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[1] In order to examine variations in aftershock decay rate, we propose a Bayesian
framework to estimate the {K, c, p}-values of the modified Omori law (MOL),
l(t) = K(c + t)�p. The Bayesian setting allows not only to produce a point estimator of these
three parameters but also to assess their uncertainties and posterior dependencies with
respect to the observed aftershock sequences. Using a new parametrization of the MOL,
we identify the trade-off between the c and p-value estimates and discuss its dependence on
the number of aftershocks. Then, we analyze the influence of the catalog completeness
interval [tstart, tstop] on the various estimates. To test this Bayesian approach on natural
aftershock sequences, we use two independent and non-overlapping aftershock catalogs of
the same earthquakes in Japan. Taking into account the posterior uncertainties, we show
that both the handpicked (short times) and the instrumental (long times) catalogs predict
the same ranges of parameter values. We therefore conclude that the same MOL may
be valid over short and long times.
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1. Introduction

[2] Aftershocks are the most prominent expression of
the global relaxation process induced by abrupt perturba-
tions of the state of stress in the neighborhood of seismic
ruptures. More than 100 years ago, Omori [1894] provided
the first quantitative description of an aftershock decay rate,
documenting the number of earthquakes triggered by the
M8 Nobi earthquake (18 October 1891, Honshu, Japan). To
more accurately model the diversity of aftershock decay
rates that had been reported later, Utsu [1961] converted
the hyperbolic behavior observed by Omori [1894] into the
so-called modified Omori law (MOL):

l tð Þ ¼ K

t þ cð Þp ; ð1Þ

where l is the aftershock frequency within a given mag-
nitude range, t the time from the triggering event (the
so-called main shock), K the productivity of the aftershock

sequence, p the power law exponent, and c the time delay
before the onset of the power-law aftershock decay rate. For
more than a century of instrumental data, this empirical
power-law relationship has been successfully used from the
centimeter-scale of laboratory experiments [Scholz, 1968;
Ojala et al., 2004] to the scale of plate tectonics to repro-
duce aftershock frequencies over a wide range of time
scales [Utsu et al., 1995; Stein and Liu, 2009].
[3] Even though other models have been proposed

[Ogata, 1988; Otsuka, 1985; Kisslinger, 1993; Narteau
et al., 2002; Gasperini and Lolli, 2009], the MOL still
remains the simplest and the most widely used formula to
examine the major temporal properties of aftershock sequences.
Usually {K, c, p}-values of the MOL are obtained with the
maximum likelihood point estimator method and their vari-
ability are evaluated by asymptotic statistics using the
Fischer information matrix [Ogata, 1983]. Nevertheless,
these variability cannot be considered as parameter uncer-
tainties but rather as the variability of the estimator under
surrogate data as obtained by the bootstrapping process. If
only one single realization is available, bootstrapping is a
common technique to simulate the sampling from the
unknown underlying data generating distribution. In any case
the quantification of the variability of the estimator answers
the question: “by how much is the estimate likely to change,
when an independent data set becomes available ?”. Another
concept of uncertainty would rather try to answer the fol-
lowing question: “how many models can explain my data
equally well ?”. The latter is the parameter uncertainty as
provided by the Bayesian calculus.
[4] In the last decade, p-values have been estimated and

discussed with respect to different sources of heterogeneity
in aftershock zones [Kisslinger and Jones, 1991;Nanjo et al.,
1998; Wiemer and Katsumata, 1999; Ouillon and Sornette,
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2005; Helmstetter and Shaw, 2006]. In addition, Hauksson
and Jones [1988] proposed that the K-value is related to the
stress drop of the main shock, matching the observation that
the productivity is directly related to the magnitude of the
main shock [Hainzl and Marsan, 2008]. Others have sug-
gested that such a productivity may be inversely proportional
to sediment thickness and heat flow [Yang and Ben-Zion,
2009; Enescu et al., 2009]. However, less attention has
been devoted to explaining the variability of the c-values.
This is certainly because c-value estimates are very sensitive
to catalogue completeness in the immediate time after the
main shock [Kagan, 2004]. Consequently, data completeness
artifacts can be introduced by overlapping seismograms
during coda waves, saturation of acquisition methods, and
absence or malfunction of stations [Vidale et al., 2004; Peng
et al., 2006]. Nevertheless, analyzing catalogues of seismic-
ity above completeness magnitude thresholds, several studies
have pointed out that the c-value may have a physical origin
[Narteau et al., 2002; Shcherbakov et al., 2004]. For exam-
ple, Narteau et al. [2009] suggest that the c-value can be
described as a characteristic time for failure and that, in this
case, early aftershocks may be used as a source of informa-
tion about the state of stress of the brittle crust along active
fault zones.
[5] In rate-and-state friction, damage mechanics, and static

fatigue models, the same physical ingredient is responsible
for a non power-law aftershock decay rate over short time
[Scholz, 1968; Dieterich, 1994; Narteau et al., 2002;
Shcherbakov and Turcotte, 2004; Ben-Zion and Lyakhovsky,
2006]. In all cases, the amplitude of the step-like perturba-
tion of the stress field is inversely proportional to the time
delay before the onset of the power-law regime. Then, con-
sidering that this stress perturbation depends not only on the
size of the event but also on the initial loading along the
entire fault zone [Atkinson, 1991], the characteristic time
delay before the power-law regime can be used to infer the
pre-existing level of stress at the length scale of the main
shock rupture [Narteau et al., 2005, 2008]. Clearly, this
characteristic time is short (≪ day) and decreases with the
magnitude of the main shock. For this reason, it is necessary
to use a specific range of small magnitude main shocks to
reduce the influence of the co-seismic stress perturbation and
limit instrumental artifacts (i.e., overlapping seismograms).
Thus, using the largest aftershocks of small magnitude main
shocks, the characteristic time before the power-law after-
shock decay rate may be estimated using parametric
[Narteau et al., 2009] or non-parametric models [Shebalin
et al., 2011]. Most importantly to our present concern, the
variability of these estimations and the mutual dependence
between this time delay c and the power-law exponent p has
also to be evaluated.
[6] The Bayesian approach can be described as an exten-

