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Figure 1: The three states (fluid, mobile and immobile sediment) and the doublet in-
teractions in the model of sediment transport. Different sets of transition are associated
with deposition, erosion, transport, gravity and diffusion. {Λc, Λe, Λt, Λg , Λd} are
transition rates with units of frequency; a and b are constants (see Tab. 1 for the model
parameter values). The central inset shows the direction of the flow and the orientation
of the nearest neighbours in our regular cubic lattice. Neutral cells are used to shape the
virtual environment. Injection/removal cells are used to introduce input/output fluxes of
sediment.

The different ingredients of the model summarised in Secs. 1 and 2 have
been described in full details in Narteau et al. [2009]. We just recall here the
main characteristics which are particularly relevant to the present study. In
addition, we present how we extract the transport properties from the wind
data. Finally, in Sec. 3 we detail how we analyse the morphodynamics of
star dune for different Tθ-values, the period of wind directionality.

1 Sediment transport, flow calculation and wind

speed in the real-space cellular automaton model

In the model of sediment transport, we consider three states (fluid, mo-
bile and immobile sediment) and local interactions between pairs of nearest
neighbour cells called doublets (Fig. 1). We isolate individual physical pro-
cesses and associate each of them with a set of doublet transitions and a
specific transition rate. This way, we introduce into the model the charac-
teristic time scales of the physical mechanisms under consideration (erosion,
transport, deposition, gravity and diffusion). Neutral cells are used to shape
the virtual environment. Here, the sedimentary cells are placed on a rotat-
ing table to reproduce all types of wind directionality (Fig. 1 of the main
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manuscript).

Elementary units Units

l0 Length [L]
t0 Time [T ]
τ0 Stress [M ][L]−1[T ]−2

Model parameters Units Value

L System width and length l0 [400, 600]
H System height l0 100
Λ0 Transition rate for erosion 1/t0 1
Λt Transition rate for transport 1/t0 1.5
Λc Transition rate for deposition 1/t0 0.5
Λg Transition rate for gravity 1/t0 105

Λd Transition rate for diffusion 1/t0 0.01
a Erosion/transport coefficient 1 0.1
b Deposition coefficient 1 10

τ2 − τ1 Erosion range τ0 100

Table 1: Units and values of the parameters of the model of sediment transport.

We use a two-dimensional lattice-gas model to simulate the flow and
calculate the permanent feedback between bed shear stress and topography
[Frisch et al., 1986; d’Humières et al., 1986; Chopard and Droz , 1998; Roth-
man and Zaleski , 2004]. In the model of sediment transport, the flow is
calculated in 2D vertical planes parallel to the direction of the wind and
confined by two walls of neutral cells at the top and the bottom of the
system.

Using the output of the lattice-gas cellular automaton, we estimate both
components of the local velocity field by averaging the velocity vectors of

fluid particles over space and time. Velocity
−→
V is expressed in terms of a

number of fluid particles and we use the normal −→n to the topography to
calculate the bed shear stress

τs = τ0
∂
−→
V

∂−→n
, (1)

where τ0 is the stress scale of the model (see Tab. 1). Then, we consider
that the erosion rate is linearly related to the bed shear stress τs according
to

Λe =















0 for τs ≤ τ1,

Λ0

τs − τ1
τ2 − τ1

for τ1 ≤ τs ≤ τ2,

Λ0 else.

(2)
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where Λ0 is a constant rate, τ1 is the threshold for motion inception and τ2
is a parameter to adjust the linear relationship. By definition, (τs−τ1) is the
excess shear stress from which we can account for the feedback mechanism
of the bed shear stress on the topography.

In the simulations presented here, all the model parameter values are
kept constant except the Tθ-value. Nevertheless, we can associate changes
in τ1-values to variations in excess shear stress and therefore to variations
in wind shear velocity: the higher the τ1-value is, the lower the wind shear
velocity is. Then, for all τ1-values, we have computed the saturated sand
flux on a flat bed and renormalise this flux with respect to its maximum
value at τ1 = 0 (Fig. 2).
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Figure 2: The saturated flux with respect to the τ1-value. Qsat(τ1) is normalised by its
maximum value Qsat(τ1 = 0). Note that an increasing τ1-value corresponds to a decreasing
flow strength and that these changes in τ1-value do not affect the spatial and temporal
distributions of the bed shear stress τs on an arbitrary flat layer of sediment.

