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Estimation of dynamic friction and movement history
of large landslides

Abstract We performed seismic waveform inversions and numer-
ical landslide simulations of deep-seated landslides in Japan to
understand the dynamic evolution of friction of the landslides. By
comparing the forces obtained from a numerical simulation to
those resolved from seismic waveform inversion, the coefficient of
friction during sliding was well-constrained between 0.3 and 0.4
for landslides with volumes of 2–8 ×106 m3. We obtained similar
coefficients of friction for landslides with similar scale and geolo-
gy, and they are consistent with the empirical relationship between
the volume and dynamic coefficient of friction obtained from the
past studies. This hybrid method of the numerical simulation and
seismic waveform inversion shows the possibility of reproducing
or predicting the movement of a large-scale landslide. Our numer-
ical simulation allows us to estimate the velocity distribution for
each time step. The maximum velocity at the center of mass is 12–
36 m/s and is proportional to the square root of the elevation
change at the center of mass of the landslide body, which suggests
that they can be estimated from the initial DEMs. About 20% of
the total potential energy is transferred to the kinetic energy in our
volume range. The combination of the seismic waveform inversion
and the numerical simulation helps to obtain the well-constrained
dynamic coefficients of friction and velocity distribution during
sliding, which will be used in numerical models to estimate the
hazard of potential landslides.

Keywords Landslide dynamics . Dynamic friction . Numerical
simulation . Seismic wave . Waveform inversion

Introduction
Dynamic friction of landslides is one of the key factors controlling the
mobility of slope failures. The runout distance and velocity of landslides
strongly depend on this parameter. Various frictionmodels calibrated by
analytical solutions on the laboratory scale and runout distance of
landslides have been proposed (e.g., (Guthrie et al. 2012; Lucas et al.
2014; Moretti et al. 2012; Pastor et al. 2014)).

Conventionally, it was estimated by the ratio of the drop height
(H) and runout (L), which is referred as Heim’s ratio (H/L).
Several observations based on experimental and field surveys
indicate that larger landslides have a smaller apparent coefficient
of friction (Balmforth and Kerswell 2005; Dade and Huppert 1998;
Farin et al. 2014; Hsü 1975; Legros 2002; Mangeney et al. 2010).
(Lucas et al. 2014) proposed an empirical velocity-weakening fric-
tion law calibrated by the extension of landslide deposits using the
SHALTOP numerical model. The results showed that the effective
friction coefficient (a function of the slope, thickness of the re-
leased mass, and distance traveled by the front along the slope)
explained the volume dependency more precisely than the Heim’s
ratio. The advantage of numerical simulations is that three-
dimensional topography and mass deformation can be included,
so the results can be more realistic than that using the simple
Heim’s ratio.

Recent studies show that the use of seismic signals allows us to
obtain the physical parameters of high-speed landslides, such as
the time history of the force acting on the surface, velocity, and
coefficient of friction (e.g., (Allstadt 2013; Brodsky et al. 2003;
Ekström and Stark 2013; Favreau et al. 2010; Kawakatsu 1989;
Moretti et al. 2015; Moretti et al. 2012; Yamada et al. 2013)). It is a
novel approach to estimate dynamic parameters of landslides,
which may be difficult to obtain from a conventional field survey
after the occurrence of a disaster. (Yamada et al. 2016) used the
SHALTOP numerical model and seismic waveform inversion to
resolve the time evolution of friction. They obtained a well-
constrained average coefficient of friction over the volume for
the 2011 Akatani landslide. This event was one of the sequential
landslides caused by a typhoon, so it is important to study these
landslides in similar geology and condition to understand the
general dynamic behavior of landslides. Investigating the behavior
of gravitational flows in a similar environment makes it possible to
get insight into the possible volume dependence on the coefficient
of friction.