sion of binary logic (true/false) to a quantitative expression
of the strength of belief [Cox, 1946]. In fact, instead of
extracting from the data a single set of model parameter
values (i.e., the best-fitting values), Bayesian statistics is
designed to measure the degree of belief of each set of
values that span the model parameter space in light of the
observations, Theoretically, Bayesian calculus is the only
possible extension of binary logic to continuous truth values
[Jaynes, 2005]. However, because this approach requires to
explicitly consider a priori knowledge about the studied

system, any solution has to be considered in view of this
subjective prior distribution.
[7] To learn from data using a model, frequentist and

Bayesian approaches are complementary to one another. The
frequentist approach is based on an estimator, for example
the maximum likelihood estimator, producing a value from a
random realization of the process. This value should be close
to the true value of the parameter and the quality of the
estimator is quantified in terms of its bias (i.e., its deviation
from the true value averaged from many realizations) and its
variance (i.e., the dispersion of the estimation averaged from
many realizations). The frequentist approach is therefore
based on the fictive idea that many independent experiments
can be performed, even though there is only one realization.
The Bayesian approach is only based on this unique reali-
zation. The entire knowledge about the system is represented
by an ensemble of models together with a distribution of
credibility. Then, observations change this a priori belief
into a modified posterior belief giving more credence to
some models and less to others. The uncertainties in the
Bayesian thinking are simply the width of the posterior
distribution. This can be quantified in terms of its variance.
Nevertheless, it is always better to work with the full pos-
terior distribution instead of reducing it to a Gaussian like
object that may be quantified in terms of mean and variance.
In a Bayesian setting, the posterior distribution determines
the range of models that explain the observations. In a fre-
quentist setting the variance of the estimator determines by
which amount the proposed value for the parameter is
fluctuating from one realization to another. In the limit of a
large number of independent observations both approaches
become asymptotically equivalent since the posterior distri-
bution and the distribution of the maximum likelihood esti-
mator converge to the same Gaussian distribution. However,
for a small number of observations, the two uncertainties are
not equal and have different meaning (e.g., Leonard and
Hsu [1999] for a general introduction to Bayesian formal-
ism and, e.g., Le Cam [1986] for asymptotic properties). In
conclusion, Bayesian techniques do not provide a better or
more precise way of estimating the unknown parameters.
They constitute an alternative way to deal with uncertainties
in a self-consistent way. For this reason, there is no point
of comparing the quality of the estimates provided by fre-
quentist and Bayesian approaches [see, e.g., Berger et al.,
1997].
[8] Concerning temporal properties of aftershock sequen-

ces, there is still not a common Bayesian framework to
complement the classical maximum likelihood approach
[Ogata, 1983]. Hence, we present here a new parametriza-
tion of the MOL to separate the aftershock productivity from
the shape of the aftershock decay rate, especially over
short time. Then, we apply Bayesian statistics to this new
parametrization to produce the Bayesian posterior distribu-
tion of the MOL parameters as well as a Bayesian assessment
of their uncertainty across the entire parameter space of the
model. Using such a posterior knowledge, we can investigate
the systematic dependency between estimates of the power
exponent p and the time delay c. Finally, we illustrate our
approach with the analysis of an aftershock catalogue that
combines hand-picked and instrumental data in Japan. Thus,
we can discuss the Bayesian approach and aftershock

HOLSCHNEIDER ET AL.: BAYESIAN ANALYSIS OF OMORI LAW B06317B06317

2 of 12



properties from two independent data sets covering different
time periods of the same aftershock sequences.

2. The Modified Omori Law in a Bayesian Setting

[9] The MOL (equation (1)) can be rewritten as

l tð Þ ¼
~K

1þ t=cð Þp ; t > 0: ð2Þ

where ~K ¼ K=cp is the productivity with units of frequency.
In this parametrization, all parameters are connected in the
sense that any information about one of them changes the
knowledge that we have about the others. As a consequence,
the three parameters ~K; c; p

� �
may not be estimated inde-

pendently. In what follows, we propose a new parametriza-
tion in which we can separate two groups of parameters,
which carry independent information.

