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We propose a two-phase two-thin-layer model for fluidized debris flows that takes
into account dilatancy effects, based on the closure relation proposed by Roux &
Radjai (Physics of Dry Granular Media, 1998, Springer, pp. 229–236). This relation
implies that the occurrence of dilation or contraction of the granular material depends
on whether the solid volume fraction is respectively higher or lower than a critical
value. When dilation occurs, the fluid is sucked into the granular material, the pore
pressure decreases and the friction force on the granular phase increases. On the
contrary, in the case of contraction, the fluid is expelled from the mixture, the pore
pressure increases and the friction force diminishes. To account for this transfer of
fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on
top of the two-phase mixture layer. Mass and momentum conservation are satisfied for
the two phases, and mass and momentum are transferred between the two layers. A
thin-layer approximation is used to derive average equations, with accurate asymptotic
expansions. Special attention is paid to the drag friction terms that are responsible
for the transfer of momentum between the two phases and for the appearance of an
excess pore pressure with respect to the hydrostatic pressure. For an appropriate form
of dilatancy law we obtain a depth-averaged model with a dissipative energy balance
in accordance with the corresponding three-dimensional initial system.
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1. Introduction
Gravity driven flows such as debris flows, sub-aerial and submarine landslides play

a key role in erosion processes on the Earth’s surface. They represent one of the
major natural hazards threatening life and property in mountainous, volcanic, seismic
and coastal areas, as shown recently by the debris flows that occurred in Uganda
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and Brazil in 2010, causing 400 and 350 deaths respectively and displacing several
hundred thousand inhabitants.

One of the ultimate goals of landslide studies is to produce tools for the prediction
of velocity and runout extent of rapid landslides. The development of a theoretical
description and physical understanding of the associated processes in a natural
environment remains an unsolved and extremely challenging problem in Earth
science, mechanics and mathematics. Recent progress in the mathematical, physical
and numerical modelling of gravity driven flows has led to the development and
use of numerical models for the investigation of geomorphological processes and
the assessment of risks related to such natural hazards. However, severe limitations
prevent us from fully understanding the physical processes acting in natural flows
and from predicting landslide dynamics and deposition. One of the important issues
is that existing models do not accurately account for the coexistence and interaction
of fluid (water and gas) and solid granular phases within the flowing mass, which
play a key role in natural gravity related instabilities. Water is almost always present
in natural landslides, and the frequently resulting debris flows (mixture of water and
grains) are often highly destructive.

The interaction between the fluid and granular phases within a saturated mixture
essentially depends on the fluid pressure, also called pore pressure, which determines
the effective friction force acting on the granular medium (e.g. Iverson 2000; Jackson
2000; Iverson 2005). Since the pioneering work of Reynolds (1885), a large number
of studies have been dedicated to dilatancy effects in granular materials and to their
interaction with pore fluid pressure, solid pressure and strain rates (e.g. Schofield &
Wroth 1968; Jackson 1983; Bolton 1986; Vardoulakis 1986; Wood 1990; Mitchell
1993). A change in the fluid pressure may result from a dilation of the granular
phase, which induces a sucking of the fluid within the mixture and a diminution
of the fluid pressure, thereby increasing the effective friction on the granular phase.
On the other hand, a contraction of the granular phase induces an expulsion of the
fluid from the mixture and an increase of the fluid pressure, thereby decreasing the
effective friction. This process is sometimes called ‘pore pressure feedback’ (Iverson
2005). Contraction of a grain–fluid mixture may lead to liquefaction of the mixture.
Dilation and contraction occur in response to a deformation of the granular medium,
and in particular to shearing. Indeed, a densely packed granular assembly (high solid
volume fraction) must dilate to be sheared, in order for the grains to have room
enough to move one with respect to the other. On the other hand, a loosely packed
assembly contracts in response to shearing. These processes play a dramatic role in
the dynamics of fluidized granular flows, from their initial destabilization to their
final deposition (Iverson et al. 2010; George & Iverson 2011; Rondon, Pouliquen &
Aussillous 2011; Montserrat et al. 2012; Andreini, Ancey & Epely-Chauvin 2013;
Iverson & George 2016).

It is a crucial issue to take dilatancy effects into account in numerical models of
granular flows. However, solution of the complete three-dimensional (3D) equations
of granular mass motion, with sufficient resolution to describe the real topography,
requires prohibitive computational costs. For this reason, it is necessary to write
simplified models. A class of efficient techniques, developed and successfully
employed to reproduce a large range of experimental and geological observations,
makes use of a depth-averaged continuum description, based on the thin-layer
approximation (i.e. the thickness of the flowing mass is assumed to be small
compared with its downslope extension) (Savage & Hutter 1989). This leads to
the assumption that the velocity normal to the topography is small compared with the
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downslope velocity. Taking into account two-phase grain–fluid mixtures and dilatancy
in the thin-layer approximation raises significant mathematical difficulties because of
the need for a consistent description of these effects within this approximation. In
particular, contraction–dilation induces a relative motion of the fluid and solid phases
in the direction normal to the topography, which is formally small in the thin-layer
asymptotic expansion. The drag friction force between the fluid and solid phases is,
however, strong enough to make it important to take this relative motion into account
in the asymptotic model, as detailed in this paper.

The solid–fluid mixture models described in the literature are generally based on
Jackson’s model (Jackson 2000), which describes the main interactions between the
two phases, such as buoyancy and drag frictional forces. Setting apart rheological
laws, the main equations in Jackson’s model are mass and momentum conservation
for the two phases, thus eight scalar equations. It has nine principal unknowns: the
solid volume fraction, the solid and fluid pressures and the components of the solid
and fluid velocities. As a result, a scalar closure equation is necessary to complete the
model. Several depth-averaged thin-layer models have been deduced from Jackson’s
model (e.g. Pitman & Le 2005; Pelanti, Bouchut & Mangeney 2008; Pailha &
Pouliquen 2009; Kowalski & McElwaine 2013; Iverson & George 2014). Pitman &
Le (2005) followed by Pelanti et al. (2008) replaced the closure relation by an extra
boundary condition at the free surface. This leads to an overdetermined problem at
the free surface (two kinematic conditions), and to an underdetermined problem inside
the domain. However, given the hydrostatic pressure assumption, a depth-averaged
model can be obtained since the disappearance of the normal variable gives a kind of
equivalence between a boundary condition and a closure relation inside the domain.
The lack of a relevant closure equation leads to a non-dissipative energy balance in
the Pitman and Le model, as well as in its variants. Moreover, these models do not
take into account dilatancy effects. See Bouchut et al. (2015) for more details on the
different methods used to tackle this problem and on the validity of the proposed
closure relations.

A crucial point in order to obtain a realistic model is that the energy balance
associated with the model must be physically relevant. A main objective here is
to propose a closure equation that gives such an energy balance, at least in the
case when a simplified rheology is taken. Along these lines, in our previous work
(Bouchut et al. 2015) we proposed a depth-averaged two-phase debris flow model that
gives a dissipative energy balance. In that model, the closure equation is simply the
incompressibility of the solid phase – in the sense of cancellation of the dilation rate
(divergence of the solid velocity) – so that dilatancy is not accounted for. Moreover,
in order to avoid overdetermined boundary conditions, only the sum of the solid and
fluid normal stresses is set to zero at the free surface, instead of both separately.
We propose here to close Jackson’s model by including dilatancy effects, based
on the model proposed by Roux & Radjai (1998) for dry granular flows derived
from critical-state mechanics (e.g. Schofield & Wroth 1968; Wood 1990). In this
model, the dilation rate is directly related to the volume fraction and is taken to
be equal to γ̇ tan ψ , where γ̇ is the shear rate and ψ is the ‘dilation angle’ which
depends on the volume fraction. This description of dilatancy has been used in Pailha
& Pouliquen (2009) to develop a thin-layer depth-averaged two-phase model for
immersed granular flows. In this configuration there is one moving surface for the
mixture, and one fixed (say horizontal) surface for the fluid, thus there is no excess
boundary condition. However, the authors assumed uniformity in the slope-aligned
direction. In their final model, the dilatancy effect appears through an excess pore
pressure term, in addition to the hydrostatic pressure.
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Other kinds of debris flow models are based on the idea of a single-phase mixture
model. One of the first such models was presented by Iverson (1997), followed by
other versions proposed in Iverson (2009), George & Iverson (2011, 2014) and Iverson
& George (2014), still based on a single-phase mixture model. As a result, the relative
motion between the solid and fluid phases does not appear explicitly. The mass and
momentum equations for the mixture are coupled to an advection–diffusion equation
to describe the changes in pore pressure. The model in Kowalski & McElwaine (2013)
is also of this type: it uses a closure by the Richardson & Zaki (1954) sedimentation
law, which is indeed an alternative way to formulate the relative motion of solid and
fluid phases by an advection–diffusion equation on the volume fraction. To close the
system, Iverson & George assume that the mixture obeys a Darcy law and they use
a closure relation that takes into account the dilatancy effects. More precisely, they
consider a modification of the Roux and Radjai dilatancy law in order to introduce
the variations of the effective stress, already proposed in Iverson (2009). In this case
the dilation rate is given by γ̇ tanψ −α(d/dt)(σ − pf ), where α is the compressibility
of the mixture, σ is the total normal stress and pf is the fluid pressure. The definition
of α is discussed in Andreini et al. (2013).

The aim of this paper is to establish a depth-averaged two-phase thin-layer model
including dilatancy effects from Jackson’s model with the Roux and Radjai closure.
It is a kind of extension with slope-aligned variable dependence of the model of
Pailha & Pouliquen (2009), in the two thin-layer configuration. As opposed to
previously cited works, and in order to be consistent with the physical processes
described above, we consider an extra upper fluid layer, which allows the fluid to be
expelled or sucked in from the mixture at its upper boundary. This also allows us
to resolve the overdetermination at the boundary, because now there are two moving
surfaces, and one kinematic condition for each of them. This is a key point in our
approach. An accurate asymptotic analysis is performed to derive the depth-averaged
system. We show that the effect of dilatancy on the fluid pressure appears through
an extra contribution to the hydrostatic pressure, the so-called excess pore pressure.
It is strongly related to the normal relative motion between the granular and fluid
phases. We prove additionally that the proposed model satisfies a dissipative energy
balance equation as well as the initial 3D starting system, under the assumption of
a pressure-dependent critical volume fraction. This is obtained via a compressible
interpretation of our model.

The paper is organized as follows. Section 2 describes the 3D starting mixture
system together with the closure equation and boundary conditions. The thin-layer
model is derived in § 3, where the scaling assumptions are specified. In § 4 we discuss
the properties of our thin-layer model and the differences from other models in the
literature. Section 5 shows some preliminary numerical simulations in the uniform
setting, and § 6 presents our conclusions. Technical calculations are provided in several
appendices.

2. Two-phase mixture model
2.1. Jackson’s model

The starting point of our derivation is the same as in Bouchut et al. (2015), i.e. the
3D model proposed by Jackson (2000) for flows of solid granular materials filled
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(saturated) with fluid. A related theory of mixtures is also developed in Brenner
(2009). The two mass conservation equations for the solid and fluid phases are
respectively

∂t(ρsϕ)+∇ · (ρsϕv)= 0, (2.1a)
∂t(ρf (1− ϕ))+∇ · (ρf (1− ϕ)u)= 0, (2.1b)

and the equations of momentum conservation for each phase are

ρsϕ(∂tv + (v · ∇)v)=−∇ · Ts + f 0 + ρsϕ g, (2.2a)
ρf (1− ϕ)(∂tu+ (u · ∇)u)=−∇ · Tfm − f 0 + ρf (1− ϕ)g. (2.2b)

The velocities are v for the solid phase and u for the fluid phase, while Ts and Tfm
denote the (symmetric) stress tensors for the solid and the fluid respectively. Moreover,
the constant densities are denoted by ρs and ρf . Acceleration due to gravity is denoted
by g, and f 0 represents the average value of the resultant force exerted by the fluid on
a solid particle. The solid volume fraction is ϕ. The combination of (2.1a) and (2.1b)
yields the mass conservation for the mixture,

∂t(ρm)+∇ · (ρmVm)= 0, (2.3)

where

ρm = ρsϕ + ρf (1− ϕ) , Vm = ρsϕv + ρf (1− ϕ) u
ρsϕ + ρf (1− ϕ) (2.4a,b)

are the density and velocity of the mixture respectively. Dividing (2.1a) by ρs, (2.1b)
by ρf and adding the results gives

∇ · (ϕv + (1− ϕ)u)= 0, (2.5)

which can also be written as ∇ · v=∇ · ((1− ϕ)(v− u)). It should be noted that this
relation does not imply that ∇ ·Vm is equal to zero.

According to Anderson & Jackson (1967) and as in Bouchut et al. (2015), the
force f 0 is decomposed into the sum of the buoyancy force f B and all remaining
contributions f ,

f 0 = f B + f =−ϕ∇pfm + f , (2.6)

where pfm is the fluid pressure in the mixture (pore pressure). The term f combines the
drag force, the lift force and the virtual mass force. It should be noted that separation
of the buoyancy force from the rest of inter-phase forces is not trivial, as explained
in Jackson (2000). Here, we assume that f can be expressed simply by the drag force,
thus

f = β̃(u− v), (2.7)

β̃ being the drag coefficient given as in Pailha & Pouliquen (2009) and Iverson &
George (2014) by

β̃ = (1− ϕ)2 ηf

κ
, (2.8)

where ηf is the dynamic viscosity of the fluid and κ is the hydraulic permeability of
the granular aggregate, which depends on ϕ.
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By substituting (2.6) into (2.2a) and (2.2b), we obtain

ρsϕ(∂tv + (v · ∇)v)=−∇ · Ts − ϕ∇pfm + f + ρsϕg, (2.9a)
ρf (1− ϕ)(∂tu+ (u · ∇)u)=−∇ · Tfm + ϕ∇pfm − f + ρf (1− ϕ)g. (2.9b)

It should be noted that adding (2.9a) and (2.9b) and taking into account (2.1a), (2.1b)
yields the conservation of total momentum

∂t(ρsϕv + ρf (1− ϕ)u)+∇ · (ρsϕv⊗ v + ρf (1− ϕ)u⊗ u+ Ts + Tfm)

= (ρsϕ + ρf (1− ϕ))g. (2.10)

We shall assume rheologies of the form

Ts = ps Id+T̃s, Tfm = pfm Id+T̃fm, (2.11a,b)

where ps and pfm are the total pressures for the solid and fluid within the mixture
respectively and T̃s, T̃fm need to be defined, according to rheological assumptions.
With (2.11), the fluid momentum equation (2.9b) involves the pressure contribution
−(1− ϕ)∇pfm . It is important to see that, since the factor 1− ϕ appears also on the
left-hand side, the velocity u, however, only feels the term −∇pfm , as expected since
pfm is the pore pressure. The interpretation of the solid momentum equation (2.9a)
is that the solid feels the buoyancy term −ϕ∇pfm and the solid pressure term −∇ps.
The latter pressure ps (also called effective normal stress) represents only the effects
of grain interactions, and its gradient can be evaluated in practice by measuring the
force exerted on a grid immersed into the mixture.

The system of eight scalar equations (2.1a,b), (2.9a,b) has nine scalar unknowns ϕ,
ps, pfm , and the components of u and v. Thus, as exposed in Bouchut et al. (2015),
it is not closed, and this is due to the averaging process used for its deduction
(see Jackson 2000 for details). Therefore, a closure relation is needed, under the
form of an additional scalar equation that should be imposed, based on the physical
processes involved. A possible closure is to impose the incompressibility of the solid
phase, ∇ · v = 0, considered in the previous work (Bouchut et al. 2015). However,
in real granular materials the dilatancy effects, due to geometrical congestion, may
induce changes of the solid dilation rate ∇ · v, even if the mass of the granular
material remains constant. This effect has to be included in the model instead of
incompressibility.

2.2. Closure and energy balance
The energy balance associated with Jackson’s system can be written, as in Bouchut
et al. (2015), as

∂t

(
ρsϕ
|v|2
2
+ ρf (1− ϕ) |u|

2

2
− (g · X)(ρsϕ + ρf (1− ϕ))

)
+∇ ·

(
ρsϕ
|v|2
2

v + ρf (1− ϕ) |u|
2

2
u− (g · X)(ρsϕv + ρf (1− ϕ)u)

+ pfm(ϕv + (1− ϕ)u)+ T̃fmu+ Tsv

)
= Ts :∇v + T̃fm :∇u+ f · (v − u), (2.12)
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where X denotes the space position. The friction effects naturally give a dissipative
term f · (v − u) 6 0, and it is also natural to assume that T̃fm :∇u 6 0. The sign of
Ts :∇v remains, however, undetermined. Since by (2.11)

Ts :∇v = ps∇ · v + T̃s :∇v, (2.13)

and it is also natural to have T̃s : ∇v 6 0, the term ps∇ · v remains. As mentioned
above, the closure relation that states the incompressibility of the solid phase ∇ · v= 0
gives a consistent energy balance and the model of Bouchut et al. (2015), but does
not take into account dilatancy. Thus, we consider the following closure equation to
Jackson’s model, involving the solid dilation rate ∇ · v:

∇ · v =Φ, (2.14)

with Φ a function to be determined, which may depend on the unknowns of the
system, as discussed in the next subsection. This kind of ‘weakly compressible’
closure is considered in low-Mach-number flows, see, for example, Penel, Dellacherie
& Després (2015). This equation (2.14) together with (2.1a,b), (2.9a,b) (and (2.11)
with suitable definitions of T̃s, T̃fm), gives a closed system. Then, on the right-hand
side of (2.12) with the decomposition (2.13), only the first term psΦ is not always
non-positive. This term is further analysed in § 2.4.

