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S U M M A R Y
In this paper, we systematically examine the multiple scattering process of seismic waves
at consecutive stages of the evolution of 2-D fracture population. Synthetic seismograms
are computed using the pseudo-spectral method for elastic wave propagation, where spatial
derivations are computed using fast Fourier transforms and time derivatives are computed
using second-order finite differences. The grid sizes are 2560 × 2560 with 1 m interval and a
Ricker wavelet with a peak frequency of 30 Hz is used (or equivalently a wavelength of 10 m
for the P-wave velocity of 3000 m s–1 used in our modelling). Fracture patterns are generated
using a 2-D cellular automaton model of rupture with healing to account for clustering and
anisotropy in the fracture growth process. The cellular automation model takes into account the
discontinuous and segmented nature of a fracture population, and reproduces in the statistical
sense the intermediate stages of fracture growths. To estimate the frequency-dependence of
scattering attenuation (quantified by the inverse quality factor Q−1) at different stages of the
fracture evolution, we use the spectral ratio method. Variations of Q−1 with frequency are then
fitted to a polynomial of order up to 8 for each state of the fracture evolution as we do not want
to make an assumption about how Q−1 should depend on frequency or scales. This allows us
to determine the nature of the frequency-dependence of scattering attenuation as a function of
fracture evolution. Our results confirm, as expected, the dependence of scattering attenuation on
frequency, and the fifth-order polynomial seems to fit the measured attenuation from synthetic
seismograms better. In addition, the inverse quality factor Q−1 is shown to be linearly dependent
on fracture density, reaching a maximum when fracture density is the highest. In summary, our
numerical results confirm that scattering attenuation has a complex dependence on frequency,
and measurements of attenuations may be potentially used to characterize spatial distributions
of fracture networks in particular, the scale distributions.

Key words: attenuation, cellular automaton, fractures, multiscattering, seismic wave propa-
gation.

1 I N T RO D U C T I O N

Rock mechanical and hydraulic properties are greatly affected by

the existence of fractures. Most fractures propagate not only as the

result of the purely mechanical effects of an ambient stress field,

but also due to the effect of a stress concentration at the crack tips.
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Seismic waves can be an effective tool for locating fractures and

characterizing their properties because of the sensitivity of wave

velocities, amplitudes and spectral characteristics to fracture com-

pliance. These effects are known to be time-dependent (e.g. Jin &

Aki 1986), a phenomenon more likely to result from changes in

fracture geometry or fluid content than changes in other permanent

types of geological heterogeneities. This holds out the possibility of

distinguishing the relative contribution of either in a real case. The

effects of aligned fluid-filled microcracks on velocity anisotropy (in-

cluding shear wave splitting) and scattering attenuation have been

considered in the long wavelength limit for low crack densities by

Hudson (1981, 1986) and Crampin (1978, 1984), using a single
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scattering approximation and including viscous losses. These stud-

ies show that the theory (which is second order in velocities but

first order in attenuation) is adequate for interpretation of the ve-

locity anisotropy, but has so far been unable to reproduce either the

observed magnitude or the frequency dependence of quality factor

(Q) found in the earth’s crust (Main et al. 1990). This may be be-

cause intrinsic attenuation associated with fluids has wrongly been

attributed to scattering or because the theories are often applied to

sparse arrays of smooth, elliptical, discrete microcracks of identical

size, shape (aspect ratio) and orientation in a homogeneous medium.

Though scattering from cracks is usually weak and can be negligible

according to first-order (in crack density) theory as shown by Main

et al. (1990) and Peacock & Hudson (1990), Pointer et al. (2000),

Chapman (2003), Yang et al. (2007) and Yang & Zhang (2002) have

shown that, if allowance is made for fluid flow between cracks, first-

order theory predicts attenuation levels in line with observations.

When we examine the properties and the behaviour of a fractured

network, it is very important to create a network that may repre-

sent the properties of fractures in natural rocks. We use a model

of rupture designed to reproduce structural patterns observed in the

formation and evolution of a population of strike-slip faults and frac-

tures (Narteau 2007). This model is a multiscale cellular automaton

with two states. An active state represents actively slipping frac-

ture segments. A stable state represents ‘intact’ zones in which the

fracturing process is confined to a smaller scale. At the elementary

scale, the transition rates from one state to another are determined

with respect to the magnitude of the local strain rate and a time-

dependent stochastic process. At increasingly larger scales, healing

and fracturing are described according to geometric rules of inter-

action between active fault segments based on fracture mechanics.

A redistribution of the strain rates in the neighbourhood of active

faults at all scales ensures long range interactions and non-linear

feedback processes are incorporated in the fracture growth mech-

anism. Typical patterns of development of a population of faults

are presented here involving nucleation, growth, branching, inter-

action and coalescence. The initial material properties are uniform,

so the complex behaviours result solely from the competition be-

tween random fluctuations and deterministic physical interactions.

