𝑡⋆, 𝑏⋆(𝑡) ≤ 𝑍 ≤ 𝑏⋆(𝑡⋆), 𝐵 : 𝑡 ≥ 𝑡⋆, 𝑏⋆(𝑡⋆) ≤ 𝑍 ≤ ℎ,
𝐶 : 𝑡 ≤ 𝑡⋆, 𝑏(𝑡) ≤ 𝑍 ≤ ℎ. The integration path for computing the velocity is depicted with
stars.

Lemma 4.10. Assume (3.2), (3.5), (3.7), (4.6), (4.35). Then there exists a maximal time 𝑡⋆ > 0 such that for1

all 𝑡 ∈ (0, 𝑡⋆), the extended velocity 𝑢̃ defined by (4.11) has a unique zero 𝑏(𝑡) in 𝑍, such that 𝑏0 < 𝑏(𝑡) < 𝑏⋆(𝑡).2

Moreover, 𝑏 is continuous and increasing in [0, 𝑡⋆) with 𝑏(0) = 𝑏0. Finally, if 𝑡⋆ < 𝑇 then 𝑏(𝑡⋆) = 𝑏⋆(𝑡⋆).3

Proof. We denote by Prop (𝑡) the following property: there exists a unique zero 𝑏(𝑡) of 𝑍 ↦→ 𝑢̃(𝑡, 𝑍), such that4

𝑏0 < 𝑏(𝑡) < 𝑏⋆(𝑡). We consider the set5

𝐼 =
{︀
𝑡+ > 0 such that ∀𝑡 ∈ (0, 𝑡+), Prop (𝑡) holds

}︀
. (4.41)6

The set 𝐼 is convex since for any 𝑡+1 ∈ 𝐼, 𝑡+2 ∈ (0, 𝑡+1 ) ⇒ 𝑡+2 ∈ 𝐼. Thus 𝐼 is an interval, and one of the three7

situations must occur:8

(a) 𝐼 = ∅,9

(b) 𝐼 = (0, 𝑡⋆] for some 𝑡⋆ ∈ (0, 𝑇 ),10

(c) 𝐼 = (0, 𝑇 ].11

In order to prove the first statement of the lemma, we have to establish that (a) cannot happen, i.e. that 𝐼 ̸= ∅.12

In other words we need to prove that for 𝑡 > 0 small enough, 𝑢̃(𝑡, .) admits a unique zero 𝑏(𝑡) in (𝑏0, 𝑏⋆(𝑡)).13

The uniqueness follows from the property 𝜕𝑍 𝑢̃ > 0, which is obtained with (3.5a) and (3.7). In order to get14

existence, we first notice that according to (4.35), for 𝑡 small enough one has 𝑏⋆(𝑡) > 𝑏0. Then, let us prove15

that for 𝑡 small enough 𝑢̃(𝑡, 𝑏0) < 0 and 𝑢̃(𝑡, 𝑏⋆(𝑡)) > 0. We have by the definition (4.11) and by (3.5b) that16

𝑢̃(𝑡, 𝑏0) = −
∫︀ 𝑡

0
𝑆(𝜏, 𝑏0) d𝜏 . Thus, by (4.6) we deduce that 𝑆(𝜏, 𝑏0) > 0 and that 𝑢̃(𝑡, 𝑏0) < 0. Next, since 𝑆 is17

continuous by (3.2), there exists a constant 𝐶1 ≥ 0 such that 𝑆(𝜏, 𝑍) ≤ 𝐶1 for all 𝜏 ∈ [0, 𝑇 ] and all 𝑍 ∈ [0, ℎ].18

This leads to 𝑢̃(𝑡, 𝑏⋆(𝑡)) ≥ 𝑢0(𝑏⋆(𝑡)) − 𝐶1𝑡. This expression tends to 𝑢0(𝑏⋆(0)) as 𝑡 → 0. Since by (4.35b) and19