In this paper, we used the seismic data of four large-scale deep-
seated landslides in Japan caused by typhoons to estimate the
dynamic frictional coefficients during the movement (see
Table 1). In general, the seismic signals due to the landslides are
much weaker than earthquakes, so they are generally difficult to
detect with global or regional broadband seismic networks unless
the landslides are greater than 107 m3 in volume (Ekström and
Stark 2013). Here, we utilize a very dense array of high-sensitivity
accelerometers installed in boreholes across Japan (Okada et al.
2004). The sensors are collocated with Hi-net (high-sensitivity
seismograph network, Japan) and the average spacing of the sta-
tions is 20–25 km. Another advantage of these landslides is the
precise topographic data obtained before and after the events from
LiDAR data and photogrammetry, which enable direct measure-
ments of the potential energy released by the landslide and pro-
vide a digital elevation model (DEM) for the numerical
simulations. Using the method of (Yamada et al. 2016), we propose
a friction model, which describes the movement of these large
bedrock landslides. The well-constrained dynamic coefficients of
friction and velocity distribution during sliding will be used for the
numerical model to assess the hazard of future potential
landslides.

Sites and data
We focused on large landslides caused by heavy rainfall which
occurred after 2004, when the dense seismic networks were
installed in Japan (Okada et al. 2004; Public Works Research
Institute, Japan 2017). Here, we selected four large-scale deep-
seated landslides in the south-western outer arc of Japan: one in
Kyushu island: Nonoo, and three in the Kii Peninsula: Akatani,
Iya, and Nagatono. The Nonoo landslide occurred on September 6,
2005 when Typhoon Nabi (No. 14 in Japan) produced heavy
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rainfall: over 500 mm during 72 h on the Kyushu area. The
Akatani, Iya, and Nagatono landslides occurred on September 4,
2011, when Typhoon Talas (No. 12 in Japan) supplied rainfall
ranging 1000 to 2000 mm over 5 days on the Kii Peninsula. We
also checked the seismic data of all other large landslides greater
than 1×106 m3 since 2004, but the signal-to-noise ratio was not
high enough to detect and reconstruct the motion of landsliding.
Landslides right after large earthquakes are not suitable for this
analysis either since the signal is contaminated by the earthquake’s
strong motions.

The locations and other information of the landslides are
shown in Table 1 and Fig. 1. The failed slopes have geometries of
460 to 1100 m in horizontal length and 270 to 640 m in vertical
relief, with sliding volumes 2–8×106 m3. The geology of all the
landslides is underlain by Neogene to Cretaceous accretionary

sedimentary rocks. The bedrock of the Nonoo landslide is alter-
nating beds of sandstone and mudstone, which have a north-ward
inclination around 30° and a NE-SW strike parallel to the dip
direction of the sliding hillslope (Chigira 2009). Landslides in the
Kii area all occurred on dipping slopes of sandstone-mudstone
alternating beds or chaotic rocks; for Akatani and Nagatono, a set
of high-angle faults forms a wedge structure in the strata, which
may bound the side scars of the landslides (Chigira et al. 2013).
Slope angles for Akatani and Nagatono are 34 and 33°, respectively,
whereas that of Iya is slightly lower, 24°.

We used the F-net broadband seismograms and high-sensitivity
accelerograms recorded in boreholes across Japan (Okada et al.
2004). F-net contains three component STS-2 sensors with average
spacing of about 100 km. The high-sensitivity accelerometers are
collocated with the Hi-net velocity seismometers and consist of

Table 1 Landslide properties

Name Time (JST) Vol. (m3) L (m) H (m) LCM (m) HCM (m) Slope DEM

Akatani 16:23, 9/4, 2011 7.38×106 1100 640 514 265 34° 1 m/1 m

Iya 06:54, 9/4, 2011 4.67×106 610 300 217 76 24° 10 m/1 m

Nagatono 10:45, 9/4, 2011 3.63×106 610 400 281 144 33° 1 m/1 m

Nonoo 21:49, 9/6, 2005 2.72×106 460 270 138 65 31° 10 m/1 m

The indices are occurrence time, volume, horizontal hillslope length, vertical hillslope relief, horizontal displacement at the center of mass, elevation change at the center of mass,
average slope angle, and resolution of DEM (before/after), from the left
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Fig. 1 Topography of a Akatani, b Iya, c Nagatono, and d Nonoo landslides and its section (e–h). Colors show the elevation changes at the landslide estimated from
airborne LiDAR topographic surveys. Arrows show the peak of force during acceleration phase A and deceleration phase B at the center of mass. Dashed line shows the
extent of the landslide excluding the landslide dam. X and Y show the line of section
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two horizontal components. The average spacing of the stations is
20–25 km. Since seismic signals due to landslides are very weak,
the seismic station must be close to the landslide. We checked all
stations less than 100 km from the landslides and did not use
records with poor signal-to-noise ratio. We mainly used data
recorded at distances less than 50 km from the landslides (see
Fig. 2).

