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Abstract

Ž .This paper presents a development of the seismicity model S.O.F.T. scaling organization and fracture tectonics . We
remain in the frame of this simple model, which is based on an energy splitting combined with a renormalization group
approach. Redistribution of energy over the entire considered domain after strong events was introduced in the previous
model. The present version displays some general features of real seismicity, such as Gutenberg–Richter law, Omori law of

Žtemporal decrease of the aftershock activity, seismic cycle ‘quiet’ periods with a background seismic activity, periods of
.foreshock and aftershock activity . This is shown by numerical experiments in both the single domain case and in the case of

exchange of energy between several domains. q 1998 Elsevier Science B.V.

1. Introduction

We consider a hierarchy of scales in a fault zone
Ž .King, 1983 . The earthquake is a critical phe-
nomenon which takes place when fracturing be-
comes coherently self-organized at different scales
ŽAllegre et al., 1982, 1995; Ito and Matsuzaki, 1990;`

.Keilis-Borok, 1990 . The fault zone is modeled by a
domain which permanently receives some energy
from outside. This energy is then dissipated through
fracturing at different scales. Probabilities of fractur-
ing at different scales are determined using a kind of

Ž .renormalization group technique Wilson, 1979
Žwhich we named scaling technique Allegre et al.,`

. Ž .1982; Turcotte, 1992 . At the lowest most detailed
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scale, this probability is a function of the density of
Ž .energy per surface volume unit. Each rupture causes

a total loss of energy in the corresponding part of the
Ždomain Allegre et al., 1995; Kanamori and Ander-`
.son, 1975 . Later the ‘lost’ part of the domain is

gradually reloaded due to the redistribution of energy
Žthrough slow deformation creep: King, 1978; Kranz,

.1979 .
In the frame of the present model, the scenario of

occurrence of strong earthquakes in a domain is as
following. During a quiet period the energy coming
from outside increases little by little the probability
of fracturing. Only the smallest events occur. At
some moment the system starts the coherent fractur-
ing over lowest to medium scales. This is expressed
in foreshock activity. When the coherent self-organi-
zation achieves the highest scales, a strong earth-
quake occurs. As a result, a big part of the volume of
the domain looses its energy. This diminishes the
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Ž .size of the remaining sound effective volume. As a
consequence, the process cannot any more reach the
highest level scales, and only less strong earthquakes
can occur. Part of the released energy is passed to
the remaining effective volume in which the density
of energy and the fracturing probability increase.
This starts the aftershock activity. Simultaneously
the redistribution of energy by means of creep is
started. Although this process is slow, it is enough to
diminish step by step the density of energy. This
forces a gradual slowing-up of the aftershock se-
quence. Finally, the fall of the density of energy
passes some limit, the reloading process starts, and

Ž .the cycle repeats itself Blanter et al., 1997 .
The balance of energy in such a system can also

be so that all the received energy has the time to
dissipate at intermediate-level scales, giving raise
only to moderate magnitude earthquakes. But a small
additional energy can lead to the occurrence of a
strong earthquake. To model such a behavior we
consider later a multidomain case; in this more com-
plex model additional injections of energy, due to
exchanges between the domains, are added to the
constant rate of energy which is provided to the
considered domain from outside. The intensity of
those injections is not permanent in time.

ŽIn the previous paper on S.O.F.T. model Allegre`
.et al., 1995 , we started with similar energy consid-

erations. But we concentrated on the analysis of the
behavior of the system during a time interval includ-
ing a strong earthquake, rather than an entire cycle.
The weakness was in the aftershock sequences.

In the present paper we introduce a redistribution
of energy over the entire domain by a creep mecha-
nism. This allows us to obtain more realistic after-
shock sequences, with a temporal decrease of their

Ž .intensity Omori law , and also to reproduce the
entire seismic cycle. We also study here more care-
fully the Gutenberg–Richter law at different stages
of the seismic process.

2. Model of fault zone

Ž .As in Allegre et al. 1995 , we model a fault zone`
by a set of domains which represent neighboring

Ž .segments of this zone Fig. 1 . This system continu-
ously receives energy from its tectonic environment.

