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Abstract: A key point of landslide hazard assessment is the estimation of their runout.
Empirical relations linking angle of reach to volume can be used relatively easily, but they are
generally associated with large uncertainties as they do not consider the topographic specificity of
a given study site. On the contrary, numerical simulations provide more detailed results on the
deposits morphology, but their rheological parameters can be difficult to constrain. Simulating all
possible values can be time consuming and incompatible with operational requirements of rapid
estimations. We propose and compare three operational methods to derive scaling power laws
relating the landslide travel distance to the destabilized volume. The first one relies only on empirical
relations, the second one on numerical simulations with back-analysis, and the third one combines
both approaches. Their efficiency is tested on three case studies: the Samperre cliff collapses in
Martinique, Lesser Antilles (0.5 to 4× 106 m3), the Frank Slide rock avalanche (36× 106 m3) and the
Samperre cliff collapses in Martinique, Lesser Antilles (0.5 to 4× 106 m3) the Fei Tsui debris slide in
Hong Kong (0.014× 106 m3). Purely numerical estimations yield the smallest uncertainty, but the
uncertainty on rheological parameters is difficult to quantify. Combining numerical and empirical
approaches allows to reduce the uncertainty of estimation by up to 50%, in comparison to purely
empirical estimations. However, it may also induces a bias in the estimation, though observations
always lie in the 95% prediction intervals. We also show that empirical estimations fail to model
properly the dependence between volume and travel distance, particularly for small landslides
(<20,000 < 0.02× 106 m3).

Keywords: landslide; runout; numerical modeling; statistical analysis; uncertainty

1. Introduction

Landslide hazard assessment is the estimation of the probability that an area is impacted by
a landslide of given intensity during a given period of time [1,2]. It relies on the evaluation of
landslide susceptibility (i.e., the likelihood that a given type of landslide occurs in a given area) and
intensity. The definition of intensity depends on the propagation mechanism [1], but generally includes
the runout (or travel distance), the velocity and volume of the landslide. These characteristics are
commonly estimated from empirical relations (in most case, power laws) depending on the landslide
volume, e.g., [3–9]. However, in order to get more insight on the landslide dynamics, physical model
must be used. The most simple one is the rigid sliding block model for which an analytical solution
can be derived [10]. Analytical solutions for one-dimensional dam-break problems have also been
proposed in [11], and used for instance in [5] to estimate landslide travel distances. Flow routing
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algorithms implemented in Geographic Information Systems (GIS) softwares combine probabilistic
methods and semi-empirical energy dissipation laws to reproduce multiple channelling and mass
spreading [12,13]. Nevertheless, physically-based numerical modeling is needed to reproduce the
complex mechanisms governing landslide propagation. 3D modeling allows to describe precisely the
interactions between fluid and/or solid particles [14–16] but is often computationally costly and relies
on many user-defined parameters, which are in practice difficult to estimate.

In comparison, thin-layer models (also commonly called shallow-water models) integrate the
momentum equations over the flow thickness of fast-propagating landslides, whose thickness is
negligible in comparison with their extent. Thus, the state variables are reduced to the flow thickness
and thickness-averaged velocity and simulations can be run faster than full 3D models. In their most
simple form, the shallow-water equations describe the evolution of a homogeneous flow and use a solid
Coulomb friction law to model the interaction between the topography and the flow, through a friction
coefficient µS = tan(δ). The stress applied at the base of the flow, that decelerates the flow, can also be
modeled with the Voellmy rheology that includes a turbulence term [17,18], or the Bingham rheology
for yield-stress fluids [19]. More complex shallow-water models include, for instance, erosion and
deposition along flow path [20,21] and two-phase flows with dilatancy effects [22–25].

In this work, we aim at developing and comparing methodologies to estimate the travel distance
of rapid gravity-driven flows [5,18,26] depending on their volume. The resulting relations must be
simple enough to be used operationally by practitioners. They can be established simply by using
mobility indicators such as the Heim’s ratio µH or the effective friction coefficient µe f f [5]:

µH = H
∆L′ , (1)

µe f f = tan(θ) + H0
∆L . (2)

H is the drop height, ∆L′ the horizontal travel distance along flow path, θ the average slope along
flow path, H0 the initial mass maximum height and ∆L the travel distance along topography from the
collapse scar toe (Figure 1). µe f f is less straight-forward to use than µH as it takes into account the
geometry of the initial mass, which is not always easy to estimate.

The empirical estimations relating the landslide volume to µH or µe f f rely on large datasets that
are not, in general, site specific. Thus, the particular topographic setting of a given study site is not
taken into account. This often results in large uncertainties that are however relatively simple to
evaluate from the residuals between the fitted model and the observations.

Figure 1. Parametrization of landslide mobility, with notations as in [5]. Dashed line: initial mass.
Grey shaded are: final landslide deposits. H is the drop height, ∆L′ the horizontal travel distance. H0 is
the mass initial thickness, ∆L the travel distance along topography from the landslide scar toe, and θ is
the average slope angle along the flow path. The notations in red are used for µe f f , and in black for µH .
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In comparison, numerical modeling and in particular shallow-water models are commonly-used
to carry out site-specific hazard analysis, e.g., [27–29]. However, many simulations (up to
1000 or even 10,000) are needed to perform a rigorous probabilistic hazard analysis, e.g., [30].
Besides, estimating parameters can be difficult, or at least time consuming and costly, which is
often incompatible with operational constraints where hazard assessment must be carried out quickly.
Rheological parameters can be estimated by back-analysis when previous events are documented,
but the extent to which results can be used for forward prediction is hard to constrain [28]. Rheological
parameters can also be empirically deduced from mobility indicators. In particular, the effective
friction coefficient µe f f , whose definition differs from the Heim’s ratio µH as it takes into account the
initial mass geometry, proved to be a relatively good estimation of the friction coefficient µS to be used
in simulations needed to model observed deposits [5].

In this context, the extent to which numerical modeling can improve the estimation of landslide
runout in comparison with empirical approaches, has, to our knowledge, never been quantified.
To answer this question, we will derive site-specific power laws relating the horizontal travel
distance ∆L′ to the unstable volume V, using a purely empirical approach, a numerical approach and
combining empirical data with numerical modeling. Empirical data is drawn from two landslides
databases ([3,5,31]). Numerical modeling is carried out with the SHALTOP shallow-water numerical
model [32–34]. We will use a simple Coulomb friction law that proved, with SHALTOP, to reproduce
successfully real landslides deposits [5,29,35–38]. Besides, this rheology involves a single parameter,
which simplifies uncertainty analysis. We compare the prediction and associated uncertainties for three
documented case studies: rock/sand avalanches from the Samperre cliff in Martinique, Lesser Antilles,
the Frank Slide rock avalanche in Canada and the Fei Tsui Road debris slide in Hong-Kong.

2. Materials and Methods

2.1. Data

We present here the case studies on which methods of travel distance estimations will be compared.
Empirical methods are based on empirical estimations of mobility deduced from databases of landslides
landslide databases. In comparison, numerical methods rely on databases of simulations that we
construct for each case study site-specific simulation databases.

2.1.1. Case Studies

In this work we focus on three landslides case studies, spanning a large range of volumes and
runouts. Their characteristics are summurized summarized in Table 1.

Destabilizations from the Samperre cliff, in Martinique, Lesser Antilles, involve volumes between
1 and 4× 106 m3 [39,40] that propagate on a complex topography (Figure 2a,b). As they detach from the
cliff, old pyroclastic materials erupted from the nearby Montagne Pelée volcano desegregate rapidly
and the landslide propagates as a granular avalanche. Massive destabilizations occur roughly every
10 years, as in 2009 and 2018 [39,40] and travel about 2 km in the Samperre torrent that has its source at
the cliff toe (Figure 2c). The stream flows in a narrow (no more than 40 m wide) and steep-walled (up to
70 m high banks) ravine that confines laterally the avalanche. The volume involved in the August 2009
collapse is estimated at 1× 106 m3 in [39]. In 2018, the main destabilization phase occurred in early
January, and involved at most 3.7× 106 m3 [41], as deduced from 1-m Digital Elevation Models (DEMs)
comparisons between July 2017 (LiDAR) and mid-January 2018 (photogrammetric reconstruction).
However, considering the cliff retreat between these two dates, we estimate a smaller 1.5× 106 m3

volume (see Appendix A).
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Figure 2. Samperre cliff destabilizations. (a) August 2018 topography, 1 m DEM. Black dashed outline:
extent of destabilized area (difference between 2010 and 2018 DEMs). Bold contour interval is 100 m.
Red line: cross-section along which travel distances are measured. Black triangle: observed travel
distance in 2009. White triangle: observed travel distance in 2018. (b) Picture of the Samperre cliff
(black dashed outline in (a)) taken in February 2018 (OVSM). (c) Cross-section along red line in (a).
Red line: Post-collapse topography with deposits removed. Black dashed line: Topography in July 2010.
Black and white triangles are reported from (a).