We obtained a DEM with 1-m grid spacing before and after the
landslide from airborne LiDAR data (Yamada et al. 2013). If the
LiDAR data before the landslide was not available, a 10-m DEM
made by photogrammetry was used instead (Geospatial
Information Authority of Japan 2017) (see Table 1). The domain
of the numerical simulation is shown in Fig. 1. Due to the limita-
tion of computation memory, we downsampled (or resampled for
the 10 m DEM) the DEM to a 4-m grid for the Nonoo landslide and
a 5-m grid for the other landslides. We used finer grids for the

Nonoo landslide since it is smaller than others, but the long-period
waves greater than 10 s (wavelength of a few kilometers) used in
this study are insensitive to this size of grid. We prepared two
topographic datasets from the DEM: the sliding surface and the
mass thickness on the surface. The sliding surface was constructed
by taking the lower values of the DEMs before and after the
landslide. The thickness of the sliding mass was computed by
subtracting this sliding surface from the DEM before the landslide.

Methods
In order to explore the dynamic friction of the large landslides, we
performed seismic waveform inversions and numerical simula-
tions with our DEMs. The seismic waveform inversion provides a
single force at the landslide which generates the seismic wave-
forms (Nakano et al. 2008). The numerical simulation allows us to
compute the force acting on the sliding surface, which is the

Nonoo
Iya Nagatono

Akatani

Fig. 2 Station distribution of seismic waveform inversion for a Iya, b Nagatono, and c Nonoo landslides. d Map of Japan and location of landslides. Stars show landslide
location, and triangles and squares show high-sensitivity accelerograms and F-net broadband seismograms, respectively. Station distribution for Akatani landslide is shown
in (Yamada et al. 2013) as supporting information
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summation of the stress field applied by the landslide mass
(Bouchut et al. 2003; Mangeney et al. 2000).

These force histories are strongly controlled by the flow rheol-
ogy, i.e., dynamic friction. Therefore, we can modulate the behav-
ior of the sliding mass by changing the friction model. By
comparing these forces with those calculated from the seismic
waveform inversion in the same frequency range, we can identify
a friction model which describes the movements of large bedrock
landslides (Moretti et al. 2015; Yamada et al. 2016). Note that the
result of Akatani landslide was presented in (Yamada et al. 2016)
and we use their results to compare with the other landslides
investigated here.

Seismic waveform inversion
We performed a waveform inversion using broadband seismic
records and high-sensitivity accelerograms to obtain the source
time function. We processed these records according to the fol-
lowing procedure. First, we removed the mean from the time series
and corrected for the instrumental response in all waveforms. A
non-causal fourth-order Butterworth filter was applied to remove
noise. We tuned the corner frequencies of the filter for each event
shown in Table 2 to maximize the signal-to-noise ratio. The data
was integrated in the time domain to obtain the displacement
component. We then downsampled the data to reduce the sam-
pling frequency to 1 Hz. We used these filtered displacement
records for the inversion.

Following the method of (Nakano et al. 2008), we performed a
waveform inversion in the frequency domain to determine the
source process of the landslide. We calculated Green’s functions
at the given location of the landslide, using a discrete wavenumber
method (Bouchon 1979) and the Japan Meteorological Agency
(JMA) one-dimensional velocity structure model (Ueno et al.
2002). Assuming a single-force mechanism for the landslide
source (Hasegawa and Kanamori 1987), we estimated the least-
squares solution in the frequency domain. We performed an in-
verse Fourier transform on the solution to determine source time
functions for three single-force components at each source loca-
tion (Nakano et al. 2008).

Shaltop numerical simulation
We used the SHALTOP numerical model to compute the spatio-
temporal stress field applied to the sliding surface by the moving
landslide mass. It is based on the thin-layer approximation and

depth-averaging of the Navier-Stokes equations without viscosity
(Bouchut et al. 2003; Mangeney et al. 2000; Mangeney-Castelnau
et al. 2005). The behavior of the sliding mass is strongly controlled
by the friction model.

