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ABSTRACT: Geomorphic investigations may benefit from computer modelling approaches that rely entirely on self-organization prin-
ciples. In the vast majority of numericalmodels, instead, points in space are characterized by a variety of physical variables (e.g. sediment
transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a
satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to
concentrate on interaction patterns using a basic cellular automaton modelling framework. Here we present the Real-Space Cellular
Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite,
released under a GNU licence, is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems.
The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary
cell is a real-space representation of the physical environment and pairs of nearest-neighbour cells are called doublets. Each individual
physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can
simulate and combine a wide range of physical processes. We then describe different ingredients of ReSCAL leading to applications
in geomorphology: dunemorphodynamics and landscape evolution.We also discuss howReSCAL can be applied and developed across
many disciplines in natural and human sciences. Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

A number of challenges remain to be addressed in the growing
field of computational geomorphology (Coulthard, 2001;
Willgoose, 2005). Most of them are related to the origin of the
available theoretical formalisms and their accuracy to be
exploited and combined for predictability purposes (Dietrich
et al., 2003). Although the traditional top-down strategy may
lead to some success (Tucker and Hancock, 2010), there is
definitely room for alternative methods based on finite state
systems, small-scale interactions and stochastic processes
(Turcotte, 2007; Werner and Gillespie, 1993). This is particu-
larly true if these approaches can be implemented in a very
efficient way, and if a large diversity of new patterns can arise
spontaneously.
Elementary structures with primitive individual behaviours

can produce sophisticated collective patterns when they inter-
act with each other within systems. Now recognized as com-
plex systems in many branches of knowledge (Axelrod, 1997;
Bonabeau, 2002; Epstein and Axtell, 1997; Innes and Booher,
1999; Jensen, 1998: Werner, 1999), the interdisciplinary field
of complexity science offers a general framework for the analy-
sis of their underlying mechanisms of emergence (Goldenfeld
and Kadanoff, 1999). In practice, the challenge is to relate
micro and macro levels of description, not with direct cause/
effect relationships, but in a manner that involves patterns of in-
teractions between the constituent parts of the system over
time. With this purpose in mind, the cellular automaton ap-
proach provides generic numerical methods for the simulation
of complex systems (Toffoli, 1984; Wolfram, 1986).

Among the class of reduced complexity models, cellular
automata (CA) are systems that iteratively evolve on a grid
according to local interaction rules. As reviewed by Chopard
and Droz (1998), CA models have been used with success to
study different phenomena in both natural (e.g. biology, ecol-
ogy, chemistry, physics) and human sciences (e.g. history, soci-
ology, anthropology, and economics). Following the precursory
work of Von Neumann (1966), a conventional cellular automa-
ton consists of a lattice of individual elements, each of which
can be assigned a scalar property. This scalar property may
change as the result of external forcing affecting all of the ele-
ments and internal interactions between elements. External
forcing is often assumed to occur at a constant rate, and the
internal interactions are usually simplified to include only
next-neighbour interactions. The CA generator presented here
retains the simplicity of such conventional cellular automata,
while also proposing a modular approach for the modelling
of diverse combinations of physical processes.

The most important feature of CA models is that they are
constructed from a set of discrete structures starting from an
elementary length scale which integrates all the diversity of
the smaller-scale properties. In this case, a major disadvantage
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is that the local interaction rules cannot be defined indepen-
dently from an exact determination of the value of this elemen-
tary length scale. Hence the parametrization of CA models
cannot be derived from first principles only, but needs to be
determined a posteriori from the output of the numerical
simulations. Nevertheless, this apparent weakness related to
the discontinuous nature of the CA model is also the main
strength of this discrete approach. Indeed, the dynamics are
governed by small-scale interactions, which are known to
produce collective behaviours as a result of both negative
(damping) and positive (amplifying) feedbacks. Basically, the
interactions between the constituent parts of the systems are as-
sociated with exchanges of information and communication
that may in turn favour the emergence of a new level of organi-
zation. In this case, the feedback mechanisms are just the
means by which action is organized and expressed with respect
to the internal sources of information.
For all these reasons, CA models can be described as a