Consequently, the entire process of fault development is an emer-

gent property of the model of fault interaction and does not depend

on pre-existing material heterogeneity.

In this paper, we model seismic wave propagation in each of

the consecutive stages of evolution of the fracture network. We

use a pseudo-spectral technique where fractures with a vanishing

width are implemented using an effective medium theory (follow-

ing Coates & Schoenberg 1995; Vlastos et al. 2003, 2006). Frac-

tures are represented using the displacement discontinuity model

of Schoenberg (1980), Pyrak-Nolte et al. (1990a) and Liu et al.
(2000). We show wavefield snapshots at a certain time step for each

stage of the fracture evolution and demonstrate that the evolving

fracture network can be systematically related with wavefield char-

acteristics, for example, scattering quality factor Q−1. We calculate

attenuation as a function of frequency for each stage and fit the

results with a polynomial, and then use a parsimonious statistical

method to pick the best-fitting polynomial consistent with the data.

Finally, we present seismic traces at two source–receiver directions,

that is, parallel and perpendicular to the fracture orientation, to see

the azimuthal dependence of scattering. Our results show that there

is a significant frequency dependence of scattering attenuation, and

high values of attenuation observed at certain frequencies may be

linked to characteristic scales of heterogeneities. Also fracture den-

sity varies systematically as the network evolves, results in signif-

icant changes in attenuation. In addition, our results exhibit that

scattering is also influenced by the angle between the direction of

propagation and the orientation of the fractures (implying scattering

related attenuation anisotropy). Note that in real fractured rock, it is

very likely that both fluid-related intrinsic absorptions and fracture-

related scattering attenuation will affect wavefields. Separations of

their effects remain a popular subject and in this paper we only con-

sider scattering attenuation and have not considered the effects of

fluids in fractures.

2 M O D E L F R A C T U R E N E T W O R K S

Over the last 10 yr, the geostatistical modelling of fracture popula-

tions has become a well-established approach with a large variety

of applications as reviewed by Bonnet et al. (2001). Here we use in-

stead a combined stochastic/physical model of rupture with healing

to generate fracture patterns at different stages of the development

of a population of strike-slip fractures. This model is a cellular

automaton with long range interaction that has been described by

Narteau (2007) in detail, and we only give a brief summary below

(see Appendix A for more details).

In Narteau’s (2007) rupture model, a 2-D regular, uniform square

lattice represents a rock mass subject to a constant external tectonic

loading. Each cell can be in two states of fracturing (i.e. an active

and a stable state) and a local variable represents the local strain

rate. The external strain rate is fixed. The whole system is polarized

by the orientation of the tectonic loading and the directions of the

principal stresses: σ 1, σ 2 and σ 3. σ 2 is assumed to be vertical, σ 1

and σ 3 are oriented following the principal axis of our lattice, and,

with respect to the Coulomb–Mohr’s theory of fault orientation, only

vertical strike-slip fracture segments can form. The loading here

favours right-lateral fractures and new segments grow following

a main direction, at an angle θ from the maximum compressive

stress. Theata (θ ) here is taken to be approximately to 30◦ implying

a conventional coefficient of the internal friction μ ≈ 0.6.

Fig. 1 is an example of fracture evolution models from Narteau

(2007). Starting with a spatially uniform ‘intact’ model, an element

is selected at random to fail, thereby increasing the strain rate there,

and changing the strain rate around itself by an amount proportional

to the change in Coulomb stress. In this sense the rules of fracture

mechanics for a soft inclusion (changes in normal and shear stress,

accelerated deformation due to stress concentration at the crack tip)

are combined with a frictional process that determines a finite slip

rate on the fault, and a reduction in deformation rate in the stress

shadows around the fault. Since this is a cellular automaton, these

rules are not implemented exactly, merely in how a broken element

rearranges the local deformation rate. However, the model is condi-

tioned on exact known solutions for Coulomb stress redistribution

that are reproduced for faults of finite length. The next fracture will

then occur preferentially at the zones of high stress concentration or

high strain rate, but initially it is more common to nucleate a new

fracture elsewhere, since small faults affect only their immediate

neighbourhood.

Once sufficient nucleation points have been established, the faults

then enter a growth phase where the stress concentration at the fault

tips becomes the dominant effect, and the slip rate tends to increase

in the centre of mature faults due to strong feedback (mutual

amplification of strain rate) between elements aligned at 30◦ to σ 1.

At this stage the strain rate is changed in a spatial domain that grows

with fault length using a multiscale rule where the elementary size

is changed from 1 to 2 to 3 units, etc., up to the largest scale and
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Numerical simulation of wave propagation in 2-D fractured media 867

Figure 1. Fracture patterns that represent consecutive stages at the evolution of the fracturing. The horizontal direction is the x-direction (m) and the vertical

direction is the y-direction (m).
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Figure 2. Frequency–length distributions of fractures in log–log plots corresponding to fracture distributions in Fig. 1.

then in an inverse cascade back to the smallest. This preserves the

cellular automaton rule of nearest neighbour interactions, which (in

a coarse-grained way) including long-range interactions needed to

produce the required degree of spatial self-organization of natural

fault populations.