2.3. Dilatancy in dense granular flows
In the work of Roux & Radjai (1998), a model for introducing dilatancy effects
into the behaviour of dry granular media is proposed. This effect is directly related
to the changes experienced by the solid volume fraction. In particular, the rate of
volume change is given by γ̇ tan ψ , where γ̇ = |Dv| is the norm of the strain rate
Dv = (∇v + ∇vt)/2, and ψ is the so-called ‘dilation angle’. This means more
explicitly that

∂tϕ + v · ∇ϕ =−ϕ γ̇ tanψ. (2.15)

From the mass equation (2.1a) we have ∂tϕ + v · ∇ϕ = −ϕ∇ · v, thus we can
reformulate (2.15) as a relation between the solid dilation rate ∇ · v and the dilation
angle ψ , as

∇ · v = γ̇ tanψ. (2.16)

The dilation angle ψ is in turn related to the solid volume fraction ϕ, and a linear
approximation can be written as ψ = a(ϕ− ϕeq

c ), with a> 0, and ϕeq
c the critical-state

equilibrium compacity, which corresponds to the volume fraction obtained when a
steady-state regime is reached (Schofield & Wroth 1968; Wood 1990). This critical-
state compacity ϕeq

c is generally a function of the solid pressure ps, of the shear rate
γ̇ and of the granular temperature, increasing with respect to ps. For the case of pores
filled by fluid considered here, the granular temperature can be neglected. For steady
granular flows it was shown in GDR MiDi group (2004), Cassar, Nicolas & Pouliquen
(2005), Da Cruz et al. (2005) and Forterre & Pouliquen (2008) that ϕeq

c is indeed a
decreasing function of γ̇ /

√
ps in the dry case (respectively of γ̇ /ps in the wet case).

This approach with critical-state compacity ϕeq
c allows us to recover the different

behaviours of loose and dense granular media, according to the sign of ϕ − ϕeq
c .

Namely, for a dense packing ϕ >ϕeq
c , one has a positive dilation angle, ψ > 0, which

induces dilation of the granular medium, ∇ · v> 0, while for a loose packing ϕ <ϕeq
c ,
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one has a negative dilation angle, ψ < 0, which induces contraction of the granular
medium, ∇ · v < 0. This is valid as soon as γ̇ > 0, i.e. when a deformation occurs.

Pailha & Pouliquen (2009) deal with the immersed granular flow system. They
consider the preceding model where a linearization of tanψ is proposed,

tanψ =K(ϕ − ϕeq
c ), (2.17)

K> 0 being a calibration constant (dilation constant). We adopt this dilation model to
write

∇ · v =Kγ̇ (ϕ − ϕeq
c ). (2.18)

Thus, the closure considered in this work for (2.14) is

Φ =Kγ̇ (ϕ − ϕeq
c ). (2.19)

As exposed by Iverson (2005) and Schaeffer & Iverson (2008), there is a coupling
between the dilatancy and the pore pressure, called ‘pore pressure feedback’. This
effect plays an important role in the way a landslide starts, and then dramatically
affects the flow dynamics. The formula (2.18) reproduces the contraction–dilation
effects well (see Pailha & Pouliquen 2009; Andreotti, Forterre & Pouliquen 2011),
which are the following.

(i) If ϕ > ϕeq
c then the granular medium dilates (∇ · v > 0) as soon as there is a

deformation (γ̇ > 0). Consequently,
(1) the fluid must be sucked into the mixture,
(2) the pore pressure decreases.

(ii) If ϕ < ϕeq
c then the granular medium contracts (∇ · v < 0) as soon as there is a

deformation (γ̇ > 0). Consequently,
(1) the fluid must be expelled from the mixture,
(2) the pore pressure increases.

The type of closure (2.18) entails a modification of the coefficient of the Coulomb
friction law which becomes tan(δ+ψ) instead of tan δ. By linearization, we can write
an effective friction coefficient as

tan δeff = tan δ + tanψ. (2.20)

In the thin-layer expansion performed below, we neglect the deviatoric solid stress
T̃s inside the mixture, and only consider the bottom solid friction with the friction
coefficient tan δeff .

Closure laws slightly different from (2.19) are considered in § 4.6.

2.4. Interpretation as a compressible model
We would like here to propose an interpretation of the Roux & Radjai (1998) dilatancy
relation under the form (2.18) as a compressible model, which enables us to write
down a fully dissipative energy equation in the case when the critical-state compacity
ϕeq

c depends only on the pressure ps, and not on γ̇ .
We consider the critical volume fraction ϕeq

c to be an increasing function of the
solid pressure only, ϕeq

c = ϕeq
c (ps), bounded by some maximal value ϕmax (ϕmax ∼ 0.6

for monodisperse spherical grains, but ϕmax can be higher for real polydisperse
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materials). This function ϕ = ϕeq
c (ps) can be defined by its inverse p= peq

c (ϕ) (peq
c (ϕ)

being called the critical pressure), as for example peq
c (ϕ) = K ϕγ /(ϕmax − ϕ)ι, for

some coefficient K , and some exponents γ , ι. Particular dependences of peq
c (ϕ) in ϕ

appear for example in Lee, Huang & Chiew (2015). Since the granular temperature
is negligible in the present context of pores filled by fluid, the critical pressure
peq

c (ϕ) is only related to the deformation of the grains that are in contact. A formula
valid in the context of granular mixtures is given in Iverson & George (2014) as
peq

c (ϕ)/p0 = exp((ϕ − ϕmin)/a) − 1, with 0.01 6 a 6 0.05 and 10 Pa 6 p0 6 1000 Pa,
depending on the materials.

Classically, in thermodynamics, the mechanical internal energy U is related to the
pressure p and volume V by the relation dU = −p dV . Here, the specific volume
(i.e. volume per mass unit) is 1/(ρsϕ), thus with the critical pressure peq

c (ϕ) one can
associate by this relation a specific internal energy (i.e. internal energy per mass unit)
eeq

c (ϕ). Since d(1/ϕ)=−dϕ/ϕ2 we obtain the differential relation

deeq
c

dϕ
= peq

c

ρsϕ2
. (2.21)

Then, writing the mass equation (2.1a) as ∂tϕ + v · ∇ϕ + ϕ∇ · v= 0, and multiplying
it by deeq

c /dϕ, we obtain

∂teeq
c + v · ∇eeq

c +
peq

c

ρsϕ
∇ · v = 0. (2.22)

Multiplying this by ϕ and using again (2.1a) yields

∂t(ϕeeq
c )+∇ · (ϕeeq

c v)+ peq
c

ρs
∇ · v = 0. (2.23)

Adding this times ρs to the energy equation (2.12) gives

∂t

(
ρsϕ
|v|2
2
+ ρf (1− ϕ) |u|

2

2
− (g · X)(ρsϕ + ρf (1− ϕ))+ ρsϕeeq

c

)
+∇ ·

(
ρsϕ
|v|2
2

v + ρf (1− ϕ) |u|
2

2
u− (g · X)(ρsϕv + ρf (1− ϕ)u)

+ pfm(ϕv + (1− ϕ)u)+ T̃fmu+ Tsv + ρsϕeeq
c v

)
= (ps − peq

c )∇ · v + T̃s :∇v + T̃fm :∇u+ f · (v − u). (2.24)

Now, according to (2.18) and since ps − peq
c (ϕ) and ϕ − ϕeq

c (ps) have opposite signs
because ϕeq

c is an increasing function of ps, one has (ps − peq
c )∇ · v 6 0, and the

energy balance equation (2.24) has a non-positive right-hand side. This means that,
as required by the laws of physics, the total mechanical energy of the system is
dissipated.

Another way to understand the dilatancy law (2.18) is to perform a further linear
approximation K(ϕ− ϕeq

c (ps))'Kp(peq
c (ϕ)− ps), which is valid for ϕ and ps far from

extreme values 0, ϕmax and 0, ∞ respectively, with Kp the order of magnitude of
K(dpeq

c /dϕ)
−1. Then, the dilatancy law (2.18) is transformed into

∇ · v =Kpγ̇ (peq
c (ϕ)− ps), (2.25)
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b

FIGURE 1. (Colour online) Domain and geometrical parameters. The solid–fluid mixture
lies between a fixed bottom and an upper pure fluid layer. The width hm of the mixture
layer and the width hf of the pure fluid layer evolve with time.

which can be written also as

ps = peq
c (ϕ)−

∇ · v
Kpγ̇

. (2.26)

When (2.26) is introduced into the stress in (2.9a) it gives a diffusion equation on the
solid velocity v (or on its divergence), with a diffusion coefficient that is induced by
the Roux–Radjai dilatancy law,

DRR =
dpeq

c

dϕ
Kγ̇ ρsϕ

. (2.27)

Indeed, (2.26) appears clearly as a compressible rheological law with bulk viscoplastic
term (because of γ̇ in the denominator), which can be compared with (6) in Lee et al.
(2015).

We can propose also a general closure law under the form of a critical pressure
peq

c (ϕ, γ̇ ) that generalizes (2.25), by defining Φ in (2.14) as

Φ =Kpγ̇ (peq
c (ϕ, γ̇ )− ps), peq

c (ϕ, γ̇ )=max
(

pcompr(ϕ),
ηf γ̇

Ieq(ϕ)

)
, (2.28a,b)

where pcompr(ϕ) is a static compressible law, and Ieq(ϕ) is an equilibrium relating the
volume fraction ϕ to the inertial number I. It can be, for example, Ieq(ϕ) = (ϕ̄stat

c −
ϕ)/K2 in the context of (5.8). The compressible pressure pcompr can be taken as above,
pcompr(ϕ)/p0 = exp((ϕ − ϕmin)/a)− 1.

2.5. Domain and boundary conditions
We assume that the mixture (0<ϕ < 1) lies between a fixed bottom and an interface,
and that between the interface and an upper free surface there is only fluid (ϕ ≡ 0),
see figure 1. The thickness of the mixture layer is denoted by hm, the thickness of the
fluid-only layer by hf , and the fixed bottom is defined by a function b.

The fluid velocity in the top layer is denoted by uf , and in the mixture layer by u,
while v denotes the velocity of the solid phase. For other terms, we will use as general
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notation the subscript ()s for the solid phase, ()fm for the fluid in the mixture and just
()f for the fluid-only layer.

Then, the solid equations (2.1a), (2.9a) are set in the mixture domain, while the
fluid equations (2.1b), (2.9b) must hold within both domains. This yields for the fluid-
only domain

∇ · uf = 0, (2.29a)
ρf (∂tuf + (uf · ∇)uf )=−∇ · Tf + ρf g, (2.29b)

with the energy equation

∂t

(
ρf
|uf |2

2
− ρf (g · X)

)
+∇ ·

(
ρf
|uf |2

2
uf − ρf (g · X)uf + Tf uf

)
= T̃f :∇uf . (2.30)

We can also consider that (2.1a), (2.9a) hold in the upper domain with the convention
that there ϕ= 0 and Ts= 0. The closure equation (2.14) holds in the mixture domain.

The boundary conditions are taken as follows.

(i) At the bottom we consider the non-penetration conditions

u · n= 0, v · n= 0 at the bottom, (2.31a,b)

where n is the upward space unit normal (i.e. the normal to the topography).
This is completed with friction conditions. First, a solid Coulomb friction law
is applied,

(Tsn)τ =− tan δeff sgn(v)(Tsn) · n at the bottom, (2.32)

where δeff is the effective intergranular Coulomb friction angle from (2.20),
sgn(v) = v/|v|, and the subscript τ denotes the tangential projection, vτ = v −
(v · n)n for any vector v. Unless not written explicitly here, a viscous friction
term can also be added to (2.32), as is done for the numerical tests in § 5.
Moreover, a generic Navier friction condition for the fluid phase is applied,

(Tfm n)τ =−kbu at the bottom, (2.33)

for some coefficient kb > 0. In particular, the choice kb = 0 is possible for a
slip condition. It seems irrelevant to consider a no-slip condition (kb = ∞). A
possibility is to take a Manning–Strickler law, for which kb is proportional to
ρf |u|. The choice of Iverson & George (2014) is to take a viscous friction where
kb is proportional to ηf /(hm + hf ), with ηf the viscosity of the fluid. One can
think anyway that except for large times, the effects of fluid friction at the bottom
are negligible with respect to the drag friction forces and the bottom Coulomb
friction on the solid phase. It should be noted that any choice of friction boundary
conditions for the fluid and solid phases at the bottom is formally possible in the
model presented here. This choice will not affect our asymptotic analysis or the
form of the limit averaged system.

(ii) At the free surface we assume no tension for the fluid,

Tf NX = 0 at the free surface, (2.34)

together with the kinematic condition

Nt + uf ·NX = 0 at the free surface, (2.35)

where N= (Nt,NX) is a time–space normal to the free surface.
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(iii) At the interface, we consider the kinematic condition for the solid phase,

Ñt + v · ÑX = 0 at the interface, (2.36)

where we denote by Ñ = (Ñt, ÑX) a time–space upward normal to the interface.
Additional jump relations have to be prescribed. These relations state that the
fluxes on both sides of the interface are related through transfer conditions. These
are determined by global conservation properties, under the form of Rankine–
Hugoniot conditions. We must first ensure that the total fluid mass is conserved.
The Rankine–Hugoniot condition associated with (2.1b), where ϕ vanishes in the
fluid-only region, leads to

Ñt + uf · ÑX = (1− ϕ∗)(Ñt + u · ÑX)≡ Vf at the interface, (2.37)

where ϕ∗ is the value of the solid volume fraction at the interface (the limit is
taken from the mixture side). It should be noted that ϕ is discontinuous at the
interface. The term Vf defines the fluid mass that is transferred from the mixture
to the fluid-only layer (Vf < 0 means that the fluid is transferred from the fluid-
only region to the mixture region). The equation (2.37) says that the amount of
fluid that is entering the fluid-only region is the same as the amount of fluid that
leaves the mixture. This relation can also be written as (A 3).
The conservation of total momentum gives (see appendix A)

ρf Vf (u− uf )+ (Ts + Tfm)ÑX = Tf ÑX at the interface. (2.38)

The energy balance through the interface (see appendix A) yields the stress
transfer condition

TsÑX =
ρf

2

(
(u− uf ) · ÑX

|ÑX|

)2

+
(
(TfmÑX) · ÑX

|ÑX|2
− pfm

)
ϕ∗

1− ϕ∗
)

ÑX at the interface. (2.39)

These conditions are completed by a Navier fluid friction condition(
Tfm + Tf

2
ÑX

)
τ

=−ki(uf − u)τ at the interface, (2.40)

where ki > 0 is a friction coefficient. This last condition is indeed a boundary
friction for the upper fluid layer. Since this pure fluid layer is not affected by
drag, the coefficient ki cannot be neglected, and can be taken proportional to
ρf |(uf − u)τ |. It should be noted that since ϕ∗ 6= 0 and according to (2.37), one
has in general (uf − u) · ÑX 6= 0 because of the fluid mass exchange through the
interface. The no-slip condition (uf − u)τ = 0 (i.e. ki = ∞) is of interest, and
is indeed chosen in the simplified two-velocity model of § 4.3. More involved
conditions are considered in Beavers & Joseph (1967).
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3. Derivation of the thin-layer depth-averaged model
In this section we derive a depth-integrated thin-layer model from the Jackson

model with the closure stated in § 2.
The geometrical setting is as follows. We have two layers, the one below being

filled with the mixture of grains and fluid and the one above only with fluid (see
figure 1). The equations of mass and momentum in the mixture region are given
by (2.1a), (2.1b), (2.9a) and (2.9b), closed by the relation (2.14) with Φ defined by
(2.19). The equations for the fluid-only layer are defined by (2.29a), (2.29b). The
stress tensors for the solid and fluid phases in the mixture are given by (2.11). The
boundary conditions are written in the previous subsection, as (2.31)–(2.40).

3.1. Local coordinates
We now write the equations in local coordinates. We use a decomposition of the
velocities and the derivatives in their longitudinal and normal components. We denote
by x = (x, y) a vector variable in a fixed plane inclined at angle θ , x being in the
direction of the slope, and by z the variable normal to this plane (see figure 1). The
equation of the bottom is thus given by z= b(x), the interface by z= b(x)+ hm(t, x)
and the free surface by z= b(x)+ hm(t, x)+ hf (t, x). The gravity vector is then

g= (−g sin θ, 0,−g cos θ)t (3.1)

(the slope angle θ is indeed negative in figure 1). The velocities are written as uf =
(ux

f , uz
f ), ux

f = (ux
f , uy

f ); u = (ux, uz), ux = (ux, uy); v = (vx, vz), vx = (vx, vy), and the
gradient is ∇ = (∇x, ∂z) with ∇x = (∂x, ∂y). The equations can then be written as
follows.

(i) In the mixture layer b< z< b+ hm:

∂tϕ +∇x · (ϕvx)+ ∂z(ϕv
z)= 0, (3.2a)

∂t(1− ϕ)+∇x · ((1− ϕ)ux)+ ∂z((1− ϕ)uz)= 0, (3.2b)

ρsϕ(∂tv
x + vx · ∇xv

x + vz∂zv
x) = −∇x · T xx

s − ∂zT
xz
s − ϕ∇xpfm

+ f x − ϕρsg sin θ(1, 0)t, (3.3a)

ρsϕ(∂tv
z + vx · ∇xv

z + vz∂zv
z) = −∇x · T xz

s − ∂zT
zz
s − ϕ∂zpfm

+ fz − ϕρsg cos θ, (3.3b)

ρf (1− ϕ)(∂tux + ux · ∇xux + uz∂zux) = −∇x · Tf
xx
m − ∂zTf

xz
m + ϕ∇xpfm

− f x − (1− ϕ)ρf g sin θ(1, 0)t, (3.4a)

ρf (1− ϕ)(∂tuz + ux · ∇xuz + uz∂zuz) = −∇x · Tf
xz
m − ∂zT f

zz
m + ϕ∂zpfm

− fz − (1− ϕ)ρf g cos θ, (3.4b)

∇x · vx + ∂zv
z =Φ. (3.5)

(ii) In the fluid-only layer b+ hm < z< b+ hm + hf :

∇x · ux
f + ∂zuz

f = 0, (3.6)

ρf (∂tux
f + ux

f · ∇xux
f + uz

f ∂zux
f )=−∇x · T xx

f − ∂zT
xz
f − ρf g sin θ(1, 0)t, (3.7a)

ρf (∂tuz
f + ux

f · ∇xuz
f + uz

f ∂zuz
f )=−∇x · T xz

f − ∂zT
zz
f − ρf g cos θ. (3.7b)
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The boundary conditions can be written as follows.