complementary approach for the modelling of natural systems
with an infinite number of degrees of freedom and/or for which
the role of discontinuities and heterogeneities cannot be
neglected (e.g. Bak et al., 1988; Blanter et al., 1999; Nagel
and Schreckenberg, 1992; Narteau, 2007a, 2007b; Narteau
et al., 2000a, 2000b, 2003; Olami et al., 1992). Simulta-
neously, these discrete models offer the opportunity to explore
new mathematical objects which cannot be studied analyti-
cally or from the behaviours of individual structures alone.
Then, keeping in mind that the ultimate objective is to forecast
the occurrence of large-scale phenomena, alternative methods
may be developed from direct comparisons between observa-
tions and model outputs. Therefore, the simplest CA approach
still provides one of the best and most efficient sources of com-
parison by means of numerical simulations (Wolfram, 1983).
Here, we present a Real-Space Cellular Automaton Labora-

tory (ReSCAL), a class of algorithm that can be used to analyse
a wide variety of natural systems using the same level of con-
ceptualization (Narteau et al., 2001). As described in the next
section, the basic principle of ReSCAL is to replace the contin-
uous physical variables by a discrete set of state variables
representing the different phases of a natural system at any
point in space. Thus transitions from one state to another may
be associated with individual physical processes using only
nearest-neighbour interactions and a limited number of control
parameters. Various applications presented in the third section
demonstrate the feasibility and potential benefits of the pro-
posed method in geophysics.
The Real-Space Cellular Automaton Laboratory

As a complete software suite written in C language, ReSCAL
includes a number of tools for the creation of the initial cellular
space and conversion of the output data files to various formats.
Based on a generic iteration scheme, the main program is dedi-
cated to numerical simulations. Most of the parameters can be
edited in a text file by using a comprehensive syntax. Generally,
the simulations are displayed within a graphical user interface.
In the case of a 3D space, surfacesmay be renderedwith standard
light-source shading, so that the images are often very detailed.
Main iteration scheme

A model generated by ReSCAL consists of a cellular space that
simulates small-scale interactions between elements regularly
distributed over a 1D, 2D or 3D rectangular grid. Hence a phys-
ical environment is fully described by a lattice of discrete values
Copyright © 2013 John Wiley & Sons, Ltd.
encoding the state of the cells (Figure 1a). At the elementary
length scale of the lattice, each cell has a characteristic length l0.

The evolution of our system is governed by a finite set of
interactions corresponding to individual physical processes.
Formally, interactions are defined in terms of transitions within
pairs of nearest neighbour cells (doublets). Therefore, we will
consider a set of transitions characterized by:

• the initial states S i1; S
i
2

� �
of the doublet;

• the final states S f1; S
f
2

� �
of the doublet;

• the orientation of the doublet;
• a transition rate.

Once the cellular space is initialized, an iterative scheme
takes place (Algorithm 1). At each iteration step, we randomly
select a transition with respect to the cellular space and the
transition rates. Then, we apply the transition on a doublet.
Our implementation of this scheme is based on structured data
organized as cross-referenced arrays of cells and doublets.
Before going into more detail, let us define some convenient
notions that may prove useful to describe the organization of
data structures.

An ordered pair of states (S1,S2) associated with an orientation
is called a generic doublet and can be regarded as a template for
the real doublets (Figure 1b). Among all possible generic dou-
blets, some are said to be active if the pair (S1,S2) matches exactly
the initial states S i1; S

i
2

� �
of at least one transition with the same

orientation. Analogously, a doublet in the cellular space is an ac-
tive doublet if the respective states of its cells and its orientation
correspond to an active generic doublet. It is obvious that only
active doublets may undergo a transition.

For every active generic doublet, we generate a doublet array
whose elements are the set of positions of the corresponding
active doublets that are present in the cellular space. Thus we
achieve direct access in the cellular space each time an active
doublet is randomly chosen from the elements of a doublet array.
Conversely, as the active doublet undergoes transition, the two
states of the doublet may change. This implies an update of the
doublet arrays impacted by the modification of the cellular
space. Therefore, each element of the cellular space contains a
maximum of three references to the doublet arrays, one for each
orientation.When a doublet has operated a transition, we update
the references contained in the first cell of all active doublets that
have been modified and the corresponding elements of the
doublet arrays. Finally, we obtain a set of cross-referenced data
structures between the cellular space and the doublet arrays.