In a third stage the faults begin to interact, either coalescing to

form larger ones, or switching off if they are in the stress shadow

of a larger fault, and are more likely to heal than to nucleate. The

healing rate is assumed constant and spatially uniform. The ratio

of the loading and healing rates determine the overall geometries

of the fault population at steady state. However, here we use a sin-

gle run at a constant value of both, and instead look at snapshots

of the temporal evolution where we start with a dilute, distributed

fracture population, and end with a single megafault with an infinite

correlation length. In response to tectonic loading, this permanent

internal process of evolution between the local strain rates and a

population of fault segments may be described as a ‘self-organized’

process (Sornette et al. 1994) the order and structures emerge spon-

taneously rather than being prescribed a priori as in a geostatistical

model (which can be seen more clearly in Fig. 2, where frequency–

length distribution in log–log scale is given for each of the eight

models in Fig. 1). It is important to emphasize here that we use this

model only as a device to produce realistic-looking fracture patterns

with varying fracture density, power-law size and spacing distribu-

tions, and correlation length, in the absence of geostatistical models

that reproduce the first three, but not the last.

3 N U M E R I C A L S I M U L AT I O N O F WAV E

P RO PA G AT I O N

The effect of fracture properties on wave behaviour can be described

quantitatively by modelling a fracture as a non-welded interface with

a vanishing thickness described by a simple constitutive model re-

ferred to in the literature as linear slip or displacement–discontinuity

boundary conditions (Schoenberg 1980; Pyrak-Nolte et al. 1990a,b).

The key parameter called fracture stiffness (i.e. the inverse of frac-

ture compliance), can be determined experimentally (Pyrak-Nolte

et al. 1990a,b). More realistic fracture models consisting of a
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distribution of small cracks (voids) or contacts along a plane have

been given by (Liu et al. 1995; Hudson et al. 1996, 1997) and re-

viewed by Liu et al. (2000).

We conduct 2-D forward modelling for each one of the models that

represent stages (a)–(k) (Fig. 1) of the fracture network evolution,

to examine the variation in scattering attenuation and investigate its

frequency dependence. To ensure consistency between the differ-

ent models we use the same background medium in all the cases.

The background medium parameters are P- and S-wave velocities

of VP = 3300 m s–1, VS = 2000 m s–1, and a mass density of

ρ = 2200 kg m–3. In this study, we assume that the normal (ZN)

and tangential (ZT) fracture compliances are constant with ZT =
ZN = 5.6 × 10−11 Pa−1. Note that we expect that fracture compli-

ance will depend on fracture scaling and frequency as shown by

Barton & Bandis (1980); Pyrak-Nolte & Nolte (1992). More re-

cently there is a renewed interest of fracture/scale-dependence of

fracture compliance, see Liu et al. (2001), Liu (2005), Lubbe &

Worthington (2006), Liu et al. (2007) and Yue et al. (2007). Never-

theless the assumption of the equivalence of normal and tangential

fracture compliance is not unrealistic for most geophysical appli-

cations (Barton 2007). Barton (2007) in his recent book discussed

in great details of geophysical and geomechanical applications of

fracture compliances. The study of frequency/scale dependence of

fracture compliance as studied in Liu et al. (2006) is beyond the

scope of this paper.

We use 2560 × 2560 finite difference grids with spatial grid in-

terval of 1 m and time step 0.001 s. The source wavelet is a Ricker

wavelet with a dominant frequency of 30 Hz and a pulse initial time

of 0.1 s (or equivalently the wavelength of 10 m for the velocity of

3300 m s–1 as used in our modelling). The source is located in the

centre of the models (x = 1280 m and z = 1280 m). Figs 3(a)–(l)

shows snapshots of the wavefield taken at 350 ms after the initial-

ization of the source, for the consecutive stages of the evolution of

the fracture network shown in Figs 1(a)–(l). At the beginning of the

nucleation [stage (a)], there are a few active cells which are smaller

than the wavelength and act as individual scatterers, so the wave

travels undisrupted with a circular wave front. At stages (b)–(d)

the first fractures are created and also interaction and formation of

large fractures happens. As a result some fractures act as individual

scatterers and others that are larger than the wavelength act as reflec-

tors. In addition, as fracture density increases, multiple scattering

attenuation and anisotropy (directional variations) also increase, re-

sulting in the reduction of coherent P- and S-wave energy and wave

fronts become elliptical. Significant seismic anisotropy is an emer-

gent property of the model in the post-nucleation stage. Note that

the elliptical elongation is parallel to the y-direction and not parallel

to the strike of the faults. This is because of the tendency for en-

echelon connection to occur neighbouring elements to form local

clusters in this direction to achieve an average 30◦ angle specified

by the coefficient of friction, that is, each fracture segment is along

the y-direction while the overall fractures which are made of many

such small segments along the y-direction have an average direction

of 30◦ angle from the y-axis. Stage (e) is close to the percolation

threshold, and stage (f) has the highest fracture density. While at

stage (g) the deformation begins to localize. All those three stages

(e, f and g) have high anisotropy and high multiple scattering, with

the maximum occurring at stage (f). In the remaining stages, the

number of fractures continues to decrease and long fractures begin

to form as deformation localizes further. Multiple scattering atten-

uation decreases and the same happens with anisotropy. The wave

fronts become circular, but because fractures are much longer than

the wavelength, they act primarily as long and single reflectors.