(i) At the bottom z= b, with n= (−∇xb, 1)/
√

1+ |∇xb|2.
(1) Non-penetration condition for each phase:

vx · ∇xb= vz at z= b, (3.8)
ux · ∇xb= uz at z= b. (3.9)

(2) Coulomb friction law:

T xz
s − T xx

s ∇xb+∇xb (Tsn) · n√
1+ |∇xb|2 =− tan δeff

vx√|vx|2 + (vz)2
(Tsn) · n at z= b,

(3.10)
with

(Tsn) · n= (T
xx
s ∇xb) · ∇xb− 2T xz

s · ∇xb+ T zz
s

1+ |∇xb|2 . (3.11)

(3) Navier friction condition for the fluid phase:

Tf
xz
m − Tf

xx
m∇xb+∇xb (Tfmn) · n√

1+ |∇xb|2 =−kbux at z= b. (3.12)

(ii) At the free surface z= b+ hm + hf , with NX = (−∇x(b+ hm + hf ), 1), Nt =−∂t
(b+ hm + hf ).
(1) Stress free condition:

−T xx
f ∇x(b+ hm + hf )+ T xz

f = 0 at z= b+ hm + hf , (3.13)
−T xz

f · ∇x(b+ hm + hf )+ T zz
f = 0 at z= b+ hm + hf . (3.14)

(2) Kinematic condition:

∂t(hm + hf )+ ux
f · ∇x(b+ hm + hf )= uz

f at z= b+ hm + hf . (3.15)

(iii) At the interface z= b+ hm, with ÑX = (−∇x(b+ hm), 1), Ñt =−∂t(b+ hm).
(1) Kinematic condition:

∂thm + vx · ∇x(b+ hm)= vz at z= b+ hm. (3.16)

(2) Conservation of fluid mass:

∂thm + ux
f · ∇x(b+ hm)− uz

f = (1− ϕ∗)(∂thm + ux · ∇x(b+ hm)− uz)≡−Vf

at z= b+ hm. (3.17)

(3) Conservation of total momentum:

ρf Vf (ux − ux
f )− (T xx

s + Tf
xx
m − T xx

f )∇x(b+ hm)+ T xz
s + Tf

xz
m − T xz

f = 0, (3.18)

ρf Vf (uz − uz
f )− (T xz

s + Tf
xz
m − T xz

f ) · ∇x(b+ hm)+ T zz
s + T f

zz
m − T zz

f = 0 (3.19)

at z= b+ hm.
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(4) Stress transfer:

−T xx
s ∇x(b+ hm)+ T xz

s =−p∗s∇x(b+ hm) at z= b+ hm, (3.20a)
−T xz

s · ∇x(b+ hm)+ T zz
s = p∗s at z= b+ hm, (3.20b)

with

p∗s =
ρf

2
1

1+ |∇x(b+ hm)|2 (u
z − uz

f − (ux − ux
f ) · ∇x(b+ hm))

2 + ϕ∗

1− ϕ∗

×
(
(Tf

xx
m∇x(b+ hm)) · ∇x(b+ hm)− 2Tf

xz
m · ∇x(b+ hm)+ T f

zz
m

1+ |∇x(b+ hm)|2 − pfm

)
.

(3.21)

(5) Navier fluid friction:

Tf
xz
m + T xz

f − (Tf
xx
m + T xx

f )∇x(b+ hm)

+∇x(b+ hm) (((Tf
xx
m + T xx

f )∇x(b+ hm)) · ∇x(b+ hm)

− 2(Tf
xz
m + T xz

f ) · ∇x(b+ hm)+ T f
zz
m + T zz

f ) /(1+ |∇x(b+ hm)|2)

=−2ki

(
ux

f − ux +∇x(b+ hm)
uz

f − uz − (ux
f − ux) · ∇x(b+ hm)

1+ |∇x(b+ hm)|2
)

at z= b+ hm. (3.22)

3.2. Averaged mass equations
In order to get the averaged solid mass equation, we integrate (3.2a) with respect to
z in the mixture layer b< z< b+ hm. Using (3.8) and (3.16) we obtain

∂t

∫ b+hm

b
ϕ dz+∇x ·

∫ b+hm

b
ϕvx dz= 0. (3.23)

Similarly, the fluid averaged mass equation in the mixture is obtained by integrating
(3.2b) for b< z< b+ hm. According to (3.9) and (3.17) it gives

∂t

∫ b+hm

b
(1− ϕ) dz+∇x ·

∫ b+hm

b
(1− ϕ)ux dz=−Vf . (3.24)

Finally, the fluid averaged mass equation in the fluid-only layer is obtained by
integrating (3.6) for b+ hm < z< b+ hm + hf together with the conditions (3.15) and
(3.17). It yields

∂thf +∇x ·
∫ b+hm+hf

b+hm

ux
f dz= Vf . (3.25)

The sum of (3.24) and (3.25) indeed gives the total fluid mass conservation.

3.3. Asymptotic hypothesis
We introduce the characteristic width and length of the domain, H and L respectively,
and the aspect ratio ε =H/L, supposed to be small in agreement with the thin-layer
framework. Then, we assume the following asymptotic scales in terms of ε:

hm ∼ ε, hf ∼ ε, ∇xb=O(ε), Ts =O(ε), Tfm =O(ε), Tf =O(ε),
vx =O(1), ux =O(1), ux

f =O(1), ϕ =O(1), Φ =O(1),

kb =O(ε), ki =O(ε).

 (3.26)



Two-phase two-layer model for fluidized granular flows 181

These orders of magnitude indeed have to be expressed in the natural units of each
quantity. Taking L as the typical length unit, τ =√L/g as the typical time unit, all of
these natural units can be expressed in terms of L, τ and ρs (or ρf , which is assumed
to be of the same order of magnitude as ρs). We assume that the unknowns vary at
the scales L in the downslope direction, εL in the normal direction and τ in time,
which means formally that ∇x =O(1), ∂z =O(ε−1), ∂t =O(1).

These scaling assumptions deserve some comments. First, the scaling in the
downslope direction means that we are describing the observable phenomenon at
the typical scale L where the collective phenomena take place, this scale being much
larger than the size of the grains. Second, the scaling in the normal direction means
that there could be normal variations at the scale of the layer. Third, the time scale
τ that is used is the one at which gravity comes into play. This means that we are
describing transient flows typical in avalanche dynamics, which occur, for example,
when an initial mass at rest is entrained by gravity. Indeed, in natural avalanche
flows the events never last longer than a few τ . Moreover, even for larger times that
can be relevant in laboratory experiments, shallow water type averaged equations are
commonly used to describe well-established almost steady flows for which gravity
balances viscoplastic effects. Thus, our final set of equations will be relevant also in
this situation.

Then, equation (3.25) implies that Vf = O(ε). As in Bouchut et al. (2003) and
Bouchut & Westdickenberg (2004) we shall assume that the tangential velocities and
the solid volume fraction do not depend on z up to errors in O(ε2),

vx = vx(t, x)+O(ε2), (3.27)
ux = ux(t, x)+O(ε2), (3.28)
ux

f = ux
f (t, x)+O(ε2), (3.29)

ϕ = ϕ̄(t, x)+O(ε2). (3.30)

Then, from (3.5) and the boundary condition (3.8) we get that vz = O(ε). Similarly,
from (3.2b) and (3.9) we get (1 − ϕ)uz = O(ε), thus uz = O(ε). Finally, from (3.6)
and (3.17) we obtain uz

f = O(ε). We assume also for the closure function (2.19) an
expansion as

Φ = Φ̄(t, x)+O(ε2), (3.31)

with
Φ̄ =K ¯̇γ (ϕ̄ − ϕ̄eq

c ). (3.32)

We adopt this approximation in order to make the derivation possible, even if it looks
to not be appropriate because of the dependence on the pressure of ϕeq

c , and of the
nonlinear coupling of γ̇ . Without (3.31), one should analyse the dependence in z of
ϕ and Φ, as done in Morales de Luna (2008) in the dry case. The values for ¯̇γ and
ϕ̄eq

c are discussed in § 4.6. Then, using the closure equation (3.5), the equation (3.2a)
for ϕ gives

∂tϕ̄ + vx · ∇xϕ̄ =−ϕ̄Φ̄ +O(ε2). (3.33)

Regarding the stress tensors Tk (k= s, fm, f ), they are decomposed as

Tk = pk Id+T̃k, (3.34)

and suitable rheological assumptions should be made to define T̃k. A general approach
has been proposed in Bouchut & Boyaval (2016) to deal with velocity profiles in the
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thin-layer asymptotics and in the case of Newtonian or non-Newtonian rheologies.
Here, as in Bouchut & Westdickenberg (2004), since we aim to represent only
depth-averaged effects, we prefer to simplify the rheologies and replace the effect of
the stress tensors inside the domain by boundary layers due to the friction conditions,
namely (3.10), (3.12), (3.22), and also due to the momentum conservation (3.18),
while we neglect viscous effects. Thus, we shall assume that the stresses T̃k are
O(ε2) far from the boundaries z= b, b+ hm and can just be non-zero close to these
boundaries. Indeed, because of the particular form of (3.10), (3.12), (3.22), (3.18),
we assume that

T̃ xz
s , T̃ xz

fm , T̃ xz
f can be O(ε) close to the boundaries z= b, b+ hm,

but are O(ε2) far from these boundaries,

}
(3.35)

while the other components satisfy

T̃ xx
k = T̃

zz
k =O(ε2) everywhere. (3.36)

Regarding the drag term defined in (2.7), we have according to (2.8)

β̃ = β̄(t, x)(1+O(ε2)), (3.37)

with
β̄ = (1− ϕ̄)2 ηf

κ̄
. (3.38)

We shall consider two possible sets of assumptions.

(i) The drag term is quite strong, that is

β̄ ∼ ε−1. (3.39)

Then, since the drag force β̃(u− v) has to balance gravity terms, it necessarily
remains bounded. This implies that after an eventual initial layer (i.e. a short time
interval during which the initial value of ux − vx is damped), one has

ux − vx =O(ε). (3.40)

(ii) The drag term is moderate, that is

β̄ =O(1). (3.41)

In this case one has just ux − vx =O(1), according to (3.26).

It should be noted that in both cases one has β̄(ux − vx)=O(1). The relevance of
the assumptions (3.39) or (3.41) can be evaluated as follows. According to (2.9a), the
effective drag friction coefficient for the solid phase is β̃/ρsϕ. The assumption (3.39)
or (3.41) has to be evaluated in the corresponding unit, which means that we must
evaluate the dimensionless number β̄τ/ρsϕ̄, with τ = √L/g the reference time unit
(see above). We compute using (3.38)

β̄τ

ρsϕ̄
= (1− ϕ̄)

2

ϕ̄

ηf τ

ρsκ̄
. (3.42)
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We consider the values g= 9.81 m s−2, ρs = 2500 kg m−3. In the typical laboratory
experimental context we can take as in Pailha & Pouliquen (2009) κ̄ = d2(1 −
ϕ̄)3/(150ϕ̄2), with d the diameter of the (spherical) grains. The typical values
d = 5 × 10−4 m, L ≈ 0.2 m, ϕ̄/(1 − ϕ̄) ≈ 1 with ηf = 10−3 Pa s for water give a
slightly strong dimensionless drag coefficient β̄τ/ρsϕ̄ ≈ 34. For natural landslides
or large-scale US Geological Survey debris flows (Iverson et al. 2010), one can
take as in Iverson & George (2014) a grain-size variability empirical formula
κ̄ = κ0 exp((0.6− ϕ̄)/0.04) with κ0 ≈ 10−11 m2. We choose L≈ 20 m, ηf = 10−2 Pa s
for muddy water, ϕ̄ ≈ 0.5, which gives a very strong dimensionless drag coefficient,
β̄τ/ρsϕ̄ ≈ 2× 104.

We conclude that the assumption (3.39) is valid in the natural context, while (3.41)
is more valid in the experimental context. However, equation (3.41) could be valid also
in the natural context if the permeability is higher, κ0 ≈ 10−7 m2 for highly mobile
flows (Iverson & George 2014).

3.4. Averaged momentum equations
In order to get the averaged momentum equations, we have first to get expressions
for the pressures. Computations shown in appendix B give the fluid pressure in the
fluid-only layer,

pf = ρf g cos θ(b+ hm + hf − z)+O(ε2) for b+ hm < z< b+ hm + hf , (3.43)

and in the mixture layer,

pfm = ρf g cos θ(b+ hm + hf − z)+ pe
fm +O(ε2) for b< z< b+ hm, (3.44)

where

pe
fm ≡

β̄

1− ϕ̄
∫ b+hm

z
(uz − vz)(z′) dz′ (3.45)

is the excess pore pressure. In the expression (3.44) of the fluid pressure we can see
that there is an extra contribution pe

fm to the commonly found hydrostatic pressure
(3.43). A similar contribution to the hydrostatic pressure of the fluid phase is found in
Pailha & Pouliquen (2009). This excess pore pressure term is induced by the normal
displacement produced by the dilation–compaction of the granular material immersed
into the fluid. As seen in (3.45), the excess pore pressure is negative if the granular
material goes up with respect to the fluid (vz > uz), and positive in the converse case.
It vanishes at z= b+ hm.

The solid pressure is given (see appendix B) by

ps = ϕ̄(ρs − ρf )g cos θ(b+ hm − z)− pe
fm +O(ε2) for b< z< b+ hm. (3.46)

Its non-hydrostatic component is the opposite of that of pfm in (3.44).
Regarding the averaged tangential components of the momentum equations, we have

the momentum equation for the fluid-only layer

ρf (∂tux
f + ux

f · ∇xux
f ) = −ρf g cos θ∇x(b+ hm + hf )− 1

hf

(
1
2
ρf Vf + ki

)
(ux

f − ux)

− ρf g sin θ(1, 0)t +O(ε2), (3.47)
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the momentum equation for fluid phase in the mixture

ρf (1− ϕ̄)(∂tux + ux · ∇xux) = −(1− ϕ̄)ρf g cos θ∇x(b+ hm + hf )− (1− ϕ̄)∇xpe
fm

− 1
hm

((
1
2
ρf Vf − ki

)
(ux

f − ux)+ kbux

)
− β̄(ux − vx)− (1− ϕ̄)ρf g sin θ(1, 0)t +O(ε2), (3.48)

where ∇xpe
fm is given by (B 16), and the momentum equation for the solid phase

ρsϕ̄(∂tvx + vx · ∇xvx) = −ϕ̄g cos θ(ρs∇x(b+ hm)+ ρf∇xhf )− (ρs − ρf )g cos θ
hm

2
∇xϕ̄

+ (1− ϕ̄)∇xpe
fm − sgn(vx) tan δeff

ps|b
hm

+ β̄(ux − vx)− ϕ̄ρsg sin θ(1, 0)t +O(ε2), (3.49)

where according to (3.46) the bottom value of the solid pressure is given by

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm)|b +O(ε2), (3.50)

and according to (3.45)

(pe
fm)|b =

β̄

1− ϕ̄
∫ b+hm

b
(uz − vz)(z′) dz′. (3.51)

3.5. Evaluation of the excess pore pressure
The excess pore pressure pe

fm is involved in (3.48), (3.49) and represents physically
important effects. Thus, it is necessary to derive an expansion of pe

fm up to O(ε2) error
terms. Recalling the definition (3.45) of pe

fm , we have thus to evaluate uz − vz up to
O(ε2) errors. We use equations (3.5) and (3.8) to get the solid normal velocity,

vz = vx · ∇xb+ (z− b)(Φ̄ −∇x · vx)+O(ε3). (3.52)

Next, adding the mass equations in the mixture (3.2a), (3.2b), we find

∇x · (ϕvx + (1− ϕ)ux)+ ∂z(ϕv
z + (1− ϕ)uz)= 0, (3.53)

and using (3.8) and (3.9) we get

ϕvz + (1− ϕ)uz = (ϕ̄vx + (1− ϕ̄)ux) · ∇xb− (z− b)∇x · (ϕ̄vx + (1− ϕ̄)ux)+O(ε3).

(3.54)
Then, subtracting (3.52) from (3.54) yields

uz − vz = (ux − vx) · ∇xb− z− b
1− ϕ̄ (Φ̄ +∇x · ((1− ϕ̄)(ux − vx)))+O(ε3). (3.55)
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Expansion (I) Expansion (II)

Assumption (i) i.e. β̄ ∼ ε−1 Relevant Relevant
Assumption (ii) i.e. β̄ =O(1) Not relevant Relevant

TABLE 1. Relevance of the formula (I) or (II) for the values of (pe
fm)|b and pe

fm .

The definition (3.45) of pe
fm then gives for b< z< b+ hm

pe
fm =

β̄

1− ϕ̄
(
(b+ hm − z)(ux − vx) · ∇xb

− 1
2

h2
m − (z− b)2

1− ϕ̄ (Φ̄ +∇x · ((1− ϕ̄)(ux − vx)))+O(ε4)

)
. (3.56)

Noticing that with either assumption (i) or (ii) we have β̄ = O(ε−1) (because a
bounded term also gives something bounded when multiplied by ε), we deduce the
bottom value (pe

fm)|b and the average pe
fm as (3.58) and (3.59) below.

We can then consider two possible sets of expansions for the values of (pe
fm)|b, pe

fm .

(I) The values of (pe
fm)|b, pe

fm are given simply by

(pe
fm)|b =−

β̄

(1− ϕ̄)2
h2

m

2
Φ̄ +O(ε2), pe

fm =−
β̄

(1− ϕ̄)2
h2

m

3
Φ̄ +O(ε2). (3.57a,b)

(II) The values of (pe
fm)|b, pe

fm are given by

(pe
fm)|b =

β̄

1− ϕ̄
(

hm(ux − vx) · ∇xb− h2
m

2(1− ϕ̄) (Φ̄ +∇x · ((1− ϕ̄)(ux − vx)))

)
+O(ε3), (3.58)

pe
fm=

β̄

1− ϕ̄
(

hm

2
(ux − vx) · ∇xb− h2

m

3(1− ϕ̄) (Φ̄ +∇x · ((1− ϕ̄)(ux − vx)))

)
+O(ε3).

(3.59)

Indeed, equation (3.57) follows from (3.58), (3.59) by dropping O(ε2) terms
(because with either assumption (i) or (ii) we have β̄(ux − vx) = O(1)). Thus, the
relations (I) are just simplified lower-order approximations of the relations (II).
However, under assumption (ii), i.e. (3.41), it is not appropriate to consider (I)
because the leading term is also O(ε2). Thus, in this case only (II) is relevant, and
the errors in (3.58), (3.59) are indeed O(ε4), as shown by the above computations.
The relevance of the expansion (I) or (II) is summarized in table 1.

We observe in (3.55) and (3.57) that at leading order, as explained in the
introduction, the relative velocity uz − vz and the excess pore pressure pe

fm have
sign opposite to Φ̄.