Followed by (Yamada et al. 2016), we tested two different
friction laws: Coulomb friction, in which the dynamic coefficient
of friction is independent of sliding velocity, and a velocity-
dependent friction model (Jop et al. 2006; Liu et al. 2016;
Pouliquen and Forterre 2002).

The velocity-dependent friction model is defined by the follow-
ing equation:

μ ¼ μo−μw
1þ ‖U‖=Uw

þ μw ð1Þ

where μo is the static coefficient of friction, μw is the dynamic
coefficient of friction during sliding, and Uw is the characteristic
velocity for the onset of weakening. ‖U‖ is the scalar amplitude of
the three component velocity vector at each grid cell. Note that μo
is the coefficient of friction when ‖U‖ = 0, μw is the coefficient of
friction when ‖U‖ =∞, and Uw controls how quickly the coefficient
of friction drops as a function of velocity. We computed μ for each
grid cell at each time step.

Estimation of coefficients of friction
We evaluated different friction models by comparing the simulat-
ed force with that obtained from seismic waveform inversion. The
most probable coefficients for the friction model were obtained by
a grid search. A parameter range for the Coulomb friction model
(μconst) is between 0.2 and 0.5 with a 0.02 increment. We selected
this range so that the local minima are included. A three-
dimensional (3D) grid search for the velocity-dependent friction
model was performed in the following parameter space: μo =
(0.10,0.20,0.22,0.24,…, 0.36,0.38,0.40), μw = (0.1,0.2,0.3,0.4), and
Uw = (0.5,1, 2, 3, 4) m/s.

The normalized residual (hereafter referred to as the residual),
defined as the following, is used to evaluate the quality of the fit:

R ¼ ∑nt
t¼1 f o tð Þ− f s t−Δtð Þ� �2

∑nt
t¼1 f o tð Þ� �2 ð2Þ

where fo(t) and fs(t) are the force at time t computed from the
seismic waveform inversion and numerical simulation, respective-
ly, and nt is the total duration of the force in 1-s intervals. Δt is

Table 2 Simulation results

Name Waveform inversion Numerical simulation
Freq. (Hz) Force (N) μconst μ̄dyn (μo, μw, Uw) Vel. (m/s)

Akatani 0.01–0.1 5.22*1010 0.30 0.30 (0.6, 0.24, 4) 35.5

Iya 0.016–0.1 1.09*1010 0.32 0.30 (0.7, 0.28, 0.5) 12.2

Nagatono 0.02–0.1 1.65*1010 0.40 0.39 (0.7, 0.34, 3) 21.2

Nonoo 0.01–0.1 1.23*1010 0.36 0.32 (0.7, 0.20, 4) 13.6

The indices are frequency range for the waveform inversion, maximum force in the vector sum estimated from the waveform inversion, the best coefficient of friction for Coulomb
friction model, the mean dynamic coefficient of friction for the velocity-dependent friction model, parameters for the velocity dependent friction model, and maximum velocity at the
gravity center, from the left
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selected to minimize the mean of the residuals for the three-
component forces.

Results

Seismic waveform inversion
Figure 3 shows the source time functions of three single-force com-
ponents obtained from the seismic waveform inversion. Waveform

fittings between observed and synthesized seismograms are shown
in Supplemental Figures S1–S3. We have better residuals for the Iya
and Nonoo landslides than the Nagatono landslide, even though we
used a wider frequency range for those landslides (see Table 2). This
is because they are larger landslides and have closer seismic stations,
which results in a better signal-to-noise ratio for the data. The
waveform inversion results of the Akatani landslide were presented
in (Yamada et al. 2013), with a normalized residual (Eq. 2) of 0.08.
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Figure 3 shows that phases of all three components are syn-
chronized and the direction of the peak amplitude is the same as

the landslide movement direction. This suggests that the force
history obtained by the seismic waveform inversion reflects the
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main landslide movement. Note that the information for the
vertical direction is limited since the high-sensitivity accelerome-
ter consists of two horizontal components only. Therefore, we may
not have enough resolution for the vertical component. For exam-
ple, the force in the UD (up-down) component in Fig. 3c is clearly
overestimated, as we can see the poor fit in the UD displacement at
TMC station (Supplemental Fig. S3). For the Iya and Nonoo land-
slides, we used only EW (east-west) and NS (north-south) compo-
nents to compute the residual in Eq. 2. We selected EW and UD
components for the Nagatono landslide since they have better
signal-to-noise ratio.