Each domain has its own behavior, but in addition,
all the domains interact with each other through an

Žexchange of energy in various forms seismic, elas-
.tic, tectonics . We will first develop the theory for

one domain, then indicate how to extend the model
to the case of interacting domains.

2.1. Theoretical formalism

This formalism resumes the general theoretical
basis which was described in the previous paper
Ž .Allegre et al., 1995 . We shall not describe it in`
detail, but focus on the changes brought to the
model. For the analysis of the state of the chosen
domain we consider successive time moments t,tq
1,tq2 . . . Our model is deliberately intrinsically

Ž .discrete, and the time unit is unreducible. Let E t
be the total energy the domain possesses at the time

Ž .moment t, D E t the amount of energy which the
Ž .domain receives during the time interval t,tq1

Žfrom outside from plate tectonics and energy ex-
. Ž .change with other domains , and R t the energy

Žlost by the domain in earthquakes fracturing, redis-
tribution of strain, seismic waves and heat generation

.by non-elastic motions :

E tq1 sE t qD E t yR t 1Ž . Ž . Ž . Ž . Ž .
Ž .We shall call the component D E t the loading
Ž .component of the energy rate, and R t the dissipa-

tion component. The analysis of the balance, or
competition, between loading and dissipation is a
basic feature of this paper.

We consider a two-dimensional model. During
the continuous process of loading and dissipation of
energy, the different parts of the domain become
obviously characterized by different densities of elas-
tic energy. We model such an heterogeneity by the
following simple assumption: at moment t all the
energy of the domain is homogeneously distributed

Ž .over only a part S t of the total surface S of the0

domain. Thus we assume that the remaining part,
Ž .S yS t , has completely lost its elastic energy. If0

Ž . Ž .the density of energy per surface unit E t rS t
exceeds some threshold ´ , then this energy excess
can result in generating new cracks and developing
ancient cracks by growth.

We use the same scaling technique as in Allegre`
Ž . Ž .et al. 1982, 1995 and Allegre and Le Mouel 1994 .` ¨
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Ž . Ž .Fig. 1. Illustration of a model of fault zone. Four domain separated by a solid line receive an elastic energy De from the stress applied to
their boundary by plates tectonics. The fault zone is supposed to be composed of a brittle layer above a plastic one. Fat lines represent the
major faults, dotted lines represent the minor faults, and dashed lines represent the exchange of energy between two domains. Around each
segment, we define a three-dimensional domain with specific geometries, extending to a prescribed depth. The three-dimensional domains
are those where the fracture occur.

We divide the considered domain into a hierarchy of
Ž .embedded grids of 3=3 cells. L is the maximum

number of levels of this hierarchy. At the lowest
Ž .scale level 1 we have N elementary cells. The
Ž .probability p t of fracturing for each elementary1

cell depends on the excess of the energy density:

n t E tŽ . Ž .1
p t s s1yexp ya y´ 2Ž . Ž .1 ž /ž /N t S TŽ . Ž .
Ž .n t being the number of elementary cells where a1

Ž .crack is created during the time interval t,tq1 , a

a coefficient. This formula is a natural generalization
of the linear one we used in the previous paper.

Ž .At the next scale level 2 we consider Nr9 cells
Ž .comprising 3=3 elementary cells. At level 3 we

2 Ž .have Nr9 cells comprising 3=3 cells of level 2
etc. From the level k to the level kq1 the fractur-
ing is transmitted according to the following rule: if
at least three cells of level k aligned along the fault
zone major axis are cracked, then the corresponding

Ž .cell of level kq1 is also cracked Fig. 2 . We do

not introduce any time delay for transmitting frac-
Žturation from level k to level kq1 but the whole

process of going through all the scales is made
.during the chosen unit of time . Thus, as in Allegre`

Ž .and Le Mouel 1994 , the probability of fracturing at¨
Ž .level k during the time interval t,tq1 is defined

recursively as:

p t sP p t 3Ž . Ž . Ž .k ky1

with:
6 53 4P x s3 x 1yx q18 x 1yxŽ . Ž . Ž .