In comparison, the Frank Slide rock avalanche features a larger volume: 36 × 106 m3. It is
more easily constrained than the Samperre destabilizations, because it consisted in a single event that
occurred in 1902 on the east face of Turtle Moutain in western Alberta, Canada (Figure 3a,b). It involved
mainly Paleozoic limestones that slid along the dipping bed of Turtle Mountain anticline [42]. The rock
avalanche covered approximately 2.6 km2 and traveled about 3 km (from the rear scar) without
confinement. The scar displays 30◦ to 60◦ slopes, but the topography flattens quickly at the mountain
toe. The rock avalanche then ran slightly uphill on the other side of the valley with slopes no higher
than 3◦ (Figure 3c).

The 1995 Fei Tsui Road debris slide case-study differs significantly from the previous ones
(Figure 4). It occurred in Hong-Kong after intense rainfalls: more than 1300 mm in the preceding
month and 230 mm in the preceding 12 h [43]. It involved 14,000 m3 of debris, which is unusually
high for landslides in Hong-Kong [43,44]. The debris slide originated form a 30 m high cut slope in
moderately to highly weathered volcanic materials, with the base of the scar following a kaolinite-rich
altered tuff layer. It is assumed that the development of a 1 to 4 m high perched aquifer above the
kaolinite-rich layer favored the initiation of the landslide as a translational slide. As a result of low
cohesion values [43], the material then desegregated rapidly. The debris slide traveled about 65 m
(30 m from the scar toe) with limited spreading, with some of the deposits piled up against the corner
of a building.
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Table 1. Description of the case studies considered in this work. We give the characteristics of the
documented landslides and of the simulation databases. µ1

e f f (V) gives the effective friction coefficient
estimated from the landslide volume, using the power law deduced for DB1 (see Figure 5b). For the
Samperre case study, we give the estimated volumes and travel distances for the 2009 and 2018 collapses
(date in brackets).

Samperre Cliff
Collapses
[39,40,45]

Frank Slide
Rock Avalanche

[42]

Fei Tsui Road
Debris Slide

[43,44]

DOCUMENTED
EVENT

Volume (V)
1× 106 m3 (2009)

1.5× 106 m3 (2018)
35× 106 m3 14× 103 m3

µ1
e f f (V)

tan(18.5◦) = 0.33 (2009)
tan(18.0◦) = 0.32 (2018) tan(14.4◦) = 0.26 tan(24.7◦) = 0.46

Observed horizontal
travel distances (∆L′)

2100 m (2009)
2000 m (2018) 3200 m 65 m

Best-fit friction
coefficient µS

tan(13◦) = 0.23 tan(11◦) = 0.19 tan(26◦) = 0.49

SIMULATION
DATABASE

Range of volumes V
0.25× 106 m3

to
3.7× 106 m3

10× 106 m3

to
70× 106 m3

5× 103 m3

to
30× 103 m3

Range of friction
coefficients µS

tan(10◦) = 0.18
to

tan(35◦) = 0.70

tan(7◦) = 0.12
to

tan(23◦) = 0.42

µS = tan(20◦) = 0.36
to

µS = tan(32◦) = 0.62

Simulation grid size 585× 151 201× 201 97× 117

Simulation grid resoultion 5 m 20 m 1 m

Number of
simulations 165 137 91

Maximum duration
for one simulation 12 h 30 min 10 min
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Figure 3. Frank Slide rock avalanche. (a) Post collapse topography with deposits removed, 20 m
DEM. Black dashed outline: landslide scar. Dark area: observed landslide extent. Bold contour
interval is 100 m. Red line: cross-section along which travel distances are measured. Dark triangle:
Observed travel distance. (b) Picture of the Frank Slide, taken in 1922 (Canada. Dept. of National
Defence/Library and Archives Canada/PA-052095). (c) Cross-section along red line in (a). Red line:
Post-collapse topography with deposits removed. Black dashed line: Reconstructed pre-collapse
topography. Black triangle: observed deposit extent.
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Figure 4. Fei Tsui Road debris slide. (a) Post collapse topography with deposits removed, 1 m DEM.
Black dashed outline: landslide scar. Dark area: observed landslide extent. Bold contour interval is
10 m. Red line: cross-section along which travel distances are measured. Dark triangle: Observed travel
distance. (b) Picture of Fei Tsui Road debris slide (GEO, Hong-Kong). (c) Cross-section along red line
in (a). Red line: Post-collapse topography. Black dashed line: Reconstructed pre-collapse topography
with deposits removed. Black triangle: observed deposit extent.

2.1.2. Landslide Databases

We use two databases to estimate empirically travel distances. The first one (DB1) is drawn
from [5]. It includes 43 dense and rapid landslides from Earth, Mars, Iapetus (Saturn’s satellite) and
Io (Jupiter’s satellite). Both the Frank Slide and the Fei Tsui Road debris slide are included in DB1.
The second database (DB2) combines 44 rockfalls, rockfalls avalanches, debris flows, debris slides and
debris avalanches drawn from [3], as well as 49 rock avalanches drawn from [31].

From these databases we fit two power laws relating µH to the landslide volume V: µH = µ1
H(V)

for DB1 and µH = µ2
H(V) for DB2. Only DB1 could be used to derive a relation between µe f f and V,

µe f f = µ1
e f f (V), because the measures field observations required to compute µe f f are not available in

DB2. The regression results are given in Figure 5. More details on the regressions quality are available
in Table A1. Note that our power law µ1

e f f (V) differs from the power law derived in [5] because we fit

a power law µe f f = αVβ without constraining α, while in [5] α = 1 is imposed.
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Figure 5. Empirical landslide databases. (a) µH VS landslide volume V. Grey circles: DB1. Red marker:
DB2. squares: rockfalls and rockfalls avalanches from [3]. Triangles: debris flow, debris slides and
debris avalanches from [3]. Crosses: Rock avalanches from [31]. Black line: power law regression result
for DB1 (equation given in black). Red dashed line: power law regression result for DB2 (equation
given in red). (b) µe f f VS landslide volume V, for DB1. Black line: power law regression result for
DB1 (equation given in black). Yellow circle: observations for Fei Tsui Road debris slide. Blue circle:
observations for the most import destabilization of the Samperre cliff in 2018. Green circle: observations
for the Franks Slide.

2.1.3. Simulation Databases

For each case study, we construct a simulation database with the SHALTOP shallow-water
numerical code [32–34]. This is done by considering multiple initial unstable geometries and friction
coefficients µS. For each case study, we model destabilized volumes ranging from 1/3 one third to
about twice the volumes involved in documented events. The range of tested µS encompasses realistic
coefficients estimated from expert knowledge, in regard of the volumes considered. In particular,
the value µe f f = µ1

e f f (V) (with V the volume of the real landslide, see Table 1) is also tested: it has
been shown to be a good estimate of the friction coefficient µS needed to reproduce the landslide
dynamics and deposits [5,36,37]. The lowest value µS is also constrained by practical considerations:
for small µS, the landslide does not stop within the simulation grid and no travel distance can be
measured. The main characteristics of the simulations are given in Table 1.

For the Samperre cliff case study, several topographic surveys were carried out over the years:
they allow to quantify the evolution of the cliff after collapses episodes, but no data are available to
constrain precisely individual events. Thus, we have inferred a total of 10 initial volumes/geometries
spanning volumes from 0.25 × 106 m3 to 3.7 × 106 m3: two of them are used to reproduce the
August 2009 (1 × 106 m3) and January 2018 1.5 × 106 m3 major events. More details about the
definition of collapse scenarios are given in Appendix A. Friction coefficients are chosen between
µS = tan(10◦) = 0.18 and µS = tan(15◦) = 0.27 every 1◦, and every 2.5◦ up to µS = tan(35◦) = 0.70.
This results in a total of 165 simulations. The best-fit friction coefficients used in simulation to
reproduce the travel distance of the 2010 and 2018 events are tan(11◦) = 0.19 and tan(14◦) = 0.25,
respectively. Given the relative poor constraints we have on the 2010 event, in particular in term of
initial geometry (see Appendix A), we suggest the second fit is more accurate. Thus, we will use in the
following intermediate value tan(13◦) = 0.23 that is closer to the 2018 event back-analysis.

For the Frank Slide and Fei Tsui Road case studies, simulations are run on 20 and 1 meter
DEMs, respectively. They were provided (along with the initial mass of the past landslides) for the
First JTC1 Benchmarking Exercise [46]. In comparison to the Samperre case study, we use a more
simple way of simulating various volumes. Indeed, we simply scale uniformly the heights of the real
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destabilized mass to explore larger and smaller volumes. For the Frank Slide, in addition to the real
36× 106 m3 landslide, we test 67 other volumes spanning from 10 to 70× 106 m3, every 10× 106 m3.
Friction coefficients are taken between µS = tan(7◦) = 0.12 and µS = tan(23◦) = 0.42, every 1◦.
This amounts to 137 simulations. The best-fit friction coefficient used in simulation to reproduce
observed deposits resulting from the historical 36× 106 m3 landslide is tan(11◦) = 0.19, as in [35].

