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Understanding the mechanisms behind the remote triggering of landslides by seismic
waves at micro-strain amplitude is essential for quantifying seismic hazards. Granular
materials provide a relevant model system to investigate landslides within the unjamming
transition framework, from solid to liquid states. Furthermore, recent laboratory
experiments have revealed that ultrasound-induced granular avalanches can be related to a
reduction in the interparticle friction through shear acoustic lubrication of the contacts.
However, investigating slip at the scale of grain contacts within an optically opaque
granular medium remains a challenging issue. Here, we propose an original coupling
model and numerically investigate two-dimensional dense granular flows triggered by
basal acoustic waves. We model the triggering dynamics at two separated time scales –
one for grain motion (milliseconds) and the other for ultrasound (10 μs) – relying on the
computation of vibrational modes with a discrete element method through the reduction
of the local friction. We show that ultrasound predominantly propagates through the
strong-force chains, while the ultrasound-induced decrease of interparticle friction occurs
in the weak contact forces perpendicular to the strong-force chains. This interparticle
friction reduction initiates local rearrangements at the grain scale that eventually lead to
a continuous flow through a percolation process at the macroscopic scale – with a delay
depending on the proximity to the failure. Consistent with experiments, we show that
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ultrasound-induced flow appears more uniform in space than pure gravity-driven flow,
indicating the role of an effective temperature by ultrasonic vibration.

Key words: dry granular material, waves in random media, computational methods

1. Introduction

The shear instability in a granular medium is involved in many natural hazards such
as seismic fault slips and landslides. One of the important and challenging issues in
seismic hazard investigation is to understand how small-amplitude seismic waves (of the
order of micro-strain) generated by an earthquake can remotely trigger other earthquakes
hundreds of kilometres from the source (Hill et al. 1993; Gomberg et al. 2001). Also, recent
observations showed that perturbations from local foreshock activity are probably a part
of the earthquake nucleation process (Bouchon et al. 2013) and that large rockfall events
and avalanches can be triggered by volcanic seismicity (Keefer 2002; Durand et al. 2018).
Dynamic stress from seismic waves can destabilize granular solids and force failure earlier
in time relative to an unperturbed fault or slope. Indeed, static and dynamic properties of
dense granular media are determined by inhomogeneous contact force networks, exhibiting
multiple metastable configurations. Sound waves propagating from grain to grain provide
not only a unique probe of such optically opaque networks (Liu & Nagel 1992; Jia, Caroli
& Velicky 1999) but also a controlled perturbation via vibration-induced softening and
dissipation (Johnson & Jia 2005; Jia, Brunet & Laurent 2011). Granular media undergo
a transition from a jammed solid state to a flowing liquid state when the external shear
exceeds the static yield stress (figure 1a,b).

Previous works denoted this transition as a bifurcation phenomenon (Jaeger et al.
1990; Quartier et al. 2000; Baldassarri et al. 2006; Dijksman et al. 2011), similar to
solid friction at multicontact interfaces (Baumberger & Caroli 2006) described by the
rate and state friction law (Marone 1998; Scholz 2019). Here, the friction coefficient is
defined as μ = τ/σn, as the ratio of the shear stress normalized by the normal stress from
which the static and dynamic coefficients of friction μs,d = τs,d/σn follow, where τs is
the static friction stress at yield while τd is the dynamic friction stress. In the inclined
plane geometry considered in this paper (figure 1a), we have μ = tan θ and μs = tan θm,

with θm the (maximum) angle of the avalanche. The angle of repose θr being a few
per cent lower than θm (Pouliquen & Renaut 1996; Daerr & Douady 1999; Coussot et al.
2002; Wyart 2009) corresponds to the dynamic friction μd = tan θr at the minimum
shear load (figure 1b). It has been shown (Nasuno, Kudrolli & Gollub 1997; Bureau,
Baumberger & Caroli 2001; Parteli, Gomes & Brito 2005; Baumberger & Caroli 2006)
that for shear forces far below the static threshold μ � μs, both granular layers and
rough solid interfaces respond elastically as shown in figure 1(b), in the jammed state
(region I). For μ � μs, a shear lower than the threshold, a nonlinear response occurs with
creep-like irreversible motion. For μ � μs, the system yields and starts to slide or flow
over a transient characteristic distance (Marone 1998; Baumberger & Caroli 2006; Scholz
2019) before reaching the steady flow region II/III at a velocity V or shear rate γ̇ imposed
by the load.

The possible failure of a granular medium, such as a sand pile, caused by external
vibrations, has been known for a long time in engineering and geophysical applications;
however, a unified physical description is still lacking. The vibrations considered are
most of the time of large amplitude U0 � d with d the grain size and low frequency
f < f0, where f0 is a characteristic frequency determined by the stiffness of interfacial
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Figure 1. (a) Two-dimensional schematic illustration of granular flows triggered by small-amplitude ultrasonic
or seismic vibration (indicated by double arrows) where the granular layer of thickness H is deposited on a slope
at angle θ below the maximum angle of stability θm. The inertial flow triggered by ultrasonic vibration is mostly
uniform and continuous. (b) Sketch of the normalized stress–strain rate relation in a sheared granular medium:
static state (V = 0), unstable flow (velocity weakening) and stable flow (velocity strengthening). Under a shear
μ between μs and μd , the metastable state can be switched abruptly to a flowing state by acoustic perturbation
(lubrication).

contacts (Bureau et al. 2001). The amount of shaking is usually estimated by the reduced
peak acceleration of the grain Γ = a/g with a the instantaneous acceleration and g the
gravity. When Γ > 1, vertical vibrations cancel almost normal forces exerting on the
grain (confined under gravity) and modify consequently the spatial arrangement of the
grains, resulting in phenomena such as compaction, convection, shear banding, to mention
a few (Jaeger, Liu & Nagel 1989; Clement & Rajchenbach 1991; D’Anna et al. 2003).
This is similar to the oscillation effect on the normal stress facilitating sliding (Zaloj,
Urbakh & Klafter 1999; Cochard, Bureau & Baumberger 2003) and also to the scenario
of the acoustic lubrication in a confined continuous medium. In this scenario, the acoustic
pressure pa = (ρc)va, with c the sound speed and va the vibration velocity, is expected
to temporally relieve the pressure of the overburden, thereby decreasing the yield stress
(Melosh 1996).

The above scenarios, however, involving large-amplitude vibrations, cannot explain the
dynamic earthquake triggering by seismic waves at micro- and nano-strain amplitudes
(Gomberg et al. 2001; Scholz 2019), nor the laboratory experiments using nanometre
amplitude ultrasound to soften the material modulus by 30 % via nonlinear dynamics
(Johnson & Jia 2005; Jia et al. 2011). Also, some modifications of the stick-slip cycle
by ultrasound remain unexplained (Johnson et al. 2008). In these situations, the oscillation
frequency of ultrasound f ≥ 40 kHz is high compared with the characteristic frequency of
f0 � 5 kHz in millimetre-thick granular layers (Bureau et al. 2001; Baumberger & Caroli
2006) so that grains cannot have enough inertial normal motion to suppress the weight of
the overburden. On the other hand, for a nanometre ultrasonic vibration, the collision-like
pressure estimated as pc � 10−4 Pa � σn (� 10 Pa) is too small to be considered.

Recently, it was evidenced by lab experiments (Leópoldès et al. 2020) that the
triggering of granular instabilities by small-amplitude (U0/d � 10−5) and high-frequency
( f = 70 kHz) ultrasound waves can be explained by acoustic shear lubrication of grain
contacts. This interparticle friction reduction consequently lowers the effective friction
coefficient on the macroscopic scale and triggers the granular flow at an inclined angle
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below θm (figure 1b) without causing the rearrangement of grain positions. However,
it remains unclear how such local effects could give rise to collective motion and also
their possible delay of response (Durand et al. 2018). In particular, the micro processes of
triggering remain poorly understood, as small-amplitude ultrasound does not induce grain
displacement per se at the relevant length scale (i.e. grain diameter d) during avalanches.

In this paper we address these questions by presenting numerical simulations of the
onset of flows of a granular layer initially static on an inclined plane, triggered by
ultrasound applied from the basal plane. To do so, we propose an original coupling
model, relying on a time-scale separation, with one time scale representing the grain-scale
dynamics (called the grain-motion time scale) and the other representing the ultrasonic
vibration in the granular medium (called the vibration time scale). At the vibration
time scale, the granular packing (particles) is considered quasi-static. Therefore, our
methodology involves coupling a discrete element model (DEM) for grain flows with
a mass-spring model (network) for wave vibration. The latter is investigated in the
steady (harmonic) regime through vibrational (eigen) modes. Once the amplitudes
of the vibration field are computed, the acoustic lubrication effect on the (entire)
granular medium is taken into account through modifications of the interparticle friction
coefficients, according to the Mindlin model (Leópoldès et al. 2020). To our knowledge,
this is the first time such a coupling numerical methodology has been employed to study
the acoustic lubrication effect on the granular flow.

The advantages of this time-scale separation are twofold. Firstly, it simplifies (isolates)
the simulation of acoustic propagation through a ‘frozen’ (or a snapshot of) granular
network at a given flowing instance. Here the interparticle friction coefficients may be
modified solely by the irreversible ultrasound-matter interaction (Johnson & Jia 2005; Jia
et al. 2011; Leópoldès et al. 2020) and are not affected by particle collisions or other
phenomena occurring at the grain-motion time scale. Additionally, this approach offers
high computational efficiency since we can use relatively large time steps (�tg = 1 ms
at the grain-motion time scale) without losing the ultrasound-induced effects, thereby
allowing for the consideration of large assemblies of grains that can be compared with
experimental data in laboratory settings (see typical times of simulations in Martin et al.
(2023a)). The computational time efficiency is discussed in § 2.4. The model utilized at
the grain-motion time scale is the convex optimization contact dynamics (COCD) discrete
element method, which has been proposed and validated in Martin et al. (2023a), and
compared with other granular models in Martin et al. (2023b).