4 S C AT T E R I N G AT T E N UAT I O N D U E

T O D I S T R I B U T E D F R A C T U R E S

In the models presented here we have not considered mechanisms

that cause intrinsic attenuation, so our results are related only to

scattering attenuation, which involves no energy loss, but produces

a more extended, lower (or enhanced) amplitudes as a result of de-

structive (or constructive) interferences.

Various results about frequency dependence of attenuation are

summarized by Main et al. (1990). If seismic wavelengths λ are

much greater than typical size a of scatterers and the number of

scatterers is small enough to ignore multiple scattering, Q is found

to be frequency-dependent according to Q−1 ∝ ω3, where ω is an

angular frequency (ω = 2π f , f is the frequency). This classic be-

haviour is known as Rayleigh scattering. Hudson (1981) applied

scattering theory to a sparse fracture system and recovered this

result (Rayleigh scattering). Hudson (1981, 1986) also presented

theories for seismic velocity in a homogeneous cracked medium,

which show that velocity depends on the crack density and aspect

ratio, as long as the crack radius remains small compared to the

seismic wavelength (long wavelength limit, ka � 1 where k is the

wavenumber). In contrast, Wu (1982) and Wu & Aki (1985) mod-

elled the observed scattering in the earth for the case of ka ≈ 1. They

used smoothly varying heterogeneous distributions of small cracks,

and found that the dimension that determines scattering attenuation

is the length scale of heterogeneities in crack density and geometry,

but not the dimension of an individual crack. Lerche (1985) and

Lerche & Petroy (1986) modelled the case of multiple scattering of

a dense array of microcracks with a range of sizes. For a Gaussian

distribution of microcrack radii they found Q−1 ∝ω3, that is, similar

to Rayleigh scattering. However, if the power spectrum of hetero-

geneities follows a power law (with a fractal dimension of m), then

the frequency dependence of Q is given by Q−1 ∝ ωγ with γ =
m−1 (Wu & Aki 1985), which is a power-law frequency depen-

dence. Based on the evidence from the Cajon Pass borehole logs

and seismic scattering for a power-law distribution of fractures in

crustal rock, Leary (1995) suggested that a power-law frequency

dependence of Q−1 ∝ ω0.57is due to a scale-dependence of fracture

density. Leary (1995) argued that it is possible that when seismic

waves encounter fractures of a given size, energy is scattered and

the amount of scattered energy scales as a power of fracture size.

4.1 Estimation of scattering attenuation

The estimation of Q requires a robust method which can handle

rapid spatial changes in recorded waveforms. We use the standard

spectral-ratio method or SRM (as appears in many text books, such

as Aki & Richards 2002), in which Q is computed from a straightline

fit to spectral ratios of received [A(ω)] and source [Ao(ω)] power

spectra. It is assumed that receivers lie along a common ray path

from the source and that two power spectra can be linearly related by

a simple attenuation operator. Deviations from a linear spectral ratio

are treated as noise, and averaging of the spectra is usually required

to give stable estimates of attenuation. The amplitude spectrum A(ω)

of a wave after travelling a distance L is given by (see Aki & Richards

2002)

A(ω) = A0 exp

[
ωL

2V Q(ω)

]
, (1)

where A(ω) is the amplitude spectrum of the source, V is the wave

velocity and Q(ω) is the quality factor, which can be obtained
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Figure 3. Snapshots taken at 350 ms after the initialization of the source. (a)–(i) correspond to the respective fault patterns in Fig. 1. The horizontal direction

is the x-direction (	x = 1 m) and the vertical direction is the y-direction (	y = 1 m).
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by,

Q−1(ω) = 2V

ωL
ln

[
A(ω)

A0(ω)

]
. (2)

Recorded waveforms are first windowed around first P-wave ar-

rivals, and then Fourier transformed to compute the spectral ratio

A(ω)/A0(ω). This ratio may in some cases yield negative values,

corresponding to a magnification (or enhancement) of input signals

caused by focusing and defocusing effects. The scattering attenua-

tion Q−1
S (ω) can be computed from,

ln

[
A(ω)

A0(ω)

]
= ωQ−1

2V
L . (3)

This indicates that the logarithm of the spectral ratios is a lin-

ear function of source–receiver distances. We fit a straightline to

ln[A(ω)/A0(ω)] and the slope of the line can be used to compute

Q−1(ω).