2.1. Reparametrization of the Modified Omori Law

[10] When the MOL is applied to real data, we cannot
actually assume that it holds for all times due to observa-
tional shortcomings. We rather have to consider a time
interval [tstart, tstop] over which the MOL describes the
observed data. The lower bound is due to catalogue incom-
pleteness shortly after the main shock, essentially because of
overlapping seismograms. The upper bound has also to be
considered because eventually aftershocks cannot be distin-
guished from background seismicity anymore. Here, we do
not estimate this time interval, but we suppose that it is
known prior to the analysis of the three-parameter family of
the MOL. For a given [tstart, tstop], we may reparametrize the
MOL for p ≠ 1,

l tð Þ ¼ L
D c; pð Þ
1þ t=cð Þp ; t > 0; with

D c; pð Þ ¼ 1� pð Þ=c
1þ tstop=c
� �1�p � 1þ tstart=cð Þ1�p

; ð3Þ

and for the special case p = 1,

l tð Þ ¼ L
D c; p ¼ 1ð Þ
1þ t=c

; t > 0; with

D c; p ¼ 1ð Þ ¼ 1=c

log 1þ tstop=c
� �� log 1þ tstart=cð Þ ; ð4Þ

where log denotes the natural logarithm to the base e. In
these parametrizations, L is the Poissonian rate of the total
number of aftershocks in the observation interval [tstart, tstop],
i.e., the expected number of events during this time interval.
Therefore, L is dimensionless. The constant D(c, p) ensures
that for t ∈ [tstart, tstop], the two-parameter family

~lc;p tð Þ ¼ D c; pð Þ
1þ t=cð Þp ð5Þ

is a probability density function (pdf) of the event times
t since the main shock in the observation interval. The
mapping between the ~K; c; p

� �
parametrization and the new

one {L, c, p} is

L ¼ E number of aftershocks in tstart; tstop
� �� � ¼ ~K

D c; pð Þ ; ð6Þ

so that c and p maintain their meaning. The advantage of
this parametrization is that the productivity is now decou-
pled from the other parameters c and p as we shall see below.
The parameters c and p describe the shape of the event time
distribution, whereas the productivity L describes the
expected number of events in the observation interval.
Meanwhile, the parameters c and L may still depend on
lower cutoff magnitude as it is the case for the MOL. The
drawback of this new parametrization is that the productivity
is now defined with respect to a fixed time interval. This is
not a parameter of the model but an observational constraint
that has to be determined carefully with respect to the
catalogue completeness. Note, however, that for fixed c
and p-values the productivity L′ of another time interval
[tstart′ , tstop′ ] is simply given by

L′ ¼ L
D′ c; pð Þ
D c; pð Þ ; ð7Þ

where D′ is computed using tstart′ and tstop′ .

2.2. The Likelihood Function of the Parameters
of the Modified Omori Law

[11] Suppose we have observed n occurrences of after-
shocks at times tstart ≤ t1 < t2 < � � � < tn ≤ tstop in the obser-
vation window. The likelihood of the parameters in view of
these observations, i.e., the probability to observe n after-
shocks at time {ti}i=1,2,…,n, factorizes as follows:

L L; c; pð j tif gi¼1;…;nÞ ¼ Pð tif gi¼1;…;njL; c; pÞ ¼ P tif gð jc; p; n ÞP nð jLÞ;
ð8Þ

where {ti} is any finite sequence of events and P nð jLÞ the
Poisson distribution of frequency L. Accordingly, to gener-
ate a random sequence of events one first draws the number
n of events according to a Poisson distribution with rate L
and then draws n independent trials from the distribution of
times with pdf ~lc;p (see equation (5)). Therefore, we may
write

L L; c; pð j tif gi¼1;…;nÞ ¼
Lne�L

n!
� D c; pð Þn ∏

n

i¼1

1

1þ ti=cð Þp : ð9Þ

The first factor is the Poissonian probability to observe n
aftershocks given a rate of L. The second factor is the like-
lihood factor, given the fact that we have n events distributed
according to the shape distribution of parameters {c, p} in
the time interval [tstart, tstop]. By the Fischer-Neyman fac-
torization theorem this implies that the number n of observed
events is a sufficient statistics for L [Scharf, 1991]. This
means that all information about this parameter is contained
in the mere number of observed events. The precise times of
these aftershocks do not carry any information about the
productivity L. However, the exact observed times carry all
the information about the shape parameters c and p. Note
that in the traditional parametrization there would be no
sufficient statistics, and the times would also influence the
estimation of K. Then, it is important to emphasize that this
reparametrization is useful even in a frequentist setting,
where maximum likelihood point estimators are considered.
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[12] On a log scale the part of the likelihood function that
carries information about c and p reads

�logL c; pð j tif gi¼1;…;nÞ ¼ �nlogD c; pð Þ þ p
Xn
i¼1

log 1þ ti=cð Þ:

ð10Þ

The minimum of this function yields the maximum-
likelihood estimator c* and p* for c and p, respectively.

2.3. Asymptotic Behaviors

[13] For later use we discuss now the asymptotic behavior
of the likelihood function in various regions of the parameter
space. This discussion will include an inventory of all pdfs
that are limit points of the MOL family. The following
subfamilies are limit cases of the MOL’s time distributions
~lp;c in [tstart, tstop]:
[14] 1. Region I: uniform distribution �1
[15] 2. Region II: exponential distribution � e�at

[16] 3. Region III: Dirac distribution � dtstart
[17] 4. Region IV: power law distribution � t�p

These different regions correspond in essence to the behav-
ior of the direction a = p/c. The reason is that we may write

1þ t=cð Þ�p ¼ 1þ t=cð Þcð Þ�a ¼ 1þ t= p=að Þð Þp=a
� 	�a

: ð11Þ

Now we may use the well-known expression

1þ t=uð Þu → et ; u → ∞ð Þ ð12Þ

to understand the various limit behaviors in the {c, p} space.
2.3.1. Region I
[18] Any path along which we have

1þ tstop=c

1þ tstart=c


 �p

→ 1 ð13Þ

the MOL tends towards a uniform distribution in the obser-
vation interval:

~lc;p tð Þ → 1

tstop � tstart
c tstart;tstop½ � tð Þ; ð14Þ

where c[tstart,tstop] denotes the characteristic function of the
interval [tstart, tstop], 1 inside and 0 outside. This is precisely
the condition under which the probability density at the two
endpoints becomes equal. From the monotonicity of the law
over this interval, the limit is necessarily a uniform
distribution.
[19] A sufficient condition is that p → 0 while c is

behaving arbitrary. Another possible collection of path is
c → ∞ and p → ∞ but not faster growing than o(c) so that
a = p/c → 0. In Region I we have a zero-parameter family;
all members are the same.
2.3.2. Region II
[20] Any path c → ∞, p → ∞ in such a way that a = p/c

converges to some limit a∞ we obtain an exponential
distribution

~lc;p tð Þ → F1e
�a∞ t: ð15Þ

The normalization constant F1 makes this a pdf over
[tstart, tstop]. In this region we have a one-parameter family.
Note that Region I can be formally obtained as the limit
a∞ → 0 in which case the exponential distribution becomes
uniform.
2.3.3. Region III
[21] Along any path for which for all t > tstart we have

cþ tstart
cþ t


 �p

→ ∞; ð16Þ

the MOL distribution of time points tends towards a delta
function at tstart

~lc;p tð Þ→dtstart tð Þ: ð17Þ

This is equivalent to p → ∞ and a = p/c → ∞. Note again
that this is a formal end-member case of Region II.
2.3.4. Region IV
[22] Along any path c → 0 and p converging to some

limit, the distributions become a power law

~lc;p tð Þ→t�p: ð18Þ

This one-parameter family of distributions cannot be
obtained as a formal limit of Region II. However, Region II
contains Region IV as an end-member case as p → ∞.
[23] As a consequence, in Regions I, II and IV, the like-

lihood function will tend to a finite value ≠ 0. This limiting
value is the likelihood of the limit distribution. All models
close to the limiting point have the same positive credibility
and cannot be distinguished from the data alone. On the
other hand, in Region III, the likelihood of the limit function
is 0 and the likelihood function decays to 0.
[24] These asymptotic behavior are important to under-

stand the entire range of submodels encompassed in the
MOL. For example, the MOL can be used to fit arbitrarily
well an exponential decay rate (see Region II).

2.4. Bayesian Posterior Distribution of the Modified
Omori Law Parameters

[25] Suppose we have some prior beliefs about the para-
meters {L, c, p}. This is expressed by a prior distribution
P0 L; c; pð Þ of the parameters. We assume that our prior
belief may be factorized as

P0 L; c; pð Þ ¼ P0 Lð ÞP0 c; pð Þ ¼ P0 Lð ÞP0 cð ÞP0 pð Þ: ð19Þ

This means that our a prior beliefs about L and {c, p} are
independent. After making the observations {ti}i=1,…,n,
our knowledge about the parameters has changed. The pos-
terior distribution of parameter values is given by Bayes’
theorem as

P L; c; pð j tif gi¼1;…;nÞ ¼ F2
Lne�L

n!
P0 Lð Þ ∏

n

i¼1

D c; pð Þ
1þ ti=cð Þp P0 cð ÞP0 pð Þ

¼ P Lð jnÞP c; pð j tif gi¼1;…;nÞ: ð20Þ

The normalization constant F2 ensures that the integral over
dL dc dp is unity so that this corresponds to a probability
distribution in the parameter space. As expected, the poste-
rior factorizes into two independent contributions.
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2.4.1. Posterior Distribution of L
[26] Treating c and p as nuisance parameters and inte-

grating them out, we obtain the posterior distribution of L.
Thanks to the chosen parametrization, the posterior infor-
mation about L takes the following simple form:

P Lð jnÞ ¼
Z Z

P L; c; pð j tif gi¼1;…;nÞdcdp ¼ F3Lne�LP0 Lð Þ;
ð21Þ

where F3 is another normalization constant. From this
equation, we see that only the number n of observed after-
shocks influences the gain of knowledge about L. Then, n is
a sufficient statistics for L. No information about c or p
influences our knowledge about L. If nothing is known a
priori about L, we may use a flat prior P0 Lð Þ ¼ 1, or a scale
invariant Jeffreys prior P0 Lð Þ ¼ 1=L1=2. In this latter case,
the posterior is a Gamma distribution with parameter n:

P Lð jnÞ � Ln�1=2e�L

G nþ 1=2ð Þ : ð22Þ

Its mean value is n and its variance is n + 1/2 (Figure 1).
2.4.2. Posterior Distribution of {c, p}
[27] The posterior distribution of c and p poses slightly

more problems. From equation (20), we see that it can be
written as

P c; pð j tif gi¼1;…;nÞ ¼ F4 ∏
n

i¼1

D c; pð Þ
1þ ti=cð Þp P0 cð ÞP0 pð Þ: ð23Þ

The problem is that a flat, uninformative prior in c and p is
not possible because this would lead to a posterior which is
not normalizable. As we have shown in section 2.3, the
MOL tends to regular limit distributions as p and c get large
while a = p/c tends to some finite value. This implies, that