The numerical method is presented at various time scales in § 2. Section 3 contains all
the results we obtain, both with and without destabilization due to basal vibrations. In § 4
we then discuss the physical interparticle mechanisms responsible for the destabilization
we have identified, the changes that occur when we alter the vibration parameters and
compare our results with experiments.

2. Numerical models for granular flows and ultrasonic vibrations

To model the acoustic triggering of granular flows induced by basal ultrasounds at the
laboratory scale, our strategy is to take into account the vibration-induced change of the
interparticle friction coefficient μp. This is done by considering the very different time
scales of grain motion and ultrasounds, respectively. We then consider a grain-motion
time scale that is of the order of small grain motions and a vibration time scale.

Concerning the grain-motion time scale, for a granular flow on a slope, the horizontal
velocity scale is given by U = √

gH cos θ , where g is the gravitational constant, H is
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the thickness of the granular mass and θ is the slope angle. In our configuration, H lies
between 3d and 14.4d, where d is the mean diameter of the grains (0.7 mm), resulting
in 0.002 ≤ H ≤ 0.011 m, and thus, 0.14 � U � 0.32 m s−1. We use a time scale where
a grain moving at velocity U covers its own radius, i.e. L = 0.35 mm. This time scale
is then given by T = L/U, and it falls within the range of approximately 10−3 � T �
2.5 × 10−3 s. We adopt the smallest value as the common time scale for all our grain
displacement simulations, i.e. the grain-motion time scale is �tg = 1 ms.

Regarding the vibration time scale, experimental measurements of the speed of sound
in a granular assembly at rest and maintained by a low confined stress (for instance, by
gravity) have been made where small but finite values of sound speed c = 10–100 m s−1

were measured (Liu & Nagel 1992; Bonneau, Andreotti & Clément 2008; van den
Wildenberg, van Hecke & Jia 2013; Brum et al. 2019). These values are much larger than
the sound speed predicted by the effective medium theory based on the simplified normal
contact force (i.e. the Hertz model), c � p1/6 in a granular pack loaded by a hydrostatic
pressure p = ρgh. This would give rise to c � 0.1 m s−1 for h = 5–10 mm. Such a
discrepancy may stem from the interlocking effect (i.e. arching) due to frictional contact
(tangential) forces and heterogeneous anisotropic stress networks (i.e. force chains), which
depend on the sample configuration and loading history (memory effect) as well as the
confining boundary (Jaeger et al. 1990). As shown in Khidas & Jia (2010) and Johnson
et al. (1998), elastic wave velocities (longitudinal and transversal) do remain finite in a
compacted granular packing after the removal of the applied stress, likely due to the tight
wedging or interlocking of grains that result in a residual stress network. Using again the
mean grain radius as a characteristic distance, we get a time scale approximately from
T = L/c, i.e. T � 12 μs, estimated with c = 30 m s−1 (Leópoldès et al. 2020). Hence,
we adopt this value as the time scale for sound propagation �tw = 10 μs. Note that it is
smaller than the grain displacement time scale by a factor of 100, justifying our approach
that separates these two-time scales.

Consequently, at the vibration time scale �tw, the granular assembly can be considered
as frozen. We thus consider two different models at these two different time scales.
At the grain-motion time scale �tg, grain motion is described based on the discrete
element method COCD (Martin et al. 2023a), which represents the macroscopic motion
of each particle in a granular assembly. Then, at the vibration time scale, the vibration
model computes the infinitesimal perturbations of each grain position, around an
equilibrium configuration provided by the grain-motion model. We first briefly introduce
the grain-motion model COCD developed by Martin et al. (2023a) (§ 2.1). Then we present
the the wave equation and the vibration model (§ 2.2), and finally describe the Mindlin
model (§ 2.3) that deals with the vibration-induced reduction of interparticle friction
coefficients. We close this modelling section by briefly presenting the computational time
efficiency (§ 2.4).

2.1. Grain-motion model COCD
In our grain-motion model COCD, the granular media is represented by a collection of
rigid particles (see figure 1a) like glass spheres (Martin et al. 2023a). The equations of
motion are solved for each particle at every time step to determine their respective contact
forces. These interactions are traditionally described using the Hertz theory, utilizing
nonlinear damped springs as commonly seen in the molecular dynamics (MD) framework
(see Cundall’s pioneering work in Cundall & Strack (1979)). However, in this paper
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we adopt an alternative method called contact dynamics (CD), originally introduced by
Moreau and Jean in the 1990s (Moreau 1988; Jean & Moreau 1992; Moreau 1994, 1999;
Jean 1999; Moreau 2004). In contrast to MD, where contact forces are modelled using
functions derived from the Hertz theory, CD employs linear impulses. These impulses
adhere to contact laws governing both normal repulsion and tangential friction.

Numerous numerical techniques have been put forth for CD models (Staron & Hinch
2005; Anitescu 2006; Maury 2006; Tasora, Negrut & Anitescu 2008; Radjai & Richefeu
2009; Acary et al. 2011; Seguin et al. 2016; Bloch & Lefebvre-Lepot 2023; Martin et al.
2023a). Close to the framework of the SCoPI Software (2022), in COCD’s approach,
particle velocities and positions are computed simultaneously through an implicit scheme,
necessitating the solution of a convex minimization problem during each time integration
step.

Within the CD framework, two contact laws are validated at each contact and time step.
The first law establishes a complementarity problem between the normal distance and the
intensity of the normal contact force. This implies that grains cannot overlap or engage in
interaction unless they are in contact, and the force between any two grains is inherently
repulsive. In mathematical terms, this relationship is represented as

f ij
n ≥ 0, Dij ≥ 0, f ij

n Dij = 0, (2.1a–c)

where i and j denote two particles, Dij is their normal distance and f ij
n represents the

intensity of the normal force between them (see figure 2a,b). The second validated contact
law pertains to the Coulomb friction law (figure 2a,c), encompassing both the tangential
and normal components of the contact force belonging to Coulomb’s cone, expressed as

f ij
t = −μijf ij

n v
ij
t /‖vij

t ‖, if‖vij
t ‖ > 0,

‖ f ij
t ‖ ≤ μijf ij

n , if ‖vij
t ‖ = 0,

}
(2.2)

where ‖·‖ denotes the Euclidean norm, μij is the interparticle friction coefficient (μp),
f ij

t ∈ R
3 denotes the tangential force vector and v

ij
t ∈ R

3 is the tangential relative velocity
vector between the two spheres i and j. To be as general as possible, we subsequently
introduce the equations of motion in three dimensions despite the fact that the simulations
that are presented in this paper are in two dimensions.

Consider a mechanical system in R
3, consisting of N rigid spheres capable of rotation,

each with specified fixed radii ri > 0 and masses mi > 0, i = 1, . . . , N. The centre of the
sphere i is represented by ci ∈ R

3 and its instantaneous velocity by vi ∈ R
3. As we are

exclusively dealing with spheres, we do not track the orientation of bodies; instead, we
focus solely on the instantaneous rotation vector, denoted as ωi ∈ R

3. We denote by

c = (c1, . . . , cN) ∈ R
3N and u = (v1, ω1, . . . , vN, ωN) ∈ R

6N (2.3a,b)

the generalized position and velocity field vectors.
The signed distance between spheres i and j is defined by

Dij(c) = ‖ci − cj‖ − (ri + rj), (2.4)

so that the non-overlapping condition writes Dij ≥ 0.
For any pair of grains i and j, with respective centres represented by ci and cj, we use C i

and C j to indicate the points that establish the distance (with C i = C j when the spheres
are in contact; refer to figure 2d). We define the corresponding position vectors as ri =
C i − ci, rj = C j − cj.
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Figure 2. Two-dimensional schematic depiction of the two contact laws. (a) Representation of a three-disk
situation: disks 1 and 2 are not in contact, while disks 2 and 3 are. Here Dij, (1 ≤ i < j ≤ 3) indicates the
normal distance between disks i and j, f ij

n is the normal force’s intensity at the contact, n2,3 (respectively t2,3) is
the unit normal (respectively tangential) vector at the contact between disks 2 and 3, f t

2,3 denotes the tangential
force vector and vt

2,3 is the tangential relative velocity vector between disks 2 and 3. (b) Graph representing
the normal law. (c) Graph depicting the Coulomb friction law. Here x · y denotes the dot product of vectors x
and y. (d) Notations in three dimensions.

We define the direction perpendicular to the surfaces of the particles at points C i and
C j, a direction common to both particles. We introduce the unit vector nij ∈ R

3, which is
defined as the corresponding normal vector pointing towards particle i. Given that we are
dealing with spherical particles, we have

nij = ci − cj

‖ci − cj‖ . (2.5)

We denote by P ijv = v − (v · nij)nij ∈ R
3 the projection of v on Πij, the plane that is

orthogonal to nij and, thus, parallel to the tangent planes in C i and C j.
We also define Aij from R

6N to R
3 as the linear operator that maps the generalized

velocity field u ∈ R
6N to the relative velocity between the points C i and C j at which the

distance between spheres i and j is attained, i.e.

Aiju = vi + ωi ∧ ri − (vj + ωj ∧ rj) ∈ R
3. (2.6)

Direct calculations demonstrate that, for any generalized velocity u ∈ R
6N and any vector

f ∈ R
3, we obtain Aiju · f = u · AT

ij f with

AT
ij f = (0, . . . , 0, f , ri ∧ f︸ ︷︷ ︸

position i

, 0, . . . , 0, −f , −rj ∧ f︸ ︷︷ ︸
position j

, 0, . . . , 0) ∈ R
6N, (2.7)

so that AT
ij maps a vector f ∈ R

3 to the generalized force/moment vector corresponding to
the force f exerted on particle i at point C i and the opposite force − f exerted on particle
j at point C j.

The vector P ijAiju = v
ij
t ∈ R

3 represents the tangential relative velocity. Consequently,
when two spheres are in contact without any relative normal motion (i.e. nij · Aiju = 0),
the expression ‖P ijAiju‖ = 0 indicates a rolling motion with no slip, while ‖P ijAiju‖ > 0
corresponds to a sliding motion.