For the Fei Tsui Road debris slide, we test volumes spanning regularly between 5000 and
30,000 m3, every 5000 m3, and the real 14,000 m3 volume. Friction coefficients are chosen
between µS = tan(20◦) = 0.36 and µS = tan(32◦) = 0.62 every 1◦, resulting in 91 simulations.
The best-fit friction coefficient used in simulation to reproduce the 2018 14× 103 m3 debris slide
is µ

f it
S = tan(26◦) = 0.49, as in [35].

Simulations are run on the S-CAPAD DELL cluster of the IPGP, on CPU Power Edge C6220,
PowerEdge R720xd or PowerEdge R730xd nodes. 128 nodes were thus available, each one with
16 cores. In turn, simulations could be run simultaneously (one simulation per core). Each simulation
lasts between 10 min (in the Fei Tsui Road case study) and 12 h (in the Samperre case study). Note that
the total number of simulations remains small in comparison with what would be needed for a
thorough analysis of uncertainty (i.e., at least 1000 simulations [30]). Nevertheless, it is compatible
with time constraints met by practitioners who must carry out quick hazard assessment.

For each case study, we use the simulations results to compute site-specific power laws relating the
horizontal travel distance ∆L′ to the initial volume V and the friction coefficient µS: ∆L′ = fS(V, µS).
For each simulated deposits, we can also compute the resulting µe f f from (2). For clarity, values derived
from simulations results will be noted µ̃e f f , while µe f f refers to values deduced from real landslides.
Their definition is however the same. In turn, we can compute another power law relating ∆L′ to V
and µ̃e f f : ∆L′ = gS(V, µ̃e f f ). The data used to derive fS and gS are given in Supplementary Materials.

2.2. Estimation of Horizontal Travel Distances

We use three different methods to estimate the horizontal travel distance ∆L′ directly from the
landslide volume V. They are summarized in Figure 6. We use empirical data from DB1 or DB2,
site-specific numerical simulations or a combination of the two. For the sake of clarity and simplicity,
we do not explicit the functions that will be mentioned hereafter. It can be any kind of statistical model
fitted to the landslide travel distances databases, or to the numerical simulations results, provided the
associated uncertainties can be estimated. In this work, we use power law relations that are fitted by
transforming the variables on a logarithm scale and by fitting a linear regression model using Ordinary
Least Square (OLS) regressions (see more details in Appendix B). Thus, the final relation relating ∆L′

to V has the form:
∆L′ = αVβ, (3)

where the coefficients α and β depend on the studied site and on the chosen methodology.

2.2.1. Empirical Runout Estimation

For a given study site, we choose a profile along which travel distances will be measured,
in the main direction of propagation of observed landslides (red lines in Figures 2a,c, 3a,c and 4a,c).
Provided an origin is chosen, a ratio µ̃H = H/∆L′ can be computed for each point along the profile.
Thus, we do not need to run simulations. However, in practice, it is convenient to compute µ̃H for
the points that are reached by landslides in our simulations. As the modeled stopping points span
a large portion of the profile, it is equivalent to choosing manually points along profiles and the
resulting relation does not depend on the simulations. Besides, for the Samperre cliff simulations in
particular, this allows to take directly into account the variability of the profile, as we consider different
collapse geometries.

If the topography is convex, which is the case in our three case studies, it is possible to invert the
previous relation to derive ∆L′ from µ̃H : ∆L′ = ∆L′(µ̃H). Note that µ̃H is computed geometrically.
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We relate it to realistic landslide mobilities by choosing µ̃H = µH , where µH is the Heim’s ratio
measured on real landslides. Using the volume dependent relations deduced from the empirical
databases DB1 and DB2, µH = µ1

H(V) and µH = µ2
H(V), we get:

∆L′ = ∆L′(µ̃H) = ∆L′(µ1
H(V)), (4)

∆L′ = ∆L′(µ̃H) = ∆L′(µ2
H(V)), (5)

which we will write more simply

∆L′ = f 1
emp(V), (6)

∆L′ = f 2
emp(V). (7)

DB1
Lucas et al., 2014

DB2
Corominas, 1996

Mitchell et al., 2014

geometrical,
site-specific relation

INPUT OUTPUTSHALTOP

Simulations databaseLandslide databases

(back-analysis)

Empirical
runout estimation

Empirical and numerical
runout estimation

Numerical
runout estimation

Figure 6. Methodologies to derive volume dependent relations for travel distance estimation.
The superscripts 1 and 2 refer to the empirical database that is used for a given relation (DB1 and DB2,
respectively). In this study, all functionals are power laws.

In comparison, it is more difficult to use µe f f for direct empirical estimation as its definition
includes a more complex topography description (the mean slope along flow path) and the initial
geometry and volume (through the initial height H0). Thus, it is not straight-forward to invert (2) to
get a relation ∆L′ = ∆L′(µe f f , V). However, this can be done through simulations, as will be explained
in Section 2.2.3.

Not that we could also have used empirical power laws ∆L′ = Femp(V) derived directly from
landslide databases, and apply them directly on each case study. We choose not to, because such a
method does not yield a site-specific power law. In comparison, µH can be deemed to be, in a first
approximation, a good mobility indicator, that can then be used on a chosen site. We will however
compare in Section 4.3 relations ∆L′ = Femp(V) found in the literature, to the site-specific laws derived
in this study.
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2.2.2. Numerical Runout Estimation

The travel distance can also be estimated without using empirical mobility indicators. For each
study site, we derived from the simulation results a statistical relation ∆L′ = fS(V, µS). As we want
our final relation to depend only on V, we must choose a value for µS. It can be done by modeling a
past landslide for which both the initial volume and the travel distances are known. By choosing for
µS the best-fit friction coefficient µ

f it
S , and assuming that it does not depend on the landslide volume,

we then get a volume only dependent relation:

∆L′ = fS(V, µ
f it
S ) = f f it

S (V) (8)

However, if no past event is available for back-analysis, we can use empirical observations.

2.2.3. Numerical/Empirical Runout Estimation

In the relation ∆L′ = fS(V, µS) deduced from a simulation database, we can choose µS as a
function of the volume. As a matter of fact, it has been shown that lower friction coefficients are
needed to model larger landslides. This can be done by back-analysis of multiple events with various
volumes on a same site, but we do not have enough data for that. The other possibility is to consider
that the empirical mobility indicators µe f f and µH are good estimates for µS and setting, respectively
µS = µ1

H(V), µS = µ2
H(V) or µS = µ1

e f f (V). Combining these relation with ∆L′ = fS(V, µS), we derive
the volume dependent relations:

∆L′ = f 1
S,µH

(V) = fS(V, µ1
H(V)), (9)

∆L′ = f 2
S,µH

(V) = fS(V, µ2
H(V)), (10)

∆L′ = f 1
S,µe f f

(V) = fS(V, µ1
e f f (V)). (11)

Another possibility is not to consider µS, and use only the simulations results. As a matter of fact,
we can compute for each simulated landslide the mobility indicators µ̃H and µ̃e f f . The indicates that
they are given by simulation results, when µH and µe f f are computed on real landslides.
Their respective geometrical definitions are however the same.

From the simulation database, we can thus estimate a relation ∆L′ = ∆L′(µ̃H), which is the same
as for empirical runout estimation (see Section 2.2.1). To be consistent with the definition (2) of µe f f
that includes both the initial mass geometry and the travel distance, we derive from the simulations
results a relation ∆L′ = gS(V, µ̃e f f ). This is done with the tuples (µ̃e f f , V) for which µ̃e f f lies within
the 95% prediction interval of the empirical relation µ̃e f f = µ1

e f f (V). Other tuples are deemed to be

unrealistic. Finally, we use µ̃e f f = µ1
e f f (V) in ∆L′ = gS(V, µ̃e f f ) to derive the relation:

∆L′ = g1
S,µe f f

(V) = gS(V, µ1
e f f (V)) (12)

2.3. Estimation of Uncertainty

To derive the uncertainty associated with the estimation of travel distance, we use the dispersion
between observed values and values predicted by power laws, and the uncertainty on the power
law coefficients. Classical results of linear regression can be used to derive prediction intervals for
a given power law, taking both these aspects into account (see Appendix B). However, it is not
straight-forward to extend these results for nested power laws, when the result of one is the input of
another. Indeed, the final expression of the runout involves the sum and product of random variables
that are not independent. Thus, it is not easy to derive formally the final probability density function.
Instead, we derive numerically prediction intervals by computing 4000 estimations with coefficients
and/or residues of each power law drawn randomly (following probabilistic laws whose parameters
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are given by the regression). We then derive the 95% prediction interval from the 2.5th and 97.5th
percentiles. More details are given in Appendix B.

