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S U M M A R Y 

Polar regions and Greenland in particular are highly sensitive to global warming. Impacts 
on Greenland’s glaciers may be observed through the increasing number of calving events. 
Ho wever , a direct assessment of the calving activity is limited due to the remoteness of polar 
regions and the cloudy weather which makes impossible a recurrent observation through 

satellite imagery. To tackle this issue, we exploit the seismological network deployed in 

Greenland which acti vel y records seismic signals associated with calving events, hereinafter 
referred to as glacial earthquakes. These seismic signals present a broad frequency range and a 
wide diversity of waveform which make them difficult to discriminate from tectonic events as 
well as anthropogenic and natural noises. In this study, we start from two catalogues of known 

events, one for glacial earthquake events which occurred between 1993 and 2013 and one for 
earthquakes which occurred in the same time period, and we implement a detection algorithm 

based on the ST A/LT A method to extract signals’ events from continuous data. Then, we train 

and test a machine learning processing chain based on the Random Forest algorithm which 

allows us to automatically associate the events respectively with calving and tectonic activity, 
with a certain probability . Finally , we investigate 844 selected days spanning time of continuous 
data from the Greenland regional seismic network which results in a new, more exhaustive, 
catalogue of glacial earthquakes expanded of 1633 newly detected glacial ev ents. Moreov er, 
we e xtensiv ely discuss the choice of the features used to describe glacial earthquakes, in 

particular the 39 new features created in this study which have drastically improved our results 
with 7 of the 10 best features being in the added set. The perspective of further expansion 

of the glacial earthquake catalogue applying the processing chain discussed in this paper on 

different time spans highlights how combining seismology and machine learning can increase 
our understanding of the spatio-temporal evolution of calving activity in remote regions. 

Key words: Arctic region; Machine learning; Glaciology; Seismology. 

1

T  

m  

A  

i  

t  

c  

p  

2  

1  

a  

a  

a  

e  

d  

t  

p  

t
 

G  

g  

e  

o  

w  

l  

t  

s  

i  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/2/849/7328939 by guest on 20 D

ecem
ber 2023
 I N T RO D U C T I O N  

he global rise in temperature due to climate change has an im-
ediate impact on the polar ice sheets (Amundson et al. 2008 ;
ster & Winberry 2017 ). Indeed, the ice budget of the polar

ce sheets is balanced between snow gain and ice loss, due to
he melting of ice sheets and calving of iceber gs. Iceber g dis-
harge at the terminus of ice sheet glaciers is a major com-
onent of ice loss (Podolskiy & Walter 2016 ; Sergeant et al.
019 ). Calving occur on average 20 times a year, according to the
993–2013 catalogue of events from Nettles & Ekstr öm ( 2010 )
nd Olsen & Nettles ( 2017 ), but other phenomena such as ice
valanches and calving of small icebergs are more frequent and
cti vel y participate in Greenland’s overall mass loss (Amundson
t al. 2008 ). To overcome the dif ficulty of direct observ ations
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ue to the remoteness of this region, seismology has been a preferred
ool. It provides information on glacier behaviour, as well as on the
hysics of the source of particular events and on the composition of
he ice cap (Aster & Winberry 2017 ; Sergeant et al. 2018 ). 

In the 2000s, unidentified low frequency signals located near
reenland glaciers termini were discovered using a detection al-
orithm based on long-period surface waves (35–150 s; Ekstr öm
t al. 2003 ). These high-magnitude events (MSW in the order of
f 4.5–5.5), recorded at very low frequency as teleseismic events,
ere unexpected in a non-tectonic region. Linked to the calving of

ar ge iceber gs in the analysis conducted by Tsai & Ekstr öm ( 2007 ),
hese events, generating signals named glacial earthquakes, were
tudied by modelling (Sergeant et al. 2018 ; Bonnet et al. 2020 ) and
nverted to enable finer location of these events and creation of cat-
logues for different periods (Ekstr öm et al. 2003 ; Ekstr öm 2006 ;
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Figure 1. (a) Picture modified from Chasing Ice Calving by Jeff Orlowski showing an event occurring on 28 May 2008 at Jakobshavn Isbrae. The black 
arrow represents the rotation of the detaching iceberg. The red arrow represents the force applied on the terminus. (b) Schematic side representation of the 
phenomenon where buoyancy and gravity forces are represented with blue arrows. 
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Tsai & Ekstr öm 2007 ; Nettles et al. 2008 ; Olsen & Nettles 2019 ). 
Ho wever , these catalogues only include high-magnitude events (at 
least 4.9 MSW). A comprehensive catalogue is essential for a better 
understanding of the spatio-temporal evolution of calving events 
in Greenland, as the contribution of smaller events could increase 
the dynamic mass loss of Greenland glaciers not accounted for in 
current catalogues by as much as 10–30 per cent (Olsen & Net- 
tles 2019 ). To address this issue, we hav e dev eloped an algorithm 

to detect smaller events in order to create a more comprehensive 
catalogue. 

Fig. 1 illustrates the phenomenon of glacial earthquakes. In this 
case, the top of the unstable iceberg pushes against the front of the 
glacier, creating a force on the iceberg terminus that varies in time 
with the rotation of the iceberg, generating waves in the glacier 
that are then transmitted to the Earth. These so-called ‘bottom-out’ 
events generate a seismic signal of lower amplitude than ‘top-out’ 
iceberg calving (the bottom of the iceberg reaches the glacier dur- 
ing rotation) of the same volume, showing that interpreting seismic 
amplitude or energy in terms of iceberg size may be misleading 
(Sergeant et al. 2018 ). Ho wever , iceberg calving simulation could 
be used to reproduce the inverted force from seismic data and lead 
to iceberg volume catalogues used to study the spatio-temporal evo- 
lution of ice mass loss in relation to climate change (Sergeant et al. 
2019 ). Applying this method to smaller events would consider- 
ably improve quantification of ice mass loss on marine-terminating 
glaciers. 

A capsizing iceberg is subject to the forces of buoyancy and 
gravity, as well as drag (Amundson et al. 2010 ; Burton et al. 2012 ; 
Sergeant et al. 2018 ; Bonnet et al. 2020 ). As it breaks away from the 
terminus, the iceberg can become unstable due to its height/width 
ratio, causing it to calve, that is to tend toward a more stable state. 
During this rotation, the iceberg reaches the terminus of the glacier. 
The force F c represents the force at the source of the seismic event 
(Fig. 1 ). 

A catalogue of glacial earthquakes that occurred between 1993 
and 2013 has been presented by Tsai & Ekstr öm (2007) , Veitch & 

Nettles ( 2012) and Olsen & Nettles (2017 ), and it will be referred to 
as Columbia thereinafter. It groups 444 located glacial earthquakes, 
which are represented on Fig. 2 by stars of different colours, together 
with the seismic stations present in the perimeter at the time of the 
event (some stations are no longer operating today). These events 
are grouped into 16 zones, indicated on Fig. 2 and coloured ac- 
cording to the closest glacier. The most active glaciers in Greenland 
are Helheim Glacier (light green stars area on Fig. 2 ) and Jakob- 
shavn Isbrae Glacier (purple stars on Fig. 2 ) on the east coast, and 
Kangerlussuaq Glacier (orange stars on Fig. 2 ) on the west coast. 
The GLISN regional network, whose stations are shown in red on 
Fig. 2 , records cryo-seismic activity, but also tectonic activity in 
Iceland as well as anthropogenic noise (Podolskiy & Walter 2016 ; 
Aster & Winberry 2017 ). 