At any time, we shall denote by Ic the set of all possible pairs of contacts:
Ic = {(i, j) 1 ≤ i < j ≤ N}. Note that the pair of grains i and j is represented only once
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in Ic through the couple (i, j) if i < j and ( j, i) if j < i. We denote by Nc the total number
of potential pairs of spheres, which is also the cardinal of set Ic, i.e. Nc = card(Ic) =
N(N − 1)/2.

We consider that no external torque is exerted on the grains. If f ext
i ∈ R

3 is the
external force exerted on particle i, we define the generalized force vector as f ext =
( f ext

1 , 0, . . . , f ext
n , 0) ∈ R

6N . We then define the 6N × 6N generalized mass matrix
(masses and moments of inertia) as

M = diag(m1, m1, m1, J1, J1, J1, m2, . . . , JN, JN, JN). (2.8)

Finally, the equations of motion write

M
du
dt

= f ext +
∑
α∈Ic

AT
α( f α

n nα + f α
t ), (2.9)

f α
n ≥ 0, Dα ≥ 0, f α

n Dα = 0, α ∈ Ic, (2.10)

if Dα(c) = 0 then (Aαu+) · nα = 0, α ∈ Ic, (2.11)

if ‖PαAαu+‖ > 0 (sliding motion), f α
t = −μαf α

n
PαAαu+

‖PαAαu+‖ , α ∈ Ic, (2.12)

if ‖PαAαu+‖ = 0 (no slip), ‖ f α
t ‖ ≤ μαf α

n , α ∈ Ic. (2.13)

Equation (2.11) is added to the normal (2.10) and tangential contact laws (2.12)–(2.13).
It specifies an inelastic collision law (the coefficient of restitution is zero). Observe
that translational and rotational velocities are prone to being non-smooth, experiencing
instantaneous jumps during collisions. Specifically, the post-collision velocity u+ may
differ from the pre-collision velocity u−. Consequently, the mentioned evolution is to be
interpreted in a weak, distributional sense.

Let us provide some additional remarks on the preceding equations. For a pair of grains
α = (i, j) ∈ Ic, where Ic denotes the set of contacts, the corresponding vector f ij

n nij + f ij
t ∈

R
3 is transmitted to both particles i and j through the transpose of Aij. To elaborate, let us

introduce the following definitions:

f ji
n = f ij

n , f ji
t = −f ij

t , ∀ α = (i, j) ∈ Ic. (2.14a,b)

Then, utilizing the expression for AT
ij , (2.9) can be reformulated as follows:

miv̇i = f ext
i +

∑
j,j /= i

( f ij
n nij + f ij

t ), ∀ i = 1 · · · N,

Jiω̇i =
∑

j,j /= i

(ri ∧ f ij
t ), ∀ i = 1 · · · N.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.15)

This corresponds to Newton’s second law, where the contact between particles i and j
induces the force f ij

n nij + f ij
t on particle i. The reciprocity of this contact’s action on both

particles is evident from the definitions of f ji
n and f ji

t , derived from f ij
n and f ij

t . The normal
force exerted on sphere i due to this contact is f ij

n nij, and f ij
t ∈ Πij represents the frictional

(tangential) force, which lies in the plane orthogonal to nij.
From (2.10), we deduce f ij

n = f α
n ≥ 0. This, combined with the orientation of nij from

particle j to particle i, ensures that this force is repulsive, as anticipated. Equation (2.10)
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Ultrasound-induced granular flows: a two-time scale model

also guarantees that the distances between the particles remain positive, and the normal
force is null whenever the distance is strictly positive (i.e. the particles are not in contact).

The mechanical characteristics of such granular media arise from a synergy of
geometrical particle rearrangements and interparticle friction forces. To be precise, the
macroscopic static friction coefficient μs = tan(θm) – with θm the (maximum) angle of
the avalanche – can be understood as a composite of the interparticle friction coefficient
μp and the geometric confinement effect (dilatancy) μg (Leópoldès et al. 2020). The
coefficient μg is influenced by factors such as grain shapes, masses or inertia, while μp
serves as a defined parameter within the model, integral to the classical Coulomb law of
friction for all grain-to-grain or grain-to-wall interactions.

The value of μp employed in this paper is μp = 0.25. This choice falls
within a comparable range to the friction coefficient μp = 0.3, calibrated through
three-dimensional simulations and experiments (Martin et al. 2023a,b), and
the friction coefficient measured for an ideal glass-to-glass contact, μp = 0.4 (The
Engineering ToolBox 2022), as well as that determined using DEM, μp = 0.16 (Tang
et al. 2019).

2.2. Wave equation and vibrational modes

2.2.1. Wave equation
At the wave propagation or vibration time scale, the grains motions may be supposed
quasi-static or frozen. As mentioned above, however, the quantitative description of sound
propagation in such weakly confined amorphous-like granular media is not available
(Makse et al. 2004). To capture qualitatively the interaction between ultrasounds and the
granular flow (see § 2.3), we model the vibration of grains, for a first approximation, as in
a two-dimensional network of mass spring (mimicking a normal contact stiffness). Here
the tangential force and rotational motion are neglected, i.e. the particles are considered
as frictionless. Neglecting the disturbances propagating through tangential forces is a
working hypothesis that could potentially underestimate quantitatively the effective shear
modulus and wave velocity due to the cancellation of tangential contact stiffness (Makse
et al. 2004) and neglect the frictional dissipation during the wave propagation (Brunet, Jia
& Mills 2008). However, such an assumption should not affect the qualitative behaviour of
the wave vibration in granular networks (Leibig 1994; Harazi et al. 2017), and our results
show that considering only the normal forces already produces qualitatively satisfactory
results (see § 3). Nevertheless, the friction forces are accounted for in the grain-motion
model COCD and for investigating the lubrication effect at grain contacts induced by
shear acoustic waves (see § 2.3). The sound propagation is characterized by the perturbed
positions of the centres of the masses ci ∈ R

3; see e.g. a similar model proposed in Somfai
et al. (2005). Thanks to an expansion around an assumed equilibrium configuration, we
establish a wave equation for infinitesimal perturbations from this equilibrium position.
The full description of the equations derivation can be found in Appendix A.

Similarly to the operator P ijAij and since we do not account for rotational motion, we
define N ij as the linear operator from R

3N to R that maps the generalized grain velocity
vector of translation ū = (v1, v2, . . . , vN) ∈ R

3N to the relative normal velocity between
the spheres i and j (grains), projected on the line generated by the normal vector nij, i.e.

N ijū = (vi − vj) · nij ∈ R. (2.16)
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Straightforward computations show that for any generalized velocity ū ∈ R
3N and any

scalar fn ∈ R, we have fnN ijū = ū · NT
ij fn with

NT
ij fn = (0, . . . , 0, fnnij︸︷︷︸

position i

, 0, . . . , 0, −fnnij︸ ︷︷ ︸
position j

, 0, . . . , 0) ∈ R
3N, (2.17)

so that NT
ij maps a scalar fn ∈ R to the generalized force vector corresponding to the force

fnnij exerted on particle i at point ci and the opposite force −fnnij exerted on particle j at
point cj.

We then define the linear operator N from R
3N into R

Nc corresponding
to the combination of all maps Nα , α ∈ Ic, i.e. for any v ∈ R

3N , we have
Nv = (N1,2v, N1,3v, . . . , NN−1,Nv) ∈ R

Nc and, for any f ∈ R
Nc , we have the equality

Nv · f = v · NT f .
We now define the Nc × Nc diagonal square matrix K , which contains the elastic

properties of the system:

K = 3
2 diag((κ1,2)

2/3( f 1,2
n )1/3, . . . , (κij)

2/3( f ij
n )1/3,

. . . , (κN−1,N)2/3( f N−1,N
n )1/3) ∈ R

Nc×Nc . (2.18)

Here f ij
n still represents the intensity of the normal force between particles i and j and where

κij > 0 is a constant depending on grains properties; see Appendix A.1.
We finally define the 3N × 3N generalized mass matrix (masses only) as

M̄ = diag(m1, m1, m1, m2, m2, m2 . . . , mN, mN, mN). (2.19)

At the end, a wave equation is defined for any e ∈ R
3N by

M̄
d2e

dt2
+ Λe = 0, (2.20)

where the linear map defined by the matrix

Λ = NTKN ∈ R
3N×3N (2.21)

can be seen as a kind of discrete Laplace operator, and where ε indicates that e is only an
infinitesimal perturbation of configuration c.

The operator Λ depends on the contact network through operator N , formed by the
generalized position vector at equilibrium c and embeds the elastic properties of the
granular assembly, characterized by the constant normal force intensities exerted between
any particles i and j, i.e. f ij

n ≥ 0 for 1 ≤ i < j ≤ n. These normal force intensities f ij
n are

provided by the grain-motion model resolving the normal, tangential and collision laws
(see § 2.1 and Maury 2006; Martin et al. 2023a) and they are not modified by the vibrations
at the vibration time scale.

In the classical form of the wave equation (∂2
t u − c2�u = 0), the square of the sound

speed (constant) c2 is before the Laplace operator Δ. In our framework (2.20), the (local)
sound speeds are then proportional to ((κij)

2/3( f ij
n )1/3/mi)

1/2 so to the 1/6th power of
the normal forces f ij

n , computed at the grain-motion time scale, i.e. c ∝ ( f ij
n )1/6 (see

discussions above and in Appendix A.1).
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2.2.2. Vibration model
We now present the vibration model that describes the asymptotic limit of the ultrasound
vibrations (perturbations) induced in a quasi-static (frozen) granular packing. The
generalized position vector of a grain at equilibrium, denoted c ∈ R

3N , is excited at a
mono-frequency by an external vibration applied from the basal plane. More precisely, the
grains in contact with the bottom are submitted to a sinusoidal motion, at a given frequency
f = ω/2π and amplitude U0.