4. The two-phase two-layer model
In the previous section we have established a complete set of equations for our two-

phase two-layer model. In this section we give the main properties of this system.
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4.1. System and first properties
The system of equations derived in § 3 has three scalar unknowns, ϕ̄, hm, hf , and three
vector unknowns, vx, ux, ux

f . Dropping the error terms, it can be written as follows.
The mass conservation equations follow from (3.23)–(3.25) by dropping O(ε3) terms,

∂t(ϕ̄hm)+∇x · (ϕ̄hmvx)= 0, (4.1)

∂t((1− ϕ̄)hm)+∇x · ((1− ϕ̄)hmux)=−Vf , (4.2)

∂thf +∇x · (hf ux
f )= Vf . (4.3)

We can eliminate the fluid mass exchange term Vf by writing the fluid total mass
conservation. Adding the two last equations yields

∂t((1− ϕ̄)hm + hf )+∇x · ((1− ϕ̄)hmux + hf ux
f )= 0. (4.4)

Adding (4.1) we deduce also the whole system volume conservation as

∂t(hm + hf )+∇x · ((1− ϕ̄)hmux + ϕ̄hmvx + hf ux
f )= 0. (4.5)

The evolution equation (3.33) for ϕ̄ is

∂tϕ̄ + vx · ∇xϕ̄ =−ϕ̄Φ̄. (4.6)

Multiplying it by hm and subtracting the result from (4.1), it yields

∂thm +∇x · (hmvx)= hmΦ̄. (4.7)

Finally, combining it with (4.5) gives

∂thf +∇x · ((1− ϕ̄)hm(ux − vx)+ hf ux
f )=−hmΦ̄. (4.8)

Thus, regarding scalar equations we have to keep a set of three independent equations
for the three independent unknowns ϕ̄, hm, hf . These can be (4.1), (4.4), (4.6), or (4.1),
(4.4), (4.8), or (4.6), (4.7), (4.8), or (4.1), (4.7), (4.8). These have to be completed by
(4.2) or (4.3) to define Vf , which can in fact be expressed without a time derivative,
since subtracting (4.8) from (4.3) yields

Vf =−hmΦ̄ −∇x · ((1− ϕ̄)hm(ux − vx)). (4.9)

The momentum equations are given by (3.47), (3.48) and (3.49). Thus, the model
is reduced to the following set of equations:

∂t(ϕ̄hm)+∇x · (ϕ̄hmvx)= 0, (4.10a)

ρsϕ̄(∂tvx + vx · ∇xvx) = −ϕ̄g cos θ(ρs∇x(b+ hm)+ ρf∇xhf )

− (ρs − ρf )g cos θ
hm

2
∇xϕ̄ + (1− ϕ̄)∇xpe

fm

− sgn(vx) tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b
)
+

hm

+ β̄(ux − vx)− ϕ̄ρsg sin θ(1, 0)t, (4.10b)
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∂t((1− ϕ̄)hm)+∇x · ((1− ϕ̄)hmux)=−Vf , (4.11a)

ρf (1− ϕ̄)(∂tux + ux · ∇xux) = − (1− ϕ̄)ρf g cos θ∇x(b+ hm + hf )

− (1− ϕ̄)∇xpe
fm

− 1
hm

((
1
2
ρf Vf − ki

)
(ux

f − ux)+ kbux

)
− β̄(ux − vx)− (1− ϕ̄)ρf g sin θ(1, 0)t, (4.11b)

∂thf +∇x · (hf ux
f )= Vf , (4.12a)

ρf (∂tux
f + ux

f · ∇xux
f ) = −ρf g cos θ∇x(b+ hm + hf )

− 1
hf

(
1
2
ρf Vf + ki

)
(ux

f − ux)− ρf g sin θ(1, 0)t, (4.12b)

∂tϕ̄ + vx · ∇xϕ̄ =−ϕ̄Φ̄, (4.13)

where we used the formula ps|b= ϕ̄(ρs−ρf )g cos θhm− (pe
fm)|b from (3.50), the average

∇xpe
fm is computed by (B 16), i.e.

∇xpe
fm =

1
hm

(∇x(hmpe
fm)+ (pe

fm)|b∇xb
)
, (4.14)

and according to (3.57)–(3.59),

(pe
fm)|b =−

β̄

(1− ϕ̄)2
h2

m

2
Φ̄, pe

fm =−
β̄

(1− ϕ̄)2
h2

m

3
Φ̄ for case (I), (4.15a,b)

(pe
fm)|b =−

β̄

1− ϕ̄
(

h2
m

2
Φ̄ +∇x · ((1− ϕ̄)(ux − vx))

1− ϕ̄ − hm(ux − vx) · ∇xb
)
,

pe
fm =−

β̄

1− ϕ̄
(

h2
m

3
Φ̄ +∇x · ((1− ϕ̄)(ux − vx))

1− ϕ̄ − hm

2
(ux − vx) · ∇xb

)


for case
(II).

(4.16)
We put a positive part (we denote the positive part of a number x by x+≡max(0, x))
in the bottom solid friction term in (4.10b) because otherwise we could have a
negative value for ps|b. The coefficient β̄ is defined in (3.38), i.e. β̄ = (1 − ϕ̄)2ηf /κ̄ ,
and the closure function Φ̄ is defined in (3.32), i.e. Φ̄ =K ¯̇γ (ϕ̄ − ϕ̄eq

c ).
We observe that by writing the linear combination ρsvx × (4.10a) + hm × (4.10b) +

ρf ux × (4.11a) + hm × (4.11b) + ρf ux
f × (4.12a) + hf × (4.12b) we obtain the total

momentum conservation

∂t(ρsϕ̄hmvx + ρf (1− ϕ̄)hmux + ρf hf ux
f )+∇x · ( ρsϕ̄hmvx ⊗ vx

+ ρf (1− ϕ̄)hmux ⊗ ux + ρf hf ux
f ⊗ ux

f )+g cos θ∇x

(
(ρs − ρf )ϕ̄

h2
m

2
+ ρf

(hm + hf )
2

2

)
=− sgn(vx) tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b
)
+ − kbux

− (ρsϕ̄hm + ρf ((1− ϕ̄)hm + hf ))(g cos θ∇xb+ g sin θ(1, 0)t). (4.17)
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The system (4.10)–(4.14) has the following other properties. It is a quasilinear
system in case (I), while in case (II) it has an extra second-order term involving
∇x · ((1− ϕ̄)(ux − vx)) due to the term ∇x(hmpe

fm) in (4.14), and also a nonlinearity
in terms of ∇x · ((1− ϕ̄)(ux − vx)) in the bottom solid friction term. Next, solid and
fluid masses are conserved, according to (4.10a) and (4.11a) + (4.12a). The width of
the mixture hm remains non-negative because of (4.10a). The solid volume fraction
ϕ̄ remains between 0 and 1 because of (4.6) and (3.32); indeed the value ϕ̄eq

c is an
attractive value for ϕ̄. However, there is no reason for the width of the fluid-only
layer hf to remain non-negative, and this is due to the fact that the fluid could be
fully sucked into the granular material. Therefore, our model is valid as long as hf

remains non-negative. Otherwise, one should write down equations that include the
case of a mixture layer topped by a dry granular layer, which we have not done
here. The system has the solution at rest characterized by vx = ux = ux

f = 0, Φ̄ = 0,
b+ b̃+ hm = const., hf = const., ϕ̄ = const., with b̃≡ x tan θ .

4.2. Comparison with other debris flow models
In this subsection we would like to explain the main differences between our model
and other debris flow models in the literature that include excess pore pressure effects,
namely those of Pailha & Pouliquen (2009) and Iverson & George (2014).

4.2.1. The Pailha and Pouliquen model
In Pailha & Pouliquen (2009) a two-phase debris flow model is proposed. As in

our model, it is based on the dilatancy law proposed by Roux and Radjai (2.16). In
their case the granular assembly is immersed, meaning that there is a thin mixture
layer and a fluid layer above it, but as opposed to us the fluid layer is not thin but
is approximately at rest. The hydrostatic pore pressure satisfies ∇phydro

f = ρf g, thus it
is as if one would have a horizontal free surface, see figure 2. For us, according to
(3.43), (3.44), phydro

f =ρf g cos θ(b+hm+hf − z) corresponds to the inclined free surface.
Moreover, they make the assumption of uniformity in the slope-aligned direction x.
This leads to a simplification regarding the normal velocities ϕvz + (1 − ϕ)uz = 0,
which is coherent with (3.54) only when there is no x dependence. Then they use
the following relations for the solid velocity:

vz =K4|vx| tanψ, γ̇ = 3|vx|
h
, (4.18a,b)

for some constant K4 of the order of unity. This gives vz = 1/3K4hγ̇ tan ψ , and this
relation is indeed related to (3.52) where only the term in Φ̄ is considered (according
to the x independence), with Φ̄ = 2/3K4γ̇ tan ψ . This formula is indeed identical to
(2.19), (2.17) with the choice K4 = 3/2. Then, the solid pressure at the bottom is
given by

ps
bed = ϕ(ρs − ρf )gh cos θ + K4

3
ηf

κ
h2γ̇ tanψ, (4.19)

where the coefficients κ and ηf are still the hydraulic permeability of the granular
aggregate and the dynamic viscosity of the fluid, which are related to the drag friction
by (2.8). Taking hm ≡ h in the value of ps|b in (3.50) with (4.15), i.e. case (I) (note
that without x dependence, case (II) reduces to case (I)), we obtain the same (4.19).
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FIGURE 2. (Colour online) Immersed configuration. The pure fluid layer is not thin; it
has a horizontal free surface.

At the end we observe that in the x-independent case and choosing in our model
hf (t, x) corresponding to the immersed situation with a horizontal free surface
b+ hm(t)+ hf (t, x)+ x tan θ = const. as in figure 2, our hydrostatic pressure satisfies
∇phydro

f = ρf g (using (3.1)), and our model reduces to the one of Pailha and Pouliquen
(with K4 = 3/2), with a few differences.

The first difference is that they consider dependence in γ̇ arising from constitutive
relations for shear stresses (which we have neglected in (3.35), (3.36)) in their
dilatancy law and in their bottom friction. Depth-averaged models with internal
shear stresses are also considered in Gray & Edwards (2014). In our case we can
nevertheless put the dependence in γ̇ directly in the definition of ϕ̄eq

c that arises in
the dilatancy closure law (as done in (4.52)), and in a bottom viscous friction term
as in (5.4).

The second difference is that they miss an interface fluid momentum exchange term.
Since the pure fluid part remains at rest, we have to neglect the friction between this
pure fluid part and the mixture, ki = 0. Nevertheless we see that there remains in the
two fluid momentum equations (4.11b) and (4.12b) a term proportional to the mass
exchange Vf that is computed by (4.9). The presence of this term is related to the
fact that because of dilatancy there is a mass exchange between the two fluid parts,
which induces also a momentum exchange. Since the total momentum is conserved,
including the static pure fluid layer, the fluid velocity in the mixture has to increase
if the mixture fluid mass decreases, and vice versa. The final effect of this exchange
term is therefore the following. If tanψ > 0 then the fluid is sucked into the mixture,
Vf < 0, and the downslope fluid velocity in the mixture layer has to diminish. On the
contrary, if tan ψ < 0 then the fluid is expelled from the mixture, Vf > 0, and the
downslope fluid velocity in the mixture layer has to increase.

The third difference is that Pailha and Pouliquen slightly simplify their model by
replacing the conservation of solid mass ϕ̄hm by the conservation of hm, and in several
places ϕ̄ by a critical static value ϕ̄stat

c . These changes induce some slight differences
in dynamical behaviour, see § 5.

We conclude that our model is an extension of that of Pailha & Pouliquen (2009)
to the case with dependence in the slope-aligned variable x. It includes a coherent
description of mass and momentum exchanges across the interface, and importantly
the average ∇xpe

fm of the downslope gradient of the excess pore pressure, which is
not active in Pailha & Pouliquen (2009).
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4.2.2. The Iverson and George model
The dynamics of debris flows is described in Iverson & George (2014) by a

single-phase model including dilatancy effects. An evolution equation for the fluid
pore pressure is established using a dilatancy law and a Darcy law. Namely, the
following two relations are used:

dilatancy empirical law: ∇ · v = γ̇ tanψ − α d
dt
(σ − pf ), (4.20)

Darcy law: (1− ϕ)(u− v)=− κ
ηf
∇pe

f , (4.21)

with d/dt= ∂t+ v ·∇, α the mixture compressibility, σ =ps+pf the total normal stress
and pf = ρf g cos θ(h− z)+ pe

f the pore fluid pressure. The coefficients κ and ηf are
again the hydraulic permeability of the granular aggregate and the dynamic viscosity
of the fluid. The Darcy law enables us to express Φ =∇ · v=∇ · ((1− ϕ)(v− u))=
∇ · (κ/ηf∇pe

f ), as in Morris & Boulay (1999), Lhuillier (2009) and Nott, Guazzelli &
Pouliquen (2011). Combining the two equations, the following evolution equation for
the excess pore pressure is deduced:

d
dt

pe
f −

1
α
∇ ·
(
κ

ηf
∇pe

f

)
=− γ̇ tanψ

α
+ d

dt
(σ − ρf g cos θ(h− z)). (4.22)

Thus, the excess pore pressure pe
f obeys a diffusion-like equation with diffusion

coefficient DIG = κ/ηfα, or with (3.38)

DIG = (1− ϕ̄)
2

αβ̄
. (4.23)

This diffusion is analogous to the one acting on the solid velocity v (or on its
divergence) in (2.27), associated with our compressible interpretation when (2.26)
is assumed, and which is related to the unmodified Roux–Radjai dilatancy law. It
should be noted that according to the Darcy law one has ∇ · v = ∇ · ((κ/ηf )∇pe

f ),
relating both diffusion equations. The diffusion coefficient (4.23) is proportional to
1/α instead of dpeq

c /dϕ in (2.27). Both diffusions act in the whole 3D space variable.
Valid ranges for the mixture compressibility α are discussed in Andreini et al. (2013).
This coefficient strongly affects the pore pressure diffusion in the sense that large
values of α translate into delayed pore pressure diffusion. The value considered by
Iverson & George (2014) is α= 5× 10−5 Pa−1, which corresponds to a typical value
for a sediment–water mixture compressibility, while a typical value for pure water
compressibility is of the order of 5× 10−10 Pa−1 (see Montserrat et al. 2012; Andreini
et al. 2013). It should be noted that for this value, the dilatancy law (4.20) is very
close to that of Roux and Radjai.

An evolution equation for the pore fluid pressure at the bottom, pf
bed, can be deduced

from the average of (4.22) knowing the boundary conditions on σ ; see Iverson &
George (2014) for details. In that procedure, the diffusion in x is neglected, and only
the diffusion in z is taken into account. Then, at the averaged level the diffusive
aspect disappears. It can be seen that in the case α= 0 the equation on pf

bed simplifies
to pf

bed = ρf g cos θh − 1/2(ηf /κ)h2γ̇ tan ψ . As for the Pailha and Pouliquen model
above this corresponds again to the fluid pressure obtained with our formula (4.15)
for (pe

fm)|b, i.e. case (I), with hm ≡ h, hf = 0.
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The first main difference between our model and that of Iverson and George is that
we have two free surfaces of respective heights hm and hm + hf , while they consider
a single virtual free surface of height h. Therefore, we have two equations (one for
each free surface), while Iverson and George have only one. The height h is defined
by total mass conservation as

ρmh= hm(ρsϕ + ρf (1− ϕ))+ ρf hf , with ρm = ρsϕ + ρf (1− ϕ). (4.24)

Many differences between the models follow from this fact. For example, in Iverson &
George (2014) the hydrostatic fluid pressure is ρf g cos θ(h− z), while in our model it
is ρf g cos θ(hm+ hf − z) (b is taken as 0 here). This is due to the fact that pf vanishes
at the fluid free surface, but not at the virtual free surface. Another consequence is
that from the knowledge of ϕ and the total mass ρmh= ρmhm+ ρf hf , it is not possible
to compute hm or hf . In particular, the Iverson and George model does not describe
the solid and fluid masses separately. Our detailed description with two free surfaces
enables us to describe accurately the mass and momentum exchanges between the two
layers and the mass conservation for each phase.

The second main difference between our model and that of Iverson and George
is that they introduce the compressibility α in the dilatancy law as (4.20). Instead,
we keep the original Roux–Radjai law (2.16), and introduce the compressibility in
the critical-state relation ϕ = ϕeq

c (ps, γ̇ ), or equivalently ps = peq
c (ϕ, γ̇ ). Indeed, we

believe that a functional relation between ϕ, ps and γ̇ can hold only in the critical
state (i.e. when ∇ · v = 0), and not for general states, preventing one from writing
the fundamental relation (3.12) of Iverson & George (2014). A possible general form
for peq

c (ϕ, γ̇ ) is (2.28). The situation when γ̇ = 0 corresponds to quasistatic dynamics,
which is related to soil mechanics. Compressibility values measured in such a situation
thus correspond to the law peq

c (ϕ, γ̇ = 0), i.e. pcompr(ϕ) in (2.28).
The last main difference is in the fact that Iverson and George write the Darcy

law (4.21) relating the relative velocity v − u to the gradient ∇pe
f of the excess pore

pressure. According to the value (3.38) of β̄, the z component of this Darcy law
identifies indeed with our definition (3.45) of pe

f . Then, it is important to notice that
Iverson and George neglect the x component of the Darcy law (4.21), leading to the
approximation ux' vx. It follows that Iverson and George have as unknowns a single
mixture velocity and pe

f , while we have two velocities, or equivalently a mean mixture
velocity and a relative velocity vx − ux. Thus, in their case they replace the relative
velocity by the excess pore pressure. In our model we have in case (II) all of the
terms involving the difference ux − vx in the evaluation of the excess pore pressure
(4.16). In particular, the term with ∇x · ((1− ϕ̄)(ux− vx)) induces a diffusion term in
our system, in the slope-aligned variable x. Its strength can be evaluated by writing
the equation on (1− ϕ̄)(ux − vx) that can be deduced from (4.10b), (4.11b) (see also
(4.37)). The result is a diffusion coefficient given by

Dtwo−layer = β̄ h2
m

3

(
1

ρf (1− ϕ̄) +
1
ρsϕ̄

)
. (4.25)

This diffusion arises at the level of the averaged system, and has no analogue in
the Iverson and George model. Nevertheless, it can be compared with the diffusion
coefficient (4.23) of the non-integrated Iverson and George model. In our model the
diffusion equation is on (1 − ϕ̄)(ux − vx), while in the Iverson and George model
it is stated on pe

f , both being somehow related as we have said. However, the two
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approaches differ by the physical interpretation of the diffusion. In our model, the
diffusion comes from the relative momentum equation, and from the expansion of
the excess pore pressure (4.16) that appears at the averaged level. In the Iverson and
George model, the Darcy law (4.21) means that the time derivative in the equation
on the relative velocity ux − vx is neglected. It is reintroduced via the mixture
compressibility α in (4.20). This difference results in different diffusion coefficients
(4.25), (4.23). The proportionality to β̄ in (4.25) is quite natural; it means that the
larger the drag β̄ is, the stronger the diffusion coefficient and the damping of the
relative velocity are. A strong drag thus leads to a fast convergence to the hydrostatic
equilibrium.