The aim of this study is to extract glacial earthquake signals 
from continuous data and discriminate them from other recorded 
signals. The method used to date to detect and identify glacial 
earthquakes requires human supervision (Olsen & Nettles 2017 ) 
but the growing number of stations and data compromises the 
time/efficiency of this approach, particularly when analysing seis- 
micity in frequency band above 1 Hz, with lots of local noise and 
numerous small natural events likely to generate a seismic sig- 
nal. What’s more, since denser networks mean larger quantities of 
data, it is all the more difficult to process them with a conven- 
tional tool. In this study, we develop a processing chain based on 
a supervised machine learning algorithm called Random Forest, in 
order to detect and identify new glacial earthquakes occurring in 
Greenland. 

2  DATA  A N D  M E T H O D S  

The first phase of our study aims at creating an automated processing 
chain able to detect signals of glacial earthquakes and earthquakes 
from continuous data. We start with gathering data from these two 
types of events from existing catalogues. 

2.1 Data 

2.1.1 Catalogues 

For the glacial earthquake data set, we use events from the existing 
glacial earthquake catalogue created and then expanded by Tsai & 

Ekstr öm ( 2007 ), Nettles & Ekstr öm ( 2010 ) and Olsen & Nettles 
( 2017 ). In this catalogue, 444 events occurring between 1993 and 
2013 are collated with location coordinates and estimated magni- 
tude (Fig. 2 ). The first glacial earthquake identified in this catalogue 
occurred on 24 January 1993 with a magnitude of 5.1 MSW, and 
the last one occurred on 27 December 2013 with a magnitude of 
4.9 MSW. The MSW magnitude is calculated based on teleseismic 
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Figure 2. Seismic network around Greenland. Names of stations are written next to their location. Stations in red are part of the GLISN network. Stars of 
different colours correspond to different glaciers. Represented events are from the initial catalogue (Columbia 2007). 
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a yleigh wa ves amplitudes (Ekstr öm et al. 2003 ) and the magnitude
ange extends from 4.6 to 5.1 MSW. 

We supplement the catalogue of glacial earthquakes with 400
arthquakes that occurred over the same period (1993–2013) and are
f the same order of magnitude. Three examples of raw and filtered
eismic signals generated by glacial earthquakes and earthquakes
re shown in Fig. 3 , together with spectrograms for each event.
vents are highlighted by a colour (blue for glacial earthquakes
nd brown for earthquakes). The spectrogram covers frequencies
rom 4 to 0.001 Hz. Fig. 3 (a) illustrates two events recorded by the
ame SOEG seismic station. The glacial earthquake occurred on
0 December 2001 at 7:27 a.m. and was located on the Kangerd-
ugssuaq glacier, 81 km from the station. The magnitude (MSW)
f this e vent w as 4.8. The earthquake also recorded by SOEG,
ith a magnitude of 5.4, occurred in Greenland on 26 August
001 at 6:28 p.m. (1600 km from the station). Both events are
ndicated by stars on the map and on the station. In Fig. 3 (b),
he glacial earthquake occurred on 6 July 2004 at 10:20 a.m. on
he Helheim glacier (85 km from ANGG) with a magnitude of
.7 MSW. The earthquake also recorded at ANGG, with a mag-
itude of 5.1, occurred in the Iceland region on 19 July 2003 at
:13 p.m. (685 km from the station). In Fig. 3 (c), the glacial earth-
uake occurred on 25 December 2012 at 10:21 a.m. and was lo-
ated at Rinks Glacier (85 km from NOR) with a magnitude of 4.7
SW. 
t  
The duration of glacial earthquakes can vary from a few minutes
o several tens of minutes. Their seismic signals also present a
ariety of waveforms, depending on iceberg geometry and volume.
ery low frequencies ( > 100 s, < 0.01 Hz) have been attributed to

he movement of the seiche after the iceberg capsized (Sergeant et
l. 2016 ). Earthquakes have clearer, more identifiable phases. In the
ast earthquake example shown in Fig. 3 (c), a very low frequency
ontent is highlighted (pinkish brown) preceding a more impulsive
ignal. Glacial earthquakes tend to have a more emergent signal,
ften more identifiable in the 0.01-0.02Hz frequency band. These
xamples illustrate the need to investigate the different frequency
ands for ef fecti ve classification. 

.1.2 Seismic network 

e work with raw data acquired by the Greenland Ice Sheet Mon-
toring Network (GLISN) and with all available stations, perma-
ent or otherwise, over the period 1993–2013. The GLISN net-
ork, which began installation in 2005, now comprises 33 sta-

ions: 20 on Greenland and 13 off Greenland. Until 2003, there
ere only 7 permanent stations on the island, which were sub-

equently upgraded through integration into the GLISN network.
on-permanent stations located within a defined perimeter around

he island ([57 ◦N, −94 ◦W; 83 ◦N, −4 ◦W]) were also used when data
 ere a vailab le (F ig. 2 ). We only worked with stations equipped with

hree-component broad-band seismometers. Available and archived

art/ggad402_f2.eps
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Figure 3. Example of seismic signal of glacial earthquakes and earthquakes from the two initial catalogues (Columbia 2007; USGS 2021) (raw data, filtered 
data in 1–2.5 Hz, in 0.02–0.1 Hz and in 0.01–0.02 Hz, and spectrogram). The location of events is represented by a brown star for earthquakes and a blue star 
for glacial earthquakes, and events on the same line are recordings from the same station (red hexagon on the map). 
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road-band seismic data from these stations were downloaded from
he IRIS and GFZ data centres. Restrictions on Iceland’s temporary
etworks were added, as they are close to volcanic and tectonic
ones, forcing us to process data not related to glacial activities. 

.1.3 Pre-processing 

or each of the 844 events in the two catalogues (444 glacial earth-
uakes (Columbia 2007) and 400 earthquakes (USGS 2021)), we
ownload available data 24 hr around the precise time of the event
ndicated in the catalogues. The instrumental response is removed
efore the data is processed. Several events may occur on the same
ay. 

.2 Methods 

.2.1 Detection algorithm 

utomatic picking of glacial earthquake signals is complicated be-
ause of the diversity of waveforms. We decided to extract the
ignals from the raw 24-hr waveforms centred on each event in the
atalogues. Our aim is to retrieve all signals from initial catalogues
vents (Columbia 2007; USGS 2021) as well as signals from new
vents, using the same detection algorithm. To achieve this, w e ha ve
sed a standard detection algorithm based on sliding windows of the
hor t-ter m average/long-ter m average (ST A/LT A) type, which we
ave adapted to glacial earthquake signals and earthquake signals.
n this approach, a dimensionless ratio is calculated between the
mplitude of the signal av eraged ov er a short time window (STA)
nd that of the signal averaged over a long time window (LTA).
hen the ratio exceeds a user-defined threshold, the start time is

ecovered. When the ratio falls below another defined threshold, the
ignal end time is selected. 

