
1.  Introduction
The propagation of rapid gravity-driven flows (Iverson & Denlinger, 2001) occurring in mountainous or 
volcanic areas is a complex and hazardous phenomenon. A wide variety of events are associated with these 
flows, such as rock avalanches, debris avalanches and debris, mud or hyper-concentrated flows (Hungr 
et al., 2014). The understanding and estimation of their propagation processes is important for sediment 
fluxes quantification, for the study of landscapes dynamics. Besides, gravity-driven flows can have a sig-
nificant economic impact and endanger local populations (Hungr et al., 2005; Petley, 2012; Froude & Pet-
ley, 2018). In order to mitigate these risks, it is of prior importance to estimate the runout, dynamic impact 
and travel time of potential gravitational flows.

This can be done empirically, but physically based modeling is needed to investigate more precisely the 
dynamics of the flow, in particular due to the first-order role of local topography. Over the past decades, 
thin-layer models (also called shallow-water models) have been increasingly used by practitioners. Their 
main assumption is that the flow extent is much larger than its thickness, so that the kinematic unknowns 
are reduced to two variables: the flow thickness and its depth-averaged velocity. The dimension of the 
problem is thus lower, allowing for relatively fast numerical computations. The first and simplest form of 
thin-layer equations was given by Barré de Saint-Venant (1871) for almost flat topographies. The 1D for-
mulation (i.e., for topographies given by a 1D graph Z = Z(X)) for any bed inclination and small curvatures 
was derived by Savage and Hutter (1991). This model has since been extended to real 2D topographies (i.e., 
given by a 2D graph Z = Z (X, Y)). Some of the software products based on thin-layer equations are currently 
used for hazard assessment to derive, for instance, maps of maximum flow height and velocity. Examples 
include RAMMS (Christen et al., 2010, 2012), 3d-DMM (GEO, 2011; Law et al., 2017), DAN3D (McDougall 
& Hungr, 2004; Moase et al., 2018) and FLO-2D (O’Brien et al., 1993). A non-exhaustive overview of some 
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existing models used for field scale modeling is given in Table 1. Yavari-Ramshe and Ataie-Ashtiani (2016) 
and Delannay et al. (2017) give a more comprehensive review of thin-layer models. Current research fo-
cuses include modeling of multi-layer flows (Fernández-Nieto et al., 2018; Garres-Díaz et al., 2020), bed 
erosion along the flow path (Bouchut et al., 2008; Hungr, 1995; Iverson, 2012; Pirulli & Pastor, 2012) and the 
description of two-phase flows (e.g., Bouchut et al., 2015, 2016; Iverson & George, 2014; Pastor et al., 2018b; 
Pudasaini, 2012; Rosatti & Begnudelli, 2013).

In addition to the complexity of choosing realistic constitutive equations to model the flow physical prop-
erties, there is also a purely methodological difficulty in deriving the thin-layer equations for a complex 
topography, with acceleration forces arising from the curvature of the topography. Their influence in 1D 
thin-layer models was investigated by Hutter and Koch  (1991), Greve and Hutter  (1993) and Bouchut 
et al. (2003). Koch et al. (1994) investigated curvature effects for unconfined flows on simple 2D topogra-
phies. Their work was completed by Gray et al. (1999) and Wieland et al. (1999) for channelized flows in 
straight channels. Later on Pudasaini and Hutter (2003) and Pudasaini et al.  (2003) considered flows in 
curved and twisted channels. The generalization of curvature forces to general topographies was done by 
Bouchut and Westdickenberg (2004), Luca et al. (2009b) and Rauter and Tukovic (2018). To our knowledge, 
only one study focused on quantifying curvature effects in simulations on general topographies: Fischer 
et al. (2012) showed curvature terms have a substantial effect for model calibration. However, they focused 
on curvature terms in the bottom friction and did not consider other curvature terms that are independent 
from the chosen rheology.

In this work, we aim at quantifying more generally and precisely the influence of curvature terms in 
depth-averaged thin-layers simulations. This is important for practitioners using thin-layers models: we 
will identify situations (in terms of topographic settings and rheological parametrization) where curva-
ture effects may significantly impact their simulation results, and thus are worth taking into account for 
hazard assessment. We focus on the modeling of single-phase incompressible flows, with an Eulerian 
description. We also disregard bed erosion and internal friction. The resulting equations may be over-sim-
plified in comparison to the physical processes at stake in real geophysical flows. However, such equations 
are now widely used to simulate debris flows, debris avalanches and rock avalanches (Hungr et al., 2007; 
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Model name Numerical scheme Bed erosion Two-phase flows References

MassMov2D Finite differences – – (Beguería et al., 2009)

Flo-2D – – (O’Brien et al., 1993)

Volcflow x – (Kelfoun & Druitt, 2005)

SHALTOP Finite volumes – – (Bouchut & Westdickenberg, 2004; 
Mangeney et al., 2007)

RAMMS x – (Christen et al., 2010)

RASH3D x – (Pirulli et al., 2007; Pirulli & 
Pastor, 2012)

r.avaflow x x (Pudasaini, 2012; Mergili et al., 2017)

GeoClaw – – (Berger et al., 2011; LeVeque 
et al., 2011)

D-Claw – x (Iverson & George, 2014; George & 
Iverson, 2014)

Titan2D – x (Patra et al., 2005; Pitman & Le, 2005)

TRENT-2D – x (Armanini et al., 2009; Rosatti & 
Begnudelli, 2013)

DAN3D SPH (Smoothed Particle Hydrodynamics) x – (McDougall & Hungr, 2004)

GeoFlow_SPH x x (Pastor et al., 2009b, 2018b)

3d-DMM x – (Kwan & Sun, 2007; Law et al., 2017)

Table 1 
Non Exhaustive List of 2D Thin-Layer Models Used at the Field Scale
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Pastor et al., 2018a). Thus, we deem important to assess quantitatively 
the importance of curvature terms for field applications. However, we 
acknowledge that it goes along with major uncertainties on the rheology 
and rheological parameters needed to reproduce correctly real gravity 
flows.

In the following section, we present the depth-averaged thin-layer equa-
tions for flows on complex topographies. We detail the derivation of two 
curvature terms: one that does not depend on the rheology and the other 
appearing in the bottom friction when a frictional rheology is used. We 
also introduce the SHALTOP numerical model (Mangeney et al., 2007) 
and its modified version without curvature forces, that will be used to 
carry out simulations. The curvature terms will be formally analyzed 
and compared to previous studies in Section 3. Then, in Section 4, we 
illustrate for synthetic topographies the importance of taking into ac-
count curvature forces. Finally, in Section 5, we consider two real Digital 
Elevation Models, with a non-viscous debris flow in the Prêcheur riv-
er (Martinique, French Caribbean) and a potential massive debris ava-
lanche from the Soufrière de Guadeloupe volcano (Guadeloupe, French 
Caribbean).

2.  Modeling Approach Using Thin-Layer Equations
Thin-layer equations model the propagation of a thin layer of fluid following the topography. As opposed to 
full 3D models, thin-layer models no longer simulate the movement of each solid or fluid element. Instead, 
they integrate their dynamics over a column of fluid in the direction normal to the topography and consider 
the mean flow velocity over this column. Although the resulting equations are relatively simple, their rigor-
ous derivation is not straight-forward. As a matter of fact, the momentum and mass equations must first be 
written in a reference frame that allows a convenient integration. Its mere definition is difficult, not to men-
tion the expression of the constitutive equations in the resulting coordinate system. In Text S1, we describe 
into details how curvature terms appear in the thin-layer equations derivation in Bouchut and Westdick-
enberg (2004). In the following, we will only present the chosen parametrization and the final equations.

2.1.  Mass and Momentum Equations and Boundary Conditions

Most thin-layer models are based on the incompressible mass and momentum equations

         
   ( ) ,t X XU U U g� (1)

  


0,X U� (2)

where 

g is gravity and σ the Cauchy stress tensor normalized by the flow density. 


( , , )X X Y Z  is the Car-

tesian coordinate system associated with the orthonormal base 
  ( , , )X Y Ze e e . In the following we will write 

  2( , )X YX   for the horizontal coordinates. In the following, 3D vectors will be identified by an arrow 
and 2D vectors will be in bold. For instance,  

 
( ) ( , , ) ( , )X Y Z ZU X U U U UU  gives the components of the 3D 

velocity field in the Cartesian reference frame.  
X is the gradient operator.