4 35 6q45x 1yx q57x 1yxŽ . Ž .
27 8 9q36 x 1yx q9 x 1yx qxŽ . Ž .

We consider the fracturation of one cell at level k
Ž .during the time interval t,tq1 as an earthquake

Žoccurring at time t or micro-earthquake for lower
.levels . The magnitude of this earthquake is naturally

proportional to the level k. We shall discuss this in
more detail later. The fracturing at the highest level
L is the strongest possible earthquake in the consid-
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Fig. 2. This cartoon illustrates the scaling technique derived from
the renormalization group theory used by Allegre and Le Mouel` ¨
Ž . Ž . Ž .1994 . The domain A is divided into subdomains B , the
subdomains are divided into smaller ones . . . until the elementary
domain scale is reached. We used a grid of 3=3 domains.
Ž .Allegre et al., 1995 .`

Ž .ered domain Aki, 1984 ; this highest level can be
Ž .reached only if the current effective surface S t of

the domain is close to the total surface S . In a0
Ž .general way we suppose that only the part S t rS0

of all cells can generate quakes; more precisely, the
Ž .number of earthquakes micro-earthquakes of level

Ž .k which occur during the time interval t,tq1 is
defined as:

S tŽ .
K t s p t N qd 4Ž . Ž . Ž .k k k S0

where N sNr9 ky1 is the total number of cells ofk
wx Ž .level k; means integer part; d is constant d-1.0 .

Ž .Eq. 4 controls the maximum level which the sys-
tem can reach at time t. This replaces a little bit
more artificial approach in the previous paper.

We assume as earlier that the energy r releasedk

in one earthquake at level k is proportional to the
linear size of the corresponding cell at the 3rd power,

3k Ž .r sl3 l being a scaling parameter . Combiningk
Ž .with Eq. 4 , we obtain the dissipation component of

the energy:

L
3kR t sl K t 3 5Ž . Ž . Ž .Ý k

ks1

As in S.O.F.T. 1, we assume that, after earth-
quakes have occurred, the corresponding subdomains
have completely lost their energy. The part of this
energy which has not been lost in elastic waves, or
heat, has gone to the remaining part of the domain.
This process is assumed to need some time to be
completed. The size of the effective surface is re-

Ž .duced by a certain amount DS t :1

t R tŽ .
DS t sm 6Ž . Ž .Ý1

s1tstys q11

where m is scaling parameter, and s defines the1

delay, s G1.1

As the most significant change of the model in
comparison with the previous one, we introduce here
a slow redistribution of energy in the entire domain.

Ž .After Blanter and Shnirman 1996 , we suppose the
creep being the mechanism of this redistribution.

Energy comes continuously to the domain from
outside, and part of it goes to the destroyed subdo-
mains. In addition, through comparatively very slow

Ž .movements creep , strains are redistributed so that
parts of the destroyed subdomains are reloaded faster
than simply due to the external energy injection. This
results in the apparent regeneration of the effective

Ž .surface with the rate DS t . In reality this means2

only that the distorted subdomains take away some
energy from the subdomains in which the concentra-
tion of energy is high.

The apparent effective surface regeneration rate
Ž . Ž .DS t should depend on the relative size of S t .2

We take:

S yS tŽ .0
DS t s 7Ž . Ž .2

s2

where we suppose s 4s .2 1
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Fig. 3. Probability of fracturing at different levels of the hierarchy.
Ž .This probability is defined by Eq. 3 . All curves intersect at the

Ž . Ž .critical value p s0.6823 : p x G p x , if xG0.6823.1 kq1 k

Ž .Finally the evolution of the effective surface S t
results from a competition between reduction and
increase:

S tq1 sS t yDS t qDS t 8Ž . Ž . Ž . Ž . Ž .1 2

Ž .Remark: Redistribution of energy through the creep
consumes some energy. For simplicity we assume

Žthat this energy rate is constant i.e., that its varia-
tions are negligibly small in comparison with both

Ž . Žloading and dissipation components in Eq. 1 which
implies that the constant part of the creep energy is

.subtracted from the loading component D E .