The Darcy law (4.21) can be recovered from our model by an asymptotic expansion,
see § 4.4.2. It shows that an important correction to it, due to solid friction, has to
be taken into account, and moreover that the slope-aligned component cannot be
neglected.

If we look more precisely at conservation equations, we can describe the differences
between the model proposed by Iverson & George (2014) and the one proposed in this
work.

Let us compare the continuity equations. The model that we propose contains
two mass conservation equations, (4.10a), (4.11a) + (4.12a), and a closure equation
(4.13), or equivalently (4.7) or (4.8). The Iverson–George model is defined by only
two continuity equations,

∂th+∇x · (hvx
m)=

ρm − ρf

ρm
D, (4.26)

∂t(ϕ̄h)+∇x · (ϕ̄hvx
m)=−

ρf

ρm
ϕ̄D, (4.27)

with ρm, h defined in (4.24), vx
m a mixture velocity and D = ∫ h

0 (∇ · v) dz. Indeed,
D= hΦ̄ with our notations. These continuity equations can be recast as

∂t(ρmh)+∇x · (ρmhvx
m)= 0, (4.28)

∂tϕ̄ + vx
m · ∇xϕ̄ =− ϕ̄D

h
. (4.29)

The second equation (4.29) is very similar to our closure equation (4.13), and the
mass conservation (4.28) is similar to our total mass conservation ρs × (4.10a) + ρf ×
(4.11a) + ρf × (4.12a). The difference is indeed in the fact that in our case the total
mass flux ρsϕ̄hmvx + ρf (1− ϕ̄)hmux + ρf hf ux

f involves the three velocities vx, ux, ux
f ,

and not only the velocity vx that appears in the closure equation (4.13). Knowing
the Darcy law (4.21) that gives the difference between vx and ux, we see that the
Iverson–George model differs from ours.

Regarding momentum equations, George & Iverson (2014) have the equation

∂t(hvx
m)+∇x · (hvx

m ⊗ vx
m)+Kanis∇x

(
g cos θ

h2

2

)
+ h(1−Kanis)

ρm
∇xpf

bed

=−hg sin θ(1, 0)t + ρm − ρf

ρm
Dvx

m −
1
ρm

(
ps

bed tan δeff sgn(vx
m)+ 2ηf

1− ϕ̄
h

vx
m

)
,

(4.30)
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where Kanis is a solid phase anisotropy coefficient and

ps
bed = ρmg cos θh− pf

bed. (4.31)

Even if, as we have said, the hydrostatic pore pressures are different in our model (bed
value is ρf g cos θ(hm+hf )) and in that of Iverson and George (bed value is ρf g cos θh),
this relation (4.31) between the bed pressures is the same as ours. Indeed, from (3.50)
and (3.44) we have ps

bed = ϕ̄(ρs − ρf )g cos θhm − (pe
f )bed, pf

bed = ρf g cos θ(hm + hf ) +
(pe

f )bed. By addition and using (4.24) we get (4.31). Then, combining (4.30) and (4.26),
(4.28) we get the momentum equation

∂t(ρmhvx
m)+∇x · (ρmhvx

m ⊗ vx
m)+Kanisρm∇x

(
g cos θ

h2

2

)
+ h(1−Kanis)∇xpf

bed

=−ρmhg sin θ(1, 0)t − ps
bed tan δeff sgn(vx

m)− 2ηf
1− ϕ̄

h
vx

m. (4.32)

This has to be compared with our total momentum equation (4.17). We observe that
the right-hand sides are identical, with kb = 2ηf (1 − ϕ̄)/h. Regarding the left-hand
sides, apart from the fact that as for the continuity equations the transport velocities
differ, we see that even with Kanis= 1 the term ρm∇xh2 in (4.32) is not in conservative
form, even if conservativity could easily be recovered by putting ρm inside the
gradient. It follows that the total momentum is not conserved in the model of George
& Iverson (2014), while it is in ours. In the case of anisotropy Kanis 6= 1, if we
modify our equations by putting a coefficient Kanis in front of the gradient of the
excess pore pressure in the solid equation (4.10b), summing up the equations (4.10b)
and (4.11b) we get roughly a term (Kanis − 1)hm(1 − ϕ̄)∇xpe

fm , which corresponds
to the term in (4.32). In the case of isotropy Kanis = 1, the gradient of excess pore
pressure disappears in the Iverson–George model, while it is still there in ours, via
the term ∇xpe

fm acting on the relative velocity vx − ux.
Iverson and George approximate D by a quantity proportional to (pe

f )bed = pf
bed −

(ph
f )bed as D = −2(κ/hηf )(pe

f )bed, which corresponds exactly to our model (I) where
(pe

f )bed is proportional to Φ̄. However, in the Iverson–George model Φ̄ =D/h is not
equal to γ̇ tan ψ . Rather, the equation on pf

bed relaxes in large time to this relation
D/h= γ̇ tan ψ , with a characteristic relaxation time αh2ηf /κ . The analogous process
in our model is the relation (4.16) corresponding to case (II), where the relaxation to
the relation −2(pe

f )bedκ/(h2
mηf )= γ̇ tanψ is done via diffusion in x, with the diffusion

coefficient (4.25).

4.3. Simplified two-velocity model
In this subsection we propose a simplified model having only two unknown velocities,
one for the granular phase and one for the fluid phase, instead of three unknown
velocities for the model of § 4.1. The two-velocity model is obtained as the limit of
the model of § 4.1 when the friction coefficient ki between the two parts of the fluid
phase tends to infinity. It leads to the relation ux

f = ux, while we remain with the sum
hm× (4.11b) + hf × (4.12b) as the momentum equation for the fluid phase (which can
be normalized by the fluid volume (1− ϕ̄)hm+ hf ). We thus have now the unknowns
ϕ̄, hm, hf , vx, ux, and we obtain the following model:

∂t(ϕ̄hm)+∇x · (ϕ̄hmvx)= 0, (4.33a)
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∂t((1− ϕ̄)hm + hf )+∇x · (((1− ϕ̄)hm + hf )ux)= 0, (4.33b)

∂tϕ̄ + vx · ∇xϕ̄ =−ϕ̄Φ̄, (4.33c)

where as in § 4.1 the set of three independent equations can be chosen differently, for
example by replacing (4.33c) by (4.7) or (4.8). We can skip the definition of Vf , since
it disappears from the momentum equations, which are

ρsϕ̄(∂tvx + vx · ∇xvx) = −ϕ̄g cos θ(ρs∇x(b+ hm)+ ρf∇xhf )

− (ρs − ρf )g cos θ
hm

2
∇xϕ̄ + (1− ϕ̄)∇xpe

fm

− sgn(vx) tan δeff
(ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b)+
hm

+ β̄(ux − vx)− ϕ̄ρsg sin θ(1, 0)t, (4.34a)
ρf (∂tux + ux · ∇xux) = −ρf g cos θ∇x(b+ hm + hf )

− 1− ϕ̄
(1− ϕ̄)hm + hf

hm∇xpe
fm

− kbux + β̄hm(ux − vx)

(1− ϕ̄)hm + hf
− ρf g sin θ(1, 0)t, (4.34b)

with ∇xpe
fm defined by (4.14), (pe

fm)|b and pe
fm defined by (4.15) in case (I), or by (4.16)

in case (II), β̄ defined by (3.38), i.e. β̄ = (1− ϕ̄)2ηf /κ̄ , and Φ̄ defined in (3.32), i.e.
Φ̄ =K ¯̇γ (ϕ̄− ϕ̄eq

c ). The system satisfies the total momentum conservation, obtained by
writing the linear combination ρsvx × (4.33a) + hm × (4.34a) + ρf ux × (4.33b) +
((1− ϕ̄)hm + hf ) × (4.34b),

∂t(ρsϕ̄hmvx + ρf ((1− ϕ̄)hm + hf )ux)+∇x · (ρsϕ̄hmvx ⊗ vx

+ ρf ((1− ϕ̄)hm + hf )ux ⊗ ux)+g cos θ∇x

(
(ρs − ρf )ϕ̄

h2
m

2
+ ρf

(hm + hf )
2

2

)
=− sgn(vx) tan δeff (ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b)+ − kbux

− (ρsϕ̄hm + ρf ((1− ϕ̄)hm + hf ))(g cos θ∇xb+ g sin θ(1, 0)t). (4.35)

As in § 4.1, the system (4.33), (4.34) is a quasilinear system with an extra second-
order term in case (II), with solid and fluid masses conserved, the width of the mixture
hm remains non-negative, and the solid volume fraction ϕ̄ remains between 0 and 1.

4.4. Oversimplified single-velocity model and Darcy law
4.4.1. Oversimplified single-velocity model

An even more simplified model can be obtained by taking the limit of the previous
two-velocity model as β̄ tends to infinity. This is in contradiction with (3.41) and even
with (3.39), but nevertheless the limit model is worthwhile to state since it includes the
Darcy law. Ignoring the blow-up of the bottom solid friction in (4.34a), the finiteness
in equations (4.34a), (4.34b) yields by taking into account (4.14) that

β̄hm(ux − vx)=−(1− ϕ̄)(∇x(hmpe
fm)+ (pe

fm)|b∇xb), (4.36)

with the convention that β̄ has to be factorized out in all terms in this relation,
noticing that the formulae (4.15) or (4.16) all contain the factor β̄. In the case of
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model (I), i.e. (4.15), the relation (4.36) enables us to define directly ux− vx linearly
in terms of Φ̄. In the case of model (II), i.e. (4.16), ux − vx is still defined linearly
in terms of Φ̄, but via a second-order elliptic equation. Therefore, we remain with
a system with three scalars unknowns, ϕ̄, hm, hf , and a single unknown velocity, vx

(or ux). The equations are (4.33) and (4.35), where the relation (4.36) has to be used
to eliminate one velocity. This relation involves first-order derivatives in case (I) and
second-order derivatives in case (II). We see that at the end the single-velocity system
includes second-order derivatives in case (I) and third-order derivatives in case (II). In
the latter case the system thus includes dispersive effects, and it is quite reminiscent
of the Green–Naghdi shallow water model.

We note the identification between (4.36) and the Darcy law (4.21) with the value
(2.8) of β̃; indeed (4.36) appears as the average of the x component of (4.21) (recall
(B 16)), while the z component of (4.21) is simply the definition (3.45) of pe

fm . At
the level of the Jackson non-integrated mixture model, the replacement of the relative
velocity equation by the Darcy law gives a system that is strongly reminiscent of the
closure by Fick’s law in mixture models (Brenner 2010), even if it does not describe
the same physics.

4.4.2. Asymptotic Darcy law
We perform here an expansion around the Darcy law (4.21) to show that it has

indeed quite low accuracy in the context of our two-velocity system (4.33), (4.34),
(4.14). We recall that the z component of the Darcy law (4.21) is simply the definition
(3.45) of pe

fm , while the average of its x component is (4.36). We write the relative
velocity equation by taking the difference (4.34a)/(ρsϕ̄)−(4.34b)/ρf , which gives

∂tvx + vx · ∇xvx − ∂tux − ux · ∇xux

=−g cos θ
(
∇x(b+ hm)+ ρf

ρs
∇xhf

)
−
(

1− ρf

ρs

)
g cos θ

hm

2ϕ̄
∇xϕ̄ + 1− ϕ̄

ρsϕ̄
∇xpe

fm

− sgn(vx) tan δeff
(ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b)+
hmρsϕ̄

+ β̄

ρsϕ̄
(ux − vx)

+ g cos θ∇x(b+ hm + hf )+ 1− ϕ̄
(1− ϕ̄)hm + hf

hm

ρf
∇xpe

fm +
kbux + β̄hm(ux − vx)

ρf ((1− ϕ̄)hm + hf )
,

(4.37)

where we notice that the gravity terms in g sin θ simplify. We have to recall that
(4.37) is indeed up to O(ε2) errors since the momentum equations were deduced from
(3.47), (3.48), (3.49). Let us make assumption (i), i.e. (3.39), (3.40), or more explicitly
β̄ ∼ ε−1, ux − vx = O(ε), and assume additionally that kb = O(ε2). Then, neglecting
O(ε) terms in (4.37) we get(

1
ρsϕ̄
+ hm

ρf ((1− ϕ̄)hm + hf )

)
β̄(ux − vx)

= sgn(vx) tan δeff
(ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b)+
hmρsϕ̄

+O(ε). (4.38)

Thus, we see that the leading term in the expansion of β̄(ux− vx) is the friction term,
and not the gradient of excess pore pressure. It follows that ux−vx is really of order ε,
thus not fully negligible. If we assume further that tan δeff =O(ε) (which is not greatly
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relevant), then only in this case (4.38) gives ux − vx =O(ε2), while the expansion at
higher order of (4.37) yields if kb =O(ε3)(

1
ρsϕ̄
+ hm

ρf ((1− ϕ̄)hm + hf )

)
β̄(ux − vx)

= sgn(vx) tan δeff
(ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b)+
hmρsϕ̄

−
(

1
ρsϕ̄
+ hm

ρf ((1− ϕ̄)hm + hf )

)
(1− ϕ̄)∇xpe

fm

−
(

1− ρf

ρs

)
g cos θ

(
∇xhf − hm

2ϕ̄
∇xϕ̄

)
+O(ε2). (4.39)

We see that additionally to the Darcy law under the form (4.36), the expansion (4.39)
still involves mainly the friction term, and also extra terms in ∇xhf and ∇xϕ̄.

4.5. Local energy balance
We would like here to discuss the local energy balance for our two-phase two-layer
averaged model. Details of the computations are shown in appendix C. We consider
the three-velocity system (4.10)–(4.14). In order to simplify the expressions somewhat,
we write

sin θ(1, 0)t = cos θ∇xb̃, with b̃= x tan θ, (4.40)

so that the topography and gravity terms can be grouped according to the formula
cos θ∇xb + sin θ(1, 0)t = cos θ∇x(b + b̃). Then one has the following local energy
balance identity, which is established in appendix C:

∂t

(
ρsϕ̄hm

|vx|2
2
+ ρf (1− ϕ̄)hm

|ux|2
2
+ ρf hf

|ux
f |2
2
+ ρshmϕ̄eeq

c (ϕ̄)

+ g cos θ(ρsϕ̄hm + ρf ((1− ϕ̄)hm + hf ))(b+ b̃)

+ (ρs − ρf )g cos θϕ̄
h2

m

2
+ ρf g cos θ

(hm + hf )
2

2

)

+∇x ·
(
ρsϕ̄hm

|vx|2
2

vx + ρf (1− ϕ̄)hm
|ux|2

2
ux + ρf hf

|ux
f |2
2

ux
f + ρshmϕ̄eeq

c (ϕ̄)v
x

+ g cos θ(ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f ))(b+ b̃+ hm)

+ ρf g cos θ(ϕ̄hmvx + (1− ϕ̄)hmux + hf ux
f )hf + (1− ϕ̄)hmpe

fm(ux − vx)

)
= 1

2(ρs − ρf )ϕ̄g cos θh2
mΦ̄ − hmpeq

c (ϕ̄)Φ̄ + Re − β̄hm|ux − vx|2
− |vx| tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b
)
+ − ki|ux

f − ux|2 − kb|ux|2 ≡ R,

(4.41)

with

Re = hmpe
fm∇x · ((1− ϕ̄)(ux − vx))− (1− ϕ̄)(pe

fm)|b(u
x − vx) · ∇xb, (4.42)
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and where eeq
c (ϕ̄) is related to peq

c (ϕ̄) by (2.21). One can also write (4.41) without eeq
c

and peq
c by subtracting (C 7). One can check that this energy equation (4.41) indeed

corresponds to the integral of the mixture energy equation (2.24) with respect to z
from z= b to z= b+ hm, to which we add the integral of the energy equation (2.30)
of the fluid-only layer from z = b + hm to z = b + hm + hf . The first term on the
right-hand side of (4.41) corresponds to the integral over the mixture layer of phydro

s Φ,
where phydro

s is the hydrostatic part of the solid pressure from (3.46). Then, three terms
on the right-hand side of (4.41) are dissipation terms associated with boundaries, and
there is the dissipation of drag friction.

The term Re needs to be explained. We claim that it represents the integral over the
mixture layer of the excess term −pe

fmΦ plus the z part of the drag −β̃(uz− vz)2, both
from the right-hand side of (2.24). To see this, let us consider separately the cases (I)
and (II), corresponding to the formulae (4.15) and (4.16) respectively for the values
of (pe

fm)|b and pe
fm .

Case (I). In this case there is no exact formula, but only an estimate of the order of
magnitude. We make the assumption (i), which according to table 1 is the only one
that is relevant. Then, the sum of the terms from the right-hand side of (2.24) cancels
out on average, according to∫ b+hm

b
(−pe

fmΦ − β̃(uz − vz)2) dz=O(ε3), (4.43)

as can be checked with the expansion of pe
fm in (3.57) and the expansion (3.55) of

uz − vz where we retain only the Φ̄ term, the other being negligible. We also have
Re =O(ε3) with the same approximation arguments.

Case (II). In this case we can write an exact identity. Writing (3.55) without error
gives

uz − vz = B− (z− b)A, (4.44)

with

A= Φ̄ +∇x · ((1− ϕ̄)(ux − vx))

1− ϕ̄ , B= (ux − vx) · ∇xb. (4.45a,b)

Then, we have the identity (see appendix C)

Re =
∫ b+hm

b
(−pe

fmΦ̄ − β̄(uz − vz)2) dz. (4.46)

It should be noted that under assumption (ii), Re and all terms in (4.46) are O(ε3),
but (4.46) means that we achieve higher-order accuracy in the energy balance (4.41)
with respect to the average of the 3D energy equation, up to O(ε5) errors. In the case
of assumption (i), (4.46) is a higher-order version of (4.43).