(3.5) this limit is positive, we deduce that for 𝑡 small enough we have 𝑢̃(𝑡, 𝑏⋆(𝑡)) > 0, concluding the existence20

of a zero 𝑏(𝑡) in the interval (𝑏0, 𝑏⋆(𝑡)) and the proof that 𝐼 ̸= ∅.21

Then, for all 𝑡 ∈ (0, 𝑡⋆) one has 𝑢̃(𝑡, 𝑏(𝑡)) = 0 with 𝑢̃ continuous, thus 𝑏 is continuous in (0, 𝑡⋆). Moreover,22

defining 𝑏(0) = 𝑏0, with the same argument 𝑏 is continuous in [0, 𝑡⋆). Since 𝑢̃ is continuously differentiable with23

respect to (𝑡, 𝑍) with 𝜕𝑍 𝑢̃ > 0, one gets that 𝑏 is differentiable with 𝑏̇(𝑡) = −𝜕𝑡𝑢̃(𝑡, 𝑏(𝑡))/𝜕𝑍 𝑢̃(𝑡, 𝑏(𝑡)). Since24

𝜕𝑡𝑢̃ = −𝑆, we get 𝑏̇(𝑡) > 0 according to (4.6) and the property 𝑏(𝑡) < 𝑏⋆(𝑡).25
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It remains to prove the last statement concerning the case 𝑡⋆ < 𝑇 . We are going to prove that in this case1

we have 𝑢̃(𝑡⋆, 𝑏⋆(𝑡⋆)) = 0, giving the claim. Indeed, the assumption 𝑡⋆ < 𝑇 yields by definition of 𝑡⋆ that there2

exists a sequence 𝑡𝑛 ∈ (𝑡⋆, 𝑇 ) such that 𝑡𝑛 → 𝑡⋆ and not satisfying Prop (𝑡𝑛), which means that 𝑢̃(𝑡𝑛, .) has no3

zero in (𝑏0, 𝑏⋆(𝑡𝑛)) (recall that uniqueness always holds because 𝜕𝑍 𝑢̃ > 0).4

Since we have proved that 𝑏 is increasing in (0, 𝑡⋆), we have 𝑏(𝑡) > 𝑏0 for all 𝑡 ∈ (0, 𝑡⋆), and 𝑏(𝑡) → ℓ as 𝑡 → 𝑡⋆,5

for some ℓ > 𝑏0. Moreover, as 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ (0, 𝑡⋆), we obtain ℓ ≤ 𝑏⋆(𝑡⋆). Thus we obtain 𝑏0 < 𝑏⋆(𝑡⋆).6

The continuity of 𝑏⋆ at 𝑡⋆ implies that there exists a time 𝑡 ∈ (𝑡⋆, 𝑇 ) such that7

𝑏⋆(𝑡) ≥ 𝑏⋆(𝑡⋆) + 𝑏0

2
for all 𝑡 ∈ [𝑡⋆, 𝑡]. (4.42)8

Since 𝑡𝑛 → 𝑡⋆, there exists 𝑛̃ such that 𝑡𝑛 ≤ 𝑡 for all 𝑛 ≥ 𝑛̃. Therefore, by (4.42) this gives9

𝑏⋆(𝑡𝑛) ≥ 𝑏⋆(𝑡⋆) + 𝑏0

2
> 𝑏0 for all 𝑛 ≥ 𝑛̃. (4.43)10

By the decrease of 𝑏⋆ (4.35a), we deduce that 𝑏⋆(𝜏) > 𝑏⋆(𝑡𝑛) > 𝑏0 for all 𝜏 ∈ (0, 𝑡𝑛). By (4.6) we deduce that11

𝑆(𝜏, 𝑏0) > 0 and that 𝑢̃(𝑡𝑛, 𝑏0) = −
∫︀ 𝑡𝑛

0
𝑆(𝜏, 𝑏0) d𝜏 < 0. As Prop (𝑡𝑛) is false, there is no zero of 𝑢̃(𝑡𝑛, .) in12

(𝑏0, 𝑏⋆(𝑡𝑛)), hence we conclude that 𝑢̃(𝑡𝑛, 𝑏⋆(𝑡𝑛)) ≤ 0. By passing to the limit 𝑛 →∞, we get 𝑢̃(𝑡⋆, 𝑏⋆(𝑡⋆)) ≤ 0.13

Moreover, taking a sequence 𝑡′𝑛 < 𝑡⋆ such that 𝑡′𝑛 → 𝑡⋆, we have that Prop (𝑡′𝑛) is true, and we infer that14