Now we can qualitatively describe how the model
generates self-organized critical phenomena similar
to the tectonic earthquakes. We can summarize its
behaviour in the following way.

The domain permanently receives energy from
outside. This energy input increases the energy den-

Ž .sity per surface unit at elementary level 1 for cells
which form the ‘effective surface’. This increases the
probability of fracturing at this level, and conse-
quently the number of micro-earthquakes of level 1.

Ž .When the probability p t is lower than the critical1
Ž . Ž .value see Fig. 3 the probabilities p t are close tok

0 for the upper levels of our scale hierarchy ks2,
Ž .3, . . . , L. When p t comes close to the critical1

probability, coherent fracturing reaches upper levels,
Ž .and foreshock activity starts. Finally p t passes the1
Žcritical value, and a strong earthquake of the highest

.level L occurs. A big part of the energy which the
system had accumulated before is lost due to the
strong earthquake; but the effective surface also falls
down, although more slowly due to the time constant
s , and the energy density in the remaining part of1

the domain can increase again, resulting in an in-
Ž .crease of p t . This generates the sequence of after-1

shocks. Their number per time unit is high at the
beginning. But, due to the redistribution of the en-
ergy through creep, the density of energy per surface
unit rapidly falls down, and the aftershock activity
decreases. At the end of the cycle the long process of
reloading starts and it continues until the new pertur-
bation.

The behavior of the system varies despondently
on the values of the parameters. We shall see differ-
ent examples in the numerical experiments later on.

Fig. 4. Theoretical magnitude–frequency graphs for one elemen-
tary time interval and different values of p . Hierarchy level k is1

Ž .used as earthquake magnitude according to Eq. 13 . Graphs are
Ž . Ž .constructed using Eq. 4 with S t sS , Ls15, d s0.1.0



(
)

C
.J.A

llegre
et

al.r
P

hysics
of

the
E

arth
and

P
lanetary

Interiors
106

1998
139

–
153

`
144

Ž . Ž .Fig. 5. Typical experiment in the single domain case; a on a short time span b on a long time span. Time variation of R, p , E, and S are shown. In this typical experiment1

the following parameters of the model are used: E s2.5=106; D E s2.5=103; a s6.0=10y7; ´ s1.5=106; d s0.1; lNs0.1; ms3.4=10y7; s s3; s s1000;0 0 1 2

Ls15.
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Fig. 6. Time variation of the number of events per unit of time, at
different levels of hierarchy, for the typical experiment. Values of
the parameters are as for Fig. 5.

We shall consider first the simple case of the single
Ž .domain with a constant value D E t sD E of the0

rate of loading. In the multidomain case we will
simplify the approach proposed in Allegre et al.`
Ž . Ž .1995 . Only one domain is considered, but D E t
contains a time varying component formed by the
sum of energy supplies coming from its neighboring
domains:

D E t sD E q m R t 9Ž . Ž . Ž .Ý0 i i
i

Ž .Index i marks the different domains, R t is thei
Ž Ž ..dissipation energy Eq. 5 of domain R . In numer-i

ical experiments we can iteratively use different
Ž .realizations of R t obtained in previous singlei

domain and multidomain cases.

2.2. Gutenberg–Richter law

In real seismicity the distribution of earthquake
magnitudes follows the Gutenberg–Richter law
Ž .Kanamori and Anderson, 1975 :

log N sybMqconst, 10Ž . Ž .
where N is the number of earthquakes with magni-

Ž .tude M during some rather long time interval and
b the slope of the magnitude–frequency graph. The
parameter b varies in the range of 0.6–1.4 according

Žto the different seismic zones Gutenberg and Richter,
.1954; Utsu, 1965; Hattori, 1974 . The b value can

also vary in time; in addition, the magnitude–
frequency graph can have a downward bend at large
magnitude values, and this bend can also vary in
time. Those effects are interesting when analysing
the different stages of the seismic process and its