4.2 Scattering attenuation as a function of susceptibility

and deformation

We now present the quality factor Q−1 values for the frequency

range (frequency in the range of 0–100 Hz) for the fracture pat-

terns presented in Fig. 1. The results for very low- and very high-

frequencies are less reliable due to low energy content in the source

wavelet. Fig. 4 shows the normalized ‘susceptibility’ of the defor-

mation field to small changes in stress for the states (a)–(e) of the

fractured medium evolution (Narteau 2007). The susceptibility K
is a good approximation of the correlation length of the system. If

K = 1, the correlation length is infinite which corresponds to the

percolation threshold. Deformation is presented as a percentage of

total strain in the medium. In an evolving medium, strain will con-

stantly grow as it evolves, so in this case deformation is representing

a timescale of the evolution. The evolution of K is shown in Fig. 4

with dotted lines indicating the times when the fracture populations

(a)–(e) shown in Fig. 1 occur. For each time we show the respective

plot of the quality factor as a function of frequency. At each plot

the straightlines represent the values of the quality factor, while the

two dotted lines show the upper and lower limits of the error bars.

Starting from state (a), the susceptibility has a very low value. At

this stage there are only microscopic structures which are active

cells and they are distributed throughout the medium, but there are

no fractures. The quality factor has small fluctuations in its values

but on average it has very low values. That is expected because the

microscopic structures, compared to the wavelength, do not cause

significant scattering. At stages (b)–(d), fractures of different length

scale as well as microscopic structures begin to appear. Susceptibil-

ity rises exponentially from stage (b) to stage (d), because once the

first fractures are created together with the growing procedure they

undergo an interaction procedure which leads to larger fractures. In

all stages the quality factor is much higher than in stage (a) because

the size of the fractures is larger than or even comparable to the

wavelength, which causes stronger scattering. At stage (b) we see

a global maximum at ω = 208 (f = 33.1 Hz) and two local max-

ima at ω = 411 (f = 65.4 Hz) and ω = 454 (f = 72.3 Hz). Those

maxima may be directly linked to the characteristic scalelengths of

the fractures. At stages (c) and (d), fractures have longer sizes and

the quality factor is higher than stage (b). There are two maxima, a

global one at ω = 251 (f = 40 Hz) and a local one at ω = 447 (f =
71.2 Hz), which implies that there are two dominant scales. At stage

(e), we are one step before normalized susceptibility reaches one

(the percolation threshold). Damage is still distributed via fractures

and microscopic structures as in the previous stages. However at

that stage there is no dominant scale. The quality factor in this case

is much higher than the previous stages, because fracture density is

higher. Nevertheless, the pattern of quality factor is very different

from the previous stages. It has small fluctuations in the value, but

generally we can see a straightline decreasing from 0.4 to 0.1 on

linear-linear axes, with no clear maxima. That suggests that there is

no characteristic scale in the system, consistent with the observa-

tions of Wu & Aki (1985) for the real Earth. This implies that the

active tectonic areas that they examined were due to a critical stress

state defined by the percolation threshold.

Fig. 5 shows the damage of the system as a function of defor-

mation. The damage is defined as the ratio between the number of

active cells and the number of stable cells as a percentage. For dilute

damage, the damage equates to the crack density defined to be the

number of cracks per unit area multiplied by the square of the scale

(Hudson 1981). The ‘deformation’ here as in Fig. 4 is the timescale

of the evolution. The dotted lines indicate the times when the frac-

ture populations (f)–(h) shown in Fig. 1 occurred. Stage (f) has the

highest damage, and after that the system moves towards localiza-

tion and damage decreases at a constant rate at stages (g) and at stage

(h) it reaches 1/5 of the value at stage (f). At stage (h) all the small

scale damage disappears, so from that stage onwards there only large

fractures and no microscopic cracks or small scale features exist. In

all three stages we are still at the percolation threshold, so there is

no characteristic scale. The quality factor Q−1 at stages (f) and (g)

has almost the same pattern. The overall magnitude of attenuation is

higher than stage (e) in both cases because fracture density is higher.

It follows the same pattern as in stage (e) and declines at an almost

constant rate with frequency apart from small fluctuations. At stage

(g) there is a possible local maximum at ω = 208 (f = 33.1 Hz), but

it is not very clear. That may imply that after the percolation thresh-

old the system is reorganized and a new characteristic length scale

dominates. At stage (h), when the microscopic features disappear,

that change on the properties of the medium is demonstrated clearly

in the pattern of quality factor. At that stage, damage has a very low

value, which means that the number of active cells is less than in

the previous stages. As a result, scattering is less, as shown in the

quality factor Q−1 that has values around 0.1 compared to average

values between 0.3 and 0.4 in stages (f) and (g). It is almost constant

with frequency with a small fluctuation in its values. The change

in the pattern of quality factor may provide a potential means of

identifying changes in the properties of heterogeneities.