𝑢̃(𝑡′𝑛, 𝑏⋆(𝑡′𝑛)) > 0. Passing to the limit 𝑛 → ∞, this leads to 𝑢̃(𝑡⋆, 𝑏⋆(𝑡⋆)) ≥ 0. Therefore, we conclude that15

𝑢̃(𝑡⋆, 𝑏⋆(𝑡⋆)) = 0 and this ends the proof of the lemma. �16

Proposition 4.11. Assume (3.2), (3.5), (3.7), (4.6), (4.35) and that 𝜕𝑍𝑆 < 0. Then there is a unique solution17

(𝑢, 𝑏) to (4.1), (4.2), (4.3), (4.4), (4.5) with 𝑏 continuous in [0, 𝑇 ], piecewise C1 with 𝑏(0) = 𝑏0. Moreover, for18

all 𝑡 ∈ [0, 𝑡⋆], 𝑢(𝑡, 𝑍) is given by (4.38), and 𝑏(𝑡) is the unique value in [𝑏0, 𝑏⋆(𝑡)] such that this formula (4.38)19

gives 𝑢(𝑡, 𝑏(𝑡)) = 0. The interface position 𝑏 is increasing in [0, 𝑡⋆]. For larger times, one of the two following20

cases occurs21

(i) 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ [0, 𝑇 ] and 𝑡⋆ = 𝑇 ,22

(ii) 𝑏(𝑡) reaches 𝑏⋆(𝑡) at the time 𝑡⋆. Then 𝑏̇(𝑡⋆ − 0) = 0 and for all 𝑡 ∈ [𝑡⋆, 𝑇 ] one has 𝑏(𝑡) = 𝑏⋆(𝑡) (thus 𝑏 is23

decreasing in [𝑡⋆, 𝑇 ]) with 𝑢 given by (4.37).24

Proof. The result follows from Lemmas 4.9, 4.10 and Proposition 4.7. Only the property 𝑏̇(𝑡⋆ − 0) = 0 has not25

been stated. For 𝑡 < 𝑡⋆ one has 𝑏̇(𝑡) = 𝑆(𝑡, 𝑏(𝑡))/𝜕𝑍 𝑢̃(𝑡, 𝑏(𝑡)). When 𝑡 → 𝑡⋆ we have 𝑆(𝑡, 𝑏(𝑡)) → 𝑆(𝑡⋆, 𝑏⋆(𝑡⋆)) = 0,26

which yields the result. �27

Illustration28

In order to illustrate the proposition, we consider a linear initial velocity in the form (4.15) and a linear29

source term in the form (4.16). We set30

𝑏⋆(𝑡) =
ℎ + 𝑏0𝑡2

1 + 𝑡2
, (4.44)31

which is decreasing from the height ℎ of the domain to the initial position 𝑏0 of the static/flowing interface.32

Thus it satisfies (4.35). By Proposition 4.11, the velocity profiles are determined as follows. For all 𝑡 ∈ [0, 𝑡⋆],33

𝑢(𝑡, 𝑍) = (1 + 𝑡)(𝑍 − 𝑏0)− (ℎ− 𝑏0) arctan 𝑡 for all 𝑍 ∈ [𝑏(𝑡), ℎ],34

𝑏(𝑡) = 𝑏0 + (ℎ− 𝑏0)
arctan 𝑡

1 + 𝑡
, (4.45)35

36

and for all 𝑡 ∈ [𝑡⋆, 𝑇 ], 𝑏(𝑡) = 𝑏⋆(𝑡) and37

𝑢(𝑡, 𝑍) = (𝑍 − 𝑏0)

(︃
𝑡−

√︂
ℎ− 𝑍

𝑍 − 𝑏0

)︃
− (ℎ− 𝑏0)