At this vibration time scale, we seek for the vibrational (eigen) modes of the granular
assembly, along the lines of Leibig (1994) and Somfai et al. (2005), and consider the
asymptotic limit regime (i.e. steady harmonic vibrations) of the perturbed positions of all
grains at the forced external vibration frequency f . Accordingly, the solution to the wave
equation (2.20) e ∈ R

3N is separable, and can be written as e(t) = U0 exp(iωt)q, where
q ∈ R

3N is a constant vector that does not depend on time and is a solution for the vibration
model – or the Helmoltz equation (Somfai et al. 2005; Couto 2013). This equation writes

(ω213N + Λ)q = 0 ∈ R
3N, (2.22)

associated to the Dirichlet kind of boundary condition

qiy = 1, ∀ i ∈ J , (2.23)

where J ⊂ N is the set of grain indexes in contact with the bottom, qiy ∈ R is the vertical
component of the vector q and 13N is the 3N × 3N identity matrix. Note that since the basal
boundary condition is set only on the spheres vertical component, the particles belonging
to J are free to move on the horizontal plane.

The square matrix Λ is positive semi-definite and the vibrational (eigen) modes of the
entire granular mass are directly given by its eigenvalues. Consequently, (2.22) is ill-posed
when ω2 is one of its eigenvalues, which may generate resonance effects. Nevertheless,
except in these situations, one has the existence and the uniqueness of the solution given
by e. Figure 3 shows the histogram of the system normal (eigen) modes computed for a
plane slope θ = 14◦ and a layer height H/d = 14.4 at t = 1.2 s of simulated flow time –
a typical set of parameters used for our simulations presented in § 3. In order to mimic
the sound speed c � 10 m s−1 (and associated effective contact stiffness) observed in the
experiments mentioned above, we have adjusted empirically the contact coefficients κij (as
a kind of fit parameter) in our simplified Hertz model (see Appendix A.1).

Note that the anomalous density of vibrational modes in granular media has been
observed in low-frequency ranges due to soft modes at unjamming transition (loses
rigidity) (Wyart 2005; Xu et al. 2009; Vitelli 2010). However, the vibration model
used here is too heuristic to account for the possible longitudinal and transversal mode
conversion in the frictional packing (only the normal contact stiffness is considered).
We seek to overcome this limit in the future and to more precisely infer the stress fields at
a given instant (at the time scale of flow) from the DEM modelling.

2.3. Interparticle friction reduction through acoustic lubrication
Let us outline here the coupling between the grain-motion model COCD (see § 2.1) and
the vibration model (2.22)–(2.23), and the role played by the acoustic lubrication given
by the Mindlin model. More precisely, the purpose of the vibration model associated to
the Mindlin model is to compute a new coefficient of friction for each contact, which
embedded the vibrational perturbations into the dynamics that occurs at the grain-motion
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Figure 3. Histogram of the vibrational (i.e. eigen) modes of the quasi-static system considered at the vibration
time scale, computed for a plane slope θ = 14◦, flow height H/d = 14.4 at t = 1.2 s. There are about 32 000
modes presented in this figure.

time scale. We consider that we are in the framework described in § 2.2.2, where a
mono-frequency sinusoidal vibration is imposed on the basal grains of a pile. In the
following, we consider a temporal discretization of the grain-motion model; refer to Martin
et al. (2023a) for the full description of the numerical scheme that is used for computing
a numerical solution to COCD.

The coupling algorithm that we present in this paper consists in running one iteration
of the numerical scheme used to compute the solution of the grain-motion model with a
typical time step �tg = 1 ms, providing the current generalized position vector c ∈ R

3N

and a set of the normal force intensities f ij
n , 1 ≤ i < j ≤ N. We then compute the solution

q ∈ R
3N to the vibration model. From the basal frequency f and infinitesimal amplitudes

U0, the Mindlin model gives us new values of the interparticle friction coefficients μij
that are used in Coulomb’s law of the next iteration of the grain-motion model; see
(2.12)–(2.13). In the following, we describe more precisely the way the friction coefficients
are modified.

When the vibration model is solved, the vector U0q ∈ R
3N corresponds to the

ultrasound-induced perturbations applied on the generalized position vector c ∈ R
3N

at each contact for the basal amplitude U0 and frequency f . From there, the normal
(respectively tangential) infinitesimal displacements at contact are given by U0N ijq ∈ R

3N

(respectively U0P ijq ∈ R
3N with P ij introduced in § 2.1). The question now arises of how

to account for the infinitesimal perturbations of grains onto their macroscopic motion.
The observations made in Leópoldès et al. (2020) show that the ultrasounds lead to
modifying the static friction coefficient at the contact. That is why we choose to model
the feedback of the acoustic waves on the grains motion through the modification of the
interparticle friction coefficient μp, which is involved only in the tangential contact law
(μij in Coulomb’s law) at the grain-motion time scale. Without the vibrations, we consider,
for the sake of simplicity, the same static friction coefficient for every contact. Note that
having different values of μp does not change the method.

More precisely, the static friction coefficient μs includes both the interparticle friction
μp and the geometric trapping μg (dilatancy effect). Because of the small amplitude
of ultrasound, we assume that the sound-matter interaction only modifies μp but not
μg; hence, the new vibration-induced static friction coefficient μ�

s results from the
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Figure 4. Illustration of the vibration-induced perturbations of the interparticle friction coefficients.

modification of μ�
p /=μp, only. It means that due to ultrasound propagation, the static

friction coefficient μij changes depending on perturbation amplitudes between grains.
We then denote the vibration-induced interparticle static friction coefficient μ�

ij. From
the Mindlin model (see Léopoldès, Conrad & Jia 2013), we consider that the decreased
rate of the interparticle friction coefficient �μ�

p/μp is approximately proportional to the
ratio of the microscopic oscillating tangential force to the static normal force intensities
times the coefficient of friction (this product being actually the bound of the tangential
force f ij

t ; see (2.12)–(2.13)), i.e. �μ�
p/μp ∝ −δf ij

t /(μpf ij
n ), where δf ij

t is the microscopic
oscillating tangential force intensities. Accordingly, we adopt here this scaling formula
for the granular layer to describe the acoustic lubrication of the interparticle friction
coefficient

μ�
ij

μp
= 1 − Cμ

δf ij
t

μpf ij
n

, (2.24)

where Cμ ≥ 0.
The remaining task is then to compute an estimation of ultrasound-induced oscillating

tangential force intensities δf ij
t . We approximate these intensities through a linear elastic

law, meaning that they are computed thanks to the microscopic tangential grains
displacements, i.e. δf ij

t = kij
t Uij

t , with kij
t the shear contact stiffness and Uij

t the tangential
displacement between the particles i and j given by Uij

t = U0‖P ijq‖. Concerning the
shear stiffness kij

t , we assume it verifies equation kij
t /kij

n = 2/7, which is a classical
value used in DEMs (Lemrich et al. 2017). Finally, the normal stiffness kij

n is given by
the system elasticity embedded in matrix Λ, i.e. kij

n = (3/2)(κij)
2/3( f ij

n )1/3 (see § 2.2.1).
We can deduce the final form of μ�

ij as being μ�
ij/μp = 1 − (3U0(κij)

2/3)/(7μp( f ij
n )2/3)

‖P ijq‖. As a result, we then deduce a new set of interparticle friction coefficients that are
provided to the grain-motion model before computing a new iteration (figure 4).

The Mindlin model provides a proportionality law linking the decrease in friction
coefficients to the oscillating shear contact forces (see (2.24)). Under pure static normal
loading, Cμ = 1, making the decrease proportional to the coefficient κij in Hertzian
theory (see Appendix A.1). However, as pointed out in previous work (Leópoldès et al.
2020), contact stiffness, governed solely by confining pressure (via Hertzian theory),
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H/d N t0int t70
int (t70

int − t0int)/t70
int

3 8000 1.24 s 2.44 s 49 %
6 13 319 2.32 s 4.03 s 42 %
8.7 20 142 5.21 s 7.91 s 34 %
11.4 24 000 10.29 s 14.46 s 29 %
14.4 32 000 13.04 s 17.50 s 26 %

Table 1. Statistics on computational time. Here H/d gives the normalized thickness of the granular layer, N is
the number of grains, t0int and t70

int are the average computational times required to complete one time integration
– a simulated time of �tg – without ( f = 0 kHz) and with vibrations ( f = 70 kHz). The last column is the
computational time (in percentage) spent for the calculation of vibrations and the reduction of the interparticle
friction coefficients during one time integration. The MOSEK’s tolerance parameter is set at the default value
(10−8, see details in Martin et al. (2023a)). The simulations were performed on one Intel® CoreTM i7-1065G7
CPU @ 1.30 GHz × 8.

is underestimated for disordered frictional grain packings. This is due to residual and
heterogeneous stress fields caused by interlocking or frictional arching effects between
grains and with boundary walls, which also affect the effective elastic modulus and wave
velocity (Khidas & Jia 2010). To address such a discrepancy observed at the sample
scale (i.e. mean-field approximation), we may empirically increase the contact stiffness
by rescaling the coefficient κij – used as a fit parameter in our heuristic vibration model –
by a factor of 100 (Leópoldès et al. 2020). This adjustment results in a Mindlin equation
value of Cμ = 1002/3 (an equivalent fit parameter). In a model that does not neglect the
disturbances propagating through tangential forces, as is the case here (by hypothesis), the
disturbances induced by the vibrations would be less underestimated and, consequently,
the coefficient Cμ would likely be lower.

2.4. Computational time efficiency
At each time integration, the numerical scheme used to compute a numerical approximated
solution to the grain-motion model requires solving a convex optimization problem.
Additionally, the calculation of vibrational (eigen) modes and the modified friction
coefficients are incorporated at each iteration. We utilize the Mosek APS (2010) solver
to address the optimization problem – see details in Martin et al. (2023a) – and for
computing vibrational modes. Consequently, MOSEK is called twice an iteration. Note
that thanks to our two-time scale approach, we do not need to reduce the time step
of the numerical method (i.e. �tg) when integrating the influence of vibrations in
our simulations. We maintain the same time step in cases with or without ultrasound.
Computing the modes and new friction coefficients extends the total duration of each
time integration. Table 1 provides some statistics on the computational times required for
performing our simulations presented in § 3. In particular, we observe that the proportion
of time spent on modes and coefficients calculation decreases as the number of grains
N increases (see the last column). For example, considering the vibrations increase the
computation time of one iteration by 49 % for N = 8000 grains, whereas it only increases
by 26 % for 32 000 grains. This result is promising because it shows that our method of
time-scale separation allows us to account for the rheological modification of the flow by
ultrasound with a reasonable additional computation time, especially as the number of
grains is large.
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Figure 5. Full domain simulated. The dashed rectangle represents the observation domain of figures 6 and 9.