The normalized standard deviation σV of the estimation ∆L′(V), for a given volume V,
is defined as:

σ(V) =

√√√√ 1
n

n

∑
i=0

(
∆̂L′(V)− ∆̂L′i(V)

∆̂L′(V)

)2

, (13)

where ∆̂L′(V) is the direct estimation from the best-fit power law, and ∆̂L′i(V) are n random estimates.
We define the total standard deviation over a range of different volumes Vj as

σ =
1
m

m

∑
j=1

σ(Vj). (14)

We choose m = 50 volumes Vj sampled regularly in logarithmic scale between the minimum
and maximum simulated volumes. When we use back analysis for travel distance estimation in
∆L′ = f f it

S (V), we also take into account for σ the uncertainty on the best fit friction coefficient

µ
f it
S = tan(δ f it

S ). This is done by drawing random values of δS (µS = tan(δS)) with a normal

distribution of mean δ
f it
S and standard deviation 1◦. This value is chosen because it matches the

interval between two successive tested values of δS in simulations, in the neighbourhood of the best-fit
friction angle.

3. Results

In this section, we will first present the results of the different power laws that were computed
in this study, from empirical data or from simulations results. Then, we will compare, for each case
study, the different final estimations ∆L′ = ∆L′(V) giving directly the travel distance as a function of
the unstable volume V.

3.1. Quality of Power Law Regressions

In this work, we have used simple power laws to derive statistical models both from empirical
databases and simulations results. Their quality can be at first hand assesed from the adjusted R2,
but other indicators are needed to assess the reliability of uncertainty estimation. The details of the
statistical analyses, with the coefficients and quality indicators, are given in Table A1. The behaviour
of residuals depending on predicted values is given in Appendix A (Figures A1 and A2).

The site-specific power laws are associated with very good R2: 0.91 for gS(V, µ̃e f f ) for the
Samperre case study, and more than 0.97 for other power laws. In comparison, empirical power laws
feature R2 values between 0.68 (for DB2) and 0.84 (for DB1). gS(V, µ̃e f f ) and fS(V, µS) have a Variance
Inflation Factor (VIF) below 1.08, which is a good indication that the explanatory variables are not
linearly correlated and that the OLS regression is robust (in the sense that the inversion problem is
well-constrained). The linearity hypothesis (that is, the validity of using a linear model to represent the
link between the logarithm of the runout with the predictor variables) is also relatively well verified,
with residues relatively well centered around 0 (Figures A1 and A2). However, we do see for the Frank
Slide case study slightly concave and convex shapes for the residuals curve (Figure A2d–f). In turn,
the hypothesis of homoscedasticity of residuals (that is, that the deviation from the regression result is
similar for all predictions) is not verified in the Frank Slide case study (p-value of the Breush-Pagan test
below 0.04). Finally, while the hypothesis that the distribution of residuals folowws follows a normal
law is well verified for all empirical power laws µ1

H(V), µ2
H(V) and µ1

e f f (V), it can be questioned for
the site-specific power laws, in particular for ∆L′ = ∆L′(µ̃H) and ∆L′ = fS(V, µS) (p-values of the
Jarque-Bera test below 0.15).
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3.2. Estimation of Travel Horizontal Travel Distances

In Table 2 we summarize the different power laws ∆L′ = αVβ that were derived to estimate travel
distances with different methodologies. In the following we will compare the estimation results for
each case study.

3.2.1. Samperre Cliff Case Study

Estimations of travel distances for the Samperre cliff case study are given in Figures 7 and 8.
The empirical estimation f 1

emp (that uses directly µH and DB1) is in good agreement with observations
(Figure 7a), but f 2

emp (derived from DB2) slightly over-estimates them (Figure 7c). When we use
simulations results with µS approximated from µH or µe f f ( f 1

S,µH
, f 2

S,µH
, f 1

S,µe f f
in Figure 7b,d,f,

respectively), the observed travel distance is systematically under-estimated by at most 40%. Finally the
empirical/numerical estimation gS,µe f f is in almost perfect agreement with the back-analysis estimation

f f it
S (Figure 7e) and thus with the observations. The exponent β is 0.14 for the empirical estimations,

and varies between 0.24 and 0.33 for the empirical/numercial and numerical estimations (Table 2).
Observations lie within the 95% prediction intervals of all estimations (black dashed lines in

Figure 7). These intervals delimit the values predicted by the statistical models in 95% of the cases,
given the estimated uncertainties (See Appendix B). These intervals are always very large, which can
be correlated to high values of the normalized standard deviations in travel distance estimations,
σ (see Table 2). Indeed, we have σ = 0.6 for empirical estimations, which means that the standard
deviation of estimations amounts to 60% of the direct prediction of the power law, when uncertainties
are not taken into account. Using Shaltop reduces σ to 0.4 in empirical/numerical estimations with
µS = µH , and even 0.3 when we choose µS = µe f f . When the best-fit friction coefficient is used,

σ drops down to 0.13 (see Table 2). In turn, the 95% prediction interval for f f it f f it
S is 2 to 3 times

smaller than for other power laws.
As described in Section 2.2.3, the final empirical and empirical/numerical estimations of runout

uses a first empirical power law, whose result is used in a second site-specific power law. By adding
uncertainty in the first or in the second power law, or in both (see Appendix B), we see that most of
the uncertainty comes from the empirical relation giving µH or µe f f as a function of volume. This is
illustrated graphically in Figure 8, where we see that the total uncertainty is almost the same when we
consider uncertainty on both power laws (“Both power laws” blue bars) or on the empirical relation
only (“Empirical power law” blue bars): the difference is less than 2%. Besides, most of the uncertainty
can be recovered by considering only the deviation between the best-fit power laws, and the data used
to derive them. In comparison, the uncertainty on the power law coefficients increases σ by at most
3% (compare orange and green bars in Figure 8). This can be expected, as we compute σ for volumes
within the range of simulated volumes. If we considered larger or smaller volumes, the uncertainty on
coefficients would have more significant effects.



Geosciences 2020, 10, 424 13 of 35

103

104
∆
L
′

(m
)

(a) f1emp (b) f1S,µH

103

104

∆
L
′

(m
)

(c) f2emp (d) f2S,µH

106

V (m3)

103

104

∆
L
′

(m
)

(e) g1S,µeff

106

V (m3)

(f) f1S,µeff

Figure 7. Travel distance estimated from volume for the Samperre case study. Green and blue rectangles:
estimations of volumes and travel distances for the 2009 and 2018 collapses, respectively. Grey line:
Numerical estimation from back-analysis ( f f it

S ), with µS = tan(13.5◦) = 0.24. The grey area is the upper

and lower limits of the 95% prediction intervals derived for µ
f it
S = tan(13.5◦ ± 2◦) µ

f it
S = tan(13◦ ± 2◦).

(a) Estimation with f 1
emp. (b) Estimation with f 1

S,µH
. (c) Estimation with f 2

emp. (d) Estimation with f 2
S,µH

.

(e) Estimation with g1
S,µe f f

. (f) Estimation with f 1
S,µe f f

. Black lines are direct estimates, dashed lines give
the 95% prediction interval.
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Figure 8. Uncertainty in travel distance estimation for the Samperre cliff case study, measured by the
normalized standard deviation σ (see main body of the text). σ is computed by drawing randomly
the power laws coefficients (green bars), the residuals (orange bars), or both (blue bars). As each
estimation is the combination of two power laws, we consider uncertainties on the first power law
derived from empirical databases (middle bars), on the second power law that is derived for the
topography and simulation (right bars), or on both (left bars). (a) Estimation with f 1

emp. (b) Estimation
with f 1

S,µH
. (c) Estimation with f 2

emp. (d) Estimation with f 2
S,µH

. (e) Estimation with g1
S,µe f f

. (f) Estimation

with f 1
S,µe f f

.
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Table 2. Estimations of travel distance ∆L′ depending on destabilized volume V, following a power law ∆L′ = αVβ. We give the value of the exponent β along with
the standard deviation of its estimation σβ, and the normalized standard deviation σ of the prediction ∆L′ see (13) and (14). ¯∆L′ is the averaged predicted travel
distance for volumes between the minimum and maximum volumes used in the simulation databases, in each case study.