the likelihood function for a fixed set of observations tends
towards a constant, which is different from 0 along any
such path. In Region III, however, the limit distribution is
singular, which gives 0 credibility to the data and the like-
lihood function decays rapidly. For p→∞ and c→∞, such a
behavior impedes a posterior based on a flat prior for c and
p to be normalizable, which however is necessary to make it
a probability distribution. A similar problem arises in the
truncated Gutenberg-Richter distribution [Holschneider et al.,
2011]. The point is that, in the light of finite data, all models
close to one of the end-member cases look all the same.
They cannot be distinguished from the finite sample avail-
able. Taking a flat prior for c and p would give infinite
weight to essentially always the same model. We therefore
need to introduce some prior information upon which we
base our analysis. Obviously, the posterior will depend on
this prior information. However, over the last century of
reported data, we can determine bounds on p and c values
for which the dependency is rather mild. Furthermore, in the
limit of large n the influence of the prior information will
tend to zero.
[28] We suggest using an informative prior, which puts

some upper bound on c so that

P0 cð Þ ¼ 1

C
c 0;C½ � cð Þ; ð24Þ

where c[0,C] is the characteristic function of the interval
[0, C], i.e., 1 inside and 0 outside. In this case the posterior is
normalizable because the likelihood function decays as
p → ∞ (Region III) and we may use a flat prior for p.
However, in practical applications, we will also use some a
priori upper bound for p. Thus, we work in some a priori
uniform density in a rectangular parameter space {c, p}.
Finally, given our flat prior information on {c, p}, the
maximum of the posterior density distribution (i.e., the
maximum posterior point estimator) is located at the esti-
mates provided by the maximum likelihood method, at least
as long as it is inside the prior box and not on its border.

2.5. Asymptotic Posterior for Large n

[29] In Figure 2 we have plotted the posterior distribution
for two synthetic time series generated for a MOL with
parameters p = 1, c = 100 s, tstart = 100 s and tstop = 0.5 d.
The actual posterior information we can draw from the
samples is a random function itself since it depends on the
random realization of time points. Nevertheless, in the limit
of a large number n of events, the posterior distributions will
be close to a common limit function, as we shall see now.
[30] Moreover, Figure 2 shows that there is a strong pos-

terior dependency between the two parameters. Imposing one
of them, will influence the estimation of the second. This
posterior dependency can be understood in the large sample
limit, where the posterior covariance may be expressed in
terms of the Kullback-Leibler distance between the different
model distributions. Asymptotically the posterior distribu-
tion becomes Gaussian with the covariance function given by
the Fischer Information matrix, which is the Hessian of the
Kullback-Leibler distance function.
[31] Let us consider the limit, as the number of aftershocks

approaches infinity. Suppose, the true data generating model

Figure 1. Posterior density of L for different number of
aftershocks. This parameter represents the productivity of
an aftershock sequence and its estimation depends only on
the number of events.
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has parameters c′ and p′. We now consider the posterior
distribution P c; pð j tif gi¼1;…;nÞ. We have

1

n
log P p; cð j tif gi¼1;…;nÞ � log D c; pð Þð Þ � 1

n

Xn
i¼1

p log 1þ ti=cð Þ

þ 1

n
log P0 c; pð Þ

� 1

n

Xn
i¼1

log L p; cð j tif gi¼1;…;nÞ þ
1

n
log P0 c; pð Þ:

ð25Þ

Since the samples {ti} are drawn from a MOL distribution
~lc′ ;p′ with parameters {c′, p′}, the sum can be replaced by the
weighted mean and, in the average for large n, we obtain

� 1

n
logP p; cð j tif gi¼1;…;nÞ ≃� log D c; pð Þð Þ þ pD c′ ; p′ð Þ

�
Z tstop

tstart

log 1þ t=cð Þ
1þ t=c′ð Þp′ dt: ð26Þ

For fixed c′, p′ this function of c and p is up to a constant that
depends on c′, p′, asymptotically equal to the Kullback-
Leibler (KL) divergence between the pdf of time points ~lc;p

and ~lc′ ;p′

DKL
~lc′;p′ jj~l c;p

� � ¼ E~l c′; p′
log ~lc′;p′=~lc;p

� � ¼ �E~lc′; p′
log~lc;p � Ec′;p′ ;

ð27Þ

where Ec′;p′ ¼ E~lc′; p′ log
~lc′;p′

� �
is the entropy of ~lc′ ;p′ [Kullback

and Leibler, 1951; Bishop, 2006]. This quantity DKL is a

measure for how distinguishable the distribution ~lc;p is from the
distribution ~lc′;p′ when the sampling times are generated from the
latter (Figure 3a).
[32] In the limit of large n, we may express the posterior

distribution in terms of the KL distance as follows:

P p; cð j tif gi¼1;…;nÞ ≃ e�nDKL
~lc′; p′ jj~lc;pð Þ ≃ H c; pð Þn;

H c; pð Þ ¼ e�DKL
~lc′; p′ jj~lc;pð Þ: ð28Þ

From this, we can see how the number of aftershocks will
influence the width of the posterior, at least in the asymptotic
situation of large n. For example, Figure 3b shows the con-
tour lines that corresponds roughly to the width for 1, 10,
100 and 1000 aftershocks.
[33] Note that the curved shaped valley corresponds to the

straight lines a = p/c along which the distributions ~lc;p tend
to an exponential distribution so that the KL divergence
tends to some finite value.
2.5.1. The Fischer Information
[34] In the limit n→ ∞ the behavior of the posterior can be

fully analyzed. Asymptotically, the posterior distribution
becomes Gaussian with expectation {c′, p′} and a covariance
matrix which is given by the inverse Hessian of the DKL

at that point. More precisely we consider the following
rescaled, dimensionless quantities

t ¼ ffiffiffi
n

p c� c′

c′
; r ¼ ffiffiffi

n
p

p� p′ð Þ; tstart ¼ tstart
c′

; tstop ¼ tstop
c′

:

ð29Þ

This amounts to measure all times in units of c′, the charac-
teristic time scale of the data generating a MOL behavior. We

Figure 2. The posterior density of {c, p} using a logarithmic scale for c. (a, b) The sequences
corresponding to different realizations generated from 300 events drawn randomly from the MOL with
p = 1 and c = 0.02 d (the white dot in the image) for 10�4d < t < 1d. The white contour line delimits
the 95% isoline. In this figure, as in all the following figures showing posterior density distributions,
the color bar is linear between the minimum (blue) and the maximum (red) values.
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can express the KL distance in terms of c′, p′, t, r and n as
follows:

D
tstart ;tstop
KL c′ ; p′ jjc; pð Þ ¼ �log c′ð Þ � log ~D 1þ t=

ffiffiffi
n

p
; p′ þ r=

ffiffiffi
n

p� �� �
þ p′ þ r=

ffiffiffi
n

p� �
~D 1; p′ð Þ

�
Z tstop

tstart

log 1þ u= 1þ t=
ffiffiffi
n

pð Þð Þ
1þ uð Þp′ du ð30Þ

¼ �log c′ð Þ þ D
tstart;tstop
KL 1; p′ jj1þ t=

ffiffiffi
n

p
; p′ þ r=

ffiffiffi
n

p� �
; ð31Þ

where DKL
tstart, tstop(c′, p′||c, p) is the KL distance as in equation

(27) and ~D is D as in equations (3) and (4) with tstart = tstart
and tstop = tstop. Then, developing the KL around its mini-
mum at {c′, p′}, which is equivalent to expanding the above
expression around t � 0 and r � 0 to second order, yields

P t; rð j tif gi¼1;…;nÞ � G 0;Sð Þ; ð32Þ

where S is minus the inverse of the Hessian of the function
F : c; pð Þ↦DKL

~lc′¼1;p′



� 

~lc;pÞ evaluated at c = c′ = 1 and
p = p′ and G(0, S) is the pdf of a two dimensional Gaussian
with mean 0 and covariance matrix S:

S ¼ �H�1; H ¼ ∂2ttF ∂2trF
∂2rtF ∂2rrF

" #
: ð33Þ

Explicit computation shows that S has the following
structure:

S ¼ Stt Str
Srt Srr

� �
; ð34Þ

where Str = Srt and the functions depend only on the
rescaled quantities tstart, tstop and p. Thus, Stt measures the
posterior variance of t which is the relative posterior vari-
ance of c. From this it follows that the marginal posterior

distribution of c is a Gaussian with mean and variance given
by

E cð j tif gi¼1;…;nÞ ≃ c′ ; ð35Þ

V cð j tif gi¼1;…;nÞ ≃
c′ 2

n
Stt tstart=c′ ; tstop=c′ ; p

� �
: ð36Þ

The posterior of p instead looks

E pð j tif gi¼1;…;nÞ ≃ p′ ; ð37Þ

V pð j tif gi¼1;…;nÞ ≃
1

n
Srr tstart=c′ ; tstop=c′ ; p

� �
: ð38Þ

If instead of fixing n, we rather fix the productivity ~K , the
posterior uncertainties scale as follows in the limit of large
~K

V cð j tif gi¼1;…;nÞ ≃
c′2

~K
D c′ ; p′ð ÞStt tstart=c′ ; tstop=c′ ; p

� �
; ð39Þ

V pð j tif gi¼1;…;nÞ ≃
1
~K
D c′ ; p′ð ÞSrr tstart=c′ ; tstop=c′ ; p

� �
: ð40Þ

Figure 4 shows these posterior uncertainties for
p ∈ {0.6, 1.0, 1.4} using

n �
~K

D c′ ; p′ð Þ : ð41Þ

Not surprisingly, tstop has essentially no influence on the
posterior variance of c as soon as tstop > 100 c. Vice versa,
as soon as tstart < c, the posterior uncertainty of p depends
only on tstop. On the other hand, if tstop becomes small, no
estimate of p is possible. Note also, that even for
tstart = 10 c, reasonable estimates of c are possible, in

Figure 3. The Kullback-Leibler divergence for the MOL with p = 1 and c = 0.03 d (white spot): (a) DKL,
(b) e�DKL. The contour lines on Figure 3a correspond to the levels � log(0.1)/n for n = 1, 10, 100, 1000.
Thus, they indicate where the posterior has its 10% of maximum contour lines for n samples. On Figure 3b
contour lines are for 0.11/n.
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particular in data-rich situations with more than 103 events.
Indeed, in this situation, we expect a determination of c with
an accuracy of 30%. As a rule of thumb, for p ≃ 1, n > 100
(so that we are in the asymptotic regime), tstart ≤ c and
tstop ≥ 104c, we find a resolution

Dc

c
≃

10ffiffiffi
n

p ; Dp ≃
1ffiffiffi
n

p : ð42Þ

3. Bayesian Analysis of Aftershock Decay Rates

[35] In order to illustrate our Bayesian approach with real
data, we analyze seismicity rate immediately after 82 main
shocks with magnitude ranging from 3 to 5 using the cata-
logue of the Japan Meteorological Agency (JMA) and the
handpicked catalogue produced by Peng et al. [2007]. This
catalogue was obtained by high-pass-filtering and manual
detection in the envelope of clear double peaks
corresponding to P and S arrivals. Thus, by recovering the
smaller events hidden in overlapping seismograms and coda,