The search for algorithmic efficiency is a major issue in
ReSCAL, considering the large number of doublets in a 3D
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)



Figure 1. The Real-Space Cellular Automaton Laboratory. (a) A 3D square lattice is a real-space representation of the physical environment under
consideration. At the elementary length scale l0, each cell can be in a finite number of states and interact with next-neighbour cells along the lattice
directions. All transitions acting on a doublet are given a specific transition rate for each orientation. (b) Generic doublets with different orientations
for a two-state model. Once considered as initial doublet of a transition, they become active generic doublets. Within the cellular space, a high num-
ber of doublets belonging to these generic classes may coexist. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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space. It led us to implement dynamic defragmentation of the
doublet arrays. Indeed, the random choice of an active doublet
is straightforward and fast if each doublet array remains a con-
tiguous pool in memory. As a result, ReSCAL application can
reach execution speeds up to 106 transitions per second in a
103� 103� 103 cellular space.
A continuous time stochastic process

The main iteration scheme behaves like a dynamical system,
whose evolution is entirely defined as a stationary stochastic pro-
cess based only on the knowledge of the cellular space and the
transition rate values. Practically, this can be regarded as a gener-
alized Poisson process or a specific type of continuous-time
Markov process. Most importantly, in such amemoryless random
process, low-probability events may occur at each iteration.
Here, the transition rates are expressed in units of t�1

0 , where t0
is the characteristic time scale of the model.
Let us consider a set of n transitions T1,…,Tn with respective

rates Λ1,…,Λn. If we take into account the cellular space, the
overall rate at time t of the set of transitions is

Λ tð Þ ¼ ∑
n

i¼1
Ni tð ÞΛi (1)

where Ni(t) is the number of active doublets for the transi-
tion Ti. It follows that, considering a generalized Poisson
Copyright © 2013 John Wiley & Sons, Ltd.
process, the probability for a transition to occur between t
and t+Δt is

P t ;ΔtÞ ¼ 1� exp �Λ tð ÞΔtð Þð (2)

Thus we can set the waiting time before the next transi-
tion to the value

Δt ¼ � 1
Λ tð Þ ln 1� pð Þ (3)

where p is a random variable drawn from a uniform distribution
between 0 and 1. The time interval from one transition to another
is therefore a random variable which is entirely determined by
the configuration of active doublets.

Determination of the transition requires the computation of a
weighted random choice. Indeed, the statistical weight wi(t ) of
a transition Ti at time t is given by

wi tð Þ ¼ Ni tð ÞΛi

Λ tð Þ (4)

Drawing at random on the cumulative distribution function
of all these weights, it is therefore possible to choose the ge-
neric doublet that operates a transition at time t+Δt. Finally,
we can directly select at random an element in the correspond-
ing doublet array.
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)
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Additional modules and functions

ReSCAL is also a software package constructed on a modular
basis for simulating systems in which multiple physical phe-
nomena are combined. Therefore, we present a few modules
or functions that are used in the various models described
subsequently.

Avalanches
The role of gravity is essential in most natural systems, especially
in granular materials where avalanches occur when a static angle
of repose is exceeded. To take into account this angle of repose in
the model, we have to choose a specific state, obviously the
denser one, and calculate the topography that the corresponding
cells produce from the bottom of the system. Then, we can com-
pute the gradient to get the direction and the magnitude of the
steepest slope at any point of this interface.
The avalanche module is based on a diffusion with threshold

mechanism. The threshold is simply the repose angle θc of the
dense material under consideration. In practice, we activate
the four horizontal transitions that are associated with the mo-
tion of the cells with the highest density. The corresponding
transition rate Λθ is not constant over time and depends on
the local slope θ as follows:

Λθ ¼ Λavaδθ with δθ ¼
0 if θ≤θc
1 if θ > θc

�
(5)

where Λava is a constant transition rate.

A lattice gas cellular automaton
ReSCAL offers the opportunity for flow computation using a
lattice gas CA (Frisch et al., 1986; Rothman and Zaleski, 2004).
This numerical method converts discrete motions of a finite num-
ber of particles into physically meaningful quantities and is an
alternative to the full resolution of the Navier–Stokes equations.
Overall, it is based on next-neighbour interactions that can be
mapped on the cellular space of the main CAmodel. In addition,
this discrete model is particularly useful to analyse the complex
interplay between an evolving topography and a flow. To this
Figure 2. The lattice gas CA model in ReSCAL. (a) The different velocity ve
Different examples of collisions between fluid particles (see the entire list in
sented by arrows. Each dot is a node of the lattice gas CA model as well as the
these cells in light grey and the paths along which the fluid particles are mov
using ReSCAL. The black arrow indicates the direction of flow. This figure is

Copyright © 2013 John Wiley & Sons, Ltd.
end, a distinction ismade between states where the fluid particles
can propagate and states impermeable to the flow.