The base of the flow matches the topography and is given by a 2D surface Z = b(X), with upward unit nor-
mal vector n (Figure 1a for 1D topographies, Figure 1b for 2D topographies),

   
       

 , ,1 , ,b bn c c
X Y

s� (3)

with
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Figure 1.  (a) Topography and flow description, for a 1D topography Z = b 
(X). The orange area is the flow region, with thickness h in the direction 
normal to the topography. (b) 2D topography Z = b (X, Y) description, 
with reference frames commonly used in the literature to derive thin-layer 
equations. Red arrows: Cartesian reference frame. Blue arrows: topography 
normal unit vector. −s: main slope horizontal direction. All other arrows 
are in the topography tangent plane (blue plane). Green arrows: Christen 
et al. (2010). Dashed gray arrows: Mangeney-Castelnau et al. (2003). 
Orange arrows: Iverson and George (2014).
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 


   
1

2 2cos( ) 1 ,c bX‖ ‖� (4)

  ,c bXs� (5)

where θ is the topography steepest slope angle. Along with boundary conditions detailed in Text S1, a consti-
tutive equation for the stress tensor σ is needed to close the problem. The latter can be divided into pressure 
and deviatoric parts, namely

   3,pI� (6)

with σ′ the deviatoric stress tensor, p the pressure field (devided by the flow density) and I3 the identity 
matrix. For scale analysis and to allow for a rigorous mathematical derivation, Bouchut and Westdicken-
berg (2004) chose a Newtonian approach with a linear stress constitutive equation

       
 

( ) ,t
X XU U� (7)

with ν the kinematic viscosity, that is assumed to be small (see Text S1). They furthermore imposed a friction 
boundary condition at the bed

         


      ( ) ,Un n n n n n
U‖ ‖

� (8)

where μ = tan (δ) is the friction coefficient and δ is the friction angle. The key point here is the transforma-
tion of the equations in a convenient reference frame, in which they can be integrated.

2.2.  Coordinate System and Reference Frame

The simplest way to derive the thin-layer equations is to use Cartesian coordinates and integrate the Na-
vier-Stoke equations along the vertical direction (Barré de Saint-Venant, 1871; Berger et al., 2011; Pitman 
et al., 2003). This is done in particular to model the propagation of tsunamis because the wavelength of 
waves is small in comparison to the water vertical depth and the main driving forces are horizontal pressure 
gradients (e.g., Berger et al., 2011; LeVeque et al., 2011). On the contrary, the shallowness of landslides prop-
agating on potentially steep slopes must be regarded in the direction normal to the topography. Moreover, 
the flow velocity is (at least for a first approximation) tangent to the topography. Thus the velocity in the 
normal direction is small. In order to translate this properly it is appropriate to write these equations in a 
reference frame linked to the topography with one vector in the direction normal to the topography. In Fig-
ure 1b, we give some reference frames used in previous studies. A proper definition is of prior importance, 
as the reference frame varies spatially. Spatial differential operators in the flow equations, with respect to 
this reference frame, will thus describe the spatial variations of the fluid thickness and velocity as well as 
the variations of the reference frame itself.

In order to characterize these variations, a functional relation must be found to relate the new coordinates to 
the Cartesian coordinates, from which the spatial derivative operators in the new reference frame can be de-
duced. It is therefore somehow more natural and mathematically simple to first define the new coordinate 
system and to derive the associated reference frame, instead of the contrary. With this method, the reference 
frame may not be orthonormal but this does not entail any loss of generality or accuracy compared to mod-
els using an orthonormal reference frame.

The most straightforward way to localize a point M above the topography is to consider its projection M′ 
on the topography, along the direction normal to the topography (Figure 2a). The point M, which has coor-
dinates 


( , , )X X Y Z  in the Cartesian reference frame, can then be localized with a new set of coordinates 

(x1, x2, x3): (x1, x2) = x are the horizontal coordinates of M′ in the Cartesian reference frame and x3 = MM′ 
is the distance to the topography (Figure  2a). Provided we remain in a sufficiently small neighborhood 
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above the topography, this new coordinate system is non-ambiguous: one (and only one) triplet (x1, x2, x3) 
can be associated with any point in this neighborhood and vice-versa. More formally, the link between the 
Cartesian coordinates 


( , )X ZX  and the new coordinates  


1 2 3 3( , , ) ( , )x x x x xx  of a same physical point 

is given by

 
     




 

  
3 3 3( , ) ( , ) ( ).

( )
Z X x M x n x n

b
x

X x xx� (9)

As previously, 
 ( )n n x  is the unit upward vector normal to the topography. The same coordinate sys-

tem was used by Bouchut et al.  (2003) for 1D topographies and Bouchut and Westdickenberg (2004) 
and Luca et al. (2009b) for 2D topographies. A more general formulation with a curvilinear coordinate 
system x = x(ξ) is presented in Bouchut and Westdickenberg (2004). For instance, for 1D topographies, 
we can choose to locate M′ by its curvilinear coordinates along the topography, instead of its Cartesian 
X-coordinate (Savage & Hutter, 1991). For simplicity, we shall keep the Cartesian coordinate system to 
locate M′. However, this does not limit in any way the type of topographies that can be described in the 
model.

The reference frame 
  
1 2 3( , , )e e e  associated with the new coordinates 


1 2 3( , , )x x x x follows coordinate lines, so 

we obtain, with the Einstein notation

   
    

1 1 2 2 3 3.i idX e dx e dx e dx e dx� (10)

We therefore have, for instance,  


1 1xe X . In this base, the velocity field has coordinates 
 


1 2 3 3( , , ) ( , )V V V V VV , such that (Figure 2b)

     
      

1 1 2 2 3 3.X X Y Y Z ZU U e U e U e V e V e V e� (11)
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Figure 2.  Notations and reference frames for the thin-layer equation derivations. (a) Coordinates of a material point 
M in the Cartesian reference frame 

  
( , , )X Y Ze e e  (red arrows) are given by (X, Y, Z) and by (x1, x2, x3) in the topography 

reference frame 
  
1 2 3( , , )e e e  (blues arrows). M′ is the projection of M on the topography: it has Cartesian coordinates (x1, 

x2, b (x1, x2)). 

e

3
 is the unit normal vector to the topography and 


1e , 


2e  are the projections parallel to 


Ze  of 


Xe  and 


Ye  on 

the plane tangent to the topography (blue feature). (b) Parametrization of the physical velocity 


U  of a material point in 
the topography reference frame. (c) Parametrization of the physical average velocity 


 of the flow. 


 is tangent to the 

topography and is parametrized in the Cartesian reference frame (red) and in the topography reference frame (blue).
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We can show (see Text S1) that 
 
3e n and thus that V3 is the topography normal component of the velocity 

(Figure 2b).

Note that in the previous equation, 


U  must be seen as the physical 3D velocity of the fluid, in the sense that 

 


U U U U
X Y Z

   2 2 2

1

2  is the real velocity. In comparison, 


V  is only a parametrization of the velocity field. 
In particular, as the topography reference frame is in general not orthonormal, we have

   
 

V V V V U    
1

2

2

2

3

2

1

2 .� (12)

It is not straightforward to replace 


U  by 


V  in the Navier-Stokes equations. This derivation can be found 
in (Bouchut & Westdickenberg, 2004), or in (Luca et al., 2009b) with a different formalism. However, the 
resulting equations can be significantly simplified with the thin-layer approximations. In the following, we 
simply give the final thin-layer equations and analyze the resulting curvature terms. More details on the 
formal derivation and hypotheses are given in Text S1.

2.3.  Thin-Layer Equations

In the thin-layer approximation, we describe the dynamics of a fluid layer with thickness  h X . We assume 
this thickness to be small in comparison to the flow extent. Its physical depth-averaged velocity 


 is tangent 

to the topography and thus can be written in the topography frame

 
  

1 1 2 2V e V e� (13)

and has coordinates 3( , )   in the Cartesian coordinate system. We can show (see Text S1) that it is written 
in the Cartesian reference frame:

  
   

1 2
1 t

X Y ZV e V e e
c

s V� (14)

We show that 
1 1V e  and 

2 2V e  are respectively the projections of 
1 XV e  and 

2 YV e , on the topography-tangent 
plane, parallel to 


Ze  (Figure 2c).