Ž .predictability Narkunskaya and Shnirman, 1990 .
To construct magnitude–frequency graphs we

have first to define the earthquake magnitude in our
model. We mentioned above that the magnitude
should be a linear function of the level of the hierar-
chy of scales k. Magnitude is indeed characteristic of

Fig. 7. Magnitude–frequency graphs for different stages of the
seismic process. We take the hierarchy level k as the magnitude

Ž . Ž .according to Eq. 13 . The typical experiment Fig. 5 parameters
values are used. The b value for all curves is calculated by the
least squares method on the interval 9F kF13. The slope for

Ž .foreshocks ts360–368, see Fig. 5a is significantly higher than
the slope for aftershocks, the reloading period, and the total
considered time interval.



( )C.J. Allegre et al.rPhysics of the Earth and Planetary Interiors 106 1998 139–153`146

Ž . Ž .Fig. 8. Self-similarity of aftershock sequences. a Typical experiment of the model; b aftershocks MG4 of the earthquake 26r5r1983 in
Ž . Ž .Japan, Ms7.7; c aftershocks MG4 of the Southern Kurils earthquake 4r10r1994, Ms8.1; d aftershocks MG2 of the Landers

earthquake 28r6r1992, Ms6.7 in California. We consider histograms of the number of aftershocks in the fixed length boxes as function
Ž .of time after the main shock. Three different time scales changing like 1, 2, 4 are shown for each example. The picture for the typical

experiment of our model is very similar to those for real aftershock series. Self-similarity of the real aftershock sequences is due to the
Omori law.

the size of the earthquake; the relationship between
the magnitude and the focal surface S is well known
Ž .Utsu, 1961 :

MsC log S qconst 11Ž . Ž .

The coefficient C varies from 0.6 to 1.4 accord-
Žing to the different authors Okal and Romanowicz,

.1994 ; the most commonly used value is Cs1.
In our model we can consider the focal surface to

be proportional to the size of the cell of each level k
of hierarchy. Thus:

S0 ky1MsC log 9 qconstsC log 9k qconstŽ .ž /N
12Ž .

1
Taking Cs s1.05, we have:

log 9Ž .
Mskqconst 13Ž .
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This allows us to use k directly for the earthquake
magnitude.

Now we can theoretically construct the magni-
tude–frequency graphs corresponding to different

Ž .values of the elementary probability p t by taking1
Ž . Ž .the logarithm of Eq. 4 and using Eq. 13 . Results

are shown on Fig. 4. We consider one elementary
Ž .time interval and take S t sS , Ls15, ds0.1. If0

Ž . Ž Ž .p t G 0.6823 the critical value: P 0.6823 s1
.0.6823 , the magnitude–frequency graph is practi-

cally linear with the slope bs log 9s0.95. For
lower values of p . Examples of magnitude–1

frequency graphs for longer time intervals will be
given later in the numerical experiments.

2.3. Numerical experiments

As in the previous paper, we will examine both
single domain and multiple domain cases. In the case
of a single domain we will present one example
which gives results similar to real seismicity data
Ž .Scholtz, 1990 , then consider the influence on these
results of varying the parameters of the model. After-
wards, considering two multidomain examples, we
will examine the interaction of neighboring domains
and demonstrate the possibility of earthquake trigger-
ing.

2.3.1. Single domain case
The modifications of the S.O.F.T. model de-

scribed above allow us to obtain more realistic after-
shock sequences and also to obtain a repetition of

Ž .strong earthquakes seismic cycle . This is demon-
strated by a typical numerical experiment for the

Ž .single domain case Figs. 5–8 in which we used the
following values of the parameters: E s2.5=106;0

D E s2.5=103; as6.0=10y7; ´s1.5=106;0

ds0.1; lNs0.1; ms3.4=10y7; s s3; s s1 2

1000; and Ls15. On Fig. 9 we present in addition
the most interesting examples obtained by varying
the parameters.