Estimation of coefficients of friction
Figure 4 shows the residual of the coefficients of the Coulomb
friction model. The parameter space is reasonably smooth, and the
most probable coefficient of friction (μconst) is 0.32 for Iya, 0.40 for
Nagatono, and 0.36 for Nonoo. The μconst of Akatani landslide in
(Yamada et al. 2016) was 0.3, so these are slightly larger than that of
the Akatani landslide. The coefficients may vary slightly depend-
ing on the filter type, components, or stations, but it would be
difficult to change the values of the most probable coefficients by
0.1.

Figure 5 shows the residual of the velocity-dependent friction
model in the 3D parameter space. The optimal parameter sets are

(μo, μw,Uw)=(0.6, 0.24, 4) for Akatani, (0.7, 0.28, 0.5) for Iya, (0.7,
0.34, 3) for Nagatono, and (0.7, 0.2, 4) for Nonoo. Although μw is
theoretically the smallest coefficient of friction in the model, the
coefficient of friction during sliding is controlled by both Uw and
μw. In an extreme case, if Uw =∞, the coefficient of friction does
not depend on μw.

In order to evaluate the coefficient of friction during sliding,
time history of the mass-weighted average of the coefficient of
friction for each model in Fig. 5 is shown in Fig. 6. Although the
velocity-dependent model has a trade-off between parameters in
Fig. 5, the average coefficient of friction during sliding seems to be
well-constrained with a small variance. To evaluate the variation of
the dynamic coefficient of friction, the minimum coefficient of
friction for each model was computed, and the models whose
residual was within 0.05 from the smallest residual were selected.
The mean and standard deviation for the selected models are
shown in Fig. 7a. The standard deviation of the minimum coeffi-
cient of friction is less than 0.03, which suggests that the dynamic
coefficient of friction is well-constrained, even though the stan-
dard deviation of μw seems to be large in Fig. 5.

Deposit of landslides
Figure 8 shows the comparison between actual extent of the valley-
fill deposits and the results of numerical simulations for the four

Fig. 6 The time history of the average coefficient of friction for each model in Fig. 5. Colors indicate the residual of each model. The white dashed line shows the model
with the minimum residual

Landslides



landslides. Note that the depositional areas were estimated from
elevation difference of the DEMs before and after the event; hence,
the upstream side of the deposits includes the areas of the barrier
lakes in the cases of Akatani, Nagatono, and Iya (Fig. 8a, b, c). For
the Nonoo case, since the landslide dam had been breached just
after the event, the toe of the deposit was eroded by the outburst of
the lake water. Low precision of the DEM before the landslide in
the Iya and Nonoo cases made from aerial photogrammetry also
resulted in the larger uncertainty in the reconstruction of deposit
thickness.

Although the horizontal extent of deposits seems to be largely
consistent, there are discrepancies in the distributions of thick-
ness. One of the main reasons for this discrepancy is the limitation
of the friction model. We used a model with a velocity-weakening
friction law, as the friction decreases along with the sliding and
then increases to the static value at the end of sliding when the
velocity decreases. This hypothesized process has been developed
for the modeling of dry granular flows. However, in reality, the
pressure of the pore fluid significantly changes the landslide dy-
namics (Iverson 1997; Schulz et al. 2009). Especially when the
sliding mass reaches the valley bottom, generation of high pore-
water pressure due to the mass compression alters the behavior of
the mass settlement. Indeed, parts of the landslide material fluid-
ized and ran out as debris flow along the valley.

Another limitation of the depth-averaged models is that the
whole column stops at the same time, whereas in actual granular
flows, there may be a propagation of the static/flowing interface
towards the surface during the arrest phase (Fernández-Nieto et al.
2016; Ionescu et al. 2015). This could also change the final distri-
bution of thicknesses.

The mass change due to erosion at the bottom of sliding is
another cause to produce this discrepancy of deposits. The erosion
processes may significantly change the distribution of the deposit,
which can be demonstrated by the change of the mass during
sliding (Moretti et al. 2012). Such entrainment effect was not
considered in the model used here because of the relatively short
runout distance.