3. Results

We now investigate the transition of the granular flow from the jammed solid state induced
either by increasing shear or by basal ultrasound vibrations. The simulations presented in
this section were all conducted in two dimensions, while we introduced the equations of the
coupled model in three dimensions in § 2. Therefore, the two-dimensional static granular
medium consists of layers of spherical grains (diameter d) of various mean thicknesses
(from H = 3d to 14.4d) put on an inclined plane at a slope θ . The initial state is constructed
by uniformly raining grains across the entire domain. Grains whose vertical position
exceeds the required height are removed from the simulation. The plane is then abruptly
inclined at 13◦, and the state is allowed to relax so that no further grain rearrangements
occur. We then begin the experiment by further inclining the plane. A layer of grains is
stuck to the basal plane to form a rough bottom surface. These grains are thus tied to the
movements of the plane, particularly its vertical vibrations. The grains interact with each
other via a friction coefficient on the tangent plane at the contact point, a non-overlapping
normal law and an inelastic collision law (the coefficient of restitution is zero; see § 2.1).
The value of the friction coefficient employed in our simulations is μp = 0.25 (see the last
paragraph of § 2.1 for more details). Moving grains do not interact directly with the basal
plane but do so in the same manner as with any other grain interacting with the grains
glued to the basal plane. The lengths of the samples are much larger than the thicknesses
with a free-stress boundary condition at both edges (figure 5). To observe the onset of
grain motion, we focus on a specific observation domain, located at the middle of the full
domain from 0.0 to 0.4 m (see the dashed rectangle in figure 5).

During a simulation, the slope of the basal plane is incrementally inclined (with a
step �θ = 0.5◦ between two consecutive slopes) for increasing shear. At each new slope,
small amounts of grains may rearrange in the granular layer, increasing the kinetic energy
Ek of the system and the energy ratio Ek/Et, with Et the total energy. The necessary
condition to reach a new stable equilibrium (state) when the slope is increased from θ

to θ + �θ is that this energy ratio satisfies the condition Ek/Et < εE, during a simulated
time of 0.1 s (equivalent to 100 iterations, since the grain-motion time step is �tg = 1 ms).
We used the value εE = 3 × 10−8, which has been empirically determined during pretests.
This delay of 0.1 s is chosen empirically and it does not preclude the possibility of new
rearrangements occurring after 0.15 s. Nevertheless, it corresponds to 100 iterations at the
grain-motion time step. In other words, the model calculates 100 iterations during which
the kinetic energy is negligible compared with the total energy of the mass. Generally, this
static period occurs after a phase in which grain rearrangements take place, sometimes
lasting several tenths of a second in simulated time. When a portion of the mass detaches
(and then Ek/Et � εE), we check whether it is only a local rearrangement, e.g. as seen in
figure 6(a) around x = 0.3 m at t = 0.2 s (which keeps moving slightly at 0.4 s but arrest
flow at 0.6 s), or it leads to a generalized flow in space (figure 6c). In cases where the
detachment (rearrangement) arrests on its own (i.e. Ek/Et < εE during 0.01 s), we continue
the simulation by increasing the slope until there is a continuous flow. More specifically,
in the case where grain motions triggered the ultrasound spread throughout the domain
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Figure 6. Granular assembly without basal vibrations ( f = 0 kHz) at θ = 16◦ (a,b) and 17◦ (c,d) for H =
14.4d. (a,c) A sequence of seven snapshots showing the evolution of a granular flow over time, ranging from
t = 0 to 1.2 s. The colour scale represents the magnitude of the grain velocity. The observation domain covers
a distance of 0.4 m and corresponds to the dashed rectangle in figure 5. (b,d) Variation, over the same time
period, of the normalized standard deviation σl of the grains’ downslope velocity with respect to the average
downslope velocity of the flow within two different layers decomposing the flow depth.

(Ek/Et remains greater than εE), we simulate the flow for about 1.2 s without changing the
slope.

During the simulated time, the flow depth is considered to be split into two layers of
equal depth (index 1 refers to the top surface layer and index 2 to the bottom layer). For
each layer, we compute the normalized standard deviation σl, with l = 1, 2 of the grains’
velocity relative to the average velocity (figure 6b,d), i.e.

σl = 1
vxl

√√√√ 1
Nl

Nl∑
i=1

(vix − vxl)
2, (3.1)

where Nl ∈ N is the number of particles belonging to the layer l in the observation domain
(figure 5), vix is the downslope velocity component of disk i and vxl is the mean downslope
velocity of layer l, i.e. vxl = (1/Nl)

∑Nl
i=1 vix. If both σl values converge to their limit

such that these limits are below their associated given criterion εσl , l = 1, 2 (determined
empirically), then the flow is considered as uniform (continuous flow) and we determine
the angle as the avalanche angle and denote it by θm (see e.g. figure 6(d) at t = 0.8 s).
We then assume the steady regime of inertial flow is reached when the two σl values are
roughly lower than 0.3 for the top layer (εσ1 = 0.3, vertical dashed line) and 0.9 for the
bottom layer (εσ2 = 0.9, vertical plain line). Once the avalanche angle θm is reached, other
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simulations are conducted for increasing angles larger than θm, up to 22◦, starting each time
from the final configuration of the largest angle where the layer remains static (i.e. θm −
�θ ). The criteria for the quantities σl are not universal and are determined empirically to
be functional within our simulation framework. Nevertheless, they have the advantage of
being relatively easy to compute and effectively discriminate here continuous flows from
metastable ones.

The coupled model presented here takes into account the wave transmission through
force chains generated by the basal vibration. It does not consider acoustic emissions
resulting from interparticle collisions and rearrangements generated by the grain motion
itself (Ferdowsi et al. 2013; Johnson et al. 2013; Canel et al. 2024). However, our
simulations reproduce well the experimental observations of acoustic triggering of
granular instability such as avalanche or by the incoming coherent wave vibrations that
capture the main mechanism of dynamic triggering via the acoustic fluidization (Melosh
1996; Johnson & Jia 2005). During the onset of flow driven by gravity (increasing the
slope angle), grain motions are relatively slow (creep-like) and interparticle collisions are
of low intensity (see § 4.2 for more discussions about non-local rheologies). Therefore,
these resulting mechanical noises (acoustic emissions) of an incoherent nature (random
and intermittent) and of low frequency (Nerone et al. 2003; Gibiat, Plazza & De Guibert
2008; Delannay, Duranteau & Tournat 2015) are not expected to interfere constructively
and create a dominant high-intensity pumping source.

We start by considering the case where the flow is solely induced by gravity-driven
shear, i.e. by the inclination of the plane (§ 3.1), that is, without any vibration of the basal
plane. Secondly, we present the effect of triggering and the dynamics generated by the
dual effect of the slope inclination and basal vibration (§ 3.2).

3.1. Flow onset induced by gravity-driven shear: delay time to homogeneous flow
Figure 6(a–d) depicts grain motion in the zoomed regions for H = 14.4d, at inclination
angles close below (16◦) and equal to the avalanche angle θm (17◦). When the inertial flow
is initiated, a delay time is clearly observed before all grains are in motion (downslope
flow) initiated from the low edge (on the right) (figure 6a,c). Comparing the grains’
velocity norm at θ = 16◦ and 17◦ at t = 1.2 s, we observe that the moving part of the
domain (the low edge in figure 6(a) and the full domain in figure 6c) is intuitively 40 %
slower at 16◦ than at 17◦. Additionally, figure 6(c) shows that in the first moments, the flow
is initiated not only from the low edge but also in the middle of the domain; see e.g. the
motion started by the collection of particles centred at x = 0.28 m and 0.2 s and the motion
initiated from the high edge (on the left) at 0.4 s (figure 6c). At 0.8 s, these two moving
assembly of particles have merged (or percolated; see § 4.2), finally forming a continuous
flowing mass. The normalized standard deviations σl of the grain velocity at the top (blue)
and the bottom (red) layers, respectively, are shown in figure 6(b,d). These simulations
illustrate that the avalanche angle is well around θm = 17◦. Indeed, at 0.8 s, the σl values
drop below the two criteria (figure 6d). Conversely, it is clear that at 16◦ the normalized
standard deviations σl are far above the criteria for continuous flows (figure 6b).

Even when the whole flow reaches a high level of uniformity (both curves representing
σl drop below the criteria), the flow uniformity in the top layer is larger than in the bottom
layer, as the blue curve consistently remains below the red curve in figure 6(d). This
behaviour is consistently observed in all our simulations whatever the layer thickness and
is consistent with the laboratory experiments of Bachelet et al. (2023), showing larger
velocity fluctuations at the base of the flow.
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Figure 7. Phase space separating jammed and continuous regimes as a function of the avalanche angle θm and
the flow thickness ratio H/d. Each point represents the avalanche angle for the five thickness ratios H/d = 3,
6, 8.7, 11.4 and 14.4. The blue curves represent these avalanche angles without basal vibrations ( f = 0 kHz),
contrary to the orange ones ( f = 70 kHz).

Figure 7 highlights the avalanche angles for different thicknesses in the configuration
where motion is solely generated by the inclination of the plane, i.e. without any basal
vibrations. These angles represent the transition from a state where the granular mass is at
rest (jammed solid state) to a continuous flow (for inclinations greater than the avalanche
angle), sometimes passing from a metastable state where only a portion of the flow is
slowly moving. In these simulations where flows are induced by gravity, metastable states
correspond to a detachment of the front and the propagation of an erosion wave from the
downstream to the upstream of the domain (see the example provided in figure 6a). They
occur when the inclination angle is very close to that of the flow (within 0.5◦ or 1◦). The
boundary between the two limit states is depicted by the blue curve (and the dashed area)
in a phase space composed, on the x axis, of the inclination of the basal plane and, on the
y axis, of the average thickness of the granular mass in the initial state.