Ž . ŽRepetition of strong earthquakes Fig. 5 Scholtz,
.1982 is due to the balance between the energy

Ž .coming from outside integral of D E and the energy
Ž .dissipated through earthquakes integral of R . In

Žour typical experiment, the first and strongest highest
.hierarchy level L earthquake occurs at the end of

the first loading interval. Afterwards the system is
periodically reloaded and produces periodically

Ž .strong events of level Ly1 ; the surface S which
can generate earthquakes does not reach again the
value which is necessary for earthquakes of the

Ž .maximum level of hierarchy L to occur.
The system is strongly self-organized, and its

behavior remains the same in a wide diapason of
parameters. For example, the balance of coming and
dissipated energy remains if the value of D E is0

Ž .decreased by a factor of two Fig. 9b . In this new
example the slow rate of coming energy allows the
system to completely retrieve its initial state, and we
observe a repetition of the strongest possible earth-
quakes.

In the typical experiment strong earthquakes are
followed by sequences of aftershocks of all magni-

Ž .tudes Fig. 6 . The decrease in time of the number of
Ž .aftershocks is self-similar Fig. 8 , as in the case of
Ž .real aftershock sequences Omori law: Utsu, 1965 .

Foreshocks are less strong than aftershocks: in the
typical experiment their maximum magnitude corre-
sponds only to the third level of hierarchy from the

Ž . Ž .top ks13 Fig. 6 . The slope of the magnitude–
frequency graph corresponding to the foreshocks se-
quence is significantly higher than it is for reloading

Ž .and aftershock phases Fig. 7 .
We have then, as announced supra, studied how

varying the parameters affects the behavior of the
model. The most interesting examples are shown on
Fig. 9. A change of the initial energy E can only0

Žshift the time scale of course, if it does not immedi-
.ately provide the critical value of p . As in the1

Ž .previous paper S.O.F.T.1 , the most important pa-
Žrameters are D E and a parameter a replaces0

.parameter k in the previous paper .
Very small values of D E give an a-seismic0

Ž .behaviour Fig. 9a . But the level of total energy in
Ž .this example is high enough compare with Fig. 5a

Fig. 9. Results of varying of the model parameters in comparison with the typical result. The values of parameters are the same as on Fig. 5
Ž . 2 Ž . 3 Ž . 3 Ž . y6 Ž . y6 Ž . Ž .except: a D E s0.7=10 ; b D E s1.25=10 ; c D E s2.85=10 ; d as0.3=10 ; e as0.9=10 ; f s s15; g0 0 0 1

s s300.2
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Fig. 10. The periodicity of strong earthquakes as a function of the
parameter D E . All other parameters are as for Fig. 5. The limit0

for low values corresponds to the non-stable balance with high
accumulated energy. The limit for high values corresponds to the
stable balance with accumulated energy and permanent dissipation
of energy by small events.

to produce the strongest earthquake and a small
Ž .injection of additional energy can generate trigger

this big event. We will show that later when consid-
ering multidomain examples. The opposite situation

Ž .corresponds to high values of D E Fig. 9c : the0

strong earthquake largely destroys the domain; after
this event only a very small part of the initial surface
remains effective; this part generates permanently
small events. Intermediate values of D E provide a0

repetition of strong earthquakes as on Figs. 5 and 9b.
ŽFig. 10 shows how the period of this repetition the

. Žseismic cycle depends on the value of D E all the0
.other parameters being fixed .

Parameter a influences too the period of strong
events repetition. Small values correspond to a slower
energy dissipation rate and, accordingly, to larger
values of this repetition period. Large values of a

can produce a picture which seems to represent a
Ždiscrete case Fig. 9e: each event seems to be iso-

.lated from each other . In reality this is no more than
the standard case but with a very short period of the
seismic cycle. The decrease in time of the amplitude
of R at the beginning is only a transitional period
due to the chosen initial conditions.