The resulting equation for  1 2( , )V VV  is given by

       

 



  
t

t

t

I g hc b

gc

c

c b

V V V ss

V

V

V V s

x x

xx

2

( ) ( ) ( )

( )

2

2 1



ss V

V V
xx

2

t

t
b

g























2

1
( )

.� (15)

Two curvature terms, involving 2 bxx , appear in Equation  15. One does not depend on the rheology 
(first term, in red, in Equation  15) and the other is included in the friction force (last term, in blue, 
in Equation 15). These terms arise from the expression of the pressure at the bottom of the flow (see 
Text S1). They will be interpreted in Section 3. Note that Equation 15 is equivalent to Equation 9.32 in 
Luca et al. (2009b). The viscosity   does not appear in Equation 15, because we chose it to be negligible, 
which allows for a rigorous mathematical derivation. To our knowledge, there exist no formal derivation 
of thin-layer equations with nonnegligible viscosity, a no assumption on the velocity profile, on general 
topographies.

The mass equation does not entail any curvature term. With the same formalism as in our development, 
Bouchut and Westdickenberg (2004) show that it reads:
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   
       
   

0.t
h h
c cx V� (16)

2.4.  The SHALTOP Numerical Model

In order to investigate the influence of curvature forces in numerical simulations, we use the SHALTOP nu-
merical model (Mangeney et al., 2007). It has been used to reproduce both experimental dry granular flows 
(Mangeney et al., 2007) and real landslides (Brunet et al., 2017; Favreau et al., 2010; Lucas & Mangeney, 2007; 
Lucas et al., 2011, 2014; Moretti et al., 2015, 2020b; Peruzzetto et al., 2019). We choose not to compare SHAL-
TOP to another code that would not describe precisely the topography effects. We would not be able to tell 
whether discrepancies in results originate from curvature effects or, for instance, from the different numeri-
cal scheme. A proper benchmarking exercise would be needed, but is beyond the scope of this work. Instead 
we shall use the same code, but modify it in order to reflect several approximations or remove the curvature.

In SHALTOP, the flow equations are written in terms of the variable  / cu V . This parametrization will be 
discussing later on. The corresponding momentum equation is:

 

   
 



       

 
      

 

2 2

22 2

1( ) ( ) ( )

1 1 ( )1 .

t
t

t
t t

t

c Id g hc b
c

gc c b
c c g

c

x x

xx

u u u ss

u u uu u s s u u
u s u

 
‖ ‖

� (17)

with curvature terms colored as in Equation 15. SHALTOP solves the conservative form of Equation 17 with 
a finite-volume numerical scheme (see Mangeney et al. [2007]).

We will show in Section 3.1 that the curvature force (first two terms on the right-hand side of Equation 17) 
ensures the velocity remains tangent to the topography at all time. Thus, to model this effect, a tangent 
transport is applied (e.g., Knebelman, 1951). Considering the physical velocity 


( , )tcu s u  in one cell with 

topography normal vectors n, the transported velocity 

  in a neighboring cell with normal vector 


n  is 

computed with:

 



 
  






  1
n n n

n n


 � (18)

Since the curvature force involves the slope variations, for real data with small scale variations it is often 
necessary to slightly smooth the topography to avoid numerical instabilities. Indeed, when the topography 
radius of curvature is smaller than the flow thickness, lines normal to the topographies can cross within the 
flow. In turn the coordinate system defined in Equation 9 is ambiguous: several coordinates (x1, x2, x3) can 
be associated to a single physical point. Remark 12 of reviewer 3.

In SHALTOP, the friction coefficient μ can be a function of the flow thickness and velocity. We can thus 
change the expression of the bottom stress T as in other classical rheologies. For instance, in the semi-em-
pirical Voellmy rheology (Salm, 1993; Voellmy, 1955), the bottom stress reads:

   


  

 2
2( ) ,T h gc g ‖ ‖

‖ ‖


� (19)

with ρ the material density, γ the curvature along flow path (see next section for its computation) and ξ the 
turbulence coefficient. In numerical experiments (Sections 4 and 5), we will consider both the Coulomb and 
the Voellmy rheology that are classically used for field application due to the small number of parameters 
involved while being able to reproduce first order observations (e.g., Hungr et al., 2007; Lucas et al., 2014; 
McDougall, 2017).
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3.  Formal Analysis of Curvature Terms
3.1.  Interpretation of Curvature Terms

The curvature terms appearing in the derived thin-layer equations can be interpreted as acceleration forces 
in the non-Galilean reference frame linked to the topography. This appears more clearly when we write the 

depth-averaged equations for the 3D velocity 

, in the Cartesian reference frame:

      
    

( ) ,t gF F FX   � (20)

with

 
    
 
 


( ( )),

t

g t

Id
F g hc b

c X
ss

s
� (21)

  
  2

2
1( ) ( ) ,t tF c b n n
c

XX    � (22)






 
    

 




2( )1 ,
tgc bF

g
XX  

‖ ‖
� (23)

where  3 2c bXX  is the curvature tensor. 

gF  represents the gravity and lateral pressure forces, 


F  is the 

friction force and 

F is the curvature force.

For a material point advected by the velocity field 

, we can compute

             
     ( ) ( ) ( )t

d n n n
dt X X     � (24)

� (25)

In the right-hand side of Equation 24, we can use Equation 20. As    
   0gF n F n  and   

  2tF n c bXX  , 
Equation 24 becomes

 
 ( ) 0.d n

dt
� (26)

In other words, the curvature force 

F ensures that the flow velocity remains parallel to the topography, 

that is,  
  0n . This force is normal to the topography and thus to the velocity and does no work: in the 

absence of gravity and friction, the material point would be advected on the topography at constant kinetic 
energy. Note that this acceleration force is still present, though the equations are written in the fixed Carte-
sian coordinate system: that’s because they arise in the intermediate step where the momentum equations 
are integrated in the direction normal to the topography. The Lagrangian form of Equation 20 provides a 
direct expression of the curvature along a flow path. As a matter of fact, if M(t) is the position of a material 
point, we have

 
M t( ) , � (27)

    
  ( ) .tM t X  � (28)

From classical analytical geometry results and using Equation 20, the curvature of the topography along a 
flow path, γ, is thus given by

  



 

 
M M

M

c

b
t

3

2

2

 



XX
.� (29)

        
t

t

n c b

  
    ( ) .

X XX

2
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In the previous equation, we used Equations 28 and 20, and the fact that 

F is the only force which is 

not colinear to the velocity 


M   : other terms are canceled by the cross product operation. γ is positive 
for a convex topography and negative otherwise. We thus obtain the classical expression of a centripetal 
force

  
  2 2( ) .tF c b n nXX   ‖ ‖� (30)

Note however that as for any acceleration force, the expression of the curvature force depends on the veloc-
ity parametrization. In the topography reference frame 

  
1 3 3( , , )e e e , the velocity components are given by 


V . 

Provided we impose V3 = 0, Equation 15 describes the evolution of the 2D velocity field V along the topog-
raphy. The curvature force in this reference frame is exactly

   2( ) .tc bXXF V V s
V� (31)

F
V  has the direction of the main slope and can have a non-zero power (   0F

V V ). As a matter of fact, 
in the absence of gravity and friction, the kinetic energy must remain constant, however it is given by 



2 2 1
 









V s V

c

t  and not by 2V‖ ‖  which is not constant, explaining why the curvature force has a 

non-zero power in the topography reference frame.

3.2.  Comparison with Previous Studies

3.2.1.  Friction Force

If we use Equation 30 in Equation 23 to introduce the curvature along flow path γ in the friction force, we 
get

 
 


  

 
 2 ,F gc




‖ ‖
‖ ‖

� (32)

This is the classical expression of the friction force. In 1D (for b  =  b(X)), the derivation of γ is simple. 
Thus, most 1D thin-layer models (e.g., Savage & Hutter, 1991) include the curvature in the friction force. 
As shown in the previous section, the computation is less self-evident for real 2D topographies (b = b (X, 
Y)), in particular because the flow path must take into account velocity variations (see Text S2). The curva-
ture term in the friction force is thus either neglected (O’Brien et al., 1993) or approximated. For instance, 
Pitman et al. (2003) use the curvature in the X and Y directions in the momentum equations for VX and VY 
respectively. We could find only one reference (found in Fischer et al. [2012]) to the exact curvature expres-
sion mentioned above with a different numerical model than SHALTOP (that is based on the thin-layer 
equations derived previously). However, it is also possible to implicitly take into account this curvature by 
solving the equations for the pressure at the bottom of the flow, in addition to the flow thickness and veloc-
ity (Rauter & Tukovic, 2018, see next section).

If the curvature γ is positive, we see from Equation 32 that neglecting the curvature decreases the bottom 
friction and accelerates the flow. The opposite effect is expected if γ is negative. On non-flat topographies, 
we can expect the flow to propagate on gradually decreasing slopes, at least in a first approximation. For 
instance, the longitudinal cross-sections of volcanoes are often modeled with an exponential fit (e.g., Kel-
foun, 2011; Levy et al., 2015; Mangeney-Castelnau et al., 2003). The topography is thus “globally” convex 
and the curvature is positive at most points. Without the curvature term in the friction, we can thus expect 
landslides to go further than in the model including curvature.