Fig. 6 shows the normalized length of the fractures as a function

of deformation. Again the deformation is proportional to the

timescale of the evolution, and the dotted lines indicate the times

when the fracture populations (i)–(l) shown in Fig. 1 occurs. At

the final stages of the evolution of the system, there is no more

growth of new fractures. However, existing fractures interact and

form big fractures. This feature is demonstrated in Fig. 6, where

we see that the normalized length rises sharply, although it has

some fluctuations, until it reaches a maximum and it becomes

constant at L = 1 in the two final stages. At stage (i) the quality

factor has a very similar variation to stage (h) with an almost

constant value for all frequencies (although it slightly decreases at

high frequencies). However, in this stage the local maximum that

was not seen at stage (h) becomes visible here at ω = 263 (f =
41.9 Hz). Seismic waves probably ‘recognize’ the characteristic

scale. At stage (j) the first major fracture appears (Fig. 1j), which

is a result of fracture interaction. Attenuation starts from a low

value at small frequencies and it rises until it reaches a maximum
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Figure 4. Normalized susceptibility as a function of deformation for stages (a)–(e) of the evolution of the fracture network. For each stage (a)–(e), we show

the quality factor as a function of frequency.
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Figure 5. Variation of the damage as a function of deformation for consecutive stages (f)–(h) of the evolution of the fracture network. The quality factor is

also shown for all stages (f)–(h).
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Figure 6. Normalized correlation length of the fractures as a function of deformation for stages (i)–(l), accompanied by the quality factor as a function of

frequency for each stage.
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at ω = 282 (f = 44.9 Hz) and then drops monotonically. We

expect that this maximum in quality factor is linked with the scale

of major fractures. At stage (k) the system is almost at the end of its

evolution. The major fracture is already formed and here the smaller

secondary fractures that have almost the same size are generated.

The quality factor shows almost the same pattern as in stage (j), but

in this case there is a global maximum at ω = 276 (f = 43.9 Hz),

a local maximum at ω = 392 (f = 62.4 Hz) and possibly another

local maximum at ω = 509 (f = 81 Hz) (Fig. 6k). So the global

maximum is slightly shifted to a lower frequency compared with

stage (j), which may indicate a small change in size, and we also

have a clear local minimum. The two local minima may be related

to the fact that at stage (i) the system has other heterogeneities

that on average they have two distinct dominant scales. The final

stage (l) when the system reaches stability has a similar variation

in attenuation to state (k), with one global and two local maxima.

However, the global maximum is also shifted to a slightly smaller

frequency and the two local maxima are shifted to slightly higher

frequencies (Fig. 6l). That can be interpreted as small changes in

the dominant scale lengths.

4.3 Polynomial fitting to scattering attenuation

We fit a polynomial to the data with an order from 1 to 8. We use

a statistical criterion and examine each one of the 12 states. The

most commonly used statistical criteria for selecting a parsimonious

model to describe the data are the Schwarz Information Criterion

(SIC) proposed by Leonard & Hsu (1999, p. 8), Akaike’s (1978)

Information Criterion (AIC) and the Bayesian Information Criterion

(BIC). When number of data is n > 46, computer simulations by

Koehler & Murphree (1988) have shown that BIC is superior to

other statistical criteria. In our case n = 103, and the BIC criterion

is used,

BIC = L(y) − 0.5p ln

(
n

2π

)
, (4)

where L(y) is the maximized logarithmic likelihood, n is the number

of data points, and p is the number of unknown parameters in the

model, that is, in our case the order of the polynomial we want to

fit. This parameter (p) is actually an extra penalty for the increase of

the model complexity. The maximum logarithm likelihood is given

by,

L(y) = −0.5n ln
(
S2

R

)
, (5)

where S2
R is the residual sum of squares and is given by,

S2
R =

n∑
i=1

[yi − γ (xi )]
2, (6)

where yi are the data points and γ (xi) are the calculated values of

the data points based on the polynomial fit. Fig. 7 shows the BIC

criterion for the stages (a)–(l) of evolution for the various orders

of polynomial. We can see that the order of polynomial with the

highest BIC value is not consistent for all the stages. However, in

most cases a polynomial of order 5 seems to give the optimal fit, so

we decide to fit the data for all stages with a polynomial of order 5.

4.4 Directional dependence and Q anisotropy

The scattering attenuation discussed in the previous section de-

pends on fracture density and fracture scales. Another parameter

affecting attenuation is the source–receiver orientation relative to

the orientation of the fractures. This effect is generally known as

scattering-related attenuation anisotropy (Liu & Zhang 2001). Fig. 8

shows the synthetic vertical seismograms recorded at x = 700 m and

y = 300 m, where the ray direction is almost parallel to the domi-

nant orientation of the fractures. Waveforms (a)–(l) correspond to

the states (a)–(l) in Fig. 1. In Fig. 8(a) we may identify both P-

and S-wave arrivals, and scattered waves between 0.45 and 0.62 s.