Methodology Empirical
Database Estimation Name Samperre Cliff Frank Slide Fei Tsui

¯∆L′ (m) β σβ σ ¯∆L′ (m) β σβ σ ¯∆L′ (m) β σβ σ

Empirical with µH only DB1 ∆L′ = f 1
emp(V) 1667 0.141 0.011 0.63 2908 0.064 0.005 0.24 57 0.092 0.007 0.37

DB2 ∆L′ = f 2
emp(V) 1994 0.143 0.008 0.61 3169 0.065 0.004 0.24 64 0.094 0.005 0.35

Empirical/
numerical

µS = µH
DB1 ∆L′ = f 1

SµH
(V) 967 0.329 0.011 0.42 2725 0.094 0.006 0.21 62 0.388 0.006 0.20

DB2 ∆L′ = f 2
SµH

(V) 1100 0.330 0.010 0.41 2940 0.095 0.005 0.21 66 0.389 0.005 0.19

µS = µe f f DB1 ∆L′ = f 1
Sµe f f

(V) 1027 0.313 0.011 0.32 2724 0.085 0.005 0.17 66 0.380 0.005 0.16

with µe f f only DB1 ∆L′ = g1
Sµe f f

(V) 1588 0.240 0.017 0.45 4486 0.283 0.010 0.35 92 0.392 0.007 0.18

Numerical Back-analysis n.a. ∆L′ = f f it
S (V) 1620 0.227 0.009 0.13 3245 0.037 0.004 0.07 63 0.335 0.004 0.03
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3.2.2. Frank Slide Case Study

The results for the Frank Slide case study are presented in Figure 9. The main conclusions are
similar to the Samperre case study. The direct empirical estimations predict correctly the observed
travel distance (Figure 9a,c). Using µH and µe f f as input values for µS in simulations, the observed
travel distance are under-estimated by at most a 15% (Figure 9b,d,f, compare blue rectangle and
black line).
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Figure 9. Travel distance estimated from volume for the Frank Slide case study. Blue rectangle:
estimations of volumes and travel distances for 1903 slide the documented event. (a–f), and symbols
are the same as for Figure 7.

However, on the contrary to the Samperre case study, the estimation gS,µe f f is significantly different
from the other estimations. It predicts a travel distance that is about twice the observed travel distance
(Figure 9e). The power law exponent β = 0.33 is also significantly different: we get only β = 0.065
for f 1

emp and f 2
emp, β = 0.1 for empirical/numerical estimations, and β = 0.045 for the back-analysis

estimation. Finally, gS,µe f f is associated with larger uncertainties, with σ = 0.35. It is even more
than the uncertainty for empirical estimations, σ = 0.24. As for the Samperre case study, the latter
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is improved by empirical/numerical estimations, though less significantly (σ = 0.21 for f 1
S,µH

and

f 2
S,µH

, and σ = 0.17 for f 1
S,µe f f

). Once again, the back-analysis estimation f f it
S yields the most precise

estimation, with σ = 0.07.
The analysis of uncertainty propagation (see Figure A3) yields similar conclusions as in the

Samperre case study.

3.2.3. Fei Tsui Road Case Study

The results for the Fei Tsui case study are presented in Figure 10. As previously, the direct
empirical estimations are coherent with observations (Figure 10a,c). The estimation f 1

emp, that uses
the database DB1, only slightly under-estimates the estimation by about 10%. When µe f f and µH are
used to estimate µS in numerical simulations, the observations are all well reproduced (Figure 10b,d,f).
To the contrary, the estimation with gS,µe f f over-estimates the real travel distance by 45%.
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Figure 10. Travel distance estimated from volume for the Fei Tsui Road case study. Blue rectangle:
estimations of volumes and travel distances for 1903 slide the documented event. (a–f), and symbols
are the same as for Figure 7.
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A major difference between the empirical estimations and other estimations is the value of the
power law exponent β. For f 1

emp and f 2
emp we compute β = 0.09, but we get β = 0.38 or β = 0.39

for empirical/numercial estimations. A similar value (β = 0.34) is derived for the back-analysis
estimation f f it

S .
Finally, as for the Samperre cliff case study, numerical simulations allow to reduce significantly the

estimation normalized standard deviation σ. When σ is more about 0.35 for empirical estimations, it is
reduced to less than 0.20 with empirical/numerical estimations (down to 0.16 with f 1

s,µe f f
). f f it

S yields
the smallest standard deviation, with σ = 0.03.

The analysis of uncertainty propagation (see Figure A4) yields similar conclusions as in the
Samperre and Frank Slide case studies.

4. Discussion

4.1. Uncertainty of Travel Distances Estimation

4.1.1. Uncertainty Reduction with Numerical Models

A major result of this work is that combining empirical estimations with numerical simulations
reduces the standardized standard deviation σ of estimations. The smallest uncertainty is derived by
using back-analysis and a constant friction coefficient, but it is difficult to quantify the uncertainty
on the best-fit friction oefficient µ

f it
S . As shown in [28], the extent to which it can be used for other

landslides is not clear, even considering similar volumes and propagation paths.
This reduction is all the more important as the volumes considered are small. By setting

µS = µ1
H(V) or µS = µ2

H(V) in ∆L′ = fS(V, µS), σ is reduced by 12.5% for the Frank Slide and
by 43% for the Fei Tsui Road case study. A similar trend is observed with µS = µ1

e f f (V) (reductions
by 29% and 54%, respectively). This can be directly correlated to the exponents of µ̃H in ∆L′(µ̃H),
whose absolute values are systematically higher than the exponents of µS in fS(V, µS) (see Table A1).
In turn, uncertainty on µH or µe f f results in less deviation in the final empirical/numerical estimations,
in comparison with the purely empirical estimation (see Appendix C).

We may argue that as the site-specific power laws do not always verify the hypotheses of OLS
regressions, the associated uncertainty estimation (and thus the observed reduction of uncertainty
afore-mentionned) is not relevant. However, the estimation of the coefficients of the power laws does
not depend on these hypotheses, such that the argument presented in the previous paragraph still
stands true. Besides, the residuals of the site-specific power laws are at most between −0.1 and 0.1
(in logarithmic scale), while they span range from −0.3 to 0.3 for the empirical power laws (compare
Figures A1 and A2). In turn, even if real uncertainty of site specific laws is higher than what we
estimate, it will still be less than the uncertainty associated with empirical, non site-specific power
laws. Thus, improving the quality of empirical/numerical travel distance estimations should be done
primarily by improving the quality of the empirical power laws.

4.1.2. Quality of Empirical Power Laws Uncertainty Related to Dispersion in Empirical Power Laws

Empirical laws can be improved by considering a database of landslides sharing similar
characteristics with the case study. For instance, if we construct DB2 by taking only the debris
flows, debris slides and debris avalanches from [3], we derive a new relations µH = µ2∗

H (V) with
R2 = 0.8 that can be used for the Fei Tsui Road case study (see Figures A5 and A6). As a result,
the standard deviation σ of the travel distance estimation f 2∗

emp is about 0.25. In comparison, we had
σ = 0.35 for f 2

emp (that is, when we included rockfalls and rock avalanches in DB2). However, removing
rockfalls and rock avalanches from DB2 also leads to a 15% over-estimation of the observed travel
distance (though it remains in the 95% prediction interval).

Although regrouping landslides by type may increase the quality of the fit, associated R2
hardly exceeds 0.9 (e.g., no more than 0.85 in [5], less than 0.5 in [8], less than 0.2 in [31], and less
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than 0.8 in [4]). In [3], combining both landslide types and geometrical characteristics of the
propagation (i.e., whether the landslide is laterally or frontally obstructed) allows to derive power
laws with R2 values between 0.65 and 0.92. Further improvements of the quality of empirical power
laws may demand to express more finely the characteristics of the topography upon which the
landslide propagates.

4.1.3. Topography Description in Empirical Power Laws Uncertainty Related to
Topography Description

To estimate more finely the travel distance in empirical relations, it may be worth using statistical
model that do not depend only on the volume. For instance in [31], a relation

∆L′ = a010a3CVa1 Ha2 × 10ε (15)

is derived from a database of rock avalanches, with R2 = 0.8. Here, C is an indicator variable with
C = 1 if lateral confinement is observed, and C = 0 otherwise. In comparison, with the same data,
they derive a power law µH = a0Va1 with R2 = 0.2 only. In our work, combining their data with the
data of [3] allows to increase the R2 to 0.68 because the resulting database DB2 spans a wider range
of volumes.

By estimating the probabilistic distribution of the residues ε in (15), it is then possible to estimate,
for a given topography and volume, the probability that the landslide goes further than a chosen point
M on the topography. This is done by considering the difference εM between the travel distance ∆L′M
associated with the point M, and the travel distance predicted by the power law:

εM = log10

(
∆L′M

a010a3CVa1 Ha2
M

)
. (16)

Then the probability that the travel distance ∆L′ exceeds ∆L′M, given a volume V, a drop height
HM and a confinement indicator C is:

P(∆L′ > ∆L′M) = P(ε > εM), (17)

which can be computed if the distribution of ε is known. This methodology could be applied in
our case: in particular, it allows to skip the derivation of the site-specific relation ∆L′ = ∆L′(µ̃H).
However, it should be adapted to consider the uncertainty on the power law coefficients, which was
not done in [31]. Besides, using the landslide drop height H as an explanatory variable may favor
multi-linearity, as H is correlated to V. For instance in [4], a power law H = a0Va1 with R2 = 0.7 was
derived for volcanic landslides.