As we have seen in past landslides, the dominant long-period
seismic signal was effectively generated during the beginning to

middle stages of the landslide movement when the whole mass
moves uniformly (Hibert et al. 2017; Hibert et al. 2015; Yamada
et al. 2013). The friction model is calibrated by the seismic signal
and strongly depends on the large amplitudes during the early
stage of the landslide. So it is difficult to reproduce the later extent
of the deposit, because the model is strongly dependent on the
earlier long-period seismic signals.

Discussion
We obtained a force history of large landslides from the seismic
waveform inversion with broadband and high-sensitivity acceler-
ometer data, which reflects the movement of the landslides. The
numerical simulation benchmarked by the force history provides a
reasonable estimate of the dynamic coefficient of friction.

Volume vs coefficients of friction
Figure 7a shows the relationship between the volume and coeffi-
cient of friction for the Coulomb and velocity-dependent friction
model of four landslides in this study. The coefficient of friction is
well-constrained between 0.3 and 0.4, although the range of the
volume is limited possibly due to the similar geology (accretionary
sedimentary rocks) and geometry (hillslope angle of 30∘ ± 6∘).
These landslides in the same environment with similar volumes
seem to have a comparable coefficient of friction estimated by the
method of coupled seismic and modeling analysis. The Akatani
landslide in Fig. 7a shows little difference between the Coulomb
friction model and velocity-dependent friction model, which indi-
cates the dynamic coefficient of friction is mostly constant during
sliding, and can be approximated by the Coulomb friction model.

Figure 7b compares the relationship between the volume of the
landslides from other studies and coefficients of friction obtained
by (1) the numerical simulation benchmarked by the deposits (Kuo
et al. 2009; Kuo et al. 2011; Lucas et al. 2014; Tang et al. 2009), (2)
the numerical simulation benchmarked by the seismic signals
((Moretti et al. 2015), this study), and (3) the force history of
seismic waveform inversion (Allstadt 2013; Brodsky et al. 2003;
Yamada et al. 2013). Smaller, rockfall-type landslides (volume 102–
103 m3) show a coefficient of friction of 0.6–0.7, whereas larger,
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deep-seated landslides (volume > 107 m3) show a coefficient of
friction smaller than 0.3. This is consistent with past observations
based on field surveys, which show that the larger landslides tend
to have a smaller apparent coefficient of friction (Dade and
Huppert 1998; Hsü 1975; Scheidegger 1973).

We obtained similar coefficients of friction for the landslides
with similar scale and geology. They are consistent with the em-
pirical relationship between the volume and dynamic coefficient of
friction obtained from past studies. This hybrid method of the
numerical simulation and seismic waveform inversion shows the
possibility of reproducing or predicting the movement of a large-
scale landslide. However, direct observations of landslide move-
ment, such as velocity, are required to verify these dynamic
parameters.

Velocity history and energy partition
Figure 9 shows the velocity history at the center of mass for the
most probable velocity-dependent friction model. The Akatani
landslide shows the largest velocity with 35.4 m/s, but other land-
slides also show a velocity greater than 10 m/s. Although the
maximum velocity and duration vary depending on the landslides,
the macroscopic behavior, acceleration, and deceleration phases
are similar for all landslides. As discussed in (Yamada et al. 2013),
the acceleration phase represents the movement of the mass down
the slope, and the deceleration phase represents the stopping of
the mass at the bottom of the slope. This acceleration/deceleration
waveform is typical in simple decreasing slope topography such as
V-shaped valleys made by erosion (e.g., (Hibert et al. 2015; Yamada
et al. 2013)). More complex topography generates more fluctuating
velocities (e.g., (Allstadt 2013; Moretti et al. 2012; Schneider et al.
2010)).

One of the advantages of this hybrid approach is to obtain the
transition of the potential and kinetic energies directly from de-
posit and velocity snapshots. Landslide motion involves a cascade
of energy that begins with gravitational potential energy trans-
ferred to kinetic energy, and eventually, all energy will be dissipat-
ed by the heat energy and fracture energy caused by grain contact

friction and inelastic collisions (Iverson 1997). This energy transi-
tion depends significantly on the natural topography and mate-
rials (rock type and fluid), so estimating the movement of a
landslide in advance has difficulty even if we know the precise
topography of the slope.