In Figs 10(b–d) the amplitudes of P waves gradually decrease and

scattered (coda) wave energy becomes significant. That is exactly

what we see in Figs 4(b–d). Figs 10(e–g) show strong attenuation

of P waves, that is, there is a limited amount of energy in P waves.

The energy is redistributed in the coda-waves that have much higher

energy than in the previous cases. Also the coda-waves show a va-

riety of frequency contents. Figs 10(h and i) show a change in the

waveforms. Again there is high energy in P and S waves and some

scattering that distributes energy in the coda-waves, although scat-

tering is significantly lower than before. This is in agreement with

the results shown in Figs 5(h) and 6(i). An interesting feature is that

the amplitudes of S waves are larger than the amplitudes in Fig. 8(a),

as a result of constructive interference. In contrast, P waves are less

affected. The simple explanation is that when the ray direction is

parallel to the dominant direction of fracturing, P waves are polar-

ized in the propagation direction while S waves are polarized normal

to the ray direction. Finally, Figs 10(j–l), show much less scattered

energy in the coda waves and strong P and S waves.

Fig. 9 shows the vertical displacements recorded at x = 2250

m and y = 720 m, where the ray direction is almost normal to

the dominant direction of fracturing. Waveforms (a)–(l) correspond

to states (a)–(l) shown in Fig. 1. By comparing Figs 9 and 10,

one clear observation is that the amplitudes of P waves in Fig. 9

are smaller than those in Fig. 8, while the amplitudes of S waves

are larger in Fig. 9 than in Fig. 8. That is because in Fig. 9,

P waves propagate normal to the fracture orientation while in Fig. 8

they travel along the fracture direction, therefore suffering more

scattering in Fig. 9. The opposite happens with S wave as their

direction of polarization is normal to P waves, and as a result

S waves are less scattered. Note that the systematic azimuthal varia-

tions of scattered waves have been observed in field data by Minsley

et al. (2004) and Willis et al. (2004), and the results from our

work provides further confirmation to their claim that analysis of

scattered waves may be used to characterize fractured hydrocarbon

reservoirs.

We now summarize our results in Fig. 10. The circles represent

states (a)–(l) and the x-axis is the deformation as in Figs 5–7. State

(a) has the lowest attenuation, and we see a sharp increase until state

(b) which is the initialization of growth. Attenuation continues to

increase gradually at states (c) and (d), followed by a sharp increase

in attenuation between (d) and (e), which continues between (e) and

(f) where the maximum attenuation occurs. In Figs 10(f) and 11(f),

the wave traces show the maximum attenuation, which coincides

with the state of evolution where there are both a maximum fracture

density and a maximum bandwidth of the different scales in the

fracture length distribution (Fig. 10). Afterwards the localization

of the deformation along major fractures occurs and thus at stages

(h) and (i) fracture density decreases. As a result, attenuation de-

creases significantly. Finally, there is a dominant major fracture with

some intermediate sized fractures, which makes reflection dominate

and scattering attenuation even lower. This highlights the difference

between coherent reflection from a linear interface, and the more

random or incoherent nature of multiple scattering from a popula-

tion of less organized fractures. We can see the resulting continuous

decreases in Q−1 in Fig. 10, until it reaches the minimum at state

(l).
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Figure 7. Plot of the BIC criterion, as defined in eq. (4), as a function of the order of the polynomial. The order of the polynomial that gives the best fit is the

one with the highest value of BIC. An arrow points to the order of the polynomial that gives the best fit for all states (a)–(l). For most states the best fit is given

by a polynomial of order 5.
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Figure 8. Synthetic seismograms recorded at a receiver situated at x =
700 m and y = 300 m for all states (a)–(l) shown in Fig. 1. The source–

receiver direction is approximately parallel to the dominant direction of

fractures.

Figure 9. Synthetic seismograms recorded at a receiver situated at x =
2250 m and y = 720 m for all states (a)–(l) shown in Fig. 1. The source–

receiver direction is approximately perpendicular to the dominant direction

of fractures.
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Figure 10. Scattering attenuation at the dominant source frequency (f = 30 Hz), for all stages (a)–(l). The circles represent the values at the consecutive stages

of evolution.

5 C O N C L U D I N G R E M A R K S

We have conducted a systematic study of multiple scattering in a

stochastic–deterministic model of an evolving fractured network

generated using a multiscale cellular automaton model. Several

models of fracture networks at consecutive stages of the evolution

are presented, along with the variation in susceptibility, damage, and

dominant length of fractures. We generate synthetic seismograms

for each model representing different stages of the evolution and

computed multiple scattering attenuation for each state as a func-

tion of frequency in order to fit polynomials to measured attenuation.