Glacial earthquake and earthquake signals have wide frequency
ontents (as shown in Fig. 3 ), so we calculated the classical ST A/LT A
ver four frequency bands to cover a wide frequency range with dif-
erent threshold values. The window lengths are set at 100 seconds
or the short window and 1900 seconds for the long window. The
requency bands chosen are 1 Hz–Nyquist frequency, 0.02–0.1 Hz
nd 0.01–0.02 Hz with corresponding On/Off thresholds: 6/3, 3/1
nd 3.5/2. Raw data are processed with 2/1 thresholds. The sum of
ll filtered ST A/LT A, called ‘Stack’, are used with On/Off thresholds
f 8/2. In Fig. 4 (a), the triggers are shown in different colours cor-
esponding to the frequency band in which the standard ST A/LT A
as performed. 
The event signal can be detected by one or more ST A/LT As. For

xample, at station BORG, the ST A/LT A calculated in the 0.01–
.02 Hz frequency band and the stack ST A/LT A (triggers shown
n pink and purple respecti vel y in Fig. 4 a) frame the catalogue
vent signal. Other signals are nevertheless detected, as on the
UMG station recording where the ST A/LT A calculated from the
aw data detects a signal after the known event (blue triggers in
ig. 4 a). 
In Fig. 4 (b), the On/Off triggers (in blue and red) correspond to the
erging of detections obtained in all intersecting ST A/LT As. The
inimum and maximum trigger times of the intersecting detections

re retained. With this method, all events in the original catalogues
re detected (highlighted in pale red in Fig. 4 b). Signals that are
ot filled in with a pale red band in Fig. 4 (b) do not correspond to
atalo gue e vents: these may be ne w e vents, seismic signals linked

o other sources or noise. t  
.2.2 Association 

hen seismic signals are detected at several stations at a con-
istent time interval, they are grouped together to form an event.
or example, in Fig. 4 (b), the event will be considered as detected
y 5 stations. In the same figure, other signals have been detected
Fig. 4 b): they will be grouped together to form an event if the detec-
ions have a coherent arri v al time at more than two stations. Seismic
 aves generated b y glacial earthquakes are surface waves (Ekstr öm
006 ), so we use a propagation velocity for low-frequency surface
aves in Greenland of Vs = 3300 m s −1 gi ven b y K umar et al.
 2007 ) to calculate a theoretical arri v al time, based on the distance
etween two stations. The arri v al times of the detections are highly
ependent on the ST A/LT A triggers (as shown in Fig. 4 b). The use of
ev eral frequenc y bands to detect a signal means that signal arri v al
imes can vary greatly from station to station, as higher frequencies
re rapidly attenuated. We added a 3-min buffer to group signals
nto events. This may appear to be a lot, but events last several tens
f minutes. This choice of 3-min was tested on signals from known
vents detected with the ST A/LT A and enabled us to associate at
east two signals from different stations in order to retrieve all the
nitial events. 

.2.3 Random Forest 

ith a view to rapid classification of the newly detected events, we
hoose a supervised machine learning algorithm called ‘Random
orest’ developed by Breiman ( 2001 ). This algorithm has been used
n the past to classify seismic signals of volcanic origin (Hibert et al.
017 ; Malfante 2018 ; Falcin et al. 2020 ) as well as other seismic
ignals of natural origin (Dong et al. 2014 ; Provost et al. 2017 ;
alfante 2018 ; Hibert et al. 2019 ; Lin et al. 2020 ; Chmiel et al.

021 ). 
To process the data, the algorithm relies on a mathematical de-

cription of the waveforms, called features, which are, for example,
ignal kurtosis, envelope skewness, energy in certain frequency
ands or signal duration. If the data is described with too few
r irrele v ant features, the algorithm may miss impor tant infor ma-
ion, resulting in poor performance. In this study, we work with 97
eatures, detailed in the appendix. The first 58 features are taken
rom previous studies aimed at discriminating seismic signals from
arious natural processes and can be divided into three families:
aveform features, spectral features and spectrogram features. We
ave created 39 new features, designed to capture information on
ow frequencies and on the variation in intensity between two fre-
uency bands. Combinations of energy differences and energy ratios
n these frequency bands are calculated: 0.01–0.02 Hz, 0.01–0.05
z, 0.05–0.1 Hz, 0.1–1 Hz, 1–2 Hz and 2 Hz–Nyquist. Finally,
e added a ratio based on the calculation of the standard devi-
tion of the data, which can be assimilated to a signal-to-noise
atio. 

The Random Forest algorithm is a supervised machine learning
lgorithm. In contrast to unsupervised algorithms, where no labels
re predefined, the data set under study is labelled by user-defined
lasses. To assign a class to each element in the initial database, the
lgorithm uses decision trees. Each tree is created from a random
ubset of elements from the training set and a random selection of
eatures to form a ‘random forest’. Each decision tree in the ‘forest’
s therefore unique (Breiman 2001 ). Each tree assigns a class to
ach feature in the database, and the prediction assigned to the
ajority of the features is the final prediction for the feature. Each

ree therefore contributes to the final prediction. We are working
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Figure 4. Filtered data in 35–150 s/0.01–0.02 Hz, after removing instrumental response for five stations: SFJD, FRB, SUMG, BORG and ALE, recorded on 
11 Febr uar y 2005 at 06:55, which correspond to a catalo gue e vent, occurring at Helheim Glacier (Fig. 2 , light green stars). All triggers (On and Off) for all 
frequency bands explored with the different ST A/LT A (Raw, 0.02–0.1 Hz, 0.01–0.02 Hz, 1–NqF Hz, Stack). (b) Merging of triggers to form detections (final 
trigger: On-Off). In light red, seismic signals which corresponds to the catalogue event. Note that classical ST A/LT A was not triggered in the 0.02-0.1Hz band 
for this signal, hence the absence of green triggers in the upper part of the figure. 
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with 500 trees, as this parameter has proved robust in the studies 
cited above. 

The Random Forest algorithm can handle a large number of fea- 
tures and has the advantage of evaluating the impact of each feature 
by assigning importance scores. This importance score thus links 
the features of the seismic signal and the mathematical description 
of the source: it can therefore improve the physical interpretation of 
the phenomenon. 

Once the features have been calculated for all the seismic signals, 
we divide the data set into a training set and a testing set in order 
to train and test the Random Forest model. The training set consists 
of a percentage of the main data set with signals from both classes 
(glacial earthquake and earthquake) and is used to build trees ca- 
pable of discriminating between the two types of signal. Then, the 
model is applied to the remaining data (testing set). Results are pre- 
sented in the form of confusion matrices that compare the number 
(or percentages) of data in the class with the data predicted to be in 
that class. 
2.2.4 Workflows 

Fig. 5 illustrates the algorithm steps in the processing chain, from 

the two initial catalogues (Columbia 2007; USGS 2021) to the final 
one with the new events found. After pre-processing the data and 
training the pre viousl y detailed Random Forest model, we focus here 
on the post-processing stage. Due to the expected large number of 
ne wl y detected e vents, v alidation of all events predicted as glacial 
earthquakes would not be performed manually. We therefore add a 
step based on the scores obtained with the Random Forest algorithm, 
which reduces the number of events to be examined. The algorithm 

assigns a probability score to each seismic signal, and from this we 
have devised w orkflo ws to assign a class prediction and probability 
score to each event, composed of several seismic signals. These 
different w orkflo ws are presented in Fig. 5 , with some example 
situations to illustrate their behaviour. 