Figure 4. Standard deviations of the posterior uncertainties of the rescaled (left) c-value and (right)
p-value estimates as a function of the rescaled observation limits tstart = tstart/c′ and tstop = tstop/c′ (see
equations (39) and (40)). There is only a very weak dependency on the actual p-value, which ranges from
(top) 0.6, (middle) 1.0, and (bottom) 1.4. The influence of tstop on the relative resolution of c is negligible
and saturates quickly for tstop > 100c. Note that, even for tstart ≃ c, the resolution of c is about the same as
for tstart = 0. On the other hand, the influence of tstart on the resolution of the p-value is negligible as soon
as tstop > 103c. For c and p, there is a limit in resolution, which may only be changed through the number
of observations. Under optimal conditions (unlimited observation interval) the limiting relative resolution
for c is about 10 times smaller than the one for p. However, the resolution will increase with an increasing
number n of events in longer observation time interval, for p ≤ 1 actually without bounds.
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the handpicked catalogue documents 5 times as many
aftershocks in the first 200 s as in the JMA catalogues. Here,
using the combined catalogue produced by Peng et al.
[2007], we can compare and concatenate two independent
data sets covering two different time periods of the same
aftershock sequences (Figure 5a):
[36] 1. tstart = 20 s and tstop = 900 s for short times,
[37] 2. tstart = 900 s and tstop = 107 s for long times.

To select aftershocks with respect to their magnitude, we
convert the magnitude of the handpicked catalogue to the
JMA magnitude using the empirical relationships proposed
by Peng et al. [2007]. Following this work, we also set the
minimum magnitude threshold for aftershocks to Mmin

A = 1.5
to eliminate all potential artifacts related to catalogue
incompleteness over the time interval [tstart, tstop]. Finally, we
stack all aftershocks according to the main shock time to
compensate for the small number of events in each
sequence. Thus, we assume that the variations of c and
p-values from one sequence to another are small.
[38] For the catalogues over short (n = 64 aftershocks) and

long times (n = 474 aftershocks), Figure 5 shows the pos-
terior density of the {c, p}-values using our Bayesian anal-
ysis of the MOL. Not surprisingly given their time intervals
[tstart, tstop], the catalogue over long times (Figure 5c) is more
appropriate than the catalogue over short times (Figure 5b)
to estimate the p-value, and this is the inverse regarding the
estimation of the c-value. Nevertheless, it is impossible to
distinguish between both catalogues taking into account the
albeit rather large uncertainty on these parameter estimates
(Figure 5e). Only the concatenated catalogue allows to
reduce uncertainty and to isolate a more localized area in the
parameter space {c, p} of the MOL (Figure 5d). This zone
overlaps with the areas predicted by individual catalogue
and we cannot reject the hypothesis that the same MOL
works for all data sets. Hence, despite variable uncertainty,
all these catalogues can be used alone to correctly, if not
necessarily accurately, evaluate {c, p}-values.
[39] For the concatenated catalogue, Figure 6a shows the

marginal posterior distributions of p and c in linear scales.
Using these normal-like distributions, the median and the
highest posterior density intervals can be computed to
determine the most probable range of {c, p}-values. For a
Bayesian credibility interval of 95%, Figure 6b shows that
we have 0.89 < p < 0.94 and 8 s < c < 116 s. These results
support the hypothesis that there is a characteristic time
delay before the onset of a power-law aftershock decay rate
(i.e., c ≠ 0). Despite larger uncertainties given a smaller
number of events, the same conclusion may be reached
using larger MA

min and tstart-values. In the future, identifying
more aftershocks at earlier times, especially within 20 s of
the main shock occurrence time, could help to better con-
strain the c value.
[40] To assess the quality of fit, Figure 7 shows the

observed aftershock sequences and the best-fit provided by
the concatenated catalogue and the two independent catalo-
gues over short and long times. These direct comparisons
between the data and the models reveal also the influence
of the time interval [tstart, tstop] on the evaluation of the
{c, p}-values. As shown theoretically in section 2 and
numerically in Figure 5, the catalogue over long times is
less efficient to predict the early aftershock decay rate by
extrapolation (cyan curve in the inset of Figure 7a) because,

as tstart > 10 c, there is a large uncertainty on the estimation
of the c-value. Inversely, the catalogue over short times is
less efficient to predict the long term aftershock decay
rate (orange curve in the inset of Figure 7a) because, as
tstop < 10 c, it is impossible to get an accurate estimate of
the p-value.
[41] Most importantly, Figures 5, 6 and 7 show on real

aftershock sequence how the {c, p}-values are related to one
another. In fact, as we move from individual catalogues to
the concatenated one, we see how the gain of knowledge
acquired on one parameter benefits to the other.