(︃
arctan 𝑡− arctan

√︂
ℎ− 𝑍

𝑍 − 𝑏0

)︃
for all 𝑍 ∈ [𝑏(𝑡), 𝑏⋆(𝑡⋆)],38

𝑢(𝑡, 𝑍) = (1 + 𝑡)(𝑍 − 𝑏0)− (ℎ− 𝑏0) arctan 𝑡 for all 𝑍 ∈ [𝑏⋆(𝑡⋆), ℎ]. (4.46)39
40
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Figure 8. Illustration of the behaviour of the solution (𝑢, 𝑏) in the case of decreasing zero 𝑏⋆ of
the source and 𝑏0 < 𝑏⋆(0). The source and initial velocity are linear, given by (4.16) and (4.15),
with ℎ = 6, 𝑏0 = 3.5, 𝑏⋆ given by (4.44) (thus 𝑏⋆(0) = ℎ). We have 𝑡⋆ ≃ 1.23 and 𝑏⋆(𝑡⋆) ≃ 4.5.
Left: velocity profiles 𝑢 at times 𝑡 = 0, 𝑡 = 2, 𝑡 = 4, 𝑡 = 6 (the velocity 𝑢(𝑡, 𝑍) is extended by
0 for 0 < 𝑍 < 𝑏(𝑡)). Right: position 𝑏(𝑡) of the static/flowing interface with respect to time,
together with the zero 𝑏⋆(𝑡) of the source.

As in Section 4.3, for 𝑡 ≥ 𝑡⋆ we encounter nonlinear velocity profiles in [𝑏(𝑡), 𝑏⋆(𝑡⋆)] and linear velocity profiles1

in [𝑏⋆(𝑡⋆), ℎ]. The configuration is illustrated in Figure 8.2

4.5. Increasing zero 𝑏⋆(𝑡) and 𝑏0 > 𝑏⋆(0)3

We present here a case where the static/flowing interface position 𝑏(𝑡) is initially discontinuous with respect4

to time. We assume that the zero 𝑏⋆(𝑡) of the source term is increasing, starting from an initial value lower than5

the initial position of the static/flowing interface. This configuration allows us to model a sudden starting of a6

part of the initially static material, as well as a progressive stopping of the flow.7

We consider a source term 𝑆 with a unique zero 𝑏⋆(𝑡) (i.e. (4.6)) that satisfies8

𝑏⋆(𝑡) is increasing, (4.47a)9

𝑏0 > 𝑏⋆(0). (4.47b)10
11

We recall that according to Lemma 4.1, we are looking for an interface position 𝑏 that satisfies12

𝑏(𝑡) ≤ 𝑏⋆(𝑡) for all 𝑡 ∈ (0, 𝑇 ]. (4.48)13

Together with (4.47b) and since 𝑏⋆ is continuous, this condition implies that 𝑏(𝑡) cannot tend to 𝑏0 as 𝑡 → 0+,14

so that we have 𝑏(0+) ≡ lim𝑡→0+ 𝑏(𝑡) ≤ 𝑏⋆(0) < 𝑏0. We are going to take the minimal possible jump. Thus we15

consider an interface position 𝑏 that satisfies16

𝑏(0+) = 𝑏⋆(0). (4.49)17

For consistency with this configuration, the initial condition (4.3) has to be modified to18

𝑢(𝑡, 𝑍) −→
𝑡→0+

𝑢0(𝑍) for all 𝑍 ∈ (𝑏(0+), ℎ), (4.50)19

where the initial velocity 𝑢0, that was defined for 𝑍 ∈ [𝑏0, ℎ], is extended on [0, 𝑏0] by setting20

𝑢0(𝑍) = 0 for all 𝑍 ∈ [0, 𝑏0]. (4.51)21
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Figure 9. Position 𝑏 of the static/flowing interface with respect to time 𝑡, starting from
𝑏(0+) < 𝑏0. The domain where (4.1) holds is filled with oblique lines. The integration path for
computing the velocity is depicted with stars.

Lemma 4.12. Assume (3.2), (3.5), (3.7) and that 𝑢 solves (4.1), (4.50), (4.51) for some continuous nonde-1

creasing 𝑏(𝑡) satisfying 𝑏(0+) < 𝑏0. Then, for all 𝑡 ∈ [0, 𝑇 ] and for all 𝑍 ∈ [𝑏(𝑡), ℎ], one has2

𝑢(𝑡, 𝑍) = 𝑢0(𝑍)−
∫︁ 𝑡

0

𝑆(𝜏, 𝑍) d𝜏. (4.52)3

Proof. It is identical as that of Lemma 4.2. The domain of integration is presented in Figure 9. �4

Then we define again the extended velocity 𝑢̃ for 𝑍 ∈ [0, ℎ] by the formula (4.52).5

