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Supplementary Figure 1: Modification of the 08/2018 DEM to remove screes at the bottom of the cliff. (a) Original

08/2018 DEM. (b) Modified 08/2018 DEM, without screes). (c) Difference between modified and original DEM.

We give the volume corresponding to the screes removed. Bold contour interval is 50 m, thin contour interval is

10 m.
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Supplementary Figure 2: Reconstruction of the pre 2018 collapse cliff geometry for RA_2018 scenario. (a) Cliff

in July 2010. (b) Synthetic reconstruction of the cliff topography based on the 2017 cliff rim (top of RA_2018

unstable volume). (c) Cliff on Jan. 19, 2018 modified to remove deposits at the cliff bottom.
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Supplementary Figure 3: RA_2018 simulation with Coulomb rheology and µS = tan(14◦) = 0.25. Flow thickness

is given at (a) t = 15 s, (b) t = 25 s, (c) t = 50 s, (d) t = 100 s and (e) t = 200 s.
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Supplementary Figure 4: RA_2018 simulation with Coulomb rheology and µS = tan(14◦) = 0.25. Flow velocity

is given at (a) t = 15 s, (b) t = 25 s, (c) t = 50 s, (d) t = 100 s and (e) t = 200 s. Small white arrows give flow

velocity direction.
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Supplementary Figure 5: Simulation results for the DF_fwd scenario. (a) Maximum flow thickness with the Voellmy

rheology, µS = tan(2◦) = 0.03 and ξ = 500 m s−2. (b) Maximum flow thickness with the Coulomb rheology

and µS = tan(3◦) = 0.05. (c) Maximum flow thickness with the Coulomb rheology and µS = tan(2◦) = 0.03.

Topography is represented by the 08/2018 DEM. Each point in (d), (e), (f) and (g) is a simulation result, with

friction coefficient given by line color and turbulence coefficients given by the x-coordinate. Left of hatches is for the

Voellmy rheolgy, right is for the Coulomb rheology (equivalent to infinite turbulence coefficient). (d) Flow travel

duration between RPRE and CPMA (about 1.6 km). They are measured by picking the maximum of the discharge

at each location. (e) Flow travel duration between RPRE and the Prêcheur bridge (about 4.3 km). (f) Area flooded

on the left river bank, within inhabited areas. (g) Area flooded on the right river bank, within inhabited areas.

Grey patches give observations ranges for the Jun. 19, 2010 DF.
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Supplementary Figure 6: RA_2018_2 scenario, with two successive collapses. (a) Black lines: topographic surveys.

Red hatched patch (A): first initial 0.8 × 106 m3 collapse. Blue hatched patch (B): second 0.7 × 106 m3 collapse,

13 s after initiation. (b) Final deposits of RA_2018 scenario, with A and B collapsing at once. (c) Final deposits

when only A collapses. (d) Final deposits of the sc_2018_2 scenario, with A collapsing, followed by B 13 s later.

All simulations are done with the Coulomb rheology and µS = tan(14◦) = 0.25. Green dashed line: Samperre cliff

rim. Topography in (b), (c) and (d) is the 08/2018 DEM.
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Supplementary Figure 7: Results of DF simulations with 1.2 × 106 m3 (filled markers) and 0.65 × 106 m3 (empty

markers), with a constant source discharge imposed during 10 min, at different locations (see abcissa). (a) Area

flooded in the Precheur village, left bank. (b) Area flooded in the Prêcheur village, right bank. (c) Travel durations

between RPRE and CPMA. (d) Travel durations between RPRE and the bridge. Durations refer to discharge

onsets. Grey patches are observations for the Jun. 19, 2010 DF.
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Supplementary Table 1: Data used to plot Figure 12 in the main body of the article, giving the calibrated friction

angles δ and corresponding friction coefficients µS = tan(δ) derived for different sites with the SHALTOP numerical

model. Values in bold are found in the specified references, from which we deduce the corresponding value for δ or

µS .

Reference Site Volume (m3) δ (◦) µS = tan(δ) Calibration data

(Lucas et al., 2007)

Shum Wam 2.60×104 18 0.32 deposits

Fei Tsui 1.40×104 26 0.49 deposits

Frank Slide 3.60×107 12 0.21 deposits

(Peruzzetto et al., 2019) Soufriere (1530 CE) 9.30×107 7 0.12 deposits

(Yamada et al., 2018)

Akatani 7.38×106 16.7 0.3 seismic signal

Iya 4.67×106 17.7 0.32 seismic signal

Nagatono 3.63×106 21.8 0.4 seismic signal

Nonoo 2.72×106 19.8 0.36 seismic signal

(Moretti et al., 2015) Mount Meager 4.85×107 18.3 0.33 seismic signal + deposits

(Moretti et al., 2020) Montserrat (1997 CE) 4.58×107 14.2 0.25 seismic signal

(Kuo et al., 2009) Tsaoling, Taiwan 1.50×108 6 0.11 deposits

Supplementary Note 1: Seismic energy and simulated dissipiated energy18

Following Schneider et al. (2010) and Levy et al. (2015), we compare the dissipated energy rate PSH during the19

simulation to the seismic energy rate Ps. This allows to see if the simulated duration of of the rock avalanche is20

similar to the duration of the generated signal, which is a good proxy for the actual duration of the rock avalanche21

(Levy et al., 2015). Temporal variations of PSH and Ps can also help characterizing the dynamics of the rock22

avalanche, and in particular determining if the initial collapse happened in one or several successive steps. We23

define PSH as:24

PSH = − d

dt
(Ek + Ep) , (1)25

with Ek the total flow kinetic energy and Ep the total flow potential energy. This is equivalent to computing the26

energy dissipated by the basal friction force. PS is computed with the 0.1-20 Hz filtered seismic signal recorded27

at the LAM station, about 1300 m away from the cliff. Following Vilajosana et al. (2008), Levy et al. (2015) and28

Durand et al. (2018), the seismic energy ES is:29

ES = 2πrρhceαr
∫ t=tfinal

t=tinit

(
u2E + u2N + u2Z

)
dt, (2)30

where uE , uN and uZ are respectively the eastern, northern and vertical components of the seismic recording (de-31

convolved from the instrumental response), and where we assumed a point-source and an isotropic and homogeneous32

medium. We also consider that seismic surface waves dominate the signal. The parameters are r = 1300 m the33

distance to the signal source, ρ = 2000 kg m−3 the density of the materials in which waves propagate, h m the34

thickness of the layer in which waves propagate, c the group seismic wave velocity, and α an attenuation parameter.35
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α, h and c are frequency dependent. Besides, much more complex topographic corrections should be needed in36

(2) (Kuehnert et al., 2020). However, Levy et al. (2015) find no major difference between the energy integrated37

over successive frequency bands and the energy computed directly as in (2), when the frequency band includes the38

frequencies concentrating most of the energy (in our case, around 2 Hz). Furthermore, we are more interested in39

trends than absolute values. Thus, we simply define PS as40

PS =
dEs

dt
= 2πrρhceαr

(
u2E + u2N + u2Z

)
. (3)41

We assume a surface wave velocity c = 1300 m s−1 as in Levy et al. (2015). Considering that most of the energy42

of the signal is at f = 2 Hz, we follow Levy et al. (2015) and get:43

h = 2.5
c

f
= 1625 m (4)44

45

α = 2.4× 10−4f0.4 = 3.1× 10−4 m−1 (5)46

Lowess smoothing (Seabold and Perktold, 2010) is applied to the resulting time series. Note that the constants47

above only act as scaling factors but do not change temporal variations of PS .48
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