The shape of this blue curve (monotonic and decreasing) is similar to those reported
in the literature (Daerr & Douady 1999; Pouliquen & Forterre 2002; Mangeney et al.
2010) showing that as the initial thickness increases, the avalanche angle decreases. The
grey area represents the graph zone where the results strongly depend on the boundary
conditions because the thickness of the granular layer is very thin (like H = 3d). Note
that we do not study the effect of vibrations on the stopping angle θstop(H/d) in this paper
since we focus on the initiation of the flow (unjamming transition) rather than on the arrest
(jamming transition). Nevertheless, it has been shown both experimentally (Jaeger et al.
1989) and theoretically (Leópoldès et al. 2020) that the angle of repose also decreases in
the presence of vibrations. However, the difference between θstop and θstart would also
be reduced, i.e. with mitigating hysteresis, due to the acoustic lubrication effect. This
phenomenon has been observed in similar stick-slip instability in granular media in the
presence of vibration (Lastakowski, Géminard & Vidal 2015).

From angles greater than the avalanche angle θm, we measure the time tcon it takes
for σl in the top and bottom layers to satisfy the criteria characterizing continuous flow.
These times are represented in figure 8 for the three heights H = 6d, 11.4d and 14.4d.
The times tcon (without basal vibrations) represented by the blue curves are all decreasing.
As expected, the larger the slope angle is, the shorter is the time required for the grains to
reach a continuous flow.
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Figure 8. Delay time of avalanche triggering by gravity or (and) ultrasound vibration as a function of the slope
angle for different thickness ratios H/d = 6, 11.4 and 14.4. The blue curves correspond to the measured times
for flows without vibrations ( f = 0 kHz), in contrast to the orange curves ( f = 70 kHz). The stars indicate
the maximum angles of stability corresponding to the avalanche angles θm (sometimes θstart in the literature)
measured for different thicknesses in figure 7, whereas the filled squares point to the inclined angles for which
the flow has been initiated.

It is worth noting that the triggering duration decreases with the slope angle, but it
seems to converge to a limit beyond a certain slope angle. This asymptotic behaviour
is expected because, once the triggering angle is exceeded, the time tcon decreases as
the angle increases, converging towards zero (or towards a value close to zero). This is
reflected in figure 8 where the curves become almost horizontal for large angles. For
example, for H = 14.4d, if the flow becomes continuous 0.5 s earlier by increasing the
slope angle from 17◦ to 18◦, it only becomes continuous 0.02 s earlier by increasing the
slope angle from 21◦ to 22◦. Finally, one might have expected a clear relationship between
the inclination angle θ and the time tcon with the thickness of the granular layer H, but this
is not what we observe here. In fact, while the thickness H = 6d has a slower triggering
time than the other two at 20◦, indicating that the thinner thickness is slower, this is not
the case at 17◦, where the triggering for the largest thickness H = 14.4d is faster than that
for 11.4d.

3.2. Flow onset induced by vibration: transition to continuous flows via percolation
In this section we investigate the triggering of granular flows in the presence of basal
vibrations at a frequency of 70 kHz. As described before, this triggering is modelled by
coupling the COCD model (§ 2.1) with the steady vibration model (§ 2.2.2), through the
modification of interparticle friction coefficients μp, which are altered by the vibrations
using the Mindlin model (§ 2.3). More specifically, we observe how this basal vibration
affects the results obtained without basal vibrations. Note that the basal vibration
frequency f = 70 kHz is relatively high for a system with normal modes ranging from
1–75 kHz, as shown in figure 3. We discuss this choice in § 4.3.

Figure 9(a,b) presents the same types of results as figure 6(a,b), decomposed into
simulation snapshots and curves representing the temporal evolution of the σl values in
the top and bottom layers, still for a thickness of H = 14.4d. The difference here is that
the basal vibration is on. Thus, at θ = 16◦, and contrary to the case without vibrations
presented in figure 6(a,b), it is observed that a flow of the granular layer is triggered and
converges towards a continuous flow after approximately t = 0.25 s (figure 9a). There is
therefore a notable difference since only a part of the layer was flowing after 1.2 s in the
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Figure 9. Granular assembly with basal vibrations ( f = 70 kHz) at θ = 16◦ (a,b) and 13◦ (c,d) for H = 14.4d.
(a,c) A sequence of seven snapshots showing the evolution of a granular flow over time, ranging from t = 0
to 1.2 s. The colour scale represents the magnitude of the grain velocity. The observation domain covers a
distance of 0.4 m and corresponds to the dashed rectangle in figure 5. (b,d) Variation, over the same time
period, of the normalized standard deviation σ of the grains’ downslope velocity with respect to the average
downslope velocity of the flow within two different layers decomposing the flow depth.

case without vibrations (figure 6a,b). As a result, the avalanche angle θm is clearly lower
in the case of basal vibrations compared with the case without. Similarly to the 17◦ angle
without vibrations (figure 6c,d), the ‘top’ layer is more uniform than the ‘bottom’ layer,
as indicated by the blue curve being significantly below the red curve (figure 9b). Unlike
in the case without basal vibrations, we do not observe the initiation of flow occurring
primarily at the front of the layer (low edge on the right in figure 6c). The mobilization of
the granular layer is observed to be more uniform in the presence of vibrations. Another
way to understand this is that the distinct triggering zones, which remain isolated for a
considerable duration with vibrations off, percolate much faster with vibrations on (see
§ 4).

The decrease of avalanche angles due to vibration is observed in all simulations
whatever the thickness and slope inclination, as shown in figure 7. Indeed, the orange
curve, like the blue curve, is decreasing, but the important result here is that each of the
avalanche angles in the orange curve (with vibrations) is lower than those in the blue
curve by approximately 2◦. The only notable singularity is the avalanche angle for the thin
thickness H = 3d, which is only 14.5◦, which is 5.5◦ smaller than in the case without basal
vibrations. Such a difference can be explained by the dominance of boundary conditions
as discussed in § 4.

Let us now investigate what happens at smaller angles, e.g. at 13◦ but still for the
thickness H = 14.4d (figure 9c,d). In the case of flows with vibrations, we no longer
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observe metastable states where an erosion wave propagates. However, we do observe
regimes in which grains continually rearrange themselves without actually triggering a
flow. The simulation presented in figure 9(c) is typical of these jammed states with
rearrangement under vibrations. Indeed, we observe that rearrangements are active,
even at t = 1.2 s (some areas are light blue on the surface after 1.2 s). However, these
rearrangements remain local and are not sufficient to trigger a flow that would develop
into a continuous flow. This is confirmed by the values of σl, which both remain well
above the criteria characterizing a continuous flow (figure 9d).

When the avalanche angle is exceeded, the effect of basal vibrations is to decrease the
triggering time, as shown in figure 8. Indeed, for the same layer thickness, the triggering
times represented by the orange curves are consistently lower than the triggering times
without vibrations, i.e. the blue curves in figure 8. For example, for a thickness of
H = 6d and an angle θ = 19◦, the triggering time decreases by approximately 74 % (from
tcon = 1.15 s without vibrations to only 0.3 s with vibrations). Similarly to the case without
vibrations, the triggering times appear to converge to a limit but for much smaller angles
(for H = 11.4d and 14.4d, the triggering times with vibrations are roughly the same at 18◦
as those at 22◦ without vibrations). Note that, once again, there is no clear influence of
thickness on the triggering time.

4. Discussion

4.1. Force chains, ultrasound-induced deformation and lubricated contacts
In the previous § 3.2 we quantified how much basal ultrasonic vibrations reduce the
avalanche angle and triggering time. We focus here on the interparticle mechanisms
responsible for these effects, namely, the vibration-induced lubrication that is accounted
for in our simulation by weakening of interparticle friction coefficients, as described by
the Mindlin model (§ 2.3).

Figure 10 shows the grain configuration, at two consecutive times in the simulation
t = 0.051 s and 0.052 s (the numerical time step is �tg = 1 ms) for a slope angle θ = 15◦,
a layer thickness H = 14.4d and in a region between x = 0.497 and 0.505 m. The black
lines in figure 10(a,d) represent the force chains formed between the grains (their width
corresponds to normal force intensities f ij

n ; see § 2.1). The arrows shown in figure 10(b,e)
represent the deformation fields computed with the steady vibration model (the vector
q ∈ R

3N solution to (2.22)–(2.23)). Note that the layer of grains in contact with the bottom
has a unit displacement of 1, but for the sake of visibility of the deformation field, we
did not use the same scale in figures 10(b,e), 12(b) and 13(b,e,h,k). The force chains are
again depicted in figure 10(c, f ) but on a logarithmic scale (which explains the different
thicknesses compared with the linear scale in figure 10(a,d). The colours represent the rate
of change of interparticle friction coefficients, i.e. the quantity (μp − μ�

ij)/μp (see (2.24)).
Where the force chains are blue, the coefficients are slightly modified, while where they
are red, the coefficients are reduced to zero (thus, decreased by 100 %). In figure 10(b,e)
the predominance of arrow orientation around the rupture zone (characterized by colours
trending towards red in figure 10c, f ) indicates the direction in which perturbations induced
by vibrations propagate along the force chains. Figure 10 illustrates two destabilization
mechanisms of the granular layer revealed by our simulations.

The first mechanism, presented in figure 10(a–c), involves the transmission of
deformation induced by basal vibrations in a preferential direction (in this case, horizontal
around z = 0.005 m and between x = 0.496 and 0.501 m) through a relatively dominant
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Figure 10. (a,d) Snapshots of the contact force chains, (b,e) vibration-induced displacements and (c, f ) rate
of vibration-induced perturbation of the interparticle friction, for θ = 15◦, H/d = 14.4, f = 70 kHz. In (a,d)
the black lines represent the force chains formed between the grains on a linear scale (the coefficients f ij

n in
§ 2.2.2). In (b,e) the black arrows represent the computed vibration-induced displacement q in (2.22)–(2.23)
(but not at the same scale). In (c, f ) the lines between grains represent the force chains on a logarithmic scale,
and the colour map represents the rate of decrease in the interparticle friction coefficients, i.e. the quantity
(μp − μ�

ij)/μp (see (2.24)). Snapshot times are t = 0.051 s (a–c) and t = 0.052 s (d–f ).