Influence of parameter ´ is similar but opposite
to that of parameter a ; small values of ´ correspond
to short periods of the seismic cycle. The parameter
m also provides longer seismic cycle periods when it
is given larger values and produces the pseudo-dis-
crete picture when it is given small values. The value
of d practically does not change the results if it
varies in the range 0.05–0.5.

Parameter l changes the energy scale, and has to
be considered simultaneously with parameters D E ,0

´ and a . The maximum hierarchy level L has be
taken equal to 15 and no other value has been
considered.

Larger values of the time delay s , characteristic1

of the effective surface decrease after an event, can
generate a seismic swarm as on Fig. 9f; the after-
shocks sequence is replaced by a sequence of strong
events of similar magnitude. s influences the length2

of the aftershocks sequence and the period of the
seismic cycle. One example is shown on Fig. 9g.

Fig. 11. Example of triggering a strong earthquake by a small
energy injection. The graph at the top shows a fragment of the
graph of R from Fig. 9a. Next graph shows the energy injection.
The bottom graph represents values of R when the small energy
injection has been added. The value of the injected energy is two
orders of magnitude lower than the value of R generated by the
top hierarchy level events.
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2.3.2. Multidomain case
We present here two simple examples of interac-

tion of several domains. The first example represents
the possibility of triggering strong earthquakes. The
second shows that even a small variability in time of
the energy feeding the considered domain can signif-

Ž .icantly influence its seismicity Keilis-Borok, 1994 .
We assume that this variability is produced by an

Žinteraction with a neighboring domain part of the
energy R dissipated in this second domain goes to

.the domain under consideration .

2.3.2.1. Earthquake triggering. We consider here the
Ž .case of a very small rate of energy D E Fig. 9a and0

inject into the domain an extra-amount of energy
Ž . 3Fig. 11 ; the value of this amount is 5=10 , that is
approximately 1r200 of the energy of the strongest
event. This injection acts as a triggering for generat-

Ž .Fig. 12. Interaction of two domains. a rupture energy R for a
domain with the same model parameters as for Fig. 5, except:

6 6 Ž . Ž .E s1.5=10 and ´ s1.2=10 ; b rupture energy 1r20 in0
Ž . Ž .the typical experiment parameters as on Fig. 5 ; c resulting

rupture energy and p in the first domain.1

ing an event of the highest level L. It is interesting to
observe that this event occurs with some delay after
the injection and is preceded by foreshocks. The
energy of the event is two orders of magnitude
higher than the value of the injected extra-amount of
energy.

2.3.2.2. Interaction of neighboring domains. Let us
Ž .consider two domains Fig. 12 . In the first domain

the parameters of the model are the same as in the
typical experiment except for E s1.5=106 and0

´s1.2=106. The graph representing the rupture
Ž .energy R for this case without interaction is shown

on Fig. 12a. The second domain is exactly as in the
typical experiment. We assume that 1r20 of the
rupture energy R of the second domain is transmitted

Ž .to the first one. The average of this energy Fig. 12b
per time unit is to 0.17=103. In order not to change
the total energy which comes into the first domain,

Žwe subtract from D E corresponding to the first0
.domain this average value, but at every moment we

add the instantaneous energy coming from the sec-
Ž .ond domain. The result graphs of R and p is1

shown on Fig. 12c. The interval between strong
events is no longer constant.

More complicated combinations of domains with
different parameters will lead to more complicated
results. We think that practically any sequence of
events can be modeled in such a way.

3. Discussion and conclusions

In the present paper we have obtained a signifi-
cant improvement of the previous S.O.F.T. model.
First, we succeeded in obtaining the decrease in time
of the number of aftershocks and of their energy,
similarly to what is observed in the case of the real

Ž .earthquakes Omori law . Secondly, due to the intro-
duction of energy redistribution by creep, we have
obtained the repetition of the seismic cycle, with
periods of low level of seismic activity, periods of

Ž .activation foreshocks , followed by a strong main
shock and aftershocks.