Workflow 1 (WF1) is based on the predictions of seismic signals 
that are generated by the same event. In this case, the final event 
prediction is the most represented prediction, regardless of the prob- 

art/ggad402_f4.eps
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Figure 5. Global w orkflo w. As input to this global w orkflo w, we take existing catalogues of events (Raw data section). After the pre-processing step, which 
detects and extracts the signals of these events from the continuous data, the machine learning algorithm is trained and applied to signals that are not identified 
in pre-existing catalogues. In order to assign each signal a class and a probability score, signals belonging to the same unknown events are processed using a 
w orkflo w (WF 1, 1.2, 2, 2.2 or 3). A manual validation is performed on this considerably reduced and refined selection of events. 
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bility scores (Fig. 5 ). The final probability score of the event is the
verage of the probability scores of the seismic signals labelled with
he majority of the predicted class. Workflow 1.2 (WF1.2) is a vari-
nt of W1: it works in the same way, but the seismic signals taken
nto account at the start depend on their probability score, which

ust be above a threshold. In other words, a seismic signal whose
robability score is below a defined threshold will be excluded from
he calculation of the final probability of the event under consider-
tion to belong to a given class. In Fig. 5 , the threshold is strictly
ess than 0.7. For w orkflo w 2 (WF2), the event probability score
s the highest average of the probability scores within each class.

orkflow 2.2 (WF2.2) works in the same way, with the threshold on
ignal probability scores. With workflow 3 (WF3), the event proba-
ility score is the highest probability score and the event prediction
s the corresponding class. In summary, we obtain a classifier ca-
able of discriminating between glacial earthquake and earthquake
ignals by following the protocol presented in Section 2.2.3 as well
s the steps described in Fig. 5 . 
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3  R E S U LT S  

3.1 R andom For est training and testing r esults 

The events included in the initial catalogue are used to train and test a 
Random Forest model. We e v aluated the robustness of the approach 
b y pro gressi vel y increasing the number of e vents in the training set. 
Thus, 5, 10, 25 and 50 per cent of the seismic signals belonging 
to dif ferent e vents recorded in the initial catalogues are randomly 
and independently selected for each test. Each model obtained with 
a selected number of seismic signals on the training set is then 
tested on the remaining seismic signals. This procedure is repeated 
10 times to gain a reliable overview of model behaviour as a function 
of the number of seismic signals used for training. Fig. 6 shows the 
percentages of well-predicted seismic signals as a function of the 
actual seismic signal label, averaged over 10 iterations of training 
and testing the model. 

The good identification rate of glacial earthquake and earthquake 
seismic signals is relati vel y stable with variation in the number of 
seismic signals used for training. The percentage of well-predicted 
glacial earthquake signals varies only from 90.01 to 93.05 per cent 
when moving from 5 to 50 per cent of the catalogue events used 
in the training set. The percentage of well-predicted earthquake 
signals is similarly stable. The model is therefore able to correctly 
label around 90 per cent of seismic signals. All signals are then used 
for training, that is 100 per cent of the signals from both catalogues, 
to build the Random Forest model, applied to the 344 931 unlabelled 
seismic signals obtained with the automatic detection algorithm. 

Model performance can be assessed using the accuracy score, 
which represents well-labelled prediction relative to total predic- 
tion. The overall accuracy of the model trained with 5 per cent of 
the catalogue is 88 per cent, rising to 91 per cent when 50 per cent 
of the events in the initial catalogue are used in the training set. The 
comparison with other studies using the Random Forest classifier is 
difficult as the number of events and of classes varies. For example, 
the correct identification rate reaches 99 per cent for landslide iden- 
tification in Hibert et al. ( 2019 ) with much less events, the overall 
accuracy reaches 95.3 per cent in Malfante ( 2018 ) for volcano seis- 
mic signal classification and Maggi et al. ( 2017 ) have an accuracy 
score of 96 per cent for rockfall classification in a study with eight 
classes. 

3.2 Results on 844 selected days 

The ST A/LT A-based algorithm, deployed on the 844 d of continu- 
ous data where an event occurs in the two initial catalogues (Sec- 
tion 2.1.3 ), yields 345 931 seismic signals that were detected on at 
least one of the five frequency bands used to calculate the ST A/LT A 

detector (Section 2.2.1 ). As described in Section 2.2.2 , the signals 
are combined into events: we obtain 60 933 events from the 345 931 
signals. We then apply the Random Forest model trained with all 
the data available in the initial catalogues to the unlabelled seismic 
signals, predicting a class for each signal detected. Of these 60 933 
e vents, around 40 335 e vents are classified as glacial earthquakes 
(65 per cent) using Workflow 1. Given the large number of events 
to be examined, we decided to use a threshold on the probability of 
scoring an event before adding it to the new catalogue. 

In Fig. 7 , we compare the number of events in the initial cata- 
logues (Columbia 2007) that are well labelled by the model and the 
number of new events predicted as glacial earthquakes for the five 
w orkflo ws. These numbers are given as a function of the value of 
the event probability score, which ranges from 0.60 to 0.95, below 
which we discard the event. By increasing the probability score 
threshold, events with a low probability score are discarded from 

consideration. At a threshold of 0.6, all w orkflo ws tend to assign the 
correct label to known events (different coloured squares at 0.6). 
The higher the threshold, the fewer events are retained. For exam- 
ple, with w orkflo w 2 (dark green), at 0.95, onl y 170 e vents from 

the initial catalogue of 444 glacial earthquakes (Columbia 2007) 
are retained in the final selection for manual validation. Workflow 

1 minimizes the number of events predicted as glacial earthquakes 
(right axis) while maximizing the number of known well-predicted 
events (left axis). By choosing a threshold of 0.8, only 5460 events 
are classified as glacial earthquakes instead of 40 000. 90 per cent 
of the events in the initial catalogue are also well identified. Fur- 
thermore, b y onl y considering e v ents with a probability score abov e 
0.8, there is a greater probability of excluding noisy events that 
have been classified as glacial earthquakes, as we assume they have 
a lower probability score than glacial earthquakes. Workflow 1 com- 
bined with the threshold of 0.8 seems to be the best balance between 
the number of events to be examined, the hypothetical false positive 
rate and the number of well-identified glacial earthquakes in the 
initial catalogue (Columbia 2007). With this choice of parameters, 
w e ha v e 5460 ev ents to check manuall y in order to v alidate the 
predicted label. 

During the manual validation phase, we decided to be conserva- 
ti ve and v alidate as glacial earthquakes onl y those e vents of which 
w e w ere convinced of, by comparing them with proven glacial earth- 
quakes (see Fig. 3 ). We note that some events are only recorded by 
stations in Iceland and Canada, but are not al wa ys detected by sta- 
tions in Greenland. This may be a bias in the algorithm which forms 
the events. These events were labelled as glacial earthquakes by 
the model and obtained a high event probability score with the 
chosen w orkflo w. We discard them during manual validation. We 
sometimes observe the classification of teleseismic events as glacial 
earthquakes due to their similar low-frequency content (an example 
is presented in Fig. 9 ). 