We conclude that in either case (I) or (II), the right-hand side R of (4.41) represents
the integral of the energy dissipation of the original 3D model. In order to evaluate
more accurately the term corresponding to (ps − peq

c )Φ in (2.24), we can write the
right-hand side of (4.41) as

R = (ps − peq
c (ϕ̄))hmΦ̄ + hmpe

fmΦ̄ + Re − β̄hm|ux − vx|2
− |vx| tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b
)
+ − ki|ux

f − ux|2 − kb|ux|2, (4.47)
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with
ps = 1

2(ρs − ρf )ϕ̄g cos θhm − pe
fm, (4.48)

and where

hmpe
fmΦ̄ + Re =−β̄

∫ b+hm

b
(uz − vz)2 dz in case (II), (4.49)

while further error in O(ε3) need to be added in (4.49) in case (I) (the error is indeed
Re itself). Then, (ps − peq

c (ϕ̄))hmΦ̄ in (4.47) is an approximation of the average of
(ps − peq

c )Φ from (2.24).
We mention finally that the same energy balance equation (4.41) and the same

analysis hold for the simplified model of § 4.3; one just has to set ux
f = ux. For the

model of § 4.4.1 it is not so clear.

4.6. Parameter settings and discussion
Here, we would like to discuss the values of the parameters of our model and the
consequences of these values on the nature of the system to be solved. We recall that
the model has three scalar unknowns, ϕ̄, hm, hf , and three vector unknowns, vx, ux,
ux

f , and is defined by (4.10)–(4.14), with either (4.15) for case (I) or (4.16) for case
(II). Alternatively, for the simplified two-velocity model of § 4.3, the model has only
two vector unknowns, vx, ux, and is defined by (4.33) and (4.34). In any case the
energy equation (4.41) holds, with the identity (4.47) on energy dissipation.

The value of β̄ defined in (3.38) was already discussed at the end of § 3.3.
According to (2.20) and (2.17), the effective bottom solid friction coefficient is given
by

tan δeff = tan δ +K(ϕ̄ − ϕ̄eq
c ). (4.50)

It is possible to include in the solid momentum equation (4.10b) an additional bottom
viscous friction term, as explained in § 2.5. It leads to an additional term as in (5.4).

We recall also the definition of Φ̄ in (3.32),

Φ̄ =K ¯̇γ (ϕ̄ − ϕ̄eq
c ). (4.51)

The dimensionless constant K in (4.51) characterizes the strength of the dilatancy
effects. As in Pailha & Pouliquen (2009), it should be of the order of unity. The
formula (4.50) describes the effect of enforcing the solid friction when ϕ̄ > ϕ̄eq

c and
diminishing it when ϕ̄ < ϕ̄eq

c . It should be noted that in the solid equation (4.10b) of
our model, the solid friction term is not only proportional to tan δeff , but also to ps|b,
which contains the excess term −(pe

fm)|b. According to (4.15) or (4.16), this excess
term itself contains Φ̄, which according to (4.51) has the same effect of enforcing
the solid friction when ϕ̄ > ϕ̄eq

c . Thus, both factors tan δeff and ps|b in the solid bottom
friction term of (4.10b) contribute to the same effect of enforcing the solid friction
when ϕ̄ > ϕ̄eq

c and reducing it in the converse case. In particular, when ϕ̄ is sufficiently
low, (pe

fm)|b becomes larger than the hydrostatic fluid pressure ϕ̄(ρs − ρf )g cos θhm,
the solid pressure ps|b vanishes because of the positive part in the bottom friction of
(4.10b), and the granular material is totally fluidized.

The value of the critical-state compacity ϕ̄eq
c in (4.51) is a key issue for the energy

consistency as well as for the dynamics of our model. It is possible to define ϕ̄eq
c in

terms of the inertial number only, corresponding to pcompr(ϕ)≡0 in (2.28), as in Pailha
& Pouliquen (2009),

ϕ̄eq
c = ϕ̄stat

c −K2
ηf ¯̇γ
ps|b

, (4.52)
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where K2 is a constant, and ϕ̄stat
c is a constant volume fraction corresponding to a

static equilibrium, or as in Iverson & George (2014),

ϕ̄eq
c =

ϕ̄stat
c

1+√N
, N = ηf ¯̇γ

ρs ¯̇γ 2δ2 + ps|b
, (4.53a,b)

where δ is a length scale associated with grain collisions. We shall call this type of
closure closure (A). However, then there is no reason to get a non-positive energy
dissipation R in (4.47), because the term (ps − peq

c (ϕ̄))hmΦ̄ has no reason to be
negative, the problem coming probably from the lack of solid shear stress in our
assumed rheology.

In the simplified case when the critical-state compacity depends only on the solid
pressure ϕeq

c = ϕeq
c (ps) as described in § 2.4, the most simple closure is to take

ϕ̄eq
c = ϕeq

c (p
hydro
s ), phydro

s = 1
2(ρs − ρf )ϕ̄g cos θhm. (4.54a,b)

We shall call this closure closure (B). Still the energy dissipation in (4.47) is not
always negative, because of the excess term appearing in the value of ps in (4.48).

Still in the case when ϕeq
c = ϕeq

c (ps), we can propose here another definition of
Φ̄ that is more consistent than (4.51) in terms of energy. For this, we put the same
structure as that of the energy dissipation (2.24) of the 3D model in the energy
dissipation R in (4.47). This means defining ϕ̄eq

c = ϕeq
c (ps), where as in § 2.4 the

function ϕ = ϕeq
c (p) is the inverse of the function p = peq

c (ϕ). This definition leads
automatically to a non-positive first term in the formula (4.47) for R. However, (4.51)
then means defining Φ̄ as a function of ps, which by (4.48) and (4.15) or (4.16) itself
depends on Φ̄. To avoid dealing with a nonlinear equation, we can use the closure
(2.25) instead of (2.18), which means that we replace (4.51) by

Φ̄ =Kp ¯̇γ (peq
c (ϕ̄)− ps). (4.55)

Then, with the relations (4.48) and (4.15) or (4.16), we obtain the value of Φ̄,(
1+ β̄Kp ¯̇γ

(1− ϕ̄)2
h2

m

3

)
Φ̄ =Kp ¯̇γ

(
peq

c (ϕ̄)−
1
2
(ρs − ρf )ϕ̄g cos θhm

− β̄

1− ϕ̄
(

h2
m

3(1− ϕ̄)∇x · ((1− ϕ̄)(ux − vx))− hm

2
(ux − vx) · ∇xb

))
. (4.56)

This formula is for case (II), i.e. (4.16). Otherwise, for case (I) and (4.15) the second
line must be removed on the right-hand side of (4.56). We shall call this closure
closure (C). With this formula for case (II), we get R 6 0, i.e. full dissipativity of
the model. It should be noted, however, that the coefficient β̄Kp ¯̇γ h2

m has to be not
too large for the value of Φ̄ from (4.56) to remain consistent, which is the case
since β̄ =O(ε−1). A discussion on the well-posedness of our models related to energy
considerations is proposed in appendix C.

Concerning the value of γ̇ , if we consider that γ̇ =|Dv|, with Dv= (∇v+ (∇v)t)/2,
the shear component ∇xv

z satisfies ∇xv
z = O(ε), while Dxv

x = O(1), ∂zv
z = O(1)

according to the asymptotic assumptions (3.26). Thus, the leading term is ∂zv
x,

which can be of order ε−1 (note that the technical assumption (3.27) is not relevant
for real flows). Therefore, |Dv| ' |∂zv

x| and a typical value of γ̇ is as (4.18),
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¯̇γ = |vx|/hm. Then, ¯̇γ ∼ 1/ε, but this is compatible with the assumptions (3.26) as
long as tanψ =O(ε) , which is satisfied for physically relevant data.

Concerning the choice between model (I), i.e. (4.15), or model (II), i.e. (4.16), we
recall that they have been derived under the assumption (i), i.e. (3.39)–(3.40), or (ii)
i.e. (3.41), according to table 1. Whatever the scaling assumption (i) or (ii) is, the
closure (4.16) (thus model (II)) is always more accurate, since in this case we retain
all of the terms in the expansions of § 3.5. The advantage of model (I) is that it is
simpler since it involves only first-order derivatives. It can be used with closure (B) as
(4.54). On the contrary, model (II) involves second-order viscoplastic-like terms, and
it is more natural for it to use closure (C) as (4.55), (4.56) since it enforces the full
dissipation of energy. The variable ux− vx obeys an equation that includes a diffusion
very similar to the one in the Iverson and George model, but which results from
different physical assumptions (see § 4.2). In particular, the time derivative simply
results here from the mass and momentum equations, while it is related to mixture
compressibility in Iverson and George.

The sign of the excess pore pressure pe
fm is always the same as that of the normal

relative velocity uz− vz because of (3.45). According to (4.15) for model (I), this sign
is opposite to Φ̄, which corresponds exactly to the pore pressure feedback described
in § 2.3. However, other terms involving the tangential relative velocity ux − vx also
come into play in (4.16) for model (II) to determine whether the fluid is transferred
into or out of the mixture.

The dynamical behaviour of our model is naturally induced by the dilatancy closure
of Roux and Radjai. Namely, in the absence of external inflow, there is convergence
to the hydrostatic equilibrium over a sufficiently long time. This can be seen in terms
of the volume fraction by its evolution equation (4.6) which holds for any variant of
the model considered. In this equation, the right-hand side Φ̄ is defined according to
one of the closures (A), (B) or (C). Thus, we conclude that either ¯̇γ tends to zero or
ϕ̄ tends to ϕ̄eq

c , which is an attractive value for (4.6). In any case, Φ̄ tends to zero. In
the case of model (II) with closure (C), the fully dissipative nature of the system, as
seen on the right-hand side (4.47) of the energy equation, leads to normal dissipation
(C 8) tending to zero and thus A, B defined in (4.45) also tending to zero. In any case,
we conclude that (pe

fm)|b, pe
fm in (4.15) or (4.16) tend to zero. This means that pe

fm tends
to zero, and the pressures becomes hydrostatic.

Several limit systems can be obtained from our model for particular values of the
parameters. The first is obtained by taking ϕ̄ ≡ 0, leading simply to the standard
shallow water system for height hm+ hf and velocity ux. A second system is obtained
for ϕ̄ ≡ 1, leading to Φ̄ ≡ 0 and the usual two-layer shallow water system. A third
system is obtained by taking Φ̄=0, ϕ̄= const., β̄→∞, which leads to ux−vx=0, the
excess pore pressure vanishes as well as the mass exchange, and there remains a two-
layer system with fluid above with density ρf , width hf , velocity ux

f and mixture below
with density ρsϕ̄+ ρf (1− ϕ̄), width hm, velocity vx. This system is indeed identical to
the one of Fernández-Nieto et al. (2008) with topography linearized around a constant
slope and earth pressure coefficient K = 1. Finally, a fourth system is obtained by
taking ρf = 0. It leads to β̄ = 0, pe

fm ≡ 0; thus (I) and (II) are identical. The term Φ̄
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can be taken as in closure (A), (B) or (C). This yields an apparently new thin-layer
model for a dry granular material with dilatancy effects, described with the unknowns
ϕ̄, hm and vx.

A limitation of our models (I) and (II) is that they have been derived under the
assumption that there always remains some pure fluid above the mixture, hf > 0.
As we have said, this condition can naturally cease to be valid after a finite time.
Then, it would be necessary to consider negative hf , meaning that there is a layer of
dry granular material above the mixture layer. Our approach can be applied to this
situation indeed, then both models arising from both configurations could in principle
be patched together to obtain a model valid in any situation where hf can change
sign according to space and time evolution. Such a generalized model is highly
relevant for practical studies, but requires additional analytical computations, thus it
is postponed to future work.

5. Numerical tests for uniform flows
In this section we perform numerical tests to compare our model with the models

of Pailha & Pouliquen (2009) and George & Iverson (2014), in the very simple case
of the spatially uniform and immersed configuration studied in Pailha & Pouliquen
(2009) and illustrated in figure 2.

5.1. Our model in the uniform immersed configuration
To simulate underwater granular flows, we take the upper pure fluid layer at
rest, ux

f = 0, in our three-velocity model (4.10)–(4.14), all quantities except hf are
independent of x, and hm(t) + hf (t, x) + x tan θ = const., ki = 0, according to § 4.2.1.
The y components are taken as zero. The equations are then

∂t(ϕ̄hm)= 0, ∂tϕ̄ =−ϕ̄Φ̄, (5.1a,b)

ρsϕ̄∂tvx =− sgn(vx)
τb

hm
+ β̄(ux − vx)− ϕ̄(ρs − ρf )g sin θ, (5.2)

ρf (1− ϕ̄)∂tux =
(

1
2
ρf Vf − kb

)
ux

hm
− β̄(ux − vx), (5.3)

with
Vf =−hmΦ̄, τb = tan δeff ps|b +K1ηf ¯̇γ , (5.4a,b)

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm)|b, (pe

fm)|b =−
β̄

(1− ϕ̄)2
h2

m

2
Φ̄, (5.5a,b)

where the second term in the definition of τb in (5.4) is a viscous friction term.
Alternatively, in order to really get total momentum conservation, we could put a
coefficient 1 instead of 1/2 in the mass transfer term in (5.3) to compensate for
neglecting the similar term Vf when setting ux

f = 0 in the pure fluid momentum
equation (4.12b).

In order to compare with the experiments from Pailha & Pouliquen (2009), we
consider the same drag coefficient,

β̄ = (1− ϕ̄)2 ηf

κ̄
, κ̄ = (1− ϕ̄)

3 d2

150ϕ̄2
, (5.6a,b)
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with d the diameter of the grains, and the same closure Φ̄,

Φ̄ = ¯̇γ tanψ, (5.7)

tanψ =K(ϕ̄ − ϕ̄eq
c ), ϕ̄eq

c = ϕ̄stat
c −K2

ηf ¯̇γ
ps|b

, (5.8a,b)

and with
¯̇γ = 3

|vx|
hm
, tan δeff = tan δ + tanψ. (5.9a,b)

It should be noted that (5.5), (5.7) (5.8) amount to solving a quadratic equation in
order to find the value of ps|b. We take here kb = 0.

5.2. The Pailha–Pouliquen model
This model is defined (in the case K4 = 3/2, K3 = K) as our model above, except
that Vf in (5.3) is taken as 0 instead of −hmΦ̄, the mass equation ∂t(ϕ̄hm) = 0 is
simplified to ∂thm = 0, and ϕ̄ is simplified to ϕ̄stat

c in several places, namely on the
left-hand side of the momentum equations (5.2), (5.3), in the hydrostatic gravity term
in the definition of the pressure ps|b in (5.5), and in the last gravity term of (5.2). It
should be noted that for this gravity term our sign convention for θ is opposite to that
of Pailha & Pouliquen (2009). We take here θ < 0.

5.3. Iverson–George type model in the uniform immersed configuration
We consider an Iverson–George type model obtained from our uniform immersed
system (5.1)–(5.3) by adding the two momentum equations and neglecting the
difference ux − vx, and also by considering a compressible coefficient α that induces
a relaxation time on the excess pore pressure. We obtain the system

∂t(ϕ̄hm)= 0, ∂tϕ̄ =−ϕ̄Φ̄, (5.10a,b)

(ρsϕ̄ + ρf (1− ϕ̄))∂tvx =− sgn(vx)
τb

hm
+
(

1
2
ρf Vf − kb

)
vx

hm
− ϕ̄(ρs − ρf )g sin θ, (5.11)

with still
Vf =−hmΦ̄, τb = tan δeff ps|b +K1ηf ¯̇γ , (5.12a,b)

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm)|b, (pe

fm)|b =−
β̄

(1− ϕ̄)2
h2

m

2
Φ̄, (5.13a,b)

but now instead of (5.7), ps|b solves

α∂tps|b = ¯̇γ tanψ − Φ̄. (5.14)

The relations (5.6), (5.8), (5.9) remain unchanged. The equations (5.13), (5.14) can
also be recast as

Φ̄ =−2
(1− ϕ̄)2
β̄h2

m

(ϕ̄(ρs − ρf )g cos θhm − ps|b),

α∂tps|b = ¯̇γ tanψ + 2
(1− ϕ̄)2
β̄h2

m

(ϕ̄(ρs − ρf )g cos θhm − ps|b).

 (5.15)
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5.4. Time scales involved in the different models
Two time scales appear in all of the three above models:

tcrit = 1/ ¯̇γ , tvisc = ρsh2
m/3K1ηf , (5.16a,b)

which are related to the volume fraction equation and the convergence to a
critical state, and to the viscous solid friction respectively. Our model and the
Pailha–Pouliquen model also contain the time scale trel involved in (5.3),

trel = ρs/β̄, (5.17)

which governs the relaxation of the relative velocity ux − vx→ 0 as long as kb = 0
and Vf is sufficiently small. These time scales are indeed related to the dimensionless
numbers Fr2 and S introduced in Pailha & Pouliquen (2009, p. 126) as Fr2∼ tvisc/tcrit,
S ∼ tvisc/trel. The time scale trel is not present in the Iverson–George model since it
involves a single velocity. In the Iverson–George type model, equation (5.15) involves
another characteristic time scale,

tIG = α β̄h2
m

2(1− ϕ̄)2 . (5.18)

The form of (5.15) implies that after a few tIG the relation (5.7) will be satisfied, thus
reducing to our model (5.1)–(5.9) except for the fact that there is only one velocity.
Differences between the Iverson–George solution and ours in the present uniform
setting therefore only exist for small times less than a few tIG or a few trel.

The previous analysis of time scales may, however, be modified by the coupling
terms which imply a feedback of one component to the other (to be rigorous, one
should compute the eigenvalues of the Jacobian matrix of the system, giving the
inverse of the characteristic time scales; here, we only have estimated the diagonal
terms). In particular, there is a coupling between the momentum equations (5.2),
(5.3). There may be also a time delay depending on the initial data, which can be
necessary in order to approach a neighbourhood of the steady solution. This delay
can be quite long since it involves nonlinear effects.

5.5. Numerical results
We perform the tests proposed by Pailha and Pouliquen for low and high viscosity
(figures 2 and 3 respectively of Pailha & Pouliquen (2009)). The initial conditions
are

ux(t= 0)= 0 m s−1, vx(t= 0)= 0 m s−1, ϕ̄(t= 0)= ϕ̄0, hm(t= 0)= h0
m.

(5.19a−d)
For the Iverson–George model, ps|b(t = 0) is taken to be hydrostatic. The common
data for the tests are

ρs = 2500 kg m−3, ϕ̄stat
c = 0.582, tan δ = 0.415, d= 160 µm,

K = 4.09, K1 = 90.5, K2 = 25,

}
(5.20)

and the specific ones are as follows.