A statistical method based on the Bayesian Information Criterion is

used to select the polynomials.

Our results confirm that scattering attenuation is strongly fre-

quency dependent, and the way attenuation varies with frequency

depends on frequency ranges and particularly fracture scale distribu-

tions. The relationship between scattering attenuation and frequency

has a complex variation at different stages of fracture evolution. One

parameter that directly affects scattering attenuation is fracture den-

sity. We demonstrate that there is a proportional relationship between

scattering attenuation and fracture density, so attenuation becomes

stronger as fracture density increases, as expected.

Another parameter that greatly influences attenuation is the scale

of fractures. Although seismic waves suffer scattering at fractures

of sizes comparable to wavelength, smaller or larger fractures suffer

less scattering. Maximum scattering attenuation correspond to the

stages that fractures have a variety of scales (i.e. the percolation

threshold). The sensitivity of scattering attenuation can also be used

to indicate dominant scales of fractures by identifying wavelengths

where maximum scattering occurs, as seen in the results of the final

stages of fracture evolution. Finally, we also highlight the fact that

scattering attenuation varies with azimuth, and the highest values

correspond to the propagation direction perpendicular to fractures

and the lowest values to parallel to the fractures.

The results from this study give a clear indication that there is a

potential to use scattering attenuation to characterize fracture prop-

erties and identify dominant scale lengths of fractures. Although in

real data it is not easy to discriminate between scattering attenuation

and intrinsic attenuation, attenuation measurements, in particular the

measurement of differential (or relative) attenuation as promoted

by Maultzsch et al. (2007), may be potentially used towards an im-

proved characterization of fractured reservoirs in terms of spatial

and size distributions of fractures. Recent advance in coda-wave

interferometry provides an alternative way to characterize multi-

scattering of seismic waves (Snieder et al. 2002; Gret et al. 2006),

in particular small variations in physical properties (fluids, velocity

and density) can be quantified from scattering waves (a numerical

study was presented in our previous paper by Vlastos et al. 2006,

and field data was given by Gret et al. 2006).
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A P P E N D I X A : E V O L U T I O N

O F F R A C T U R E S

In the initial stages of the nucleation phase there are isolated active

fracture segments (Fig. 1a). Since fracture interaction is negligible,

these fracture nuclei have a random homogeneous spatial distribu-

tion, and their number increases at a constant rate. The strain rates

remain virtually uniform and only small fluctuations can be distin-

guished in the neighbourhood of the fracture nucleus. Nevertheless,

they favour the accumulation and the concentration of the strain rates

on the fracture segment and at the fracture tips while they impede it

on each side of the fault.

While the nucleation process continues, the strain rates are pri-

marily concentrated on the process zones of the fracture nucleus.

In these process zones, the intensity of the microfracturing process

increases and fractures may grow (Fig. 1b). Given the orientation

of the external tectonic loading, the new fractures have an orienta-

tion close to the main direction (Fig. 1c). During the growth phase,

the fracture tips move faster as the fracture becomes larger because

the redistribution mechanism in the neighbourhood of active frac-

tures ensures a non-linear feedback processes in the fracture growth

mechanism.

When the nucleation process is almost nonexistent and as the

growth process continues (Fig. 1d), the ratio between the length of

the fractures and their distance increases and the fractures begin to

interact. There are three types of interactions: (i) Overlap of process

zones when two fractures propagate towards the same zone, (ii)

overlapping shadow zones when two parallel fractures propagate

simultaneously and (iii) overlap of shadow and process zones in any

step-like discontinuity. These interactions can efficiently modify the

geometry of the fracture network and new fracture patterns emerge

(Fig. 1e). Fractures may coalesce to form curved patterns while

other fractures may produce en-echelon patterns. As a result of the

growth phase and of the first stages of the interaction phase, the

density of active fracture segment is high and the fracture population

is characterized by active fractures of all dimensions (Fig. 1f).

From the hierarchy established at the end of these preliminary

phases of fracture growth (Fig. 1g), the fracture population evolves

towards a more stable configuration based on the coexistence of

major faults. During this concentration phase, major fractures in-

crease their strain rates by removing the strain rates from minor

fractures. Thus the active fracture population becomes less com-

pact (Fig. 1h) and small fractures become inactive. Along major

fractures of different lengths, the connected active segments tend to

form a smoother fracture trace. Branching and step-over disappear

but bends between regular segments may persist. Hence, the strain

rates are almost uniform but may vary according to the alignment

of the fracture segments with respect to the dominate direction and

remaining structural irregularities. Fractures may continue to grow

if major fractures positively interact with each other (Fig. 1i). Fi-

nally, major fractures may connect with each other (Fig. 1j), and

a unique fracture cutting the entire system may appear (Fig. 1k).

This fracture localizes all the deformation and neighbouring active

fractures disappear (Fig. 1l). This configuration of faulting is stable

over a long timescale and may be described as the final stage of the

localization process of the deformation.
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