Of the 5460 events classified as glacial earthquakes, 1633 
(28 per cent) are validated as new glacial earthquakes after manual 
verification; 758 are reclassified as earthquakes and the remaining 
events are discarded because we cannot be sure of the source of these 
signals, as these events only often present glacial earthquake char- 
acteristics on one station, or none at all, but are still not earthquake 
signals. Over a period of 844 non-consecutive da ys, w e therefore 
found 1633 new glacial earthquakes, that is 3.6 times more events 
than in the initial catalogue (Columbia 2007). These new events 
constitute the new catalogue of glacial earthquakes. 

3.3 Pr eliminary anal ysis of the new catalogue 

The catalogue presented here does not cover a continuous period of 
data, and does not allow us to study the evolution of the number of 
events as a function of time, which is the ultimate aim of deploying 
the algorithm over the entire period from 1993 to the present day. 
Ho wever , the catalogue obtained for the 844 selected days allows 
us to make some initial observations. 

Fig. 8 (a) shows the number of events per year of the original 
glacial earthquake catalogue (blue) and the ne w catalo gue (red), 
as well as the evolution of the number of stations per year (black 
triangles). Events are represented year by year over the period 1993 
to 2013. Changes in the number of stations seem to have a lim- 
ited impact after the years 1999–2000: between 2008 and 2011, 
there is a gap in the ne w catalo gue and no sudden increase in the 
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Figure 6. Four confusion matrices with various number of training signals at training phase (from 5 to 50 per cent). Percentages are the means of the accuracy 
within the class, obtained on 10 tries. 
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nitial catalogue, despite a network of 20 stations. Before 2000,
ery fe w e vents were found in both catalogues. Fig. 8 (b) plots
he number of events per month to see how they correlate with
he seasons. The yellow vertical bands represent summer periods,
rom June to the end of September. A periodicity in the occurrence
f events can be observed, most pronounced for new catalogue
vents in red, but also visible for initial catalo gue e vents in blue
uring this period. Some summers (2003, 2004, 2011, 2012 and
013) also show a correlation in the number of events in the two
atalogues. 

Fig. 8 (c) represents the number of events over the 844 d studied.
 day on which a glacial earthquake from the original catalogue
ccurred is represented by a blue line, as shown in Figs 8 (e) and
 g). Days with red and blue lines represent days when an event
rom the initial glacial earthquake catalogue occurred and at least
ne new glacial earthquake was identified. Days with only a red
ine correspond to days when an earthquake event from the initial
arthquake catalogue (Columbia 2007) occurred and a new glacial
arthquake was identified. We observe three gaps in the number
f new events, in 2009, 2010 and 2011, so far without explanation.
uture analysis of the continuous data will enable us to better analyse
hether or not there are any gaps, and what causes them. 
In 2004, we see in Fig. 8 (d), which is a zoom on the selected

ear, up to 50 new events identified during the summer on a
ay when an event from the initial catalogue occurred. Fig. 8 (e)
hows onl y e vents from the initial catalo gue for that year. In 2012
Fig. 8 f), we observe between 1 and 19 new events recorded on
ays when an event from the initial catalogue of glacial earth-
uakes occurred. On a day when no glacial earthquake event oc-
urred, 20 ne w e vents were classified as glacial earthquakes (red
ar without blue at top). The same year, in Febr uar y 2012, 3 events
ere identified in the initial catalogue and five new events were

dentified on the same day, underlining the trend in the initial
atalogue. 
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Figure 7. The performance of five w orkflo ws is compared on the basis of the number of events in the initial catalogues (solid lines with squares) and the 
overall number of events predicted as glacial earthquakes (dashed lines with stars), as a function of the threshold value. The chosen configuration is Workflow 

1 (red) with a threshold of 0.8 (grey vertical line). 
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3.4 Retraining with new events 

3.4.1 Reclassified signals as earthquakes 

At the stage of manual event validation, we note a misclassification 
of some teleseismic events as glacial earthquakes. These teleseis- 
mic events are not regional events like those chosen to train the 
random forest model, but teleseismic events occurring all around 
the globe. Their seismic signature therefore differs from that of 
regional earthquakes, depending on the station recording the sig- 
nal (Fig. 3 ). In Fig. 9 , signal energy increases with time towards 
higher frequencies, corresponding to surface waves. The closer the 
tectonic activity, the stronger the increase. P and S waves are not 
easy to identify, as they are often attenuated, and depend on the 
magnitude and location of the event. The teleseismic events were 
identified one by one by using the time of signal recording at each 
station that had detected it. The event shown in Fig. 9 , mislabeled 
as a glacial earthquake, is a teleseismic event of magnitude 5.2 that 
occurred in Serbia at 7:40 a.m. on 1 July 1999. Teleseismic events 
have been added to the learning set as earthquakes. As our aim is to 
extract glacial earthquake signals from other signals (earthquakes, 
noise, anthropolo gical acti vities, etc.) and not to label new signals, 
w e ha v e e xcluded the creation of a third class with teleseismic 
signals. 
3.4.2 Comparison of model trained with catalogue events and 
with the addition of reclassified events 

The reclassified events are added to the random forest training set. 
We compare the performance of the model using only data from the 
initial catalogue, that is 444 glacial earthquakes and 400 earthquakes 
(Columbia 2007; USGS 2021), and the model using both initial 
catalogues plus reclassified events, i.e. new glacial earthquakes and 
teleseismic and other tectonic events in the glacial earthquakes 
and earthquakes classes respecti vel y. In Fig. 10 , we compare the 
detection approach (Fig. 10 a) and the event approach (Fig. 10 b) of 
the two models (orange and red) by examining the model accuracy 
score obtained with a training set varying from 5 to 100 per cent of 
the data set. The accuracy score is the number of correctly identified 
e vents di vided b y the number of predicted e vents in that class. We 
also use it to measure the false alarm rate in a class. The median 
score is the median of all event probability scores, whatever the final 
prediction. It can be an indicator of the model’s level of certainty. 

In Fig. 10 (a), the accuracy score of the model trained with ini- 
tial catalogues (Columbia 2007; USGS 2021; orange line) is better 
than the accuracy score of the model with the addition of reclas- 
sified events (red line), whatever the percentage of events on the 
training set. With the event-based approach (Fig. 10 b) at high per- 
centages of the trained number, both models show the same accuracy 
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(a)

(b)

(c)

(d) (f)

(e) (g)

Figure 8. Distribution of occurrence of glacial earthquakes in the original glacial earthquake catalogue (blue) and glacial earthquakes in the new catalogue 
(red) by year (a), month (b) and day (c). Distribution of events in 2004 (d and e) and 2012 (f and g). Evolution of the number of stations (a). Yellow area 
indicate summer periods. 
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core ( > 80 per cent). We note that accuracy scores are improved by
0 per cent when working with the e vent-dri ven approach, and that
cores are relati vel y stable as a function of the number of trained
vents. Median probability scores are lower in both approaches,
ith a difference of 0.2 in the detection approach and 0.1 in the

v ent approach. Accurac y and median scores were expected to be
ower with the model featuring reclassified e vents, as ne w e vents
ntroduce difficulties during the training phase: reclassified events
re often noisier and have less energy in certain frequency bands.
dding reclassified events to the training data does not improve

he performance of the machine learning algorithm, but one of its
dvantages is to add diversity to the signals used to train the model,
aking it capable of identifying events that are more dissimilar to

hose in the initial catalogue. 
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Figure 9. A teleseismic event occurred in Serbia at 7:40 a.m. on 1 July 1999, with a magnitude of 5.2 recorded by stations FRB, ALE and BORG. 