(i) Low viscosity: ηf = 9.8× 10−3 Pa s, ρf = 1026 kg m−3, |θ | = 28◦, h0
m = 6.1 mm.

For the loose and dense cases, we choose the values ϕ̄0 = 0.576 and ϕ̄0 = 0.592
respectively.
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(ii) High viscosity: ηf = 96× 10−3 Pa s, ρf = 1041 kg m−3, |θ | = 25◦, h0
m = 4.9 mm.

For the loose and dense cases, we choose the values ϕ̄0 = 0.562 and ϕ̄0 = 0.588
respectively.

We solve the three above uniform models, which we call below

(1) ‘proposed simplified model’ (proposed), given by equations (5.1)–(5.9);
(2) ‘Pailha–Pouliquen model’ (PP), described in § 5.2;
(3) ‘Iverson–George type model’ (IG), given by equations (5.10)–(5.14), (5.6), (5.8),

(5.9).

In Pailha & Pouliquen (2009) the simulations are shown up to final times
corresponding to the duration of measurements in laboratory experiments. Here,
we compute the solution until the steady state is reached. The steady state attained
at large time can be computed explicitly for the three models. One can check that it
is given by the following formulae valid for |θ |> δ:

ϕ̄∞ = ϕ̄stat
c −

K2

K1
(| tan θ | − tan δ),

ηf ¯̇γ∞
ps
∞
|b
= 1

K1
(| tan θ | − tan δ).

 (5.21)

It should be noted that (5.21) tells us that the same viscous inertial number is reached
at steady state for all models. These are completed by the steady thickness, pressure
and velocity which may differ for each model, as follows.

(i) Steady states for the Pailha–Pouliquen model:

h∞m = h0
m,

ps
∞
|b = ϕ̄stat

c h∞m (ρs − ρf )g cos θ,

vx∞ = 1
3 h∞m ¯̇γ∞.

 (5.22)

(ii) Steady states for the simplified proposed model and for the Iverson–George type
model:

h∞m =
ϕ̄0

ϕ̄∞
h0

m,

ps
∞
|b = ϕ̄∞h∞m (ρs − ρf )g cos θ,

vx∞ = 1
3 h∞m ¯̇γ∞.

 (5.23)

We have for the three models ux∞ = vx∞, since kb = 0. This is due to the fact that
here in the immersed configuration the gravity force term does not appear in the fluid
equation (5.3), because it is balanced by the gradient of the upper fluid layer thickness
hf . On the contrary, in the thin fluid layer case the gravity term is present, and (4.39)
shows that the relative velocity does not become very small since there ∇xhf cannot
balance the friction term.

There is one main difference between the above two sets of steady states: the
simplification of the mass conservation equation made by Pailha–Pouliquen leads to
a constant height hm equal to the initial value, while in our case the conservation
of solid mass ϕ̄hm gives a steady height depending on the initial height but also on
the ratio between the initial and the steady volume fractions. This implies that in the
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FIGURE 3. (Colour online) The high-viscosity case: simulated (a) solid velocity vx,
(b) solid pressure ps|b, (c) volume fraction ϕ̄ and (d) hmϕ̄. The horizontal dotted and
dash-dotted lines represent the limit steady states. The relative velocity vx − ux is plotted
in the inset of (a) (also in mm s−1).

Pailha–Pouliquen model the steady pressure and velocity depend only on the initial
height, while in our model they depend also on the initial volume fraction (indeed
they depend only on the initial solid mass).

As a consequence, for the Pailha–Pouliquen model the same steady pressure and
velocity are obtained for dense and loose initial volume fractions, as long as the initial
height is fixed. On the contrary, different steady values are obtained for the proposed
model. However, if the initial mass were fixed, varying initial volume fractions would
yield the same steady pressure and velocity in our model, but different ones for the
Pailha–Pouliquen model.

5.5.1. Comparison of our model with the Pailha–Pouliquen model
We show in figure 3 the solutions vx, ps|b and ϕ̄ for both models in loose and dense

configurations for the high-viscosity case, together with the steady states. Figure 3(d)
shows the total solid mass hmϕ̄. According to the formulae above, the unique steady
state for the solid volume fraction ϕ̄ is reached for both models in all cases, while
different limits are obtained for velocity, pressure and height. The fact that our model
ensures the conservation of solid mass allows us to see differences between the loose
and dense behaviours. With either of the two models we observe a sharp initial
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FIGURE 4. (Colour online) The high-viscosity case: simulated (a,b) volume fraction ϕ̄ and
critical volume fraction ϕ̄eq

c given by (5.8); (b) represents a zoom of figure 4(a) at the
very beginning of the simulation, t ∈ [0, 0.001 s]; (c) mixture thickness hm and (d) mass
transfer Vf .

transition during which some components of the solution vary rapidly. The orders
of magnitude of the characteristic times are given in table 2. The characteristic time
tcrit is the largest one, and figure 3 shows that there is a delay before vx becomes
sufficiently far from zero that convergence to the steady state can be achieved. The
characteristic time trel is much smaller than the others, and the inset in figure 3(a)
shows that the relative velocity is quickly damped. It should be noted, however, that
the time scale related to this relative velocity looks rather correlated to tvisc, which
indicates the feedback by coupling terms in (5.2), (5.3) mentioned above.

Figure 4 helps in understanding the dilation/contraction behaviour. It shows the
volume fraction ϕ̄ as well as the critical volume fraction ϕ̄eq

c , the height hm and the
mass transfer term Vf . Dilation occurs when ϕ̄ > ϕ̄eq

c , inducing a positive dilation
angle tan ψ > 0. Contraction is found in the opposite case ϕ̄ < ϕ̄eq

c , which gives a
negative dilation angle tanψ < 0. For the loose initial configuration ϕ̄0 < (ϕ̄eq

c )
0= ϕ̄stat

c
there is contraction (note that the lines corresponding to ϕ̄eq

c are above the curves
representing ϕ̄) and the fluid is expelled from the mixture. This implies a reduction of
the height and a positive Vf . In the opposite case, for the dense initial configuration
ϕ̄0>ϕ̄stat

c the solid assembly dilates (note that the lines corresponding to ϕ̄eq
c are under
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FIGURE 5. (Colour online) The low-viscosity case: simulated (a) solid velocity vx,
(b) solid pressure ps|b, (c) volume fraction ϕ̄ and (d) hmϕ̄. The horizontal dotted and
dash-dotted lines represent the limit steady states. The relative velocity vx − ux is plotted
in the inset of (a) (also in mm s−1).

tcrit (s) tvisc (s) trel (s)

Low viscosity 0.18 to ∞ 3.7× 10−2 5.4× 10−5

High viscosity 4.7 to ∞ 2.3× 10−3 5.5× 10−6

TABLE 2. Orders of magnitude of the characteristic times defined by (5.16), (5.17) for low-
or high-viscosity data sets. The values of tcrit vary because they are inversely proportional
to vx, which vanishes initially and tends to vx∞ for large time.

the curves representing ϕ̄) and the fluid is sucked into the mixture. This implies an
increase of the height and a negative Vf . The mass transfer Vf remains extremely
small, less than 0.5× 10−3 mm s−1.

Our model and the Pailha–Pouliquen model give extremely close results, because
the mass transfer Vf remains very small, as well as the relative velocity ux − vx.

Results obtained with low viscosity are shown in figures 5 and 6. In this case we do
not have clear loose/contraction and dense/dilation situations as for the high-viscosity
case. We can see in figure 5 that the solutions for both loose and dense initial
mixtures look to have the same behaviour. Indeed, the initially dense configuration
behaves normally as in the high-viscosity case, but the initially loose configuration
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FIGURE 6. (Colour online) The low-viscosity case: simulated (a,b) volume fraction ϕ̄ and
critical volume fraction ϕ̄eq

c given by (5.8); (a) and (b) represent a zoom of figure 5(c)
during the first 30 s and at the very beginning of the simulation, t ∈ [0, 0.006 s],
respectively; (c) mixture thickness hm; (d) mass transfer Vf .

very quickly changes to a dense state. If we look carefully at the value of the volume
fraction in figure 6(b) we can see that for the loose case we find contraction until
t= 2.7× 10−3 s (critical-state lines are above solution lines). At that time the critical
state is passed over, and later on the mixture begins to dilate (critical-state lines
are under solution lines). After a very short initial duration both initially loose and
dense configurations lead to a dense/dilating configuration. The mass transfer term Vf

becomes negative and the height increases. Interestingly, the laboratory experiments
plotted in figure 9(b) show the same qualitative behaviour.

The convergence to the steady state occurs faster than in the high-viscosity case,
because the characteristic time tcrit is smaller; see table 2. Our model and the Pailha–
Pouliquen model give again extremely close results; the mass transfer Vf remains very
small (10−2 mm s−1), as well as the relative velocity ux − vx.

5.5.2. Comparison with the Iverson–George type model
For the comparison with the Iverson–George type model we consider the two

values of the compressibility α discussed in § 4.2.2, namely 5 × 10−10 Pa−1 and
5 × 10−5 Pa−1, in order to evaluate the influence of the characteristic time scale
tIG defined in (5.18). We only consider in detail the case of high viscosity with
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FIGURE 7. (Colour online) The high-viscosity case and small times: simulated (a,c) solid
velocity vx and (b,d) solid pressure ps|b, with α = 5 × 10−5 Pa−1 for (a,b) and α = 5 ×
10−10 Pa−1 for (c,d). The results are shown for the proposed model (dashed lines), the
Pailha–Pouliquen model (circles) and the Iverson–George type model (diamonds).

ϕ̄0 = 0.562, while the other cases are shown in § 5.5.3. The characteristic time scales
tcrit, tvisc, trel are given in table 2. The coefficient involved in the formula (5.18) of
tIG takes the value β̄h2

m/(2(1− ϕ̄)2)= 3× 104 Pa s for high viscosity, thus

tIG = 1.5× 10−5 s for α = 5× 10−10 Pa−1,

tIG = 1.5 s for α = 5× 10−5 Pa−1

}
(5.24)

(for low viscosity, the values are respectively tIG = 2× 10−6 s and tIG = 2× 10−1 s).
For the first value, α=5× 10−10 Pa−1, tIG is even smaller than tvisc, thus the relaxation
to the relation (5.7) is extremely fast and we do not observe a difference from our
model (figure 7c,d). For the second value, α = 5 × 10−5 Pa−1, tIG is still much less
than tcrit which is large initially. If follows that still there is no significant difference
from our model (figure 7a,b).

5.5.3. Comparison with experimental data
In this section we provide figures similar to figures 3 and 2 in Pailha & Pouliquen

(2009), corresponding to high and low viscosity respectively, for the three models:
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FIGURE 8. (Colour online) The high-viscosity case: solid velocity vx and basal excess
pore pressure (pe

fm)|b, for times t ∈ [10−3 s, 500 s], for the proposed model, the Pailha–
Pouliquen model (with K4 = 3/2 and K4 = 1.8), the Iverson–George type model and the
experimental data.

proposed simplified model, Pailha–Pouliquen model and Iverson–George type model
for α = 5× 10−10 Pa−1, which is the value for water. In order to faithfully compare
with the figures in Pailha & Pouliquen (2009) we also plot the solution for the Pailha–
Pouliquen model with their constant K4 = 1.8. This means that an extra factor 2/3K4
is introduced in the definition of (pe

fm)|b in (5.5). We recall that according to Pailha
& Pouliquen (2009) this constant is chosen empirically by fitting experimental data.
The results are shown in figures 8 and 9. The curves associated with the Iverson–
George type model are not distinguishable from ours, as a consequence of the fact
that tIG is small. Indeed, it would be the same with α = 5 × 10−5 Pa−1. The curves
corresponding to the Pailha–Pouliquen model for K4 = 3/2 are very close to ours, as
we have seen before. The results of the Pailha–Pouliquen model for K4 = 1.8 differ
quantitatively in the way in which they evolve. Overall, the three models reproduce
the order of magnitude and the qualitative variation of the solid velocity and excess
fluid pressures measured in the laboratory. In particular, the change from contraction
to dilatation in the loose case of the low-viscosity test simulated with the models and
discussed in § 5.5.1 is also observed in the experiments (see figure 2(b) of Pailha,
Nicolas & Pouliquen (2008) for their smallest value of the initial volume fraction).
However, there is still a significant quantitative difference between the models and
the experimental measurements, which is much larger than the difference between the
models, whatever the values of the constants K4 and α.

5.5.4. Conclusion on numerical tests for uniform flows
The tests performed above in the spatially uniform immersed configuration of Pailha

& Pouliquen (2009) show that our model and the Pailha–Pouliquen model behave
very similarly, mainly because in this configuration the fluid mass exchange term Vf

between the two layers remains very small. The Iverson–George type model gives



Two-phase two-layer model for fluidized granular flows 211

2

4

6

8

10

12

14

0

0

2

4

–8

–6

–4

–2

–10

–12
5 10 15 20 25 30 35 40 45 3010 20 40

t (s) t (s)

(a) (b)

Proposed Proposed

FIGURE 9. (Colour online) The low-viscosity case: solid velocity vx and basal excess pore
pressure (pe
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data.

results indistinguishable from the ones of our model except for a very short initial
duration. This is because the characteristic times tIG related to the compressibility α

and defined in (5.18), and trel related to the relaxation of ux− vx to zero and defined
in (5.17), are both small compared with the characteristic time tcrit defined in (5.16)
related to the convergence to a critical state. It is important to notice, however, that
the relaxation of ux − vx to zero does not hold in the thin fluid layer case, as shown
by (4.39).

6. Conclusion

We have proposed a family of depth-averaged models describing mass and
momentum conservation for a two-phase mixture layer of solid granular material
and fluid, topped with an upper single fluid layer. The existence of fluid transfer
between these two layers makes it possible to describe the relative motion between
the fluid and solid phases. As is physically expected, this transfer of fluid is directly
related to dilation–contraction of the granular phase, described here using a dilatancy
closure proposed by Roux and Radjai. This closure relates dilation and contraction
to the existence of a critical volume fraction. Our thin-layer approximation shows
that the pore pressure is not hydrostatic. An excess pore pressure term appears,
related to the dilatancy closure equation and to drag. Using the dilatancy law and
mass conservation, an asymptotic expansion of this excess term has been deduced.
Two approximations, (I) and (II), have been proposed in (3.57) and (3.58), (3.59)
respectively, the first being simpler and the second more accurate, involving the
divergence of the relative velocity. Their relevance is summarized in table 1, in
terms of the strength of the drag coefficient β̄. Assuming that the critical volume
fraction depends only on the solid pressure, we have interpreted the Roux and Radjai



212 F. Bouchut, E. D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina

closure as a compressible rheological law with some sort of viscoplastic dissipation.
Accordingly, the depth-averaged model satisfies an energy balance identity, which has
a rigorously dissipative right-hand side with viscoplastic dissipation in case (II) with
the appropriate algebraic form of closure (C) related to dilatancy.

We have compared our model with existing models in the literature that include
dilatancy effects, and shown that our model extends the model of Pailha & Pouliquen
(2009) to the case of space dependence, for two thin layers as well as for the
underwater situation. It includes compressibility and diffusion features comparable to
the model of Iverson & George (2014), although taking a different mathematical form.
Indeed, our model contains a form of diffusion in the 3D variable similar to that of
Iverson and George, except that in ours it is related to the compressible properties
of the Roux–Radjai dilatancy law while in theirs it is related to the compressibility
α introduced in their modified dilatancy law. Additionally, our averaged model
includes the downslope gradient of the excess pore pressure, which is not present
in the previously mentioned models, and which appears in the downslope relative
momentum equation. It implies that our averaged model (II) contains a diffusion
in the downslope relative velocity which somehow replaces the time relaxation
process appearing on the excess pore pressure in the Iverson and George model.
Our model has a more accurate description of mass balance equations than previous
thin-layer models, and asymptotic expansions are performed with more detail. In
the spatially uniform configuration, we have performed numerical tests that show
that in the immersed configuration of Pailha & Pouliquen (2009) our model, the
Pailha–Pouliquen model and the Iverson–George model give equivalent results. Our
system of equations can also be seen as an extension with dilatancy of the submarine
avalanche model of Fernández-Nieto et al. (2008) with topography linearized around
a constant slope and earth pressure coefficient K = 1.

Our approach has the following limitations. Rheological effects have been taken into
account only via the bottom solid friction and the dilatancy law. We have not been
able to include shear stresses in the asymptotic derivation of our model, because of
the lack of a thermodynamically consistent and mathematically well-behaved rheology
including dilatancy and inertial number. In principle, such a model could allow one
to have a critical volume fraction depending also on the shear rate while being
energetically consistent. The configuration of a layer of dry granular material above
the mixture layer has not been considered, but it should be possible to write down
the corresponding model with similar arguments.

In a forthcoming paper we will address space-dependent numerical simulations of
the proposed two-velocity model of § 4.3, which is the most affordable numerically,
and compare our results with experimental data.
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Appendix A. Boundary conditions at the interface

In this appendix we show in detail the calculations corresponding to the jump
relations that we have considered at the interface between the mixture and the fluid
in § 2.5.

(i) Conservation of the total momentum.
The momentum conservation for the fluid-only layer is given by

∂t(ρf uf )+∇ · (ρf uf ⊗ uf )=−∇ · Tf + ρf g, (A 1)

and the total momentum conservation of the mixture is (2.10). In order to ensure
that the total momentum is conserved across the interface, we impose the Rankine–
Hugoniot condition, which gives

(ρsϕ
∗v + ρf (1− ϕ∗)u)Ñt + (ρsϕ

∗v⊗ v + ρf (1− ϕ∗)u⊗ u)ÑX + (Ts + Tfm)ÑX

= (ρf uf )Ñt + (ρf uf ⊗ uf )ÑX + Tf ÑX. (A 2)

Taking into account the kinematic condition for the solid phase (2.36), the two terms
containing v disappear in (A 2). We observe that the fluid mass conservation across
the interface (2.37) gives two possible definitions for Vf . The first definition is used
for the terms containing uf on the right-hand side of (A 2), and gives ρf uf Vf . The
second definition is used for the terms containing u on the left-hand side of (A 2),
and gives ρf uVf . Thus, from (A 2) we obtain (2.38).