(strong) force chain in the corresponding region (thicker force chain in this particular
region; see figure 10a). This transmission only slightly affects the interparticle friction
coefficients along this force chain (the horizontal force chain appears as dark blue in
figure 10c). On the contrary, the friction coefficients on contacts relatively perpendicular
to this main force chain significantly changed (bright colours for vertical force chains
surrounding the main force chain in figure 10c).

A second mechanism revealed by our simulations involves a kind of block
destabilization. This mechanism is presented in figure 10(d–f ). In this case, the
destabilization does not follow a preferred direction but occurs in multiple directions
(figure 10e), while remaining localized in a specific area of the granular layer (between
z = 0.002 and 0.006 m and x = 0.496 and 0.501 m in figure 10d). A few strong-force
chains are present in this area (figure 10d), but the friction coefficients are primarily
modified on the less dominant (weak) force chains within the disturbed zone (figure 10f ).
Note that the different response of weak- and strong-force chains when getting close to
instability was also observed in Deboeuf et al. (2005).

In our simulations we have noticed that the first mechanism (destabilization along a
preferred direction) can trigger the second mechanism, as seen here since the figures are
taken at consecutive times. However, this is not always the case. Sometimes, only the first
or the second mechanism occurs. We have not observed that the second mechanism can
trigger the first mechanism.
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(b)

(a)

t = 1.5 s, H/d = 14.4, θ = 13.0°, f = 70 kHz

t = 1.5 s, H/d = 14.4, θ = 13.5°, f = 70 kHz

t = 1.5 s, H/d = 14.4, θ = 14.0°, f = 70 kHz

(c)

Figure 11. The percolation transition is accelerated with the presence of basal ultrasound vibrations when
increasing the slope angle.

4.2. Nucleation time (delay) to reach continuous flows
When the basal plane is inclined, localized rearrangement zones appear both with and
without vibrations (figures 6a,c and 9a,c). Without vibrations, these zones can remain
isolated for a significant period if the slope is not too steep (figure 6a). However, beyond
the avalanche angle they can eventually merge (or ‘percolate’) and result in a relatively
continuous flow (figure 6c). In simulations with vibrations, in addition to this triggering
mechanism through inclination, there are also interparticle vibratory mechanisms that
trigger specific zones within the granular layer (figure 10). The difference with vibrations
is that the triggering zones are much more numerous and percolate much faster (figures 9a
and 8), leading to a quick homogenization of the flow (figure 9b) and resulting in lower
avalanche angles compared with cases without vibrations (figure 7). In our simulations,
this phenomenon of percolation transition is faster and more uniform with vibrations on,
and it increases with the slope, as shown in figure 11.

Several experimental (Nichol et al. 2010; Reddy, Forterre & Pouliquen 2011) and
theoretical investigations (Kamrin & Koval 2012; Bouzid et al. 2013) have revealed that
the relation between applied stress and observed strain rate in one location depends on the
strain rate in another location. These investigations suggest that the presence of a sheared
region somewhere in a dense granular medium modifies the rheological properties of the
sample everywhere (i.e. non-locality) as a function of distance and shear rate, etc, likely
through the mechanical noise (passive) induced by the continuous flow itself. This scenario
is indeed reminiscent of the acoustic triggering (active) of granular avalanches from the
basal vibration.

4.3. Basal vibration frequency and amplitude
The ultrasound basal vibration has quite a high frequency ( f = 70 kHz) when compared
with the system normal modes, which are mostly comprised between 5–45 kHz (figure 3).
In our simulations, the disturbance is more effective when the frequency is well centred
within the medium’s spectrum and the results presented are qualitatively similar at a lower
frequency. For example, the simulation we conducted with f = 30 kHz shows a more
significant and less localized disturbance of friction coefficients (figure 12). Figure 12
highlights that the fundamental disturbance was transmitted more effectively from the
bottom of the medium to the grains in the upper layers, and this was achieved more
efficiently than at the higher frequency of 70 kHz (figure 10).
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Figure 12. (a) Snapshots of the contact force chains, (b) vibration-induced displacements and (c) rate
of vibration-induced perturbation of the interparticle friction, for θ = 15◦, H/d = 14.4, f = 30 kHz, at
t = 0.072 s. (a) The black lines represent the force chains formed between the grains on a linear scale
(the coefficients f ij

n in § 2.2.2). (b) The black arrows represent the computed vibrational displacement q in
(2.22)–(2.23). (c) The lines between grains represent the force chains on a logarithmic scale, and the colour
map represents the rate of decrease in the interparticle friction coefficients, i.e. the quantity (μp − μ�

p)/μp (see
(2.24)). The basal vibration amplitude is the same as in figure 10, about U0/d = 10−5.

Regarding the choice of the amplitude of the basal vibration U0, we used the
same amplitude for all simulations, U0/d = 10−5, which is equivalent to a few tens
of nanometres. Figure 13 illustrates the effects of the ultrasonic vibrations on the
coefficients of friction for the same frequency, f = 70 kHz, but with amplitude U0 ranging
from U0/d = 10−3 to U0/d = 10−6. It can be observed that, even though the solution
of the steady problem remains similar in terms of the distribution of perturbations
(figure 13b,e,h,k), simulations conducted with larger amplitudes significantly alter the
friction coefficients, obviously more than those with smaller amplitudes (figure 13c, f,i,l).
Furthermore, the choice of amplitude made in this paper corresponds to an amplitude
so small that the perturbations, although non-zero, remain small and generally localized
(figure 13i).

By making these choices of frequency and amplitude of the ultrasound, we deliberately
positioned the numerical simulations in an amplitude–frequency regime that makes
disturbing the medium the most challenging, without inducing significant rearrangement
of grain positions. The high-frequency domain is less explored than that of low-frequency
vibrations, which are already well known for their significant triggering effects; see
e.g. Hanotin et al. (2012) and Lastakowski et al. (2015). Decreasing (respectively
increasing) the value of the basal vibration frequency (respectively amplitude) does not
qualitatively alter the results presented in this paper. The coupling of numerical models
we present in this paper is relevant in a frequency range from 5–80 kHz (figure 3) and with
amplitudes ranging from 10−6d to 10−2d. We have not conducted studies beyond this range
of parameters, but our model is likely to be less relevant in those cases since consideration
of grain displacement at very low frequencies and/or large amplitudes may be necessary;
see e.g. Bureau et al. (2001), Baumberger & Caroli (2006) and Hanotin et al. (2012).

4.4. Comparison with laboratory experiments: uniformity of granular flows
Finally, we investigate the uniformity of the granular flows, driven by gravity or triggered
by ultrasound, and compare the simulations with the experiments realized under similar
conditions. The objective of our comparison is to determine if the effects of vibrations
are similar in our simulations and in the experiments, in terms of the uniformity of flow
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Figure 13. (a,d,g, j) Snapshots of the contact force chains, (b,e,h,k) vibration-induced displacements
(normalized by the basal amplitude) and (c, f,i,l) rate of vibration-induced perturbation of the interparticle
friction, for θ = 15◦, H/d = 14.4, f = 70 kHz, and amplitudes U0/d = 10−n, for n = 3 · · · 6, at t = 0.018 s.

initiation. By examining the simulations and experiments at their respective avalanche
angles (without vibrations) at t = 0.15 s, we choose a sufficiently early time to observe
this uniformity before percolation from various rupture points occurs (with or without
waves). Note that the length of the domains in the experiments (6.5 cm) is much shorter
than that of our simulations (a little over 80 cm). Therefore, we focus on comparing the
experimental domain with the front of the simulation.
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Figure 14. Experimental velocity fields of granular flows (side view) in a dry packing during the first 0.15 s
interval: (a) driven by gravity at the avalanche angle θm = 24◦ ± 1◦. (b) Triggered by ultrasounds at θ =
22◦. (c) Simulation snapshot at the front for θm = 17◦, H/d = 14.4, f = 0 kHz, at t = 0.15 s. (d) Simulation
triggered by ultrasounds ( f = 70 kHz). The total domain length for the experiments is 65 mm.

The experimental set-up is composed of a 50 × 65 × 2.5 mm PMMA plate, encircled
by four 25 mm tall transparent PMMA walls, and the lower wall is removed once dry
ceramic beads (of diameter d = 425–600 μm) are poured into the box and the sample
surface is flattened to get a constant thickness (about z � 8d), so that the downstream
edge of the sample is free. The plate surface (bottom) is made rough by gluing a layer
of the same beads, and the box is fixed on the surface of an ultrasonic transducer with
a diameter of 65 mm and nominal frequency of 28 kHz. The whole set-up can be tilted
with a precision of 0.025◦, and the grain motions are monitored by two cameras, from
the top and through the transparent side wall (figure 14), respectively. Granular layers
considered here are more than two times larger than the previous ones (Leópoldès et al.
2020) in order to investigate the uniformity of flow. We actually monitor the motion of
grains located on the upstream part of the sample (to avoid the boundary effect associated
with the free downstream edge or erosion), as illustrated in figure 14 for x from 0 to 25 mm
(the sample has length x = 65 mm and width y = 50 mm). The vibration amplitude of the
ultrasonic transducer is about 0.1 μm, a bit larger than those in our previous work, while
the frequency is lower due to its larger diameter.

Figure 14(a) demonstrates how basal vibrations transition the triggering mechanism
from being predominantly at the front of the granular layer to being uniformly distributed
throughout the entire domain (figure 14b). Without vibrations, the velocities of grains
represented by the red arrows are mostly large towards the front and small towards the back
(figure 14a). Conversely, with vibrations on, the velocities are roughly the same magnitude
across the entire domain (figure 14b).

In addition, in our simulations, the front systematically starts moving when the
avalanche angle is exceeded (as illustrated in figure 14c, which shows the granular front,
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i.e. the right end of the mass in figure 5). Similarly, the experimental data also exhibit a
configuration of a granular mass flowing near the front (figure 14a). In both experiments
and simulations, we observe that vibration-triggered flows are more uniform (figure 14b,d)
than the ones induced by gravity only (figure 14a,c).