To reduce the computation time, we do not implement a 3D
lattice gas CA. Instead, we consider a set of uniformly spaced
vertical planes parallel to the direction of the flow (the spacing
is a parameter of the model). Each plane is composed by the
square lattice of the main CA model (Figure 2a). Fluid particles
are confined to these 2D planes and they can fly from cell to
cell along the direction specified by their velocity vectors.
Within a square lattice, we use a multispeed model taking into
account motions of particles between nearest and next-nearest
neighbours (d’Humières et al., 1986): slow-speed particles are
moving between nearest neighbours; fast-speed particles are
moving between next-nearest neighbours (Figure 2a). Two fluid
particles with the same velocity vector cannot sit on the same
site. Thus there is a maximum of eight particles at each site.
The interactions between particles take the form of local instan-
taneous collisions on all sites with several particles (Figure 2b).
The evolution of the whole system during one iteration (or mo-
tion cycle) consists of two successive stages: a propagation
phase during which all particles move from their cells to their
neighbours along the direction of their velocity vectors, and a
collision phase during which particles on the same cell may
exchange momentum according to the imposed collision rules
(Figure 2b). These collision rules are chosen in order to con-
serve both mass and momentum.

Finally, using the output of the lattice-gas cellular automaton,
we estimate both components of the local velocity field by
averaging the velocity vectors of fluid particles over space
and time. The velocity V

→
is expressed in terms of a number of

fluid particles. In practice, given the size of the lattice and the
physical environment, it takes a variable number of iterations
to stabilize the flow (Figure 2c). The parallel computation of
the vertical planes using a multiprocessing library (OpenMP)
leads to higher numerical efficiency.
Rotation
In many physical environments, anisotropic phenomena may
change of orientation due to a variable external forcing. Hence
ctors in the lattice gas cellular automaton. We have ∥V i
2∥ ¼

ffiffiffi
2

p
∥V i

1∥. (b)
d’Humi‘eres et al., 1986). Particles and their velocity vectors are repre-
centre of a cell of the main CA model. At the top right, we show four of
ing (dashed lines). (c) Simulation of flow through a pipe with obstacles
available in colour online at wileyonlinelibrary.com/journal/espl

Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)
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it may be convenient to use the same set of transitions and the
same configuration of cells for different orientations of the
lattice. For this particular reason, a rotation function in 2D or
3D space has been implemented in ReSCAL. This provides
two different operating modes:

• A first mode simulates the action of a rotating table by apply-
ing a rotation inside a vertical cylinder centred in the middle
of the cellular space. When the rotation angle is not a multi-
ple of π/2, one may expect a number of defaults like the
disappearance and duplication of cells, due to the rectangu-
lar and discrete geometry of the system. Such inevitable
effects have been reduced by rounding functions, so that
they remain relatively limited in space and time. Actually,
for each cell of the new cellular space (i.e. after rotation),
we apply an inverse rotation and select the state of the
nearest cell in the old cellular space, thus preventing the
appearance of empty cells.

• A second mode is addressing the case of periodic boundary
conditions. In addition to the discretization issue previously
mentioned, we are also facing some classical problems of
symmetry for the rotation of a rectangular lattice. As long as
no perfect solution exists for all angle values, we implement
a rotation algorithm ensuring that all discontinuities remain
at the boundaries of the system. In most practical cases, the
boundary artefacts disappear by global averaging after a
limited number of transitions if the frequency of rotations is
low with respect to the overall transition rate Λ (Equation 1).

As described subsequently in the applications, the rotation
function and the lattice gas CA can be used simultaneously to
simulate multidirectional flow regimes. In this case, the fluid
particles are still evolving on the same grid but the physical
environment is rotated according to a given sequence of angles
and time intervals. Numerically, it may have a cost because it is
necessary to restabilize the flow with respect to the new config-
uration of cells after each rotation.

Chains of transitions
Some phenomena are not associated to independent stationary
processes, but rather to a dynamical sequence of time-dependent
processes. To address such cases, an optional mechanism en-
abling chains of transitions have been added to themain iteration
scheme. The system keeps the memory of the last transition
together with the position of the doublet that wasmodified. Then,
a neighbouring doublet may instantaneously operate a transition
according to a given probability of occurrence (i.e. the magni-
tude of the coupling). A necessary condition in a chain of transi-
tions is that the two neighbouring doublets have at least one cell
in common.
A typical example for a chain of transition is bedload trans-

port (see ‘A landscape evolution model’, below). It is clear that
a significant part of erosion is caused by the transport of solid
material due to the collisions of grains with the immobile sedi-
mentary layer. In this case, it seems impossible to separate the
transport and erosion mechanisms and a chain of transitions
may be created between them.
Note that chains of transitions generate a new level of inter-

action between independent physical processes. In the future,
they could be used as a generic tool to analyse systems with
long-range interactions.