(ii) Energy balance.
We first notice that the fluid conservation (2.37) gives the relation

(uf − u) · ÑX =−ϕ∗(Ñt + u · ÑX)=− ϕ∗

1− ϕ∗Vf . (A 3)

This means, in particular, that Vf has the sign of (u− uf ) · ÑX . The energy equation
in the fluid-only layer is (2.30) and the total energy equation in the mixture is given
by (2.12) or (2.24). In order for the energy to be decreasing across the interface, we
write the Rankine–Hugoniot inequality (eliminating the v terms because of (2.36) and
the gravity terms because of (2.37))(

ρf (1− ϕ∗) |u|
2

2
− ρf
|uf |2

2

)
Ñt +

(
ρf (1− ϕ∗) |u|

2

2
u− ρf

|uf |2
2

uf

+ ϕ∗pfm(v − u)+ Tsv + Tfmu− Tf uf

)
· ÑX > 0. (A 4)

It should be noted that the sense of the inequality is related to the assumed upward
orientation of ÑX . We rearrange this inequality under the form

ρf

2
(|u|2 − |uf |2)Ñt − ρfϕ

∗ |u|2
2

Ñt + ρf

2
(|u|2 − |uf |2)uf · ÑX + ρf

|u|2
2
((1− ϕ∗)u− uf ) · ÑX

+ϕ∗pfm(v − u) · ÑX + (Tsv) · ÑX + ((Tfm − Tf )uf ) · ÑX + (Tfm(u− uf )) · ÑX > 0. (A 5)
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Because of (A 3), two terms in |u|2 in the first line disappear. From (A 3) and the
conservation of the solid mass (2.36) we get ϕ∗(v − u) · ÑX + (u− uf ) · ÑX = 0. For
the other terms we use the symmetry of the stresses to get

ρf

( |u|2
2
− |uf |2

2

)
(Ñt + uf · ÑX)− pfm(u− uf ) · ÑX

+ (TsÑX) · v + ((Tfm − Tf )ÑX) · uf + (TfmÑX) · (u− uf )> 0. (A 6)

We look now for a boundary condition of the form

TsÑX = p∗s ÑX, (A 7)

where p∗s is a scalar that will be chosen so that the energy inequality holds. We have
using (2.36) and (2.37) that

(TsÑX) · v = p∗s ÑX · v =−p∗s Ñt = p∗s (uf · ÑX − Vf ). (A 8)

Therefore, taking the scalar product of (2.38) with uf and subtracting the result from
(A 6) yields

ρf

( |u|2
2
− |uf |2

2

)
(Ñt + uf · ÑX)− pfm(u− uf ) · ÑX

− p∗s Vf − ρf Vf (u− uf ) · uf + (TfmÑX) · (u− uf )> 0. (A 9)

Using the formula for Vf in (2.37), this can be written as(ρf

2
|u− uf |2 − p∗s

)
Vf +

(
(Tfm − pfm Id)ÑX

)
· (u− uf )> 0. (A 10)

Next, we write the tangential part of (2.38) using (A 7), which gives

((Tfm − Tf )ÑX)τ = ρf Vf (uf − u)τ . (A 11)

Together with (2.40) this yields

(TfmÑX)τ = 1
2ρf Vf (uf − u)τ − ki(uf − u)τ ,

(Tf ÑX)τ =− 1
2ρf Vf (uf − u)τ − ki(uf − u)τ ,

}
(A 12)

or equivalently

TfmÑX = (TfmÑX) · ÑX
ÑX

|ÑX|2
+ 1

2
ρf Vf (uf − u)τ − ki(uf − u)τ ,

Tf ÑX = (Tf ÑX) · ÑX
ÑX

|ÑX|2
− 1

2
ρf Vf (uf − u)τ − ki(uf − u)τ .

 (A 13)

Plugging this in (A 10) we get the energy dissipation conditionρf

2

(
(u− uf ) · ÑX

|ÑX|

)2

− p∗s

 Vf +
(
(TfmÑX) · ÑX

|ÑX|2
− pfm

)
ÑX · (u− uf )

+ ki|(uf − u)τ |2 > 0. (A 14)
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Now, the term proportional to ki > 0 is a dissipation. The other terms are proportional
to Vf because of (A 3). Since Vf can be positive or negative, we write that its factor
vanishes, that is

ρf

2

(
(u− uf ) · ÑX

|ÑX|

)2

− p∗s +
(
(TfmÑX) · ÑX

|ÑX|2
− pfm

)
ϕ∗

1− ϕ∗ = 0. (A 15)

This gives the value of p∗s , and plugging this in (A 7) we finally obtain the interface
condition (2.39).

Appendix B. Asymptotic expansion of the pressures and averaged momentum
equations

In this appendix we give the details of the calculations that justify the formulae of
§ 3.4.

(i) Asymptotic expansion of the pressures.
For the fluid-only layer we integrate the normal momentum equation (3.7b) with

respect to z and use (3.14), (3.36) to get for b+ hm < z< b+ hm + hf

pf = T zz
f +O(ε2)= ρf g cos θ(b+ hm + hf − z)+O(ε2), (B 1)

establishing (3.43). In the mixture, the normal fluid momentum equation (3.4b) gives
with (3.36)

∂zpfm =−ρf g cos θ − β̄

1− ϕ̄ (u
z − vz)+O(ε). (B 2)

Integrating with respect to z, we obtain for b< z< b+ hm

pfm = pfm |b+hm
+ ρf g cos θ(b+ hm − z)+ β̄

1− ϕ̄
∫ b+hm

z
(uz − vz)(z′) dz′ +O(ε2), (B 3)

where the notation |b+ hm means that the quantity is evaluated at z= b+ hm. From
(3.19), we have pfm |b+hm

= pf |b+hm
− ps|b+hm

+ O(ε2). Also from (3.20b) we have
ps|b+hm

= p∗s +O(ε2), with according to (3.21), p∗s =O(ε2). Thus,

p∗s =O(ε2), ps|b+hm
=O(ε2), pfm |b+hm

= pf |b+hm
+O(ε2). (B 4a−c)

Then, from (B 1) we obtain the pressure for the fluid in the mixture at the interface,

pfm |b+hm
= ρf g cos θhf +O(ε2). (B 5)

Finally, with (B 3) we deduce the fluid pressure for the mixture layer (3.44), (3.45).
Then, the solid normal momentum equation (3.3b) gives

∂zps =−ϕ̄∂zpfm − ϕ̄ρsg cos θ + β̄(uz − vz)+O(ε). (B 6)

Integrating with respect to z gives the expression of the solid pressure,

ps=ps|b+hm
− ϕ̄(pfm −pfm |b+hm

)+ ϕ̄ρsg cos θ(b+hm− z)− β̄
∫ b+hm

z
(uz−vz)(z′) dz′+O(ε2).

(B 7)
Using (B 4), (B 5), (3.44) and the notation (3.45), we finally obtain (3.46).



216 F. Bouchut, E. D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina

(ii) Tangential components of the averaged momentum equations.
For the fluid-only layer (3.7a), taking into account (B 1), we have

ρf (∂tux
f + ux

f · ∇xux
f )=−ρf g cos θ∇x(b+ hm + hf )− ∂zT

xz
f − ρf g sin θ(1, 0)t +O(ε2).

(B 8)
Next, we write the mixture tangential fluid momentum equation (3.4a), using (3.44),

ρf (1− ϕ̄)(∂tux + ux · ∇xux)=−(1− ϕ̄)ρf g cos θ∇x(b+ hm + hf )− (1− ϕ̄)∇xpe
fm

− ∂zTf
xz
m − β̄(ux − vx)− (1− ϕ̄)ρf g sin θ(1, 0)t +O(ε2). (B 9)

Similarly, the tangential solid momentum equation (3.3a) gives with (3.46)

ρsϕ̄(∂tvx + vx · ∇xvx) = −(ρs − ρf )g cos θ∇x(ϕ̄(b+ hm − z))+ (1− ϕ̄)∇xpe
fm

− ϕ̄ρf g cos θ∇x(b+ hm + hf )− ∂zT
xz
s

+ β̄(ux − vx)− ϕ̄ρsg sin θ(1, 0)t +O(ε2). (B 10)

We are now going to average (B 8) over the fluid layer, and (B 9), (B 10) over the
mixture layer, so that the effects of the rheology are only taken into account by the
boundary values of T xz

f , Tf
xz
m , T xz

s . According to (3.34), (3.36), the equation (3.14) gives
pf =O(ε2) at the free surface, and then (3.13) yields

T xz
f =O(ε3) at z= b+ hm + hf . (B 11)

Next, using (B 4), the equation (3.20a) gives T xz
s =O(ε3) at the interface, while (3.18)

gives T xz
f − Tf

xz
m = ρf Vf (ux − ux

f ) + O(ε3) at the interface, where we recall that Vf is
the fluid mass exchange between the layers from (2.37). However, (3.22) gives T xz

f +
Tf

xz
m =−2ki(ux

f − ux)+O(ε3) at the interface. We conclude that

T xz
s =O(ε3) at z= b+ hm,

T xz
f =−(ki + 1

2ρf Vf )(ux
f − ux)+O(ε3) at z= b+ hm,

Tf
xz
m =−(ki − 1

2ρf Vf )(ux
f − ux)+O(ε3) at z= b+ hm.

 (B 12)

Finally, the conditions (3.10), (3.12) at the bottom give

T xz
s =−tan δeff

vx

|vx|
(
T zz

s − 2T xz
s · ∇xb

)+O(ε3) at z= b,

Tf
xz
m =−kbux +O(ε3) at z= b.

 (B 13)

Now, to go further, one would need information on T zz
s − ps up to O(ε3) error terms,

i.e. on the rheology, and an expansion of ps up to O(ε3), which we do not have
in (3.46). This should lead to complementary terms in the expression of ps|b, as for
example the term proportional to the curvature of the bottom and quadratic in vx as
in Bouchut & Westdickenberg (2004).

We prefer here to avoid further technical expansions, and to simplify the
presentation by dropping the term T xz

s · ∇xb in (B 13), replacing T zz
s by ps, and

considering that (3.46) is sufficiently accurate. The additional terms that arise
rigorously will eventually be given in future work. Alternatively, even if it is not
physically relevant, an assumption of small solid friction tan δeff =O(ε) as in Bouchut
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& Westdickenberg (2004) would justify avoiding extra terms. Then, when averaging
the mixture momentum equations (B 9), (B 10), one comes up with the average excess
pore pressure, which we can express with (3.45) as

pe
fm ≡

1
hm

∫ b+hm

b
pe

fm(z) dz= β̄

1− ϕ̄
∫ b+hm

b

z′ − b
hm

(uz − vz)(z′) dz′. (B 14)

Then, one computes∫ b+hm

b
∇xpe

fm dz=∇x

∫ b+hm

b
pe

fm dz− (pe
fm)|b+hm∇x(b+ hm)+ (pe

fm)|b∇xb. (B 15)

Since (pe
fm)|b+hm = 0, we deduce the expression of the average excess pore pressure

force,

∇xpe
fm ≡

1
hm

∫ b+hm

b
∇xpe

fm dz= 1
hm

(∇x(hmpe
fm)+ (pe

fm)|b∇xb
)
. (B 16)

We also have to average in (B 10) the term ∇x(ϕ̄(b+ hm − z)), which gives

1
hm

∫ b+hm

b
∇x(ϕ̄(b+ hm − z)) dz

= 1
hm

∫ b+hm

b
(ϕ̄∇x(b+ hm)+ (b+ hm − z)∇xϕ̄) dz

= ϕ̄∇x(b+ hm)+ hm

2
∇xϕ̄. (B 17)

Therefore, by averaging (B 8) over the fluid layer and using (B 11), (B 12), we obtain
the momentum equation for the fluid-only layer (3.47). For the fluid phase in the
mixture, by averaging (B 9) and using (B 12), (B 13), we obtain (3.48). For the solid
phase, by averaging (B 10) with again (B 12), (B 13) and (B 17), we obtain (3.49).

Appendix C. Local energy identity
This appendix is devoted to computations of local energy identities related to our

models and stated in § 4.5 as (4.41) and (4.46), and to comments on well-posedness
related to these energy identities.

(i) In order to establish (4.41), we proceed as in Bouchut et al. (2015), by first
performing the linear combination 1/2ρs|vx|2 × (4.10a) + hmvx · (4.10b) + 1/2ρf |ux|2
× (4.11a) + hmux · (4.11b) + 1/2ρf |ux

f |2 × (4.12a) + hf ux
f · (4.12b). Noticing that

the terms in Vf cancel out, we obtain

∂t

(
ρsϕ̄hm

|vx|2
2
+ ρf (1− ϕ̄)hm

|ux|2
2
+ ρf hf

|ux
f |2
2

)

+∇x ·
(
ρsϕ̄hm

|vx|2
2

vx + ρf (1− ϕ̄)hm
|ux|2

2
ux + ρf hf

|ux
f |2
2

ux
f

)
=−ρsϕ̄g cos θhmvx · ∇x(b+ b̃+ hm)− ρf ϕ̄g cos θhmvx · ∇xhf

− (ρs − ρf )g cos θ
h2

m

2
vx · ∇xϕ̄ − ρf g cos θ((1− ϕ̄)hmux + hf ux

f ) · ∇x(b+ b̃+ hm + hf )
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− (1− ϕ̄)hm(ux − vx) · ∇xpe
fm − β̄hm|ux − vx|2

− |vx| tan δeff
(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm)|b
)
+ − ki|ux

f − ux|2 − kb|ux|2. (C 1)

The terms in ∇x(b + b̃ + hm) on the right-hand side of (C 1) are written using the
mass equations (4.1), (4.4) as

−g cos θ(ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f )) · ∇x(b+ b̃+ hm)

=−∇x · (g cos θ(ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f ))(b+ b̃+ hm))

+ g cos θ(b+ b̃+ hm)∇x · (ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f ))

=−∇x · (g cos θ(ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f ))(b+ b̃+ hm))

− g cos θ(b+ b̃+ hm)∂t(ρsϕ̄hm + ρf ((1− ϕ̄)hm + hf ))

=−∇x · (g cos θ(ρsϕ̄hmvx + ρf ((1− ϕ̄)hmux + hf ux
f ))(b+ b̃+ hm))

− g cos θ∂t((ρsϕ̄hm + ρf ((1− ϕ̄)hm + hf ))(b+ b̃))
− ρf g cos θhm∂t(hm + hf )− (ρs − ρf )g cos θhm∂t(ϕ̄hm). (C 2)

Similarly, the terms in ∇xhf on the right-hand side of (C 1) are written as

−ρf g cos θ(ϕ̄hmvx + (1− ϕ̄)hmux + hf ux
f ) · ∇xhf

=−∇x · (ρf g cos θ(ϕ̄hmvx + (1− ϕ̄)hmux + hf ux
f )hf )

− ρf g cos θhf ∂t(ϕ̄hm + (1− ϕ̄)hm + hf ). (C 3)

Then, the last term on the right-hand side of (C 2) is combined with the term in ∇xϕ̄

on the right-hand side of (C 1), according to the identity

−hm∂t(ϕ̄hm)− h2
m

2
vx · ∇xϕ̄ =−∂t

(
ϕ̄

h2
m

2

)
− h2

m

2
(∂tϕ̄ + vx · ∇xϕ̄), (C 4)

where the right-hand side can be expressed with (4.6). Next, the excess pore pressure
term in (C 1) can be written using (4.14),

−(1− ϕ̄)hm(ux − vx) · ∇xpe
fm =−∇x ·

(
(1− ϕ̄)hmpe

fm(ux − vx)
)

+ hmpe
fm∇x ·

(
(1− ϕ̄)(ux − vx)

)− (1− ϕ̄)(pe
fm)|b(u

x − vx) · ∇xb. (C 5)

Finally, multiplying (4.6) by (deeq
c /dϕ)(ϕ̄) and using (2.21), we obtain

∂t(eeq
c (ϕ̄))+ vx · ∇x(eeq

c (ϕ̄))=−
peq

c (ϕ̄)

ρsϕ̄
Φ̄. (C 6)

Multiplying this by hmϕ̄ and using (4.10a), we deduce

∂t(hmϕ̄eeq
c (ϕ̄))+∇x · (hmϕ̄eeq

c (ϕ̄)v
x)=−hm

peq
c (ϕ̄)

ρs
Φ̄. (C 7)

Using the formulae (C 2)–(C 5), (C 7) in (C 1), this yields the energy balance equation
(4.41).



Two-phase two-layer model for fluidized granular flows 219

(ii) Next, we prove the identity (4.46) for case (II). The value (4.44) of uz − vz

gives ∫ b+hm

b
(uz − vz)2 dz= h3

m

3
A2 − h2

mAB+ hmB2. (C 8)

Then, using the definition of pe
fm in (4.16),

−hmpe
fmΦ̄ − hmpe

fm∇x ·
(
(1− ϕ̄)(ux − vx)

)=−hmpe
fm(1− ϕ̄)A= β̄hmA

(
h2

m

3
A− hm

2
B
)
.

(C 9)
With the definition of (pe

fm)|b in (4.16) this yields

−hmpe
fmΦ̄ − hmpe

fm∇x ·
(
(1− ϕ̄)(ux − vx)

)+ (1− ϕ̄)B(pe
fm)|b

= β̄hmA
(

h2
m

3
A− hm

2
B
)
− β̄B

(
h2

m

2
A− hmB

)
= β̄

(
h3

m

3
A2 − h2

mAB+ hmB2

)
= β̄

∫ b+hm

b
(uz − vz)2 dz. (C 10)

According to the definition (4.42) of Re, this can be written equivalently as (4.46),
proving the claimed identity.

(iii) Concerning well-posedness of the model, case (I) shows a quasilinear system
with an energy identity that has a formally small right-hand side, but that contains
derivatives because of the term ∇x · ((1− ϕ̄)(ux − vx)) in Re in (4.42). Thus, we do
not obtain a mathematical entropy for the system.

In case (II) the system contains second-order terms because of the term ∇xpe
fm in

(4.10b) and (4.11b), defined by (4.14), where pe
fm involves ∇x · ((1− ϕ̄)(ux − vx)) in

(4.16). However, the right-hand side R of the energy equation (4.41) contains (4.49)
which can be expressed with (C 8) as a positive definite quadratic form in terms of
A, B defined in (4.45). We therefore have bounds on A, B (especially in the case
of closure (C)) and thus also on pe

fm , Φ̄, and on ∇x · ((1 − ϕ̄)(ux − vx)) since A
is bounded. Thus, we have a hyperbolic/parabolic system for which we can expect
well-posedness. It should be noted that the term ∇x · ((1− ϕ̄)(ux − vx)) is the depth-
averaged counterpart of ∇ · v in (2.24), (2.26).
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