Theoretical transport relationships can be expressed as

Qsat =

{

0 if τs ≤ τc,

τγs (τs − τc) if τs ≥ τc.

where γ is a positive (or null) constant and τc the shear stress at the onset
of erosion [Bagnold , 1956; Anderson and Haff , 1988; Ungar and Haff , 1987;
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Rasmussen et al., 1996; Andreotti , 2004]. Introducing the shear velocity

u∗ ∝ τ
1/2
s (i. e. high Reynolds number) and considering that Q0

sat is the
Qsat-value for τc = 0, we can show that

Qsat

Q0
sat

= 1−

(

uc
u∗

)2

. (3)

As described below, wind velocity time series allow to calculate the (u∗/uc)-
value in nature and therefore to estimate the corresponding Qsat/Q

0
sat-value.

Considering that we have the same ratio in the model, Eq. 3 and Fig. 2
give the opportunity to estimate the τ1-value that we should take in our
simulation. This value corresponds to a given flux of sediment Qsat(τ1)
expressed in units of l20/t0, where l0 and t0 are the elementary length and
time scales of the model, respectively. Let us now determine the {l0, t0}-
values.

2 Length and time scales in the real-space cellular

automaton dune model

The elementary length and time scales {l0, t0} of the real-space cellular au-
tomaton dune model are determined with respect to the physical mechanism
that select λmax, the characteristic length scales for the formation of dunes
in nature (i. e. the most unstable wavelength of a flat sand bed exposed to
a fluid flow). Then, in all natural environments where the dune instability
can be observed, the l0 and t0-values can be calculated with respect to the
magnitude of the parameters that control the λmax-value and the saturated
flux of sediment [Hersen et al., 2002; Elbelrhiti et al., 2005; Charru, 2006;
Claudin and Andreotti , 2006; Narteau et al., 2009; Zhang et al., 2010].

2.1 The elementary length scale

Using a linear stability analysis, the characteristic length scale for the for-
mation of dunes in the model, λmax, can be expressed in unit of l0 and
compare to the corresponding length scale in nature. For arid desert on
Earth, Elbelrhiti et al. [2005] have shown that

λmax ≈ 50
ρs
ρf
d ≈ 20m.

In the cellular automaton dune model, Narteau et al. [2009] have shown that

λmax ≈ 40 l0.

Then, the elementary length scale of the real-space cellular automaton dune
model is

l0 = 0.5m. (4)
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2.2 The elementary time scale

From the meteorological data-file of Hassi-Messaoud airport (Algeria, 31o 40’
North, 6o 9’ East), we extract the wind speed ui and the wind direction −→xi
at different times t1 ≤ ti ≤ tN , i ∈ [1, N ]. Considering that these wind
properties have been measured at a height of z = 10m, we calculate the
shear velocity

ui
∗
=

uiκ

log(z/z0)

where z0 = 10−3 m is the surface roughness length and κ = 0.4 is the von-
Kármán constant. The mean shear velocity is

〈u∗〉 =

N
∑

i=2

ui
∗
δi(ti − ti−1)

N
∑

i=2

δi(ti − ti−1)

,

with

δi =

{

0 for ui
∗
< uc,

1 for ui
∗
≥ uc.

We obtain

〈u∗〉 = 0.33 m/s and

〈

u∗
uc

〉

= 1.72

using the formula of Iversen and Rasmussen [1999],

uc = 0.1

√

ρs
ρf

gd = 0.19 m/s,

to determine the threshold shear velocity value for motion inception. Then,
we inject this 〈u∗/uc〉-value in Eq. 3 and Fig. 2 to estimate the corresponding
τ1-value and the corresponding flux of sediment. Here, we have

Qsat(τ1)

Qsat(τ1 = 0)
= 0.66,

τ1 = 8τ0 and Qsat = 0.44 l20/t0.