Figure 10 shows the relationship between the elevation change
of the DEM (h) and maximum velocity (v) at the center of mass
estimated from our numerical simulations. It shows the linear
relationship for this volume range, with

v ¼ 2
ffiffiffi
h

p ¼ 0:45� ffiffiffiffiffiffiffi
2gh

p
. (Ekström and Stark 2013) also provide

these parameters obtained from the seismic waveform inversions
and show the consistent relationship with our dataset (Fig. 10).
The elevation change at the center of mass is relatively available
from DEM even before the landslide so the maximum velocity can
be estimated from this relationship. It also suggests the ratio of
potential energy transferred to the kinetic energy is about con-
stant, even if the size of the landslide is different. Suppose the total
potential energy is converted to the kinetic energy under unreal-

istic conditions, we obtain v ¼ ffiffiffiffiffiffiffi
2gh

p
. For our empirical relation-

ship, about 20% (= 0.452) of the potential energy was converted to
the kinetic energy. Our analysis provides the relationship between
kinetic energy and the potential energy empirically for future
landslide hazard analysis.

Limitations and potential applications for hazard analysis
Here, we summarize the potential causes of uncertainties of this
approach to estimate the dynamic coefficient of friction. First of
all, the accuracy of the DEM is important. The DEM created by the
photogrammetry had poor resolution and caused uncertainty in
the deposit distribution of Fig. 8b, d. If the mass of the landslide
before sliding and the deposits of the landslide after sliding over-
lap, the sliding surface cannot be obtained by the DEMs, and that
causes an error of about 10% in the volume estimation.

A large long-period seismic signal was produced at the begin-
ning to middle stage of landslide movement, and a short-period
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seismic signal was dominant at the end of sliding. Therefore, the
calibration by the seismic signal strongly depends on the early
stage of the landslide. The coefficient of friction during the main
sliding is relatively well-calibrated, but the friction at the end of
the landslide, when the effect of excess pore pressure is significant,
has poor resolution. This effect and lack of key physical processes
in the numerical models (fragmentation, erosion, presence of
fluids, etc.) may explain why the extent of the deposit is difficult
to reproduce by our friction law.

Despite the limitations, this empirical friction law can provide useful
insights for future landslide hazard analysis. The movement of a land-
slide can be computed by the SHALTOP numerical model, once the
topography of hillslopes and mass distribution are obtained. The hori-
zontal extent of potential area of future landslide can be obtained from
the geomorphic interpretation for signals of deep-seated gravitational
deformation of bedrock appearing on the ground surface using a high-
resolution digital topographic model (Chigira et al. 2013). The thickness
of the unstable mass can be estimated by the empirical relationship
between the surface area and depth of the past landslides. The simula-
tion can also be calibrated by the relationship between the elevation
change of the deposit and maximum velocity at the center of mass in
this study. The numerical simulation provides a reliable velocity of a
landslide since the force acting on the sliding surface is calibrated by
seismic records; however, mass fragmentation, erosion, and pore water
should be carefully examined to better estimate the extent of the runout.

Conclusions
We performed seismic waveform inversions and numerical land-
slide simulations of deep-seated landslides in Japan to understand
the dynamic evolution of friction of the landslides. By comparing
the forces obtained from numerical simulation to those resolved
from seismic waveform inversion, the coefficient of friction during
sliding was well-constrained between 0.3 and 0.4 for landslides
with volume of 2–8 ×106 m3.

We obtained similar coefficients of friction for landslides with
similar scale and geology. They are consistent with the empirical
relationship between the volume and dynamic coefficient of fric-
tion obtained from past studies. This hybrid method of the nu-
merical simulation and seismic waveform inversion shows the
possibility of reproducing or predicting the movement of a large-
scale landslide.

Our numerical simulations allow us to estimate the velocity distri-
bution at each time step. The maximum velocity at the center of mass
shows a linear relationship with the square root of the elevation change
at the center ofmass, which suggests that they can be estimated from the
initial DEMs. About 20% of the total potential energy is transferred to
the kinetic energy in our volume range.

The combination of the seismic waveform inversion and the
numerical simulation helps to obtain the well-constrained dynam-
ic coefficients of friction and velocity distribution during sliding,
which will be used for the numerical model to estimate the hazard
of potential landslides.
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