A fine description of topography, as well as of the initial unstable mass, is also needed to estimate
empirically the friction coefficient µS of a given landslide. In our empirical/numerical methodologies
of travel distance estimations, we used µH and µe f f . The relevance of this choice is discussed in the
next section.

4.2. Are µH and µe f f Good Estimates of µS?

Comparison with empirical data in [5] shows a good correlation between µe f f and µS over a wide
range of volumes. This is not in exact agreement with our results, because we needed µS < µ1

e f f (V),

as well as µS < µ1
H(V) and µS < µ2

H(V), to reproduce the Samperre cliff collapse and the Frank
Slide, respectively. In simulations, when comparing µS to µ̃e f f and µ̃H (Figure 11), we find almost
systematically that µ̃H and µ̃e f f over-estimate µS by up to 30%. This is in agreement with results
of [29]. The only exception is the Fei Tsui Road case study where we have µ̃H < µS for V > 15, 000 m 3

(Figure 11e).
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Figure 11. µ̃e f f and µ̃H computed from simulations results, plotted against µS. (a) and (b) µ̃H against
µS and µ̃e f f against µS (respectively) for the Samperre case study. (c) and (d) µ̃H against µS and µ̃e f f
against µS (respectively) for the Frank Slide case study. (e) and (f) µ̃H against µS and µ̃e f f against µS

(respectively) for the Fai Tsui debris slide case study. Color scale gives the volume (in logarithmic scale)
of the simulation. The red dashed lines correspond to µH = µS and µe f f = µS.

As already discussed in the literature, e.g., [4,5,47,48], the Heim’s ratio µH can’t be considered as
a good proxy for the real basal friction coefficient of the landslide. Indeed, the reduction of µH with
increasing volumes results from real friction reduction (in the sense that a lower friction coefficient µS
is needed to model larger landslide) but also from purely geometrical effects. This is illustrated in our
simulations in the Samperre and Fei Tsui Road case studies: when the volume V is increased but µS
remains constant, µH is reduced (see Figure 11a,e).

This should be supposedly corrected for with µe f f whose expression (2) was derived analytically
to match µS [5]. However, though µ̃e f f is almost constant for various volumes and a given µS in the Fei
Tsui Road case study (Figure 11f), it increases with volume in the Frank Slide case study (Figure 11d),
but on the contrary decreases with volume in the Samperre case study (Figure 11b). This may be
explained by the fact that, for the Frank Slide case study, the increase of initial volume favors lateral
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spreading, such that in (2), the augmentation of the initial maximum thickness H0 is not compensated
by an augmentation of the travel distance along topography ∆L. The opposite happens in the Samperre
case study, where the landslide is laterally confined in a narrow ravine.

These results highlight the complexity of defining simple mobility estimations that can be
computed from landslide deposits and be used as proxys for the friction coefficient µS. In particular,
the description of topography is not easy. The analytical development leading to the definition of
µe f f in [5] was done for landslides on 1D planar surfaces (that is, on a 1D topography given by
a graph z = tan(θ)x). Thus, it does not take into account lateral spreading that can limit travel
distance: it has been observed empirically that lateral confinement increases travel distances [8,31].
Besides, the propagation of landslides on complex topographies with non constant slope is not
predicted either. In [5], the formal expression of µe f f is extended empirically to non constant slopes
by considering the average slope θ along the landslide path. As discussed previously, it proved to
yield conclusive results at the scale of the database, but it may not be precise enough when considering
forward prediction in a specific case study.

Indeed, when we try using µe f f directly to estimate travel distances (that is, with the function
∆L′ = gS(V, µ̃e f f )), we get somehow unstable results. Though the estimation is good for the Samperre
Cliff (Figure 7e), high uncertainties are obtained for the Frank Slide case study. In the latter case, the
dependence to volume seems also over-estimated in comparison with other estimations (Figure 9e).
Finally for the Fei Tsui Road case study, the observed travel distance is over-estimated by 45%.

Thus, further investigations are needed to try and derive formulas relating landslides deposits
and topography geometry to µS. This could be done by modeling the propagation of landslides on
synthetic topographies with, for instance, a slope break or an exponential profiles, and analyze the
correlations between µ̃H and µ̃e f f derived from simulations results, and µS.

Another possibility is to disregard empirical mobility estimations, and consider instead directly the
friction coefficient µS needed to reproduce each event from a database of at least, typically, 30 landslides,
which is necessary to evaluate correctly uncertainty. The resulting relation µS = µS(V) could be then
used directly in the function ∆L′ = fS(V, µS) derived from site-specific simulations. The systematic
back-analysis of mapped landslides has been done for instance in [49,50] but with the Voellmy rheology.
We could find only one example of such studies with the Coulomb rheology in [9], but for a small range
of volumes (between 0 and 10,000 m3) and 1D simulations (i.e., along profiles, not on real topographies).
Note that the relation µS = µS(V) may depend on the numerical code used to derive it: although
thin-layer models solve roughly similar equations, differences in equations (in particular related to
the description of internal stress) and numerical implementations can affect the results. For instance,
we found a best-fit friction coefficient µ

f it
S = tan(11◦) for the Frank Slide, but µ

f it
S = tan(14◦) is

obtained in [51], and µ
f it
S = tan(11◦) in [52]

In any case, a good estimation of µS is important, because it will influence the final estimation of
travel distance, and in particular the dependence to volume.

4.3. Dependence between Travel Distance and Volume

In our final estimations of travel distance ∆L′ = αVβ, the dependence to volume is measured by
β. It varies significantly depending on the methodology and on the case study. In empirical/numercial
estimations, β is increased in comparison with purely empirical estimations, all the more so as volumes
are small. For instance in the Frank Slide case study, the exponent β of empirical estimations f 1

emp and
f 2
emp is 20% below the exponent β of f 1

S,µe f f
(where we set µS = µ1

e f f (V)). In the Fei Tsui Road case
study, it is 75% below (see Table 2). This shows that µH does not model properly the influence of the
initial volume on the final travel distance, particularly for small landslides.

The influence of initial volume on travel distance is indeed all the more important as we consider
small landslides with limited travel distances. This is illustrated by comparing the exponents of
V and µS in the function ∆L′ = fS(µS, V) (see Table A1 and Appendix C). For the Fei Tsui Road
case study, volumes variations represents 20% of the total variance of travel distances, the rest being
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attributed to variations of µS. For the Samperre and Frankslide case studies, this proportion drops
down to 3.7% and 0.3%, respectively. This is not rendered in the empirical relations µ1

H(V) and
µ2

H(V), explaining why f 1
emp and f 2

emp under-estimate the dependance to volume in comparison with
empirical/numerical estimations.

These observations also explain why, in the Fei Tsui Road case study, the dependence to volume
are similar between the empirical/numerical estimations of travel distance and the purely numerical
estimations where we use the back-analyzed value µ

f it
S of µS. We have indeed β = 0.38 or β = 0.39

in the former estimations, and β = 0.34 for f f it
S , with a constant friction coefficient derived by

back-analysis. In comparison, for the Frank Slide case study, the exponent β in f f it
S is less than half

the exponent in f 1
S,µH

, f 2
S,µH

and f 1
S,µe f f

. Indeed, in this case, the travel distance depends mainly on the
friction coefficient µS, such that choosing a constant value of µS instead of a volume dependent value
has more impact than in the Fei Tsui Road case study.

These results may seem contradictory with empirical power laws ∆L′ = Femp(V) derived directly
from landslide databases. The exponent β varies between 0.25 and 0.39 in [4] and does not seem to
depend on the range of volumes considered. In [5], β = 0.22 for V < 106 m3, β = 0.28 for V > 108 m3

and β = 0.35 for all volumes. One possible explanation to the difference between these values and
the ones of our study is that, for the Frank Slide and Fei Tsui Road simulations, our initial unstable
mass were constructed by simply scaling the heights of the documented landslide to obtain different
volumes, without changing the scar geometry. Though it was shown that the initial scar geometry has
little influence on the landslide runout [53], it may be worth investigating more realistic initial settings.

However, our empirical estimations ∆L′ = f 1
emp(V) and ∆L′ = f 2

emp(V) also display exponents β

significantly different, between 0.06 and 0.13, whereas β > 0.2 for Femp. The discrepancies in volume
dependencies are thus not related only to numerical issues. It may rather be related to the fact that
f 1
emp and f 2

emp are site-specific relations, while Femp is not as it uses observations of V and ∆L′ on
different topographies. In turn, it may be possible that aggregating the observations of landslides on
various topographies yields an exponent β close to 0.33, as predicted by analytical results for landslides
propagating on constant slopes [5]. However, considering each topography separately may well result
in topography-specific values for β, different from 0.33.