The effect of approximating the curvature depends of course on the chosen approximation. In Text S2, we 
analyze these effects in some examples. In particular, we can compute the curvature along topography in a 
straight direction given by the local velocity, that is, without taking into account changes in direction. If the 
flow is not moving in the main slope direction, then the curvature term will be over-estimated.
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The numerical code Volcflow uses the following approximation (Karim Kelfoun, personal communication),

     
x y

| cos( ) | | sin( ) |,� (33)

where α is the angle between the horizontal component of the velocity and the X-axis. In our study, we shall 
test the approximation

     2 2cos ( ) sin ( ),x y� (34)

which is a more classical weighting as      2 2cos sin 1. In both cases, the model is no longer invariant 
by rotation. For instance, in the case of a flow confined to a channel, we show in Text S2 that both approxi-
mations entail a deceleration of the flow in most realistic cases. When the channel is aligned with in the X or 
Y axes, the deviation from the exact equations is null, but significant differences can be expected otherwise. 
As the two previous approximations have similar effects, we will test only the second in the following. The 
effects of neglecting or approximating the curvature with Equation 34 will be assessed in simulations in 
Sections 4 and 5.

3.2.2.  Curvature Force

The first detailed derivation of thin-layer equations for complex topographies was carried out by Savage and 
Hutter (1991) on 1D topographies. The curvature tensor  was reduced to a scalar κ, the curvature of the 
topography graph Z = b(X). The curvature term is present in their final expression of the friction force, but 
no curvature force appears. That is however expected, given their parametrization. They use a curvilinear 
coordinate system (ξ, η), with η the distance from the topography (our coordinate x3) and ξ the curvilinear 
coordinate along the topography graph. The associated orthonormal base is composed of the topography 
tangential vector 


T  and of the topography normal vector n. To be consistent with Savage and Hutter (1991), 

let us choose the new parametrization

 .
c
Vu� (35)

This is equivalent to changing our topography reference frame to 
     
1 2 3 1 2 3( , , ) ( , , )i i i ce ce e , such that in 1D, 


1i  is 

the downslope unit vector and 
 
1 3( , )i i  is an orthonormal base. With this parametrization, the physical velocity 

is (cu, stu) and its norm is




2 2 2 c
t

u s u( ) .� (36)

Substituting Equation 35 in Equation 15, we can show that the momentum equation for u is Equation 17, 
where the curvature force becomes:

     
1 1t t

c c
uF u u s s u u  � (37)

In comparison to Equation 15, the new term  1 t

c
s u u  comes from the computation of

   ( ) ( ( )) ,c cX XV V u u� (38)

where ∂Xc appears. The curvature force is null when s and u are colinear (i.e., when the velocity is in 
the downslope direction). This is because in this case 


u‖ ‖ ‖ ‖ , so no correction needs to be applied to 

ensure energy is preserved. In particular, in 1D, with this parametrization, no curvature forces appear in 
the equations.
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Gray et al.  (1999) derived thin-layer equations in a similar fashion. But instead of choosing a reference 
frame linked to the topography, they used a simpler reference surface with the constraint that the deviation 
from the topography is of the order ( )  , where ϵ is the ratio of a characteristic height of the flow over its 
characteristic length. In thin-layer models, ϵ is assumed to be very small (see Text S1 for a discussion on 
the ordering of the equations, and for the mathematical meaning of () ). The same approach was used, for 
instance, by George and Iverson (2014). This in turn makes it possible to assume that the velocity compo-
nent normal to the reference surface (and not normal to the topography) has magnitude ( )   and only the 
curvature of the reference surface needs to be accounted for. In Gray et al. (1999), this boils down to the 
curvature along the x-axis κ (see their Equations 5.9 and 5.10). With their ordering, it however disappears 
in the depth-averaged equations. The derivative of the curvature κ′ also appears before the ordering of the 
equations in their work. It can also be found in the development of Bouchut and Westdickenberg (2004) 
when curvilinear instead of Cartesian coordinates are considered (without changing the accuracy of the 
resulting equations).

Another fine description of the topography was made by Pudasaini and Hutter (2003) for flows confined 
in channels. The thalweg is described by a 3D parametric curve 


( )R s  to which an orthonormal reference 

frame is associated with the Serret-Frenet formulas. Pudasaini and Hutter (2003) write the Navier-Stokes 
equations in this reference frame. The topography curvature is then rendered by the curvature κ and torsion 
τ of the thalweg 


( )R s . However, they thus describe only a limited set of topographies, making a proper com-

parison with our model difficult.

Fischer et al. (2012) derive a curvature force by solving the Euler-Lagrange equations for a free point mass 
m with coordinates 


1 2 3( ) ( ( ), ( ), ( ))X t X t X t X t  subjected to gravity and evolving on the topography in a fixed 

Cartesian reference frame. With our notation, the Lagrangian reads

 
 2

3
1 ( ) ( ),
2

L m X t mgX t‖ ‖� (39)

with the constraint

  


3 1 2( ) ( ) ( , ) 0.f X X t b X X� (40)

Solving this system yields

     
         
       

 2
2 2 2

2 22 .t
b bd X gc c b n gc F
b bdt

X X
XX

X X‖ ‖ ‖ ‖
  � (41)

This is the Lagrangian form of the momentum Equation 20, without the friction force 

F  and lateral pres-

sure forces in 

gF . Fischer et al. (2012) use Equation 41 to justify the curvature term appearing in the friction 

force, but the curvature force 

F is actually independent of the friction.

Rauter and Tukovic (2018) and Rauter et al. (2018) use an approach similar to that of Bouchut and West-
dickenberg (2004). However, while we use the momentum equation for the topography-normal component 
of the velocity to get an explicit expression of the pressure, they keep this equation and consider the basal 
pressure as another unknown to be numerically estimated. This is equivalent to considering the basal pres-
sure as a Lagrangian multiplier, respecting the constraint that the velocity is in the topography-tangent 
plane. With this method, Rauter and Tukovic (2018) do not need to explicitly describe the curvature. How-
ever, a rigorous derivation of their equations also requires complex differential calculations, in particular 
related to the definition of a gradient operator along the topography.

Now that we have detailed the origin of the curvature effects in thin-layer models, we will investigate 
their influence, in practice, in simulations. We will first consider simulations on synthetic topographies to 
identify situations where curvature effects significantly influence the results. We will then carry out simu-
lations on real topographies.
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4.  Curvature Effects in Simulations with Synthetic Topographies
As shown in Section 3.1, the curvature force 


F is needed to ensure that the flow velocity remains tangent 

to the topography. It is thus particularly important when the flow changes direction in twisted channels. 
As proposed by Gray and Hutter (1998), we create a synthetic topography with a channel composed of nb 
successive bends, superimposed on a plane (Figure 3) with inclination θ = 10°. The channel cross-section 
is a parabola (Figure 3b). At both extremities, there is a smooth transition between the end of the channel 
and the bottom plane (Figures 3a and 3c). The thalweg is a sinusoidal of amplitude Ab and period L = 2.1 m 
(black curve in Figure 3c). We define the ratio   / ( / 2)bA L , that can be seen as a non-dimensionalized 
bend curvature. This is detailed in Text S3, along with the exact mathematical definition of this synthetic 
topography and some precisions on the simulation set-up.

In the following, we will first investigate the effects of approximating curvature for a flow propagating 
in a straight channel (Section 4.1). We will then model flows in a channel with only one bend, with the 
Coulomb and the Voellmy rheologies and analyze how curvature affects the flow direction, velocity and 
kinetic energy (Section 4.2). For hazard assessment, however, it is convenient to synthesize the overall flow 
dynamics with a few simple characteristics. In Section 4.3, we will thus investigate curvature effects on the 
flow travel duration within the channel and on the maximal dynamic force, for various channel geometries 
and rheological parameters.