Lemma 4.13. Assume (3.2), (3.5), (3.7), (4.6), (4.47) and 𝜕𝑍𝑆 < 0. Then for all 𝑡 ∈ (0, 𝑇 ] there exists a6

unique 𝑏(𝑡) ∈ [𝑏⋆(0), ℎ] such that 𝑢̃(𝑡, 𝑏(𝑡)) = 0. Moreover,7

(1) 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ (0, 𝑇 ],8

(2) 𝑏(𝑡) is continuous, increasing, and 𝑏(0+) = 𝑏⋆(0).9

We skip the proof since it is almost identical to that of Lemma 4.3. Using Lemmas 4.12 and 4.13 we conclude10

the following proposition.11

Proposition 4.14. Assume (3.2), (3.5), (3.7), (4.6), (4.47) and 𝜕𝑍𝑆 < 0. Then there exists a unique solution12

(𝑢, 𝑏) to (4.1), (4.2), (4.50), (4.51), (4.4), (4.5), such that the position 𝑏(𝑡) of the static/flowing interface is13

nondecreasing, continuous and 𝑏(0+) = 𝑏⋆(0). Moreover, the velocity 𝑢 is given by (4.52) and the position 𝑏(𝑡)14

of the static/flowing interface is determined by the equation15

𝑢0(𝑏(𝑡)) =
∫︁ 𝑡

0

𝑆(𝜏, 𝑏(𝑡)) d𝜏, (4.53)16

and satisfies 𝑏(𝑡) < 𝑏⋆(𝑡) for all 𝑡 ∈ (0, 𝑇 ].17

Illustration18

We consider linear data of the form (4.15) and (4.16), with 𝑏⋆ continuous satisfying (4.47). The initial velocity19

is extended over [0, ℎ] by (4.51). We take20

𝑏⋆(𝑡) =
𝑏⋆(0) + ℎ𝑡2

1 + 𝑡2
, (4.54)21
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with 0 < 𝑏⋆(0) < 𝑏0. Then according to Proposition 4.14, there is a unique solution (𝑢, 𝑏) to our problem.1

We first determine the velocity for all 𝑡 ∈ [0, 𝑇 ] such that 𝑏(𝑡) ≥ 𝑏0. By (4.52), in this situation we have2

𝑢(𝑡, 𝑍) = −𝑏0 + (1 + 𝑡)𝑍 − ℎ𝑡 + (ℎ− 𝑏⋆(0)) arctan 𝑡 for all 𝑍 ∈ [𝑏(𝑡), ℎ]. (4.55)3

By writing the zero of this expression, we get4

𝑏(𝑡) =
𝑏0 + ℎ𝑡− (ℎ− 𝑏⋆(0)) arctan 𝑡

1 + 𝑡
· (4.56)5

This formula is valid if it satisfies 𝑏(𝑡) ≥ 𝑏0, which can be rewritten6

arctan 𝑡

𝑡
≤ ℎ− 𝑏0

ℎ− 𝑏⋆(0)
· (4.57)7

Then, for all 𝑡 ∈ (0, 𝑇 ] such that (4.57) is not satisfied (which corresponds to small times), we have to look8

for 𝑏(𝑡) such that 𝑏⋆(0) < 𝑏(𝑡) < 𝑏0. By Lemma 4.12, the velocity is then given by9

𝑢(𝑡, 𝑍) = −𝑏0 + (1 + 𝑡)𝑍 − ℎ𝑡 + (ℎ− 𝑏⋆(0)) arctan 𝑡 for all 𝑍 ∈ [𝑏0, ℎ], (4.58a)10

𝑢(𝑡, 𝑍) = 𝑍𝑡− ℎ𝑡 + (ℎ− 𝑏⋆(0)) arctan 𝑡 for all 𝑍 ∈ [𝑏(𝑡), 𝑏0]. (4.58b)11
12

We deduce the value of 𝑏(𝑡) by getting the zero of (4.58b),13

𝑏(𝑡) = ℎ− (ℎ− 𝑏⋆(0))
arctan 𝑡

𝑡
· (4.59)14

The velocity profiles are linear for all 𝑡 ∈ [0, 𝑇 ] such that 𝑏(𝑡) ≥ 𝑏0. They are piecewise linear for all 𝑡 such15

that 𝑏⋆(0) < 𝑏(𝑡) < 𝑏0. The velocity and interface position are presented in Figure 10. The position 𝑏(𝑡) of the16