With the same wind data, we also estimate the sand flux using another
relationship proposed by Iversen and Rasmussen [1999],

Qsat(u∗) = 22
ρf
ρs

√

d

g

(

u2
∗
− u2c

)

for u∗ ≥ uc.
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In practice, we calculate the sand flux vector over a flat sand bed

−−→
Qi

sat = Qsat(u
i
∗
)δi

−→xi .

Thus, we estimate the mean sand flux, also called the drift potential,

Q = DP =

N
∑

i=2

‖
−−→
Qi

sat‖(ti − ti−1)

N
∑

i=2

(ti − ti−1)

= 48m2/a,

as well as the resultant drift potential

RDP =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=2

(ti − ti−1)
−−→
Qi

sat

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 7.8m2/a

from the 1st of January 2006 to the 31st of December 2009.
Finally, matching the average saturated flux in the model to the mean

saturated flux in the dunefield, we get

t0 =
Qsat(τ1)

Q
l20.

Numerically, we obtain

t0 = 2.3 10−3 a = 0.84 d = 20.17 h.

2.3 Model parameters

An important ingredient of the model is that each transition is characterised
by a rate parameter with the dimension of a frequency. These transition
rates introduce into the model the characteristic time scales of the physical
mechanisms under consideration (Tab. 1).

All these rate parameters are expressed with respect to the elementary
time scale t0 in such a way that their relative contribution have to be mea-
sured from their ratio. For this reason, transition rates for erosion (Λ0), de-
position (Λc) and transport (Λt) are chosen close to one with Λc < Λ0 < Λt.
Gravity (Λg) and diffusion (Λd) are occurring over much shorter and longer
periods of time, respectively. We chose Λd ≪ Λ0 ≪ Λg. a < 1 corresponds
to the ratio between vertical and horizontal transition rates for erosion and
transport; b > 1 corresponds to the ratio between deposition rates on flat
and rough surfaces (see Fig. 1).
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Figure 4: Arm development and sediment flux across a crestline of a star dune. (a)
Formation of a 5-armed star dune by growth of longitudinal dunes using a periodic function
of wind directionality with 5 wind directions (see also Fig.3 of the main manuscript). The
period Tθ = 5tθ = 300 t0 and the rotation angle θ = 2π/5 are constant. (b) Sediment
fluxes on the star dune at t/t0 = 3.6 104. (c) For a given arm, we measure the sand flux
at the crest for each wind direction. The cumulative flux yields to arm growth.
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Figure 5: Comparison of analytical and numerical predictions for the direction of arm
growth using periodic time functions of wind directionality with n = {3, 4, . . . , 7} regu-
larly spaced wind directions, as shown by the wind roses. (a) Estimation of the sediment
flux Q‖ along the direction of arm growth: β is the angle between the direction of arm
growth (black arrows) and the direction of the wind (red arrows); Qa and Qb are two con-
stant sedimentary fluxes to take into account transport on a flat sand bed and the effect of
the arm aspect ratio, respectively; H and W are the arm height and width, respectively;
Wp is the apparent width of the arm along the wind direction; H/Wp is the apparent arm
aspect ratio seen by the wind. From (b) to (f), we observe the perfect agreement between
the analytical solutions and the outputs of the numerical model for an increasing number
of wind directions. Both of them predict no arm growth for an even number of winds (c
and e) and arms pointing against individual wind direction for an odd number of winds
(b, d, f). Arms propagate in the direction αi = π/n + 2iπ/n, i = {0, 1, . . . , n − 1}, for
which the Q‖-values are maximum.
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3 Morphodynamics of star dune

3.1 Formation of star dune by coarsening

Fig. 3 shows the formation of a star dune by pattern coarsening (i. e. amal-
gamation) using a random time function of the wind directionality with five
modes, θi = 2πi/5 with i ∈ {0, 1, 2, 3, 4}. As in the main manuscript, the
wind velocity and the mean time spent in each of the five directions are
the same so that the mean flux of sediment is null. The bedform dynamics
explore the full hierarchy of length scales, from the elementary wavelength
that perturbs the initial flat sand bed to the size of the giant star dune that
scales with the depth of the flow. Finally, as for the periodic wind regime, a
stationary state with arms pointing against individual direction is reached
when the star dunes cannot longer increase in height [Andreotti et al., 2009].
Note that, whatever the number of wind directions, the stationary dune
features described in the main manuscript are robust and resilient to the
random time function of wind directionality.