4.1.  Curvature Approximation and Noninvariance by Rotation

To demonstrate the importance of solving equations that are invariant by rotation, we first consider the 
propagation of a flow with the Coulomb rheology (μ = tan (15°)) and the Voellmy rheology (μ = tan (15°) 
and ξ = 2,000 m s−2), in a channel without bends (that is, Ab = 0 m) and a slope inclination of θ = 10°. As 
the flow propagates at the bottom of the channel, the curvature in the flow direction is, as a first approxi-
mation, zero. As a consequence, no curvature effects are expected. Changing the angle ϕ between the X-axis 
and the thalweg (see Figure 4a) should not change the flow dynamics. However, when we implement the 
approximation of the curvature (Equation 34) in the friction force, we lose the rotational invariance of the 
model and the flow is slowed down when ϕ > 0 (Figures 4b–4e). For instance with ϕ = 45°, after 0.5 s, the 
total kinetic energy is decreased by 20% and 15%, with the Coulomb (Figure  4a) and Voellmy rheology 
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Figure 3.  Synthetic topography with a twisted channel superimposed on a flat plane. (a) 3D view of the generated 
topography, in the fixed Cartesian reference frame (b) Cross-section of the channel for X = 6 m (red curve in (a)). (c) 
Top view of the channel, with illustration of the parameters used to construct the topography are (see Text S3). Here 
L = 2.1 m and Ab = 0.5 m. x′ and y′ are the curvilinear coordinates along the basal plane on which the channel is 
superimposed. The contour interval is 5 cm in both (a and b).
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(Figure 4c) respectively. This directly impacts the travel distance, with 20% (Figure 4b) and 5% (Figure 4d) 
reductions respectively.

In the following, we will no longer consider the approximation of curvature in the friction force, and com-
pare only simulations when it is properly taken into account (which is not numerically costly) or omitted. 
Comparisons with approximated curvature are however provided in the supplementary Figures and will be 
referred to briefly.

4.2.  Thicknesses, Velocity, and Kinetic Energy

Let us now construct a channel with one bend of amplitude Ab = 0.5 m (and thus   0.48). We will first 
consider the case where μ = 0 in the Coulomb rheology. We thus model a pure fluid and can highlight 
the influence of the curvature force, independently of the curvature term appearing in the friction force. 
This is however unrealistic when considering real geophysical flows, as there is no energy dissipation. 
We will thus also consider μ = tan (6°), which is a sensible friction coefficient for debris flow modeling 
(e.g., Moretti et al.,  2015), and the Voellmy rheology that is commonly used to model such flows. To 
obtain insight on curvature effects for debris and rock avalanche modeling, we will finally model flows 
propagating on a steeper slope (θ = 25°) with a higher friction coefficient μ = tan (15°) (e.g., Moretti 
et al., 2020a).
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Figure 4.  Modeling of a flow within a straight channel with inclination θ = 10°. (a) Top view of the channel, with the initial mass (thickness is given by the 
color scale). ϕ is the angle between the channel direction (white dashed line) and the X-axis (white solid line). (b and c): Kinetic energy and flow front position, 
with the Coulomb rheology (μ = tan (15°)). Colored solid curves: results when the curvature term in the friction is approximated by weighting the curvature 
in the X and Y directions (see Equation 34), for different values of ϕ. Black dashed curves: result with the exact model, that does not depend on the channel 
orientation ϕ (up to small numerical errors, not shown here) as it should be. (d and e): same as (b and c) but with the Voellmy rheology (μ = tan (15°) and 
ξ = 2,000 m s−2).
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4.2.1.  Channel with Slope θ = 10°

For μ = 0, the only acting forces are the curvature and gravity forces. The simulation results are displayed 
in Figure 5. As shown in Section 3.1, the curvature force horizontal component is in the steepest slope 
direction and thus tends to keep the flow at the bottom of the channel. This has a major impact on the 
flow direction at the exit of the channel (Figures 5a and 5b). It also results in a smoother increase of the 
flow velocity (Figure 5e, between 1 and 2 s), because without the curvature force, the flow bounces back 
and forth on the channels walls (Figures 5a and 5b). Thus, the effect of the curvature force cannot be 
neglected: its norm is indeed comparable to the norm of gravity and pressure forces when there are steep 
changes in the topography, as in the main bend and at the outlet of the channel (Figures S1b and S1c). 
The maximum flow velocities are, however, of the same order: about 3 m s−1 at the outlet of the channel 
(Figures 5c and 5d).

In order to model debris flows more realistically, we now use a friction coefficient μ = tan (6°). We can 
then analyze the influence of neglecting the curvature term in the friction force (Figure 6, F  no curva-
ture). Because of friction, the flow is decelerated compared to the case without friction (only 2 m s−1 at 
the channel outlet). The curvature terms (both in friction and curvature forces), which are proportional 
to the square of velocity, are then only half as high as gravity and pressure forces (see Figures S2b and 
S2d). However, neglecting the curvature force does still slow down the flow, with a 5% kinetic energy 
decrease at the channel outage (Figure 6i, F = 0). On the contrary, neglecting the curvature term in 
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Figure 5.  Flow simulation with the Coulomb rheology, μ = 0 and a slope θ = 10°. (a and c): with the curvature force (F exact). (b and d): without the 
curvature force (  0F ). (a and b) give the maximum flow thickness during the simulation, (c and d) the maximum flow velocity. The white curve is the flow 
extent when the curvature force is taken into account. Simulation durations is 2.5 s. We give more details in Text S4 on the derivation of maximum thickness 
and velocity maps. (e) Total kinetic energy in the different simulations.
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the friction force results in a slightly smaller friction force and thus increases the flow velocity (kinetic 
energy increased by 5% at the channel outage, Figure 6i, F  no curvature) and runout (e.g., Figures 6a 
and 6e). Approximating the curvature in the friction decelerates the flow, as expected (see Figures S2 
and S3).

In the literature, the empirical Voellmy rheology is also often used to model debris flows. We show in Fig-
ures S4 and S5 that curvature effects have only limited influence with this rheology, which will be confirmed 
by further results.
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Figure 6.  Flow simulation with the Coulomb rheology, μ = tan (6°) and a slope θ = 10°. The first column is the 
maximum flow thickness (a–d) and the second column is the flow maximum velocity (e–h), both after 2.8 s. Each 
subfigure displays the results of the simulation when the curvature force is taken into account (F exact) or neglected 
(  0F ) and when the curvature in the friction is exact ( F  exact) or neglected ( F  no curvature). (a and e) are the 
simulation results in the reference case, with exact curvature terms: the corresponding flow extent (white line) is 
reported in all figures. The contour interval is 2 cm. (i) Total kinetic energy in the different simulations.
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4.2.2.  Channel with Slope θ = 25°

The main slope of the channel and the parameters we have considered so far are reasonable estimates for 
modeling debris flows (e.g., Moretti et al., 2015). For debris and rock avalanches, it is more relevant to use 
steeper slopes and higher friction coefficients. In Figure 7, we investigate the curvature effects on a steeper 
slope (θ = 25°) and for a higher friction coefficient μ = tan (15°), which is still characteristic of mobile 
landslides (Pirulli & Mangeney, 2008). The impact of neglecting curvature terms is qualitatively similar to 
the previous case with μ = tan (6°), but errors are amplified (see Figures S6 and S7 for the simulations with 
approximated curvature in friction). In particular, neglecting the curvature term in the friction leads to a 
significant acceleration of the flow: at the channel outlet, the total kinetic energy is increased by 70% (Fig-
ure 8a, F exact and F  no curvature). It can be directly correlated to the 30% error induced on the friction 
in the channel bends, when curvature is not taken into account (Figures 8b and 8d).

In the above simulations, we have shown that the direction of the flow at the channel outlet can change 
significantly when curvature effects are not accounted for. That is of course of prior importance in hazard 
mapping. In order to characterize the flow dynamics, two other indicators can refine the hazard assessment 
analysis.

4.3.  Travel Time and Maximum Dynamic Force

The flow travel duration within the channel is often a key indicator for hazard assessment. The second in-
dicator is the maximum dynamic force Fd,

PERUZZETTO ET AL.

10.1029/2020JF005657

16 of 30

Figure 7.  Same as Figure 6, but with the Coulomb rheology, μ = tan (15°) and a slope θ = 25°. The contour interval is 
4 cm. Simulation duration is 2.3 s. The kinetic energies are given in Figure 8.
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where Pd is the dynamic pressure. In the following we choose ρ = 1,500 kg m3 for the density: it acts only 
as a scaling factor. To obtain a more systematic analysis of the influence of curvature terms on these indica-
tors, we keep only one bend, but try three different bend amplitudes: Ab = 0 m, Ab = 0.25 m and Ab = 0.5 m 
(  0,   0.24 and   0.48. Simulations are run in each configuration with the Coulomb and Voellmy 
rheologies, while varying the friction and turbulence coefficients.