Figure 10. Sensitivity to the number of events used to train the Random Forest model with initial catalogue events (Columbia 2007; USGS 2021) and the 
Random Forest model with both initial and reclassified events (reclassified glacial earthquakes and reclassified earthquakes), with the single signal approach 
(a) and the event approach (b). The accuracy score of each model is represented by a single line. The median probability score of all events, assigned after the 
W1 w orkflo w, is represented by a dotted line and triangles. 
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4  D I S C U S S I O N  

The importance of the features used in the Random Forest algo- 
rithm is examined here, as are the benefits of the addition the 39 
new features (see Section 2.2.3 ). These features allow us to un- 
derstand why the model works well and may give us insights into 
the source of glacial earthquakes. All features are detailed in Ta- 
ble C1 in Appendix C . The weight in the identification done by the 
Random Forest algorithm is computed based on the decision trees 
which yields importance scores. The rele v ance of a feature’s choice 
is assessed using the importance score: a high importance score 
means that the specific feature has a greater effect on the classifi- 
cation model. In Fig. 11 , the 97 features are represented according 
to their importance score. Scores are normalized so that the sum 

of scores is equal to 1. The 10 most important features are shown 
in red. Importance scores decrease rapidly: the best feature (feature 
64—kurtosis of the signal in the 0.05–0.1 Hz frequency band) has 
a score of 0.112 and the tenth feature (feature 95—energy ratio 
10–20 Hz/0.05–0.1 Hz) has a score of 0.029. The number of peaks 
in the discrete Fourier transform of the average signal (feature num- 
ber 47) is the least discriminating feature, with a score of 2.16 ×
10 −6 . The 39 new features, framed in light brown in Fig. 11 , which 
are mainly based on kurtosis, ratio and energy differences in spec- 
ified frequency bands, significantly influenced the accuracy of our 
model: 7 of the 10 highest-scoring features come from these 39 
features, including the most discriminating (64). The 3 features that 
are among the top 10 but not among the 39 new features are signal 
flattening (feature 5), the skewness of the envelope (feature 8) and 
kurtosis in the 0.1–1 Hz frequency band (feature 18). 
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Figure 11. Importance scores for the 97 features used to describe waveforms. In red, the 10 best features. The light brown square frames the 39 features 
added for this study. The grey square frames features from the original study that have been modified, in particular by changing the frequency bands to suit the 
sampling rate of the stations used. 

Figure 12. Comparison of 3 new glacial earthquakes (a., d. and g.) with three synthetic forces (b, e and h) and three inverted forces from the initial catalogue 
(c, f and i) adapted from Sergeant et al. ( 2018 ). For the new events, the signal is decomposed into different frequency bands and represented with a linear 
spectrogram, with the same frequency limits as the spectrogram limits of the synthetic signals. 
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To confirm the final labelling of the ne wl y identified glacial earth- 
quakes, we visually compare the seismic signals of the new events 
with synthetic signals obtained by Sergeant et al. ( 2018 ). This ap- 
proach also enables us to better understand the role of the best 
features identified by our algorithm. In Fig. 12 , the spectrograms 
of the seismic signals (Figs 12 a, d and g), not deconvoluted from 

Green’s function, show the same patterns as the spectrogram of 
forces simulated by a mechanical model describing the calving of 
an iceberg against the tip of a glacier (Figs 12 b, e and h). Different 
iceberg configurations (different ε aspect ratios and different buoy- 
ancy conditions related to the initial iceberg height represented by 
� z ), illustrated in Figs 12 (b), ( e) and (h), lead to different synthetic 
signals, as explained in Sergeant et al. ( 2018 ). In Figs 12 (c), ( f), 
(i), the inverted forces are waveform inversions of the original cat- 
alo gue recorded b y the GLISN network. The ne w seismic signals 
illustrated share some features with the forces, in each configura- 
tion. The higher frequency range of the new events suggests to us 
that the events are smaller than the catalo gue e vents used to invert 
the forces. The signals are very similar, particularly at low frequen- 
cies (35–100 s - 0.02–0.01 Hz). We observe the three best features : 
kurtosis in 0.05–0.1 Hz, 0.01–0.1 Hz and 0.01–0.05 Hz. They do in- 
deed appear to be rele v ant features for describing synthetic signals. 
The attributes we have chosen therefore carry information about 
the source and are less af fected b y propagation. This sensiti vity to 
source parameters and less to propagation effects is probably what 
makes this approach so successful. 

5  C O N C LU S I O N  

In the context of ongoing global warming and its major impact on 
polar regions, we highlight the importance of creating comprehen- 
si ve catalo gues of glacial earthquakes to refine the understanding 
and quantification of ice mass loss in the Greenland ice sheet and 
its link to climate change. In this study, we hav e dev eloped a semi- 
automatic processing chain capable of detecting and identifying new 

seismic signals of glacial earthquakes from continuous data, adapt- 
able to longer time periods over which seismic data are available, 
that is up to 30 yr. 

We first design a detection algorithm based on several standard 
ST A/LT As to extract glacial earthquakes and seismic signal earth- 
quakes from continuous data. Deployed over 844 d from the cata- 
logue of 444 glacial earthquakes (Columbia 2007) and the catalogue 
of 400 earthquakes (USGS 2021), we extract 344 931 seismic sig- 
nals of potential cryoseismic events. This huge number of signals 
calls for machine learning methods to obtain a pre-selection of new 

glacial earthquake e vents. Consequentl y, with a Random Forest al- 
gorithm and a w orkflo w designed to reduce the number of misiden- 
tified e vents, 1633 e vents were identified as new glacial earthquakes 
in a period when only 444 glacial earthquakes had previously been 
recorded. The addition of 39 new features considerably improved 
the efficiency of the random forest model, since 7 of the 10 best fea- 
tures belonged to this group. The similarities between the seismic 
signals from the new events and the synthetic signals obtained in 
previous studies confirm the discovery of new glacial earthquakes. 