We model creep by an apparent reconstruction of
the surface of the domain at a rate proportional to the

Ž Ž ..size of the broken area Eq. 7 . This can be ex-
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plained as well in terms of heterogeneity of the
energy distribution in the domain. We model this
heterogeneity by two homogenous parts of the do-
main: a broken part, in which the potential energy is
zero, and a non broken part, in which the density of
potential energy is constant. This is a kind of de-

Ž .scription of asperity or barrier type Aki, 1984 . In
such words, the redistribution of energy is equivalent
to an increase of the size of the unbroken part.

The apparent surface reconstruction we spoke
above has nothing to do with the process of consoli-
dation of the broken material. We guess that consoli-
dation process is incomparatively slower.

3.1. How does the model work?

Ž .Periods of low seismic activity seismic noise
correspond to the relatively long periods of loading
Ž .or reloading of the system, when the energy comes
from outside much faster than it is dissipated by
small events. During these periods the density of
energy is below the critical value.

As the energy density approaches the critical
value, the seismic activity increases. In our model
foreshocks start earlier at lower levels of scaling
Ž .lower magnitude of events ; they may be absent at
higher levels. During the foreshock period the energy
continues to accumulate, because the foreshocks en-
ergy is weak.

Finally, a significant part of the accumulated en-
ergy is released in the strong earthquake which
breaks part of the domain. The remaining potential

Ženergy is passed to the unbroken part possibly with
.some small delay . At the beginning the relative

losses in area of the sound domain are higher than
the relative losses of energy. This gives a further
increase of the energy density, and aftershocks start.
The number per unit time and energy of the quakes
are now limited by the size of the unbroken part of
the domain. The energy released by aftershocks is
enough for the total density energy of the system
continue to drop down. The ‘working’ surface at
some point stabilizes—when losses of the sound
surface become equal to the apparent recovering of
surface by creep. Those two processes together lead
to a decreasing of the energy density. At some
moment this density drops below the critical value,
and the aftershock sequence transforms into seismic

Žnoise we have to note that in the present model the
beginning of the aftershock sequence is accompanied

.by an increase of the energy concentration .
Thus, the frame of this model, characterized by a

reasonably small number of parameters, has provided
in numerical experiments a behavior presenting some
gross properties of real seismicity: Gutenberg–
Richter law, Omori law, seismic cycle.

Let us emphasize again a main characteristic of
the model—tectonic energy enters it at the smallest
scale and cascades up to larger scale levels. This is
compatible with the asperities mechanism as defined

Ž .by Aki 1984 —asperities represent smaller scale
heterogeneities than the whole fault plane, and the
process creating asperities involves foreshocks and
precursing creep; the fault plane becomes heteroge-
neous before the rupture and the main shock is a
stress smoothing process over the fault plane. But, as
pointed out by one of the referees, the barrier mecha-
nism rather calls for a cascading down of energy.

Ž .Barriers, as defined by the same paper of Aki 1984 ,
represent small scale heterogeneities created by the
main shock rupture. Non-uniform slip over the fault
plane creates stress concentration over it, causing
aftershocks along the mainshock rupture plane. The
main rupture is in this case a stress roughening
process, and smaller events are created by larger
events. Tectonic energy enters the system from the
largest scale, through plate motion, and is cascaded
down to smaller scales.

Both cascading up and down may be simultane-
ously working in the actual fault zone, but, according
to the referee, observations support the evidence of
cascading down. For example, he says, foreshocks
are subtle and rare phenomena, while aftershocks are
ubiquitous and robust. But this one observation does
not, in our opinion, contradict the inferences of the
present model: foreshocks are often present only at
the smallest scales and then have very small energy,
whereas aftershocks are ubiquitous and much more

Ž .energetic Section 2.3.1 even without introducing
cascading down. Nevertheless cascading down is
certainly to be introduced into the model, without
giving up its main ingredient, i.e. large scale self-
organization from small scale events. This will be
one of our next steps. Together with the introducing
of other physical concepts, like nucleation and
growth, and heterogeneities, it will allow us, we
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hope, to closer approach the rupture dynamics and to
account for more observations on earthquakes than
the Gutemberg–Richter and Omori law.
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