Results are displayed in Figure 9 and summarized in Table 2. Unsurprisingly, for a straight channel, travel 
durations in the channel are very similar whatever the curvature description. There are however variations 
in the dynamic force (e.g., blues curves in Figure 9d), likely due to the initial spreading of the mass in all 
directions. When a bend is added (Ab = 0.25 m and Ab = 0.5 m), in the case of small friction coefficients 
and thus small friction forces, neglecting the curvature in the friction force has less effect than neglecting 
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Figure 8.  (a) Total kinetic energy of the flow with the Coulomb rheology, μ = tan (15°) and a slope θ = 25°. (b) For the simulation with exact curvature terms, 
maximum norm of gravity and pressure force (black curve), of the curvature force (


F
, red curve, negative when  


0n F

 ) and of the friction force ( F , blue 
curves). The friction force is computed with the exact curvature term ( F  exact) or when it is neglected ( F  no curvature). The maximum is computed for a 
constant X coordinate, at t = 1.2 s. (c) Flow thickness at t = 1.2 s. (d and e): same as (b and c), respectively, but for t = 2.1 s. These two times are indicated by the 
red dashed vertical line in (a).
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the curvature force (e.g., Figure 9a, Ab = 0.5 m for μ < tan (6°)). However, the opposite occurs when the 
friction coefficient increases, as the friction force also increases. The error on maximum dynamic force 
is particularly high for fast flows, that is for small friction coefficients (e.g., for Ab = 0.5 m, up to 40% for 
μ = tan (2°) and only 5% for μ = tan (8°), Figure 9b). Note, however, that when we increase the length of 
the channel by adding successive bends, the effect of using incorrect curvature terms is amplified due to 
successive errors. We have for instance at most 5% discrepancies in travel durations with one bend and 
μ = tan (6°), but up to 15% differences with five successive bends (see Table 2 and Figure S8). With higher 
slope angles and friction coefficients corresponding to rock avalanches, the differences would be even 
more significant.

When we use the Voellmy rheology, as expected, differences in travel times are less striking: only 5% 
deviations for the flow travel time (Figure  9c), and 10% differences for the maximum dynamic force 
(Figure 9d).

We may wonder whether our observations on synthetic and simple topographies can be extrapolated to 
more realistic scenarios. In the next section, we thus carry out simulations on real topographies.
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Figure 9.  Simulation of a flow in a channel with slope θ = 10° and one bend with the Coulomb rheology (a) and (b) and the Voellmy rheology (c and d, with 
μ = tan (2°)). The bend amplitude Ab is either 0, 0.25 or 0.5 m (respectively, blue, green and red curves). The corresponding non-dimensionalized curvature is 
  The flow duration in the channel (a and c) and the maximum impact pressure (b and d) are plotted as functions of the friction coefficients for the Coulomb 
rheology (the top x-axis gives the corresponding friction angle) and as functions of the turbulence coefficient for the Voellmy rheology. Different situations 
are considered: when the curvature force is taken into account (F exact) or neglected (  0F ) and when the curvature in the friction is exact ( F  exact) or 
neglected ( F  no curvature).



Journal of Geophysical Research: Earth Surface

5.  Curvature Effects in Simulations Over Real Topographies
We chose two case studies for our simulations on real topographies: the simulation of debris flows in the 
Prêcheur river, in Martinique (French Caribbean) and the simulation of a debris avalanche on the Soufrière 
de Guadeloupe volcano, in Guadeloupe (French Caribbean)

5.1.  Debris Flow in the Prêcheur River

The Prêcheur river is located on the western flank of Montagne Pelée, an active volcano for which the last 
eruption dates back to 1932. Debris flows and hyper-concentrated flows occur regularly in this 6 km long 
river (Clouard et al., 2013; Nachbaur et al., 2019), with the risk of overflow into the Prêcheur village, at the 
mouth of the river (Aubaud et al., 2013; Quefféléan, 2018). In this context, numerical modeling can help 
constrain the prominent parameters controlling the flow dynamics and in turn be used for quantified risk 
assessment. However, a detailed analysis is beyond the scope of this paper. We only aim here to illustrate 
whether or not curvature effects have a significant impact on the flow dynamics. To that purpose, we release 
a hypothetical mass of 90,000 m3 at the bottom of the cliff and model its propagation for 10 min, on a 5-m 
Digital Elevation Model. We will first explore the possibility of overflows (Figure 10) in simulations with the 
Coulomb rheology. We will then conduct a more systematic analysis of curvature effects on the debris flow 
front position with the Coulomb and Voellmy rheologies and various rheological parameters, tracking the 
front position during the simulation with a thickness threshold of 1 cm (Figure 11). The results of approxi-
mating the curvature are displayed in Figures S9 and S10.

5.1.1.  Channel Overflows with the Coulomb Rheology

A critical point for hazard assessment is the possibility of overflows. In Figure 10, we show the maximum 
thickness of the flow in the Prêcheur river, simulated with the Coulomb rheology and μ = tan (3°), which is 
representative of a highly mobile material. Keeping the curvature force but neglecting the curvature in the 
friction not only increases the runout, but also leads to multiple overflows (Figure 10c). Neglecting the cur-
vature force partly compensates artificially this effect (Figure 10d). However, in this case, overflows dot not 
correspond to the ones modeled in the reference case (see Figures 10e and 10f, the white line is the extent 
of the flow in the simulation with exact curvature). Streaks outside the topography are artifacts explained 
in Text S4.
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μ = tan (0°) μ = tan (6°) μ = tan (8°)

Δt Fd Δt Fd Δt Fd

Ab = 0 m 0% 0% 0% −5% 0% 0%

Ab = 0.25 m 1 bend +10% −15% +5% −25% +2.5% −5%

F F ,F F

Ab = 0.5 m 1 bend +10% −45% +5% +20% −2.5% +5%

F ,F F F

5 bends not modeled +15%a −60%a not modeled

−10%b +135%b

F

Note. The relative maximum deviation from the reference simulation with exact curvature is given for the flow duration 
in the channel (Δt, bold) and the maximum dynamic force (Fd, italic). We specify which curvature term has the more 
prominent influence on the flow dynamics: the curvature force (F) or the curvature in the friction ( F ).
aDifferences for F  exact and  0F  neglected. bDifferences for F  without curvature and F exact.

Table 2 
Influence of Curvature Terms for Synthetic Topographies, With the Coulomb Rheology, for Different Channel Geometries 
With Slope θ = 10° (Lines, With Ab the Channel Bend Amplitude) and Friction Coefficients (Columns)
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5.1.2.  Flow Front Position and Travel Distance

We now track the flow front position as the flow propagates in the river. With the Coulomb rheology, the 
travel distance is increased by several hundred meters when the curvature in the friction force is neglected 
(Figures 11a, solid and dashed curves with triangles). This difference may be reduced by choosing a thick-
ness threshold higher than 1 cm. Nevertheless, it highlights the bias introduced by an improper curvature 
description. Curvature effects have a particularly strong influence in the upper part of the river which is 
narrow, twisted and with slopes above θ = 7° (see Figure 10): there are significant variations in the time 
needed by the flow to travel the first 1.5 km (Figures 11b). Depending on the friction coefficient, neglecting 
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Figure 10.  Maximum thickness of the flow simulated in the Prêcheur river with the Coulomb rheology and μ = tan (3°). Each plot (a–d) displays the result 
of the simulation when the curvature force is taken into account (F exact) or neglected (  0F ) and when the curvature in the friction is exact ( F  exact) 
or neglected ( F  no curvature). The simulation results in the reference case, with exact curvature terms, is given in (a). The corresponding flow extent (white 
curve) is reported in all figures. Green dashed rectangles (respectively blue dashed rectangles) indicate areas where the spreading is greater (respectively lesser) 
in other simulations, in comparison to the reference simulation (a). Zooms on these areas are given in (e and f). The contour step is 20 m.
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the curvature in the friction increases the flow velocity by 20%–30% (Figures 11b, F exact, F  no curvature). 
This allows the flow to gain enough momentum to overrun flatter areas, whereas it remains stuck there in 
the reference case. To the contrary, neglecting the curvature force (  0F , F  exact) slows down the flow 
by 30%–50%.