3.2 Crest orientation and sediment flux along a radiating

arm

As is systematically the case for sand dunes, the star-dune shape may be
studied through the estimation of the sand flux in crestal areas [Rubin and

Hunter , 1987]. Using the outputs of the model, we directly quantify the
orientation and the magnitude of the sediment flux across the crestline
by counting the number of transitions in the model of sediment transport
(Fig. 4b). Fig. 4c shows that there are mirror transport properties from
both sides of the crest. The resultant flux obtained by summation reveals
that there is a net sediment flux oriented toward the arm tip as it is the case
for isolated longitudinal dunes [Reffet et al., 2010].

Fig. 5 shows the flux predicted by Eq. 1 of the main manuscript for
all possible angles of arm growth. It appears clearly from the comparison
between the solutions of Eq. 1 and the outputs of the numerical simulations
that, in zones of low sediment availability, alignment of arms maximises
the sediment flux in the direction of arm growth (Figs. 5b, 5d and 5f).
In addition, both of the analytical and numerical solutions predict no arm
growth when there is an even number of winds.

3.3 Effect of the frequency of wind reorientation on the mor-

phodynamics of a star dune arm

As in the main manuscript, in all numerical simulations presented below, the
initial condition is a truncated conical sand pile located in the middle of the
rotating table. Its basis has a radius of L/6 = 100 l0. For the conservation
of mass within the system, each sedimentary cell ejected from the rotating
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table in the direction of the flow is reinjected randomly through a semi-circle
of injection cells located along the upwind border of the rotating table.

Fig. 6 shows the development of star dunes by growth of incipient arms
using a periodic function of 5 wind directionality with a period Tθ. As
it is systematically the case in all simulations, arm growth directions are
opposite to the individual wind directions. For an increasing Tθ-value, we
observe that the arm growth rate is decreasing and that the width and the
height of each arm are increasing (see also Fig. 4c in the main manuscript).
To understand these behaviours we can quantify all these variables using
the output of the cellular automaton model of sediment transport. For
example, we can use the sedimentary structures of the star dunes produced
by the model (see Fig. 4a and 4b in the main manuscript). During all the
simulations, whenever a mobile sedimentary cell makes a transition to an
immobile state, it records the time of this transition. This time is reset to
the current time when the sedimentary cell becomes mobile again. Then,
any configuration of immobile sedimentary cell at any time can be used to
infer the depositional history of the mobile sedimentary layer in the model.
Using these informations for star dunes produced with different periods Tθ

of wind directionality, we evaluate the arm growth rate Γa from the radial
distribution of deposition time of immobile sedimentary cells (Fig. 7). For
all time periods in the past, we identify the maximum distance from the star
dune centre where deposition has taken place (black envelops in Fig. 7). Two
different regimes are observed during the formation and the development of
star dunes in the model (Fig. 8):

• For t/t0 < 2 · 104, the entire surface of the original conical sand pile
is reworked, erosion dominates and the flux at the boundary of the
rotating table increases rapidly (see Fig. 9 for t/t0 < 104). Then, in-
cipient arm form and the boundary flux relaxes toward an equilibrium
value (see Fig. 9 for 104 < t/t0 < 2 · 104). As shown in Figs. 6 and 8,
this preliminary phase is not affected by the periodic function of wind
directionality: the (constant) arm growth rate and the radial patterns
of sedimentation are the same for all Tθ-values.

• For t/t0 > 2 · 104, incipient arms develop with a stationary growth
rate that depends on the specific time function of wind directionality.
Fig. 8 shows that the arm growth rate is constant and decreases with
respect to an increasing Tθ-value (see Fig. 4d in the main manuscript).