4. Concluding Remarks

[42] The main objective of this paper is to introduce the
Bayesian estimation technique into the study of the after-
shock decay rate. In practice, we concentrate on the power-
law exponent and the characteristic time delay before the
onset of the power-law aftershock decay rate. We could have
chosen any aftershock production law that incorporates this
two ingredients over short and long times, respectively [e.g.,
Dieterich, 1994; Narteau et al., 2002]. For simplicity but
without loss of generality, we have chosen here the MOL.
[43] The main advantage of our Bayesian framework is to

provide (1) an estimation of the underlying parameters of the
posterior distribution together with (2) a quantification of the
uncertainty of our knowledge based only on the amount of
information contained in the data. This uncertainty repre-
sents an additional source of information that can be
exploited together with the variance of the maximum like-
lihood estimator, which is commonly used to determine the
error bars on the estimates of the MOL [Ogata, 1983]. The
latter one quantifies only the variability of the estimation
process, whereas our methods gives credibility regions in the
space of parameters. This is crucial, in particular for after-
shock sequences with a small number of events where both
methods widely differ.
[44] Another advantage of our statistical framework is to

dissociate the productivity parameter K from the shape
parameters {c, p}. Thus, we can determine in much greater
detail and with more accuracy the shape of the transition
toward the power-law regime over short times.
[45] We emphasize the critical role of tstart and tstop and

precisely show how these two parameters determine the
uncertainty in calculated results. We conclude that these two
time limits should be kept constant as much as it is possible
for the comparison of different aftershock sequences. Nev-
ertheless, dealing with the variability of aftershock data
completeness over short (overlapping seismograms) and
long (seismic noise) times, this is not always possible. Our
analytical and numerical solutions can then be used to
evaluate the parameters of the MOL taking into account the
overall resolution of these estimates with respect to the time
interval [tstart, tstop] of data completeness.
[46] Similarly, our Bayesian approach can also be imple-

mented with a reduced number of events in the limit of
n → 0. This is particularly important for the analysis of the
statistical properties of the largest aftershocks, which are
rare despite their higher level of detectability. In the limit of
n → 0, it is clear that the uncertainty on the parameter
values of individual sequence may be high. Nevertheless, it

HOLSCHNEIDER ET AL.: BAYESIAN ANALYSIS OF OMORI LAW B06317B06317

9 of 12



Figure 5. The posterior density of {c, p} using two independent time periods of the catalogue produced
by Peng et al. [2007, online supplementary material]. (a) Magnitude versus logarithm of times for M > 1
events. The open circles mark events picked by hand. The stars denote events listed in the JMA catalogue.
The gray circles mark those that are both picked by hands and listed in the JMA catalogue. A random
number between �0.05 and 0.05 is added to the magnitudes for plotting purposes. The horizontal dashed
line indicate the minimum magnitude threshold for aftershocks. The vertical dashed lines indicate the
tstart-values of the two independent time periods under investigation. The posterior density of {c, p}
for the catalogues over (b) short times (20s < t < 900s), (c) long times (900s < t < 107s) and for the
(d) concataneted catalogue. In each figure the marker and the line represent the most probable {c, p}-
values and the 95% isoline, respectively. (e) All markers and lines are reported for comparison. Note
the logarithmic scale for c.
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could be compensated by the large number of intermediate
magnitude main shocks.
[47] We have investigated the codependence of the

parameter c and p of the MOL, noting that, for each of them,
the precision of their estimates is subordinated to the amount

of information that constrains the other. A fundamental
consequence is that the estimation of one parameter should
not be isolated from the other. In other word, it is recom-
mended to simultaneously estimate the power-law regime at
long times (i.e., the p-value) and the time delay before the

Figure 6. Marginal posterior distributions of c and p. (a) The posterior density of {c, p} in linear scales
and the probability distribution function of the marginal posterior distributions of p (left) and c (top).
(b) The probability (bottom) and cumulative (top) distribution functions of the marginal posterior distribu-
tions of c (left) and p (right). The dark gray areas correspond to the 95% Bayesian credibility regions
delimited by the 0.025 and 0.975 quantiles, respectively. Thus, the Bayesian posterior credibility for
8s < c < 116s, regardless of the value of p is 95%. In the same way, the credibility for 0.89 < p < 0.94
regardless of c is again 95%. When considering information about p and c simultaneously, it is the white
contour line in Figure 6a that delimits 95% credibility in the {c, p} space.

Figure 7. The stacked aftershock sequence after 82 main shocks with magnitude ranging from 3 to 5 in
Japan using two independent time periods of the catalogue produced by Peng et al. [2007, online supple-
mentary material]. Red and blue dots are for M > 1.5 events in 20 s < t < 900 s and t > 900 s, respectively.
(a) The cumulative number of events with respect to the time from the main shocks. Lines are the best-fit
of the concatenated catalogue (green) and of the two independent catalogues over short (orange) and long
times (cyan). For the data and the two independent catalogues, the inset shows the difference with the best-
fit obtained from the concatenated catalogue. (b) The aftershock rate with respect to the time from the
main shocks. Lines are the best-fit of the concatenated catalogue (green) and of the two independent
catalogues over short (orange) and long times (cyan). For the data and the two independent catalogues,
the inset shows the relative difference with the best-fit obtained from the concatenated catalogue.
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onset of this stationary relaxation regime (i.e., the c-value).
In this case, our Bayesian approach is an efficient and
effective method to instantaneously capture such a posterior
dependences of the model parameters.
[48] From our analytical solutions and our tests on real

aftershock sequences, we have shown that, despite variable
uncertainties, we can analyze different time periods of an
aftershock sequence to efficiently estimate the parameters of
the MOL. Most importantly, this indicates that instrumental
catalogues may be used to correctly evaluate {c, p}-values.
The only condition is to select specific time periods and
magnitude ranges that ensure aftershock data completeness
and a reasonable resolution on the MOL parameters. In this
case, our Bayesian approach may be applied to declustered
instrumental catalogues to explore systematic variations of
{K, c, p}-values along active fault zones. We infer that it
may significantly contribute to the statistical characterization
of aftershock sequences.

[49] Acknowledgments. The paper was improved by the constructive
comments and thoughtful suggestions of I. Main and R. Shcherbakov.
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