We thus believe that the additional triggering mechanisms associated with basal
vibrations, even if they are infinitesimal (ultrasounds in this paper and in the experiments),
are sufficient to uniformly destabilize the granular layer and, consequently, lead to a more
uniform destabilization, resulting in a reduction of the avalanche angle of the mass.

5. Conclusion

In summary, we have developed a two-time scale numerical simulation of wave-induced
friction weakening in two-dimensional granular layers. Indeed ultrasound vibrations
propagate with a time scale of the order of 10 μs while grain motion occurs at a time
scale of milliseconds. The triggering of granular flows is modelled by coupling the
COCD model (§ 2.1) with the steady vibration model (§ 2.2.2), through the modification of
interparticle friction coefficients μp, which are altered by the vibrations using the Mindlin
model (§ 2.3). This new two-time scale model has allowed us to investigate the nonlinear
interaction between ultrasound and granular flows, in particular the vibration-induced
reduction of the interparticle friction coefficient through the acoustic lubrication, without
the contact opening and rearrangements of grain positions.

As expected, we find that ultrasound vibration is predominantly supported by
the strong-force chains, but the vibration-induced decrease of friction occurs mainly
in the weak-force chains perpendicular to the strong contact forces, causing
eventually shear-transformation-zone-like regions at the mescoscopic scale. These local
rearrangements nucleate to create a continuous flow through a percolation process with
certain delay depending on the proximity to the failure, i.e. avalanche angles. The larger the
vibration amplitude (or lower excitation frequency) is, the stronger the ultrasound-induced
destabilization is. The difference in the behaviour of weak- and strong-force chains was
also observed in the response of a granular packing (without vibration) during successive
loading–unloading cycles close to the avalanche angle (Deboeuf et al. 2005).

Compared with gravity-driven flows, ultrasound-induced flows appear more spatially
homogeneous. This is consistent with the effective temperature role played by sound
vibration. The qualitative agreement between these simulations and experimental
observations of granular flows triggered by ultrasound supports our numerical modelling.
Although further improvement on the vibration model is still needed, this work helps to
highlight underlying mechanisms of landslide and earthquake triggering by seismicity; see
e.g. Durand et al. (2023).
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Appendix. Wave equation

The purpose of this section is to present the derivation of the wave equation introduced
by (2.20). We model the time evolution of an infinitesimal perturbation of a given
configuration c0 ∈ R

3N (the generalized position vector), supposed to be at rest. We first
introduce a few elements of the Hertz theory in § A.1. In § A.2 we describe the way the
resulting perturbation of the overlaps δij is handled and its implication on the set of contact
forces. Then, we show how this perturbation is related to the configuration itself in § A.3
and derive the wave equation in § A.4.

A.1. Embedding Hertz theory
In § 2.2.2 the normal force between two grains, i and j, is characterized, at the local scale,
by a positive scalar f ij

n > 0. The Hertz theory of contact provides a useful framework to
model an elastic force at a contact between two particles. The general expression of the
Hertz normal force between two grains is

Fn = κijδ
3/2
ij , (A1)

where κij is a constant depending on the grains’ properties and δij is the overlap between
the particles i and j, characterizing grain deformation.

Note the difference between the distances Dij, defined in (2.4), and δij: on the one hand,
the distance Dij measures how far the grains are from each other, on the other hand,
the overlap δij models an overlap between the grains i and j, which should be seen as
quantifying a deformation of the bodies now considered as elastic. The two terms Dij and
δij evolve in an opposite way. When the distance Dij between i and j increases, their overlap
δij decreases. The scalars f ij

n can be provided by any model like COCD, as being the normal
intensity of the contact force, while Fn is the normal force intensity in the Hertz theory
framework.

The prefactor can be found from the Hertz theory of elastic contact (see Johnson
1985 and Andreotti, Forterre & Pouliquen 2013). In the case of a contact between two
spheres i and j of radii ri, rj, Young’s moduli Ei, Ej and Poisson’s ratios νi, νj, we have
κij = (4/3)Eij

√rij, where Eij and rij are defined by 1/Eij = (1 − ν2
i )/Ei + (1 − ν2

j )/Ej and
1/rij = 1/ri + 1/rj. However, to compare qualitatively the sound speed or elastic modulus
of granular layers measured in laboratory experiments (see discussions in § 2) with the
present simplified Hertz (normal) contact model, we would need to upscale uniformly the
coefficients κij by a factor of 100. This scaling does not qualitatively affect the results
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presented in this paper since the basal vibration frequency is chosen with respect to the
system normal modes; see § 2.

A.2. First-order Taylor expansion of Hertz contact force

Let Jc be the set of contacts defined by Jc = {(i, j) | 1 ≤ i < j ≤ N and ∃f 0ij
n > 0}.

We denote by Nc the cardinal of set Jc. Let us assume that we have a generalized normal
force intensity vector f 0 ∈ R

Nc , where f 0ij
n > 0, for any (i, j) ∈ Jc. We can define the

overlap δ0
ij by

δ0
ij =

(
f 0ij
n

κij

)2/3

. (A2)

We assume that the quantities f 0ij
n and δ0

ij remain constant at the vibration time scale and
we study the effects of small perturbations around this equilibrium. We denote by εij ∈ R

the infinitesimal perturbation of δ0
ij and the perturbation-induced overlap by δij ∈ R, such

that we have by definition

δij = δ0
ij + εij. (A3)

Only δij and εij depend on time while δ0
ij remains constant. Consequently, when considering

the perturbation-induced overlap δij, a Taylor expansion at the first order of (A2) provides
the value of a perturbation-induced normal force intensity, denoted by f ij

n ∈ R. This can be
formalized by

f ij
n = κij(δij)

3/2

= κij(δ
0
ij + εij)

3/2

= κij(δ
0
ij)

3/2 + 3
2
κij(δ

0
ij)

1/2εij + o

(
εij

δ0
ij

)

� f 0ij
n + 3

2
κij(δ

0
ij)

1/2εij︸ ︷︷ ︸
=f εij

n

, (A4)

where the term f εij
n is the infinitesimal perturbation of f 0 ij

n that, for the perturbation-induced
force f ij

n , performs the role played by the term εij for δij in (A3).

A.3. Perturbation-induced position vector
We now consider a generalized position vector of the mechanical system at the equilibrium
that we denote c0 ∈ R

3N ; see § 2.1. In the previous section, the perturbation-induced force
f ij
n can be expressed as a linear function of the infinitesimal perturbation εij of the overlap
δ0

ij (see (A3)). Similarly, we define the perturbation-induced position vector c and e, the
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infinitesimal perturbation of the constant position vector c0, all belonging to R
3N , i.e.

c = c0 + e, (A5)

where, at the vibration time scale, c and e depend on time while c0 remains constant.
We can write εij, the infinitesimal perturbation of the overlap δ0

ij, as the image of e by the
map N ij; indeed, we have

εij = (δij − δ0
ij) = −((ci − cj) − (c0

i − c0
j )) · nij = −(ei − ej) · nij = −N ije. (A6)

We define also the perturbation-induced generalized force intensity vector f ∈ R
Nc ,

resulting from the perturbation of the constant vector f 0 ∈ R
Nc by the infinitesimal

perturbation vector f ε ∈ R
Nc , i.e.

f = f 0 + f ε. (A7)

Equations (A2), (A4) and (A6) give f εij
n = −3/2(κij)

2/3( f 0ij
n )1/3N ije, which can be written

under its vector form as
f ε = −KNe ∈ R

Nc, (A8)

where the diagonal square matrix K contains the elastic properties of the system:

K = 3
2 diag((κ1,2)

2/3( f 01,2
n )1/3, . . . , (κij)

2/3( f 0 ij
n )1/3,

. . . , (κN−1,N)2/3( f 0N−1,N
n )1/3) ∈ R

Nc×Nc . (A9)

A.4. Wave equation
The assumption is made on the system described in § 2.1 to be at rest, maintained by
the gravity field. In this configuration, Newton’s second law imposes that there exists
a generalized reaction force vector that is necessary opposed to the global force vector
w0 = (w0

1, . . . , w0
N) ∈ R

3N , applied on the system. Coupled with the non-overlapping
condition Dij ≥ 0, it is equivalent to saying that the inverse image of the vector −w0 by
the map NT (see § 2.2.1), intersected with R

Nc+ (to have repulsive force only) is not empty,
i.e. NT−1

(−w0) ∩ R
Nc+ /= ∅. For the generalized normal force intensity vector f 0 ∈ R

Nc+ ,
belonging to the inverse image of the vector −w0 by the map NT, we have

NTf 0 = −w0 ∈ R
2N, (A10)

whose local expression is exactly given by (2.17). The generalized force vector NT f 0

generates local normal repulsive forces between the spheres at the contact points.
Furthermore, the generated pressures create deformation zones and the Hertz theory
enables us to characterize these deformations by a set of scalars δ0

ij ∈ R (see (A1)).
Consequently, the δ0

ij can be given by an equation of type (A2). As a result, we have shown
how the forces computed at the grain-motion time scale by the grain-motion model COCD,
which does not involve the Hertz theory, can be linked to the Hertz law at the vibration
time scale, through the introduction of the overlaps δ0

ij.
With the generalized mass matrix (masses only) defined by (2.19), and by considering

the perturbation-induced generalized force vector NT f ∈ R
3N and applying Newton’s
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second law, we finally obtain the unsteady wave equation resulting from the perturbation
of c0 by e. Indeed, we have

M̄
d2c

dt2
= NTf + w0 ⇐⇒ M̄

d2e

dt2
= NT( f 0 + f ε) + w0,

M̄
d2e

dt2
= −NTKNe.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A11)

At the end, a wave equation is defined for any e ∈ R
3N ,

M̄
d2e

dt2
+ Λe = 0, (A12)

where the linear map defined by the matrix

Λ = NTKN ∈ R
3N×3N (A13)

can be seen as a kind of discrete Laplace operator.
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