We simultaneously study the morphological properties of star dune arms.
Figs. 10 and 11 show both height and width of star dune arms for t/t0 =
2·104 and t/t0 = 4·104 for various Tθ-values. These morphological properties
reach a stationary and uniform regime characterised by constant values,
which are controlled by Tθ. Both height and width are increasing linearly
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with respect to an increasing Tθ-value, thereby maintaining a constant aspect
ratio (see Fig. 4c in the main manuscript).

Finally, we also compare the sedimentary flux at the boundary of the
rotating table (i. e. the “free” flux) with the sedimentary flux associated
with arm growth (i. e. the “bulk” flux). To estimate the volumetric “bulk”
flux we take

Qbulk = na ΓaHaWa

where na = 5 is the number of arms and where Ha and Wa are the average
height and width of the growing arm, respectively. Fig 12 shows that the
free and bulk fluxes are of the same order of magnitude and strongly anti-
correlated when plotted with respect to the Tθ-value. They evolve symmet-
rically with respect to one another indicating that, as the Tθ-value increases,
the deficit of bulk flux is compensated by an increase of the free flux across
the entire domain, especially at the boundary of the rotating table. This
free flux generated during period of constant wind directionality is a critical
control parameter of arm growth rate.

Indeed, during periods of constant wind directionality the longitudinal
arm is seen as a transverse dune. This transverse dune destabilises and
breaks at the tip by the emission of small barchans.
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Figure 6: Growth of star dune (from the left to the right) using a periodic function of
wind directionality with a period Tθ and 5 wind directions. Images have a width of 600 l0.
When the Tθ-value increases (from the top to the bottom), the arm growth rate decreases
and both width and height of the arms increase, keeping the arm aspect ratio constant.
Note the similitude in star-dune shape at t/t0 = 2 · 104 for all the Tθ-values.
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Figure 7: Deposition time of sedimentary cells with respect to the distance to star dune
centre for a 5 wind regime with (a) Tθ/t0 = 750 and t/t0 = 4 · 104, (b) Tθ/t0 = 1000 and
t/t0 = 6 · 104, (c) Tθ/t0 = 1250 and t/t0 = 8 · 104, (d) Tθ/t0 = 1500 and t/t0 = 11 · 104.
The slope of the envelop function (black line) is inversely proportional to the arm growth
rate Γa (see also Fig. 8).
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Figure 9: Flux of sedimentary cells across the boundary of the rotating table (the so-
called “free flux”) with respect to time for a 5 wind regime with (a) Tθ/t0 = 750, (b)
Tθ/t0 = 1000, (c) Tθ/t0 = 1250, (d) Tθ/t0 = 1500. Two main regimes are observed
before and after t/t0 = 2 · 104. For t/t0 < 2 · 104, the entire surface of the original sand
pile is reworked, erosion dominates and the free flux increases before relaxing toward an
equilibrium value. For t/t0 > 2 · 104, a constant growth rate is observed and the free flux
oscillates around a stable value Qstab that depends on the Tθ-value.
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Figure 10: Height of a star-dune arm with respect to the distance from the centre of
the star dune at t/t0 = 2 · 104 (light curves) and t/t0 = 4 · 104 (dark curves) for a 5 wind
regime with (a) Tθ/t0 = 750, (b) Tθ/t0 = 1000, (c) Tθ/t0 = 1250, (d) Tθ/t0 = 1500. The
height of the growing arm rapidly converges to a constant value that increases with an
increasing Tθ-value.
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Figure 11: Width of a star-dune arm with respect to the distance from the centre of
the star dune at t/t0 = 2 · 104 (light curves) and t/t0 = 4 · 104 (dark curves) for a 5 wind
regime with (a) Tθ/t0 = 750, (b) Tθ/t0 = 1000, (c) Tθ/t0 = 1250, (d) Tθ/t0 = 1500. The
width of the growing arm rapidly converges to a constant value that increases with an
increasing Tθ-value.
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