5. Conclusions

In this work, we derived operational and site-specific power laws to predict the horizontal travel
distance ∆L′ of a landslide from its volume V. Such simple relations are indeed of prior importance for
landslide hazard assessment, in particular for crisis management when travel distance estimations must
be provided quickly by practitioners. We have compared three methodologies to derive such power
laws, using (i) a purely empirical approach, (ii) a database of simulations along with the back-analysis
of a documented event, and (iii) combining an empirical estimation of mobility with simulations.

We show that:

1. The best results, in terms of prediction uncertainty, are obtained with numerical estimations
of travel distances, with friction coefficient deduced from back-analysis. The standard
deviation of estimations is indeed less than half the standard deviation of empirical/numerical
estimations, and less than 30% the standard deviation of purely empirical estimations.
However, the uncertainty on the back-analysis results are asserted, to some extent, in a expert
way. In turn, comparison with other methodologies should be done with caution.

2. Combining numerical modeling with empirical estimations of µH and µe f f reduces the
uncertainty of estimation by about 50%, in comparison with purely empirical estimations.
The smallest uncertainties are obtained by using µe f f to estimate the simulation friction coefficient
µS. However, setting µS = µH or µS = µe f f results, in 2 out of the 3 tested case studies, in an
under-estimation of observed travel distances.
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3. When we relate the effective friction coefficient µe f f observed on real landslides, to the effective
friction coefficient µ̃e f f computed from simulations results, the resulting estimations of travel
distance displays large uncertainties (even larger than empirical estimates) and/or over-estimates
observations. This could be explained by the fact that the analytic expression of µe f f and µ̃e f f
was derived for constant slopes, such that their definition on complex topographies is not
straight-forward.

4. Numerical simulations allow to better characterize the respective influence of initial volume
and physical mobility (as measured with µS) on the final travel distance, for a given topography.
We show that for large landslide (i.e., for volumes > 1× 106 m3), the travel distance depends
mainly on µS, while for small landslide (i.e., for volumes < 5× 105 m3) the initial volume V has a
more prominent role. This is not rendered in empirical estimations of travel distances, for which
the dependence of travel distance to volume is under-estimated, all the more so as small volumes
are considered.

The milestone of our work is the construction of a simulation database, where various landslide
volumes, collapse geometries and mobilities are tested. The definition of the initial unstable masses
can be time consuming, especially when little information is available to constrain collapse geometries.
This aspect may be the main practical difficulty to tackle in the perspective of using our methodology
for operational hazard assessment, especially in a regulatory framework. Indeed, though the statistical
analysis of results must be interpreted with caution, its implementation can be automated to a large
degree. In comparison, the methodology for constructing initial geometries relies, at least to some
extent, on expert judgment. It must be easy enough to be reproducible and applied in a reasonable time,
but must also provide realistic collapse scenarios realistic enough. Further work, including applications
to other case studies, is needed to better constrain the right balance between these two requirements.
In any case, our study proves the relevance of using numerical simulations to improve empirical
estimations of travel distances for operational use.

In this work, we have used only power laws which are easy to manipulate, but other
non-parametric models, such as the General Additive Models, e.g., [54], could be used when linear
regression models are not valid. Further research should also focus on the estimation of the friction
coefficient µS to be used in simulations. This could be done by systematic back-analysis of a landslide
database, and/or by adapting the definition of landslide mobility indicators, such as µe f f , to take into
account the topography more precisely. However, we may expect that significant uncertainties will
remain, as a result of the partial knowledge we have in practice of the process at stake during the
landslide propagation. Thus, expert judgments are valuable to assess the representativeness of results.
The selection, evaluation and aggregation of such judgments, e.g., [55] could also help constrain the
estimation of runout.

To conclude, let’s note that the information in our simulation databases are greatly simplified for
the purpose of this study, as we focused only on the estimation of travel distances. However, we could
also extract thicknesses and dynamic pressure maps for various volumes as done for instance in
tsunami hazard assessment [56]. The quantification of spatial uncertainty is however difficult and
requires tools more complex than our simple power laws.
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Appendix A. Simulation Database for the Samperre Cliff Case Study

The Samperre cliff destabilizations occurred in several successive steps, such that the available
topographic surveys of March 2010, July 2010, January 2018 and August 2018 do not allow an exact
reconstruction of the destabilized volumes. The volume of the major 2009 cliff collapse was estimated
to 1× 106 m3 [39], but the scar geometry is unknown. Thus, we reconstruct empirically the initial
mass by scaling the difference between the March and July 2010 DEMs (before and after another major
destabilization episode) to obtain a 1× 106 m3, which is the estimated volume involved in the August
2009 collapse. The avalanche propagation is then modeled on the July 2010 DEM. Another documented
destabilization took place in January 2018. We estimate its volume at 1.5× 106 m3 from the difference
between the January 2018 DEM, and a synthetic reconstruction of the cliff in 2017 (constrained by the
cliff rim as observed on ortho-photographs). The resulting mass is propagated on the January 2018
DEM. We generate other initial geometries as follows:

• By taking the difference between the March and July 2010 DEMs. The resulting 2.1× 106 m3 mass
is propagated on the July 2010 DEM. It is also scaled uniformly to consider a smaller volumes
(250,000 m3).

• By taking the difference between the July 2010 and January 2018 DEMs, resulting in a 3.7× 106 m3

initial mass that is released on the Januray 2018 DEM. Three intermediate synthetic topographies
are also considered, yielding three other volumes (0.71× 106 m3, 1.8× 106 m3 and 3.5× 106 m3).

• By considering two possible future destabilizations on the eastern and northern side of the cliff
(1.9× 106 m3 and 0.5× 106 m3, respectively). The resulting avalanche is propagated on the August
2018 DEM.

Thus, we run simulations for a total of 10 initial volumes/geometries. Friction coefficients are
chosen between µS = tan(10◦) = 0.18 and µS = tan(15◦) = 0.27 every 1◦, and every 2.5◦ up to
µS = tan(35◦) = 0.70. This results in a total of 154 simulations. Note that the different DEMs on which
the simulations are run differ near the cliff as a result of its progressive retreat, but the Samperre river,
where the avalanches propagate, did not significantly vary. The DEMs are all re-interpolated to 5 m.
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Figure A2. Residuals VS predicted values for the different power laws deduced for each case
study. The axis scale is logarithmic. Each line refers to a case study, and each column to a law.
(a–c): ∆L′ = ∆L′(µ̃e f f ), ∆L′ = fS(V, µS) and ∆L′ = fS(V, µ̃e f f ), respectively for the Samperre cliff case
study. (d–f): ∆L′ = ∆L′(µ̃e f f ), ∆L′ = fS(V, µS) and ∆L′ = fS(V, µ̃e f f ), respectively for the Frank Slide
case study. (g–i): ∆L′ = ∆L′(µ̃e f f ), ∆L′ = fS(V, µS) and ∆L′ = fS(V, µ̃e f f ), respectively for the Fei
Tsui Road debris slide case study.
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Table A1. Results of the intermediate power laws. We give the coefficients along with the 95% confidence interval. We also indicate the adjusted R2 and the p-values
of the Harvey-Collier test (HC, linearity hypothesis), of the Jarque-bera test (J-B, normality of residuals hypothesis) and of the Breush-Pagan test (B-P, homoscedasticity
hypothesis). Low p-values (typically, less than 0.05) indicate that the hypothesis is not verified. The Variance Inflation Factor (VIF) measures colinearity between a1

and a2.

a0 a1 a2 B-P J-B R2 VIF

µH = µH(V) = 10a0 Va1

DB1 0.0691 ± 0.1107 −0.0875 ± 0.0135 n.a. 0.23 0.29 0.82 n.a.
DB2 0.0287 ± 0.0530 −0.0889 ± 0.0099 n.a. 0.20 0.18 0.68 n.a.

µe f f = µe f f (V) = 10a0 Va1 DB1 −0.0335 ± 0.0872 −0.0739 ± 0.0105 n.a. 0.98 0.83 0.84 n.a.

∆L′ = ∆L′(µ̃H) = 10a0 µ̃a1
H

Samperre 2.5291 ± 0.0128 −1.6113 ± 0.0328 n.a. 0.07 0.01 0.98 n.a.
Frank Slide 3.0274 ± 0.0069 −0.7345 ± 0.0120 n.a. 0.01 0.00 0.99 n.a.

Fei Tsui Road 1.4496 ± 0.0031 −1.0543 ± 0.0089 n.a. 0.99 0.00 1.00 n.a.