Last but not least, the creation of a widely extended catalogue 
of glacial earthquakes will contribute to a better study of this phe- 
nomenon. The machine-learning model can extract information on 
the source property from the characteristics of glacial earthquakes. 
In addition, the model can be improved by adding new identified 
events to the training set and by restricting temporary networks from 
Iceland. These improvements could reduce the hypothetical false- 
positive rate while enabling the identification of a greater number 
of glacial earthquakes. This w orkflo w from continuous data to the 
identification of seismic signals as glacial earthquakes can be de- 
plo yed o ver other time periods to enrich the catalogue. Deployment 
over 30 yr of continuous data, from 1993 to 2023, will be the subject 
of future work. 
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P P E N D I X  A :  I N V E N T O RY  O F  N E W  

V E N T S  

1 Two new events occurring in 1998 and 1999 

efore 2000, there were only 6 permanent seismic stations, includ-
ng FRB and SFJ (Fig. 2 ). Station SFJ was replaced at the same
ocation by SFJD in 2005, and is now part of the GLISN network.
wo events occurring in 1998 (Fig. A1 a) and 1999 (Fig. A1 b) are
hown. On the map, stations are coloured with a scale correspond-
ng to the amplitude of the raw signal recorded: the pinker the
olour, the greater the amplitude. Events from the initial catalogue,
lacial earthquakes (Columbia 2007) or earthquakes, occurring on
he days of the events shown are located by blue or brown stars, re-
pecti vel y. Ne w e vents are framed by a dotted line, and sometimes
e veral e vents are identified in the same record. The new event in
ig. A1 (a) was detected on a day when a glacial earthquake was
etected 5 hr earlier and located at Jakobshavn Isbrae, which is
40 km from the SFJ station. Two events seem to have occurred
ne after the other, with similar waveforms. The event in Fig. A1 (b)
as detected on a day when an earthquake occurred but no glacial

arthquake from the initial catalogue of glacial earthquakes was
etected. These two events can be compared with an event from the
nitial catalogue occurring on 2013-06-17 at Jakobshavn Isbrae (see
igs B3 a and c in the appendices). The amplitude of the filtered
ignals in 0.01–0.02 Hz of these new events ( ≈1 × 10 −8 ) is slightly
ower than that of the catalogue events ( ≈4 × 10 −8 ). We note that
hese two events were detected by the same two stations, SFJ and
RB, using our seismic signal algorithm. 

2 Example of new events occurring the same day 

e then present a day on which a catalogue event occurred at 03:02
.m. on the Jakobshavn Isbrae glacier (east coast of Greenland in
ig. 2 - purple stars), illustrated in Fig. A3 . In Fig. A2 (a), the event
ccurred 1 hr before the catalogue event, and the event in Fig.
2( b) occurred 4 hr after. The event represented in Fig. A2 (b) has

imilar characteristics to those of the catalogue event (Fig. A3 ),
articularly on the SFJD record. The amplitude of the filtered sig-
als in 0.01–0.02 Hz is of the order of 2 × 10 −8 , whereas the
atalo gue e vents at Jakobsha vn Isbrae ha ve amplitudes of betw een
 × 10 −8 and 4 × 10 −8 . The ne w e vents appear to have an am-
litude of the same order as the catalogue events. The waveforms
f the initial catalogue signal and the waveforms observed on the
ame day, a few hours before and after, are suf ficientl y similar
or us to identify these new signals as new glacial earthquakes.
he signals, recorded at different stations, show similarities in the
.02–0.1 and 0.01–0.02 Hz frequency bands. We also observe a
equence that seems to repeat itself [Fig. A2 b (ILULI) and Fig. A3 ]
ith two consecutive signals (the second being of lesser ampli-

ude). 

3 Example of two new events (2013) 

inally, we look at two new events that occurred in 2013 in Fig. A4 .
nly the two signals with the largest amplitude are shown. In
ig. A4 (a), the signals recorded at ILULI and SFJD have ampli-

udes of the same order. The waveforms show the same pattern as
ignals recorded during an event a few days earlier (2013-06-17) at
akobshavn Isbrae, illustrated in the appendices. The amplitudes of
he signals filtered in 0.01–0.02 Hz are of the same order, which

ay reflect a ne w e vent of similar magnitude (4.9 for the event in
he initial catalogue). The event shown in Fig. A4( a) appears to have
ccurred on the West Coast, due to the location of the station with
he highest amplitude, while the event (b) appears to have occurred
n the East Coast. 
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Figure A1. Two events occurred in 1998 (a) and 1999 (b), both recorded by stations SFJ and FRB. Each subfigure shows the raw signal, the filtered signal in 
two frequency bands (0.02–0.1 and 0.01–0.02 Hz) and a spectrogram with signal intensity in decibels. Stations are shown on a map of Greenland, coloured 
according to the normalized amplitude of the filtered signal in 0.01–0.02 Hz. Catalogue events of the day are represented by a blue or brown star for glacial 
earthquakes or earthquakes, respecti vel y. The signal from new events is framed by two red dotted lines. 
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A P P E N D I X  B :  E V E N T S  F RO M  T H E  

I N I T I A L  C ATA L O G U E  

We present some events from the initial catalogue of glacial earth- 
quakes (Columbia 2007), grouped by glacier: we show examples 
from the three most iceberg-producing glaciers, Helheim Glacier 
(Fig. B1 ), Kangerlussuaq Glacier (Fig. B2) and Jakosbshavn Is- 
brae (Fig. B3 ). These events occurred at different times and were 
recorded by a varied number of stations. They were used for visual 
comparison to validate the new glacial earthquakes. 

A P P E N D I X  C :  L I S T  O F  F E AT U R E S  

Features used for the Random Forest model are detailed in the table 
given in Table C1 . 
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Figure A2. Two new events occurred on the same day as a catalogue event (see Fig. A3 ). The known event occurred at 03:02 a.m. on the Jakobshavn Isbrae 
glacier, located by a dark blue star. Event a. occurred 1 hr before and event b. 4 hr after the catalo gue e vent. Each subfigure shows the raw signal, the filtered 
signal in two frequency bands (0.02–0.1 and 0.01–0.02 Hz) and a spectrogram with signal intensity in decibels. Stations are shown on a map of Greenland, 
coloured according to the amplitude of the filtered signal in 0.01–0.02 Hz. Catalogue events of the day are represented by a blue or brown star for glacial 
earthquakes or earthquakes, respecti vel y. The signal from events is framed by red or orange dotted lines. 

Figure A3. The catalogue event occurred on 2012-06-26 at 03:02 a.m. at Jakobshavn Isbrae, magnitude 4.7. Each subfigure shows the raw signal, the filtered 
signal in two frequency bands (0.02–0.1 and 0.01–0.02 Hz) and a spectrogram with signal intensity in decibels. Stations are shown on a map of Greenland, 
coloured according to the amplitude of the filtered signal in 0.01–0.02 Hz. The event is represented by a blue star. The signal from events is framed by red 
dotted lines. 
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Figure A4. Two events that occurred in June and July 2013, recorded at respecti vel y 5 and 4 stations. Each subfigure shows the raw signal, the filtered signal 
in two frequency bands (0.02–0.1 and 0.01–0.02 Hz) and a spectrogram with signal intensity in decibels. Stations are shown on a map of Greenland, coloured 
according to the amplitude of the filtered signal in 0.01–0.02 Hz. The event is represented by a blue star. The signal from events is framed by red dotted lines. 
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Figure B1. Helheim Glacier. Events are indicated by stars on the map on the right, with estimated magnitude and time. The signal is framed by a dotted line on 
one of the stations to highlight it. The stations are located and marked by a colour gradient corresponding to the amplitude of the signal in the frequency band 
of the filtered signal between 0.01 and 0.02 Hz, the station with the largest amplitude being in pink (1) and the smallest in yellow (0). (a) Event of 2005-04-23 
recorded on 2 stations BORG and ANGG. (b) Event of 2011-06-25 recorded on 5 stations MARN (station far from the event and showing no trace of the 
signal), SFJD, NUUK, ILULI and SUMG. Two signals follow each other a few minutes apart (13:17 and 13:25). (c) 2012-04-14 event recorded on 5 stations: 
ICESG, ANGG, SUMG, SOEG and SFJD. 
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Figure B2. Three events at the Kangerlussuaq glacier. (a) Event of 1994-08-21 recorded at 2 stations: BORG and FRB. (b) Event of 2003-09-24 recorded at 5 
stations: BORG, SFJ, D A G, ALE and NOR. (c) Event of 2011-09-19 recorded at 4 stations: ICESG, SOEG, ILULI and NUUK. 
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Figure B3. Three events at Jakosbshavn Isbrae. (a) Event of 1999-04-24 recorded on 2 stations FRB and D A G. (b) Event of 2012-02-12 recorded on 5 stations 
NEEM, NUUG, ICESG, NUUK and ANGG. (c) Event of 2013-06-17 recorded on 5 stations: SOEG, ICESG, ISOG, SUMG and TULEG. 
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Table C1. Features and corresponding description. 