static/flowing interface jumps from 𝑏0 to 𝑏⋆(0) instantaneously. We also notice that 𝑏(𝑡) increases to 𝑏⋆(𝑡). This17

illustrates the monitoring effect of 𝑏⋆ on 𝑏.18

5. Overview and outlook19

Starting from the non-averaged thin-layer asymptotic model of [15] describing flows of granular materials with20

static/flowing transition and viscoplastic rheology with Drucker–Prager yield stress, we have derived a simplified21

one-dimensional time-dependent model keeping the normal coordinate to the topography. The simplified model22

intrinsically describes the time evolution of the velocity profile with respect to the normal coordinate. It involves23

a source term that represents the opposite of the net force in the flowing layer, including gravity, pressure24

gradient, and internal friction. Given the source term, the simplified model gives at the same time the evolution25

of the velocity profile in the flowing layer and that of the position of the static/flowing interface. We have26

proved several properties of consistency of the simplified model. We have also performed an analytical study of27

the inviscid case for a source term variable in time and space. In this inviscid context, we have derived explicit28

solutions in various situations, showing the ability of the simplified model to represent different types of interface29

dynamics. In particular, we have shown that the shape of the source term, especially its zero 𝑏⋆(𝑡) in space and30

its time dependence, is a key factor in determining the evolution of the interface. This zero divides the material31

layer into an upper sublayer (𝑏⋆(𝑡), ℎ) where the net force is driving and a lower sublayer (0, 𝑏⋆(𝑡)) where the net32

force is resistive. We have exhibited different dynamics of the flow, from starting to arrest, including progressive33

starting, progressive stopping and a sudden start. All of these behaviours represent relevant situations for real34

flows, although further studies are needed to compare the results with real data.35

Our study indicates well-posedness of the reduced model described in Section 3, even if the initial Drucker-36

Prager model is ill-posed. One could hope then that when modifying the initial model to a well-posed one, the37

dynamics of the interface could be close to the one that we describe here.38
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Figure 10. Illustration of the behaviour of the solution (𝑢, 𝑏) in the case of increasing zero 𝑏⋆ of
the source and 𝑏0 > 𝑏⋆(0). The source and initial velocity are linear, given by (4.16) and (4.15),
with ℎ = 6, 𝑏0 = 3.5, 𝑏⋆(0) = 1, 𝑏⋆ given by (4.54). The switching time for which 𝑏(𝑡) = 𝑏0

is 𝑡 ≃ 2.33. Left: velocity profiles 𝑢 at times 𝑡 = 0, 𝑡 = 0.5, 𝑡 = 2, 𝑡 = 4, 𝑡 = 6 (the velocity
𝑢(𝑡, 𝑍) is extended by 0 for 0 < 𝑍 < 𝑏(𝑡)). Right: position 𝑏(𝑡) of the static/flowing interface
with respect to time, together with the zero 𝑏⋆(𝑡) of the source.

The various behaviours can be summed up as follows. First, we assumed that the zero 𝑏⋆(𝑡) of the source1

was nondecreasing with respect to time, and additionally that the initial data satisfies 𝑏0 < 𝑏⋆(0). In this2

configuration, the position 𝑏(𝑡) of the static/flowing interface increases until reaching the zero 𝑏⋆(𝑡). Physically,3

this means that the static part of the flow thickens until reaching 𝑏⋆(𝑡). If 𝑏⋆(𝑡) remains smaller than the height4

ℎ of the material layer, this prevents the flow from reaching a complete stop. On the contrary, if 𝑏⋆(𝑡) reaches5

ℎ, then the flow progressively reaches a complete stop. Such a situation could reflect the behaviour of flows6

over thick erodible beds confined in a channel, which are created by a constant flow rate upslope [20, 30, 47].7

Indeed, in that case, steady uniform flows develop with a given flowing thickness above a static layer and a8

given free surface slope that depends on the imposed flow rate. Due to wall effects, the source term 𝑆 should9

depend on 𝑍 and should have a zero that may change with time due to changes in the free surface gradient.10

The static/flowing interface position in the resulting steady uniform flow should stabilize at the position of the11

zero of 𝑆 after a transition phase that possibly resembles the evolution described above.12

In a second configuration, we assumed that 𝑏⋆(𝑡) was decreasing, and additionally that the initial data satisfies13