∆L′ = fS(V, µS) = 10a0 Va1 µa2
S

Samperre 1.1697 ± 0.1061 0.2275 ± 0.0172 −1.1557 ± 0.0317 0.40 0.00 0.97 1.00
Frank Slide 2.7682 ± 0.0566 0.0374 ± 0.0075 −0.6460 ± 0.0119 0.04 0.05 0.99 1.00

Fei Tsui Road 0.2373 ± 0.0347 0.3346 ± 0.0078 −0.6103 ± 0.0266 0.78 0.14 0.99 1.03

∆L′ = gS(V, µe f f ) = 10a0 Va1 µa2
e f f

Samperre 1.7719 ± 0.1751 0.1287 ± 0.0293 −1.5085 ± 0.0904 0.00 0.12 0.91 1.05
Frank Slide 1.4650 ± 0.1070 0.1872 ± 0.0133 −1.2926 ± 0.0446 0.01 0.30 0.97 1.08

Fei Tsui Road 0.3313 ± 0.0406 0.3407 ± 0.0097 −0.6919 ± 0.0442 0.02 0.12 0.99 1.01
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Figure A3. Uncertainty in travel distance estimation for the Frank Slide cliff case study.
(a–f), and symbology are the same as for Figure 8.
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Figure A5. Travel distance estimated from volume for the Fei Tsui Road case study, and a variation of
DB2 with only debris flows, debris avalanches and debris slides. The corresponding travel distance
estimations are marked with the super-script 2∗ . Notations are otherwise the same as in the main
body of the article. Green and blue rectangles: estimations of volumes and travel distances for the
2009 and 2018 collapses, respectively. Grey line: Numerical estimation from back-analysis ( f f it

S ),

with µS = tan(13.5◦) = 0.24µ
f it
S = tan(26◦) = 0.49. The grey area is the upper and lower limits of the

95% prediction intervals derived for µS = tan(13.5◦ ± 2◦). (a) Estimation with f 1
emp. (b) Estimation

with f 1
S,µH

. (c) Estimation with f 2∗
emp. (d) Estimation with f 2∗

S,µH
. (e) Estimation with g1

S,µe f f
. (f) Estimation

with f 1
S,µe f f

. Black lines are direct estimates, dashed lines give the 95% prediction interval.
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Figure A6. Uncertainty in travel distance estimation for the Fei Tsui Road cliff case study, and a
variation of DB2 with only debris flows, debris avalanches and debris slides. The corresponding travel
distance estimations are marked with the super-script 2∗ . Notations are otherwise the same as in the
main body of the article. (a–f), and symbology are the same as for Figure 8.

Appendix B. Power Law Derivation and Uncertainty Estimation

We use the statsmodel python package [57] to derive power laws, through Ordinary Least Square
(OLS) linear or multi-linear regressions [58]. Fitting a power law y = axb is indeed equivalent to fitting
a linear model log(y) = log(a) + b log(x) For µH = µ1

H(V), µH = µ2
H(V) and µe f f = µ1

e f f (V), a first
OLS regression is carried out and outliers (points whose residue have a Student p-value lower than
0.025) are removed. A new OLS regression is then carried out. The quality of the linear regression
is primarily given by the coefficients confidence interval and the adjusted R2. Note that a rigorous
estimation of uncertainty should take into account both the dispersion between the data and the
best-fit, and the uncertainty on the best-fit linear model coefficients. For instance, let’s assume we
have set of data (x1, ..., xn) (e.g., observed volumes) and (y1, ..., yn) (e.g., travel distances), for which
we want to derive a linear model of the form:
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yi = axi + b + εi, (A1)

where the εi are the residues. Then the OLS regression will find â and b̂ such that ∑ ε2
i is minimal. If the

residues have a normal distribution that does not depend on x or y, and are centered on 0, then for a
new value x?, we can derive a confidence interval around the best-fit estimate:

y? = âx? + b̂± tn−2sy, (A2)

where sy is the standard deviation of the residuals and tn−2 is a coefficient that depends on the number
n of observations and on the level of confidence. It is derived from the Student law with n− 2 degree
of freedom. However, such an interval does not take into account the uncertainty on the estimations â
and b̂ and thus has no real statistical meaning.

On the contrary, if we disregard the uncertainty on residues but consider the uncertainty on
coefficients, we derive the confidence interval:

y? = âx? + b̂± tn−2sy

√
1
n
+

(x? − x̄)2

(n− 1)s2
x

, (A3)

where x̄ is the mean of the xi, and s2
x their estimated variance. This interval has a given probability

(e.g., 95%) of containing ax? + b, where a and b are the "real" coefficients (remember the OLS regression
provides only estimations â and b̂). Note that the interval is all the more large as x? is further away
from the samples xi.

If we now combine the uncertainty on the coefficients estimation and the dispersion of the data
around the best fit, we get the prediction interval:

y? = âx? + b̂± tn−2sy

√
1 +

1
n
+

(x? − x̄)2

(n− 1)s2
x

. (A4)

The resulting interval has a given probability of containing the real value y? = ax? + b + ε?

estimated with the real coefficient a and b and taking into account a residue ε? that follows a centered
normal law with standard deviation sy.

The previous formulas are derived for simple linear regressions but can be extended to multi-linear
regressions. However, the derivation of confidence and prediction intervals for nested linear fits (that is,
when the prediction of a linear model is used as input of another linear model) is not straight-forward.
Thus, we derive them numerically by computing 1,000 4,000 estimations: the coefficients and/or the
residues of the successive linear models are drawn randomly following normal laws whose parameters
are given by the OLS regression results. To get for instance a 95% interval, we then identify the 2.5th
and 97.5th percentiles.

If we consider for instance the empirical estimation of travel distance ∆L′ = f 1
emp(V), it uses

successively two power laws:

µ̃H = 10α1 Vβ1 × 10ε1 , (A5)

∆L′ = 10α2 µ̃
β2
H × 10ε2 , (A6)

where α1, β1, α2, β2 are coefficients estimated by the regression and ε1 and ε2 are residues. The total
uncertainty (i.e., prediction interval) for a given volume is obtained with random draws on α1, β1, α2,
β2, ε1 and ε2. We can also consider only the best-fit values of the power laws coefficients and draw
only ε1 and ε2, or to the contrary disregard dispersion and draw only α1, β1, α2 and β2. Finally we
can distinguish between the uncertainties specific to each power law by drawing only α1, β1 and ε1,
or only α2, β2 and ε2.
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The previous methodology can be deemed to represent correctly real uncertainties only if certain
conditions are met:

• There is indeed a linear relation between the input (x) and output values (y). This can be
verified with the Harvey-Collier test that evaluates to what extent the slope ofthe linear regression
changes when data points are recursively added. In practice, we could not implement this test in a
satisfactory manner, because results proved to depend strongly on the order in which points were
added. Thus, we evaluate linearity graphically with the graph of residuals: if they have concave
or convexe shapes, then the hypothesis of linearity can be questionned (Figures A1 and A2).

• The residuals have a normal distribution. This is can be verified with the Jarque-Bera test.
• The residuals are homoscedastic: they do not depend on the value y predicted by the linear model.

In other words, the dispersion between the linear fit and the predicted value is the same for all
predicted values. Graphically, this means the scatter plot of residuals against predicted value
does not have a cone shape. This is quantitatively assessed with the Breush-Pagan test.

• For multi-linear regressions, the explanatory input variables are not linearly related. This can be
assessed by computing the Variance Inflation Factor (VIF) for each associated coefficient. High VIF
(typically above 5 or 10) indicate strong linear correlations

Appendix C. Propagation of Uncertainty in Power Laws

Let’s consider a power law that was derived with OLS regression.

z = axbyc. (A7)

We want to quantify how uncertainties on x and y will impact the estimation of z. In a first
approximation (that is, without considering the uncertainty on the estimation of a, c and c), this can be
done by considering the first order development:

(1 + α)γ ' 1 + γβ (A8)

that stands true if α � 1. In turn, if we consider small relative variations εx and εy of, respectively,
x0 and y0, we compute the first order approximation:

a ((1 + εx)x0)
b ((1 + εy)y0

)c ' axb
0yc

0(1 + bεx)(1 + cεy), (A9)

' z0(1 + bεx + cεy), (A10)

where z0 = axb
0 + yc

0. If we now assume εx and εy follow some uncorrelated random laws with known
variances V(εx) and V(εy), the ratio Rx of the variance of the error on z linked to error on x, over the
total variance of the error on z, is:

Rx =
V(bεx)

V(bεx + cεy)
=

b2V(εx)

b2V(εx) + c2V(εy)
. (A11)

If we further assume V(εx) = V(εy), we get:

Rx =
b2

b2 + c2 (A12)

Similarly, we derive:

Ry =
c2

b2 + c2 (A13)
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