Number Name 

1 Duration of the signal 
2 Ratio of the Max and the Mean of the normalized envelope 
3 Ratio of the Max and the Median of the normalized envelope 
4 Ascending time/Decreasing time of the envelope 
5 Kurtosis Signal 
6 Kurtosis Envelope 
7 Skewness Signal 
8 Skewness envelope 
9 Number of peaks in the autocorrelation function 
10 Energy in the 1/3 around the origin of the autocorrelation function 
11 Energy in the last 2/3 of the autocorrelation function 
12 Ratio of the energies calculated in 10 and 11 
13 Energy of the seismic signal in the 0.1–1 Hz frequency band 
14 Energy of the seismic signal in the 1–2 Hz frequency band 
15 Energy of the seismic signal in the 2–Nyquist Hz frequency band 
16 Energy of the seismic signal in the 0.01–0.02 Hz frequency band 
17 Energy of the seismic signal in the 0.02–0.05 frequency band 
18 Kurtosis of the signal in the 0.1–1 Hz frequency band 
19 Kurtosis of the signal in the 1–2 Hz frequency band 
20 Kurtosis of the signal in the 2–Nyquist Hz frequency band 
21 Kurtosis of the signal in the 0.01–0.02 Hz frequency band 
22 Kurtosis of the signal in the 0.02–0.05 Hz frequency band 
23 Difference between decreasing coda amplitude and straight line 
24 Ratio between max envelope and duration 
25 Mean FFT 

26 Max FFT 

27 Frequency at Max(FFT) 
28 Frequency of spectrum centroid 
29 Frequency of 1st quartile 
30 Frequency of 3rd quartile 
31 Median Normalized FFT spectrum 

32 Var Normalized FFT spectrum 

33 Number of peaks in normalized FFT spectrum 

34 Mean peaks value for peaks > 0.7 
35 Energy in the 1 – NyF/4 Hz band 
36 Energy in the NyF/4 – NyF/2 Hz band 
37 Energy in the NyF/2–3 ∗NyF/4 Hz band 
38 Energy in the 3 ∗NyF/4 – NyF/2 Hz band 
39 Spectrum centroid 
40 Spectrum gyration radio 
41 Spectrum centroid width 
42 Kurtosis of the envelope of the maximum energy on spectro 
43 Kurtosis of the envelope of the median energy on spectro 
44 Ratio Max DFT(t)/ Mean DFT(t) 
45 Ratio Max DFT(t)/ Median DFT(t) 
46 Number of peaks Max DFTs(t) 
47 Number of peaks Mean DFTs(t) 
48 Number of peaks Median DFTs(t) 
49 Ratio Max/Mean DFTs(t) 
50 Ratio Max/Median DFTs(t) 
51 Number of peaks X centroid Freq DFTs(t) 
52 Number of peaks X Max Freq DFTs(t) 
53 Ratio Freq Max/X Centroid DFTs(t) 
54 Mean distance between Max DFT(t) Mean DFT(t) 
55 Mean distance between Max DFT Median DFT 

56 Distance Q2 curve to Q1 curve (QX curve = envelope of X quartile of DTFs) 
57 Distance Q3 curve to Q2 curve 
58 Distance Q3 curve to Q1 curve 
59 Energy of the seismic signal in the 0.01–0.05 Hz frequency band 
60 Energy of the seismic signal in the 0.05–0.1 Hz frequency band 
61 Energy of the seismic signal in the 0.01–0.1 Hz frequency band 
62 Energy of the seismic signal in the 0.1–0.5 Hz frequency band 
63 Kurtosis of the signal in the 0.01–0.05 Hz frequency band 
64 Kurtosis of the signal in the 0.05–0.1 Hz frequency band 
65 Kurtosis of the signal in the 0.01–0.1 Hz frequency band 
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Table C1. Continued 

Number Name 

66 Kurtosis of the signal in the 0.1–0.5 Hz frequency band 
67 Difference of energy 0.1–1 Hz/1–2 Hz 
68 Difference of energy 0.1–1 Hz/2 Hz–Nq 
69 Difference of energy 0.1–1 Hz/0.01–0.02 Hz 
70 Difference of energy 0.1–1 Hz/0.01–0.05 Hz 
71 Difference of energy 0.1–1 Hz/0.05–0.1 Hz 
72 Difference of energy 1–2 Hz/2–Nq Hz 
73 Difference of energy 1–2 Hz/0.01–0.02 Hz 
74 Difference of energy 1–2 Hz/0.01–0.05 Hz 
75 Difference of energy 1–2 Hz/0.05-0.1 Hz 
76 Difference of energy 2 Hz-Nq/0.01–0.02 Hz 
77 Difference of energy 2 Hz-Nq/0.01–0.05 Hz 
78 Difference of energy 2 Hz-Nq/0.05–0.1 Hz 
79 Difference of energy 0.01–0.02 Hz/0.01–0.05 Hz 
80 Difference of energy 0.01–0.02 Hz/0.05–0.1 Hz 
81 Difference of energy 0.01–0.05 Hz/0.05–0.1 Hz 
82 Ratio of energy 0.1–1 Hz/1–2 Hz 
83 Ratio of energy 0.1–1 Hz/2 Hz–Nq 
84 Ratio of energy 0.1–1 Hz/0.01–0.02 Hz 
85 Ratio of energy 0.1–1 Hz/0.01–0.05 Hz 
86 Ratio of energy 0.1–1 Hz/0.05–0.1 Hz 
87 Ratio of energy 1–2 Hz/2 Hz–Nq 
88 Ratio of energy 1–2 Hz/0.01–0.02 Hz 
89 Ratio of energy 1–2 Hz/0.01–0.05 Hz 
90 Ratio of energy 1–2 Hz/0.05–0.1 Hz 
91 Ratio of energy 2 Hz–Nq/0.01–0.02 Hz 
92 Ratio of energy 2 Hz–Nq/0.01–0.05 Hz 
93 Ratio of energy 2 Hz–Nq/0.05–0.1 Hz 
94 Ratio of energy 0.01–0.02 Hz/0.01–0.05 Hz 
95 Ratio of energy 0.01–0.02 Hz/0.05–0.1 Hz 
96 Ratio of energy 0.01–0.05 Hz/0.05–0.1 Hz 
97 SNR 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
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