Variable transition rates
It is often difficult not to take into consideration functional de-
pendencies between the magnitude of different processes. In-
deed, non-stationary processes are commonly observed when
an external forcing changes the overall intensity of a physical
Copyright © 2013 John Wiley & Sons, Ltd.
mechanism. Transition rates may also vary with respect to a lo-
cal threshold value. This has led us to integrate two additional
classes of functions in the iteration scheme of ReSCAL:

• A regulation function may be called at each iteration of the
main scheme. It updates the transition rates with respect to
time.

• Secondly, some transitions may be associated to a callback
function. When one of these transitions occurs, the callback
function recalculates a probability for the transition to
be aborted considering a local dependence on a given
parameter. Note that, in this case, the method for the
determination of the time step should integrate the probability
distribution function of this parameter over the entire
population of active doublets.
Applications for Complex Geomorphological
Systems

To illustrate the capabilities of ReSCAL and the way it could be
used in natural sciences, we present a 2D model for diffusion
(Brown, 1828) and 3D models for dune morphodynamics
(Narteau et al., 2009; Zhang et al., 2010, 2012) and for the
evolution of landscapes. For all these CA models, special atten-
tion is given to scaling as a prerequisite to comparisons with
natural observations and interpretation of the results. Basically,
the example on diffusion serves to show that CA models may
equally well reproduce the asymptotic behaviours of continuous
models. Then, using as examples the numerical results obtained
for the analysis of landscape patterns and populations of dunes,
we explore new frontiers of complex geophysical systems to shed
some light on the additional predictive power of CA models.
A 2D model of diffusion

Diffusion offers the simplest way of comparing the result
obtained by continuous and discrete models. For example,
Fick’s second law predicts how diffusion modifies concentra-
tion with respect to time and distance:

∂C x; tð Þ
∂t

¼ D
∂2C x; tð Þ

∂x2
(6)

where C is the concentration in dimensions,D the diffusion coef-
ficient, x the position and t the time. This equation has for solution

C x; tð Þ ¼ A erf
xffiffiffiffiffiffiffiffiffi
2Dt

p
� �

þ B (7)

where A and B are two constants that depend on the boundary
conditions. Then, starting with a step in density from 0 to 1 in a
closed system, we can, for example, predict the evolution of con-
centration at any point in space (Figure 3a).

Using ReSCAL, we can produce an N-particle random walk
CA model operating on a 2D grid (Figure 3b). Practically, we
consider two states to mimic individual particles and their sur-
rounding material (e.g. a gas). Then, we simulate a random
walk by the four doublet transitions associated with the dis-
placement of the centre of mass of the particles. Obviously,
all the transition rates are equal in order to generate isotropic
random motions. According to Equation 3, the time step is
inversely proportional to the number of active doublets and,
at each iteration, we can randomly select the doublet that
operates a transition among the entire population of active
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)



Figure 3. A CA model of diffusion using ReSCAL. (a) Analytical solutions of the Fick’s second law at different times are used for comparison with the
results of the CA model. (b) Evolution of a 2DN-particle random walk CA model using ReSCAL:H=500 l0, L=2000 l0. Two states and four transitions
with the same rate Λd are used to reproduce random particle motions. Note the similarities between the results obtained by the discrete and the con-
tinuous methods. In both cases, the initial condition is a discrete step in density from 0 to 1 along the horizontal direction. This figure is available in
colour online at wileyonlinelibrary.com/journal/espl
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doublets. Starting with the same initial condition as in the con-
tinuous model, it is observed that the evolution of the concen-
tration of particles is in perfect agreement with the analytical
solutions of Equation 6 (Figure 3b).
The results presented in Figure 3 show that, smoothing the

fluctuations of the discrete model over a sufficiently large scale,
it is capable of perfectly predicting the evolution of concentra-
tion. This demonstrates that CA models are physically based
models that can provide the same amount of information as
any other type of continuous model. Then, we infer that, de-
spite a different level of conceptualization which makes them
more difficult to understand, the CA models may also have high
predictive skills in domains for which there is not yet a com-
plete family of solutions derived from a set of differential equa-
tions (see ‘Dune morphodynamics’ and ‘A landscape evolution
model’, below).
If the CA model for diffusion can be implemented in different

types of environments, there is still the question of the determi-
nation of its elementary length and time scales {l0,t0}. Unfortu-
nately, no pattern formation can occur in such a simple
diffusive system and the only scaling parameter is given by
Copyright © 2013 John Wiley & Sons, Ltd