With the Voellmy rheology, the prominent factor impacting the flow dynamics is the curvature force (Fig-
ures 11d): without it, the flow needs up to 15% more time to travel the first 3 km. Further downstream, the 
delay between simulations is however constant (e.g., no more than 25 s with ξ = 3,500 m s−2, Figures 11c), 
which indicates once more that curvature effects affect the flow mainly in the upper part of the river.
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Figure 11.  Simulations of debris flow in the Prêcheur river. Different situations are considered: when the curvature force is taken into account (F exact) or 
neglected (  0F ) and when the curvature in the friction is exact ( F  exact) or neglected ( F  no curvature). (a) Flow front position with the Coulomb rheology. 
(b) Time needed for the flow to travel the first 1.6 km (black dashed line in (a)) with the Coulomb rheology, as a function of friction coefficient. (c) Flow front 
position with the Voellmy rheology and μ = tan (2°). (d) Time needed for the flow to travel the first 1.6 km (black dashed line in (c)) and 2.9 km (gray dashed 
line in (c)) with the Voellmy rheology, as a function of turbulence coefficient.
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5.2.  Debris Avalanche on the Soufrière de Guadeloupe Volcano

Thin-layer numerical models are also commonly used to model the dynamics and emplacement of debris 
and rock avalanches, which are not confined to one channel as for debris flows. They usually involve bigger 
volumes (e.g., several million cubic meters) and spread on steeper slopes at least at their onset (e.g., Guthrie 
et al., 2012). In this section, we investigate the importance of curvature effects in simulations reproducing 
such events, studying the example of the Soufrière de Guadeloupe volcano, in Guadeloupe (French Carib-
bean). This volcanic edifice has a strong record of destabilization events, with at least nine debris avalanch-
es over the past 9,000 years (Boudon et al., 2007; Legendre, 2012). Peruzzetto et al. (2019) model the runout 
of a 90 × 106 m3 debris avalanche: this volume is consistent with the estimated volume (80 ± 40 × 106 m3) of 
the 1530 CE debris avalanche. In order to reach the sea 9 km away from the volcano like the 1530 CE event, 
the friction coefficient μ = tan (7°) had to be used (Figure 12a).

Using this friction coefficient and the same modeling set-up, we now model the debris avalanche emplace-
ment by neglecting the different curvature terms (Figures 12b–12f). The results of approximating the cur-
vature are displayed in Figure S11, and maximum kinetic energies in Figure S12. When the curvature force 
is neglected, the most prominent difference is an excessive travel distance to the south (more than 1.5 km, 
Figure 12b, green rectangle). In some areas, spreading is less important, but only slightly (a difference of 
less than 200  m, Figure  12b, blue rectangle). Neglecting the curvature in the friction induces the most 
significant deviation from the reference simulation, with a generalized increase of the debris avalanche 
spreading (Figures 12c and 12d). In particular, the debris avalanche reaches the sea south of the Soufrière 
volcano, which is not predicted in the reference case (Figure 12a). Such differences are critical for tsunami 
hazard assessment.

6.  Discussion
6.1.  Importance of Curvature Effects for Different Rheologies

In our study, we derived curvature forces for the simplified case of an inviscid thin-layer flow. That is, of 
course a simplification, as complex interactions between solid particles and between the solid and liquid 
phases can be expected (see Delannay et  al.  [2017] for a review). The formal derivation of SHALTOP 
equations requires, for instance, that the kinematic viscosity is small (see Text S1), which can be ques-
tioned in practice for muddy debris flows. Pastor et al. (2004) and Pastor et al. (2009a) used the Bingham 
and Herschel-Bulkley theories to derive an implicit relation between the flow average velocity and the 
basal shear stress for simple shear flows on 1D topographies. Note that the resulting equations are similar 
to that of SHALTOP, provided we use an appropriate friction coefficient μ that depends on the thickness 
and on the flow velocity. A more comprehensive description of viscous flows is done by Pudasaini and 
Mergili (2019).

Historically, the first constitutive equations for 1D granular flows thin-layer models were linked to soil me-
chanics, with the introduction of an internal friction coefficient (Gray et al., 1999; Savage & Hutter, 1991). 
Some studies suggest that it is needed to model granular flows (Gray et  al.,  1999; Hungr,  1995; Pirulli 
et  al.,  2007). This is, however, difficult to extend to complex 2D topographies, requiring simplifications 
(Iverson & Denlinger, 2001) or on the contrary the resolution of the complete stress state within the flow 
(Denlinger & Iverson, 2004). Besides, Gray et al. (2003) show that a hydraulic approach without internal 
friction, as in our study, allows to reproduce accurately shock waves generated when granular materials 
flow around obstacles or over topography slope breaks.

Finally, the μ(I)-rheology has been increasingly used over past years to model dry granular flows (e.g., GDR 
MiDi, 2004; Jop et al., 2006). Formal derivations have been done to derive its depth-integrated version but 
for simple topographies only (e.g., Baker et al., 2016; Gray & Edwards, 2014).

More generally, following the classification of thin-layer models done by Luca et  al.  (2009a), our study 
shows that curvature effects are important when there is limited resistance to shearing in the flow. However, 
we did not consider situations where resistance to shearing increases and/or stresses acting on topogra-
phy perpendicular planes become significant (e.g., when an internal friction coefficient is used). In such 
cases, it is nevertheless difficult to concile both a fine description of the topography and of the rheology. 
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For instance, the velocity profile in the normal variable is in general unknown and evolves with the flow 
(Ionescu et al., 2015), such that assuming a velocity profile as in Luca et al. (2009a) may break down energy 
conservation. It becomes even more complex when we consider that the flow rheology can change during 
propagation (Iverson, 2003).

6.2.  Importance of Curvature Effects in the Coulomb Rheology

With the Coulomb rheology and without internal friction, our simulations show that curvature effects can 
be significant for fast flows (e.g., several m s−1). For a given topography, the relative importance of the cur-
vature force and of the curvature within friction strongly depends on the friction coefficient μ (see Table 3): 
when it increases, the friction force (and thus the curvature term within friction) prevails over the curvature 
term. In the extreme case μ = 0, there is no friction and the curvature force has a strong influence on the 
flow dynamics. The transition between these two regimes occurs between μ = tan (6°) and μ = tan (8°) in 
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Figure 12.  Maximum thickness of a hypothetical 90 × 106 m3 debris avalanche on the Soufrière de Guadeloupe volcano (French Caribbean). Each plot (a–d) 
displays the result of the simulation when the curvature force is taken into account (F exact) or neglected (  0F ) and when the curvature in the friction is 
exact ( F  exact) or neglected ( F  no curvature). The simulation results in the reference case, with exact curvature terms, is given in (a) (Peruzzetto et al., 2019). 
The corresponding flow extent (white curve) is reported in all figures. Green dashed rectangles (respectively blue dashed rectangles) indicate areas where 
the spreading is greater (respectively lesser) in other simulations, in comparison to the reference simulation (a). The DEM is from IGN BDTopo, coordinates: 
WGS84, UTM20N. The contour interval is 100 m.
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our simulations on synthetic topographies for a slope θ = 10°. It is not clear how much these transition 
values depend on the flow path and on the topography itself: neglecting the curvature force in the Prêcheur 
river simulations entails a significant acceleration of the flow even for μ = tan (2°). The latter is however 
artificially compensated for when the curvature force is also neglected for friction coefficient below tan (4°). 
This artificial compensation of two errors with competing effects (accelerating and decelerating the flow) is 
fortuitous and not at all a generality.

We did not focus on the effect of approximating the curvature in the friction force because it is actually 
straight-forward to implement the accurate curvature term. However, approximating the curvature does 
results in significant differences. On synthetic topographies with friction angles above μ =  tan (5°), the 
prominent error compared to the correct simulation is obtained when the curvature within friction is ap-
proximated (e.g., see Figures S2, S7, and S8). However, on real topographies, the prominent error occurs 
when it is neglected (see Figures S9 and S10 for the Prêcheur river, and Figure S11 and S12 for Soufrière de 
Guadeloupe simulations). This difference may stem from the roughness of the terrain (which has locally 
high curvatures) that is not rendered in our smooth synthetic channel. Such local effects can then strongly 
affect the simulations results globally, impacting for instance the travel distance.

Reproducing the laboratory experiment from Iverson et al.  (2004) yields similar conclusions as what we 
observed for synthetic and real topographies. In this experiment, a granular flow propagates in and irregular 
channel. We model it using friction coefficients calibrated by Lucas (2010) (μ = tan (23°) in the channel and 
μ = tan (26°) elsewhere). The channel is not significantly twisted: using the same notations as previously, 

we estimate a non-dimensionalized bend curvature   0.15. In comparison, we had   0.48 for our syn-
thetic topographies. Thus, the flow path is rather straight in the channel and curvature effects are limited 
in the first 0.3 s of the simulations (see Figure S13). However, the important slope break at the channel 
increases bottom friction when curvature is taken into account, and removing curvature accelerates the 
flow (see Figure S14). Omitting the curvature force does change the final geometry of the mass but to a 
lesser extent. Indeed, the flow velocity remains globally in the direction of the topography slope. All these 
observations are in agreement with our results for synthetic channels. Future comparisons could be carried 
out by modeling experimental flows in twisted flumes, as in Scheidl et al. (2015).