𝑏0 = 𝑏⋆(0). In this case, the position of the static/flowing interface 𝑏(𝑡) follows 𝑏⋆(𝑡), i.e. 𝑏(𝑡) = 𝑏⋆(𝑡) for all14

times, and the velocity profiles have both a nonlinear and a linear part. As 𝑏⋆(𝑡) decreases, 𝑏(𝑡) also decreases.15

Therefore, the fluid part of the flow thickens. If the zero 𝑏⋆(𝑡) of the source term tends to 0, then the position16

𝑏(𝑡) of the static/flowing interface tends to 0 as well, meaning that the whole material layer flows. Therefore, if17

𝑏⋆(0) = ℎ, this models a flow that starts progressively before fully flowing.18

Next, we considered a decreasing zero 𝑏⋆(𝑡) as previously, but with initial data satisfying 𝑏0 < 𝑏⋆(0). In19

this configuration, the position 𝑏(𝑡) of the static/flowing interface starts to increase (with 𝑏(𝑡) < 𝑏⋆(𝑡)) until20

reaching the zero 𝑏⋆(𝑡) at some time 𝑡⋆. Then we are in the situation of the previous case and, for larger times,21

𝑏(𝑡) remains equal to 𝑏⋆(𝑡). This models a progressive thickening of the static part, followed by a progressing22

thinning. Therefore, in this configuration, we obtain a change in the sign of the variation of the position of the23

static/flowing interface.24

Finally, we assumed that the zero 𝑏⋆(𝑡) of the source term was increasing, with the initial data satisfying25

𝑏0 > 𝑏⋆(0). In this case, 𝑏(𝑡) jumps instantaneously to the value 𝑏⋆(0), i.e. 𝑏(0+) = 𝑏⋆(0), and then 𝑏(𝑡) increases26
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with 𝑏(𝑡) < 𝑏⋆(𝑡). This special case involves a static/flowing interface position which is initially discontinuous1

with respect to time. It models a sudden starting of a part of the granular mass. This behaviour may reflect2

what can happen when a granular avalanche in a channel flows over an initially static layer, as in the granular3

collapse experiments of [23, 38]. In that case, due to wall effects, 𝑆 possibly changes sign along the 𝑍-axis and4

the zero of 𝑆 could possibly change in time due to changes in the free surface gradient. We indeed observe a5

relatively rapid starting of part of the initially static grains of the erodible bed that may be due, under certain6

conditions, to the scenario described above. The starting of the granular mass initially at rest is however more7

progressive in the experiments, possibly because of viscous effects (e.g. see Figure 16 of [35]).8

All of the above configurations lead to the following two important conclusions. First, the zero 𝑏⋆(𝑡) of the9

source plays the role of a barrier, since as stated in Lemma 4.1, we must have 𝑏(𝑡) ≤ 𝑏⋆(𝑡). Thus it can prevent10

the flow from reaching a complete stop. Second, the interface position 𝑏(𝑡) always “tries to follow” the zero11

𝑏⋆(𝑡). If 𝑏⋆(𝑡) increases, then 𝑏(𝑡) also increases, while remaining lower than 𝑏⋆(𝑡), and 𝑏(𝑡) can reach 𝑏⋆(𝑡) in12

large time. If 𝑏⋆(𝑡) decreases, then at some time 𝑡⋆, we have 𝑏(𝑡⋆) = 𝑏⋆(𝑡⋆) and then 𝑏(𝑡) = 𝑏⋆(𝑡) for all times13

𝑡 ≥ 𝑡⋆.14

These dynamical properties of the static/flowing interface should be interpreted more generally in the context15

of the coupling of the source term with the velocity dependence in the down-slope coordinate, as derived in16

the full thin-layer asymptotic model of [15]. This coupling with (2.14) needs to be done, at least numerically.17

Introducing wall effects in the model would make it possible to gain deeper insight into the static/flowing18

interface dynamics for flows confined in a channel, as is the case in most laboratory experiments. In particular,19

this could help us better understand the transition to steady uniform flows on heaps or erosion processes of20

granular flows over initially static beds. This will be the object of forthcoming studies. Note that [35] presents21

a numerical study of the simplified model in the viscous case with a constant source term and a comparison22

with laboratory experiments.23
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