Errors induced by inaccurate curvature description can be highly critical for model calibration. For in-
stance, without curvature in friction, higher friction angles are needed to reproduce the previous experi-
ments deposits (at least 3° higher, see Figure S15). That could explain why, in the first JTC1 benchmarking 
exercise in 2007, SHALTOP used in many examples a lower friction coefficient than other thin-layer models 
(Hungr et al., 2007).

6.3.  Limited Influence of Curvature Effects in the Voellmy Rheology

In the Voellmy rheology, an empirical turbulence term proportional to the square of velocity is added to the 
basal friction. It slows down the flow, but it also minimizes the relative importance of curvature effects (that 
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Error max for channelized flow Error max for non-channelized flow

Synthetic topography Prêcheur river Soufrière de Guadeloupe

Coulomb μ < tan (5°)  0F F  without curvature not modeled

and F exact

μ > tan (5°) Fμ approximated F  without curvature F  without curvature

Voellmy Limited influence of curvature effects not modeled

Note. For the Coulomb rheology, we give the curvature description that gives the biggest error in comparison to 
simulations with the exact curvature. F refers to the curvature force and F  to the curvature in the friction force.

Table 3 
Qualitative Summary of the Simulations Results, With the Different Topographies (Columns) and Rheologies (Lines)
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are also proportional to the square of velocity) when there are sudden changes in the flow direction. As a 
result, there are only slight changes in the flow runout when curvature effects are not accounted for. This 
is clearly seen in our simulations, both on synthetic and real topographies. In Text S5, we give an example 
of a back-analysis of a debris flow simulated with the Voellmy rheology. Neglecting the curvature force 
influences only slightly the results.

However, Salm (1993) actually suggests that the turbulence coefficient ξ is proportional to the mean distance 
between irregularities on the topography. This distance can be seen as an estimate of the local topography 
radius of curvature. In the same perspective, in their guide book to avalanche modeling, Salm et al. (1990) 
advise choosing higher turbulence coefficients on rough topographies than on smooth topographies. More 
recently, Gruber and Bartelt (2007) calibrated a spatially varying turbulence coefficient by back-analysis of 
snow avalanches. As Fischer et al. (2012) point out, the resulting map of turbulence coefficients is strongly 
correlated to the topography curvature. This suggests that the Voellmy rheology, or at least the Voellmy rhe-
ology with a turbulence coefficient correlated to the local topography curvature, might be a way of taking 
into account curvature effects empirically. However, the resulting model cannot correctly reproduce the 
complexity of the interaction between the flow and the topography, in particular because the curvature 
force depends on the velocity direction and not only on its norm.

6.4.  Importance of Local Curvature Effects for Overflows and Runup Estimations

For smooth topographies and channelized flows, we can expect some hazard indicators, such as the travel 
distance and the impacted area, to vary evenly when the simulation parameters span their variation ranges. 
This is no longer the case when the flow manages to overflow topographic barriers. Such nonlinear behav-
iors and threshold effects are highly critical for hazard assessment and complicate hazard mapping (Mergili 
et al., 2018). They cannot be described by simple laws relating, for instance, the travel distance to the initial 
unstable volume (e.g., Lucas et al., 2014; Mitchell et al., 2019).

In our study, when we disregarded the curvature force in the simulation of the debris avalanche on Sou-
frière de Guadeloupe volcano, part of the material managed to overrun a plateau and enter a ravine. It could 
then spread much further (about 1.5 km, see Figure 12b). Such a behavior is however not systematic. For 
channelized flows, the curvature force tends to maintain the flow at the bottom of the channel, whereas it 
would otherwise bounce back and forth on its walls and potentially overflow the channel. However, in the 
long run, the curvature force allows the flow to move faster because it does not dissipate energy bouncing 
back and forth on the channel banks. If a sudden twist is encountered further down, the flow may in turn 
have enough energy to overflow the channel banks, which would not be the case without the curvature 
force. We could reproduce such a situation in the Prêcheur river, with the Coulomb rheology and μ = tan 
(2°) (see Figure S15).

Local curvature effects are thus worth taking into account when considering debris flow runup against 
steep slopes (Iverson et al., 2016) and on the outer bank of a channel bend (Scheidl et al., 2015). In the 
latter case, the runup (that is, the elevation difference between the inner and outer boundaries of the flow 
in the channel, as measured in the field) can be related to the flow velocity (Prochaska et al., 2008; Sc-
heidl et al., 2015). The runup and/or the deduced velocity can then be used to fit rheological parameters in 
thin-layer simulations. As they describe the dynamics of the flow in locations where we can expect strong 
curvature effects, the resulting best-fit parameters may depend significantly on whether or not these curva-
ture effects are properly described in the model, even with the Voellmy rheology.

7.  Conclusion
In this work, we show how an incorrect derivation of the thin-layer equations can lead to the omission of 
two curvature terms, originating from the expression of the pressure at the bottom of the flow. The first one, 
the curvature force, does not depend on the rheology and ensures that the flow velocity remains tangent to 
the topography. The second one appears in the bottom friction force (and thus only when frictional rheol-
ogies such as Coulomb or Voellmy are used). They are both proportional to the square of the flow velocity, 
but also depend on the velocity orientation and topography curvature tensor.
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We have carried out simulations on synthetic and real topographies to highlight the influence of these 
curvature terms in thin-layer numerical simulations, with the code SHALTOP (see Table 3). The curvature 
terms are all the more important when the flow is fast (typically, several m s−1 to tens of m s−1), that is for 
low friction coefficients and/or steep slopes.

For flows propagating in twisted channels modeled with the Coulomb rheology, the curvature force tends 
to maintain the flow at the bottom of the channel. Thus, neglecting it favors bouncing on the channel walls 
and reduces the propagation velocity. For instance, in the case of the upper section of Prêcheur river where 
slopes are higher than θ = 7°, omitting the curvature force in simulations reduces the average velocity of 
channelized flow by 30%, for friction coefficients below μ = tan (6°). Simulated overflows then differ, which 
is critical for hazard assessment.

Approximating the curvature in the friction force can break the rotational invariance of the model and slow 
down the flow. Neglecting the curvature in friction decreases the norm of the friction force and thus accel-
erates the flow, when the latter propagates from steep to more gentle slopes. It results in the most important 
errors when the flow velocity is in the main slope direction, and more generally on real topographies. For 
instance, in the case of the simulation of a debris avalanche on the Soufrière de Guadeloupe, travel distanc-
es are increased by several 100 m. We observe similar effects on a synthetic channel with slope θ = 25° and 
μ = tan (15°), with a 50% increase of the kinetic energy. Though such effects can sometimes be artificially 
compensated for by also neglecting the curvature force, it is not at all systematic and thus both terms need 
to be properly taken into account for correct model calibration.

Though we have focused on debris flows and debris avalanches modeling, our results could apply to other 
geophysical flows, such as mountain river stream flows (Borthwick & Barber, 1992; Churuksaeva & Starch-
enko, 2015) and concentrated and dilute pyroclastic currents (Kelfoun et al., 2017; Komorowski et al., 2013). 
Curvature effects may also be important for modeling landslide-generated tsunamis, for which the thin-lay-
er equations must be integrated in the direction normal to the topography for the landslide, and in the 
vertical direction for the fluid layer (Delgado-Sánchez et al., 2019; Ma et al., 2013).

Note that strong curvature effects may also be an inherent limitation of thin-layer models. Indeed, curvature 
forces are particularly strong when the topography curvature is high, as for instance in a narrow channel. 
However, in this case, the thin-layer assumption may no longer be valid. In order to discriminate between 
real curvature effects and numerical artifacts, comparisons with full 3D models where no approximations 
are done on the layer thickness could be conducted. Yet such comparisons exercises may prove difficult 
(e.g., Pirulli et al., 2018).

Of course, our results must also be considered in regard of the rheology uncertainty, which is sometimes 
large. We believe future research should focus on both the development of accurate physically based rheol-
ogies with constrained realistic parameters, and on methodologies to properly describe topography effects. 
Such studies are complementary to, in turn, develop a model uniting both aspects.

Data Availability Statement
The Joint Technical Committee on Natural Slopes and Landslides (JTC1) of the Federation of International 
Geo-engineering Societies (FedIGS) provided the data of the Yu-Tung debris flow (Text S5). Synthetic topog-
raphies and initial mass are available at 10.5281/zenodo.3758125. The SHALTOP code has restricted access 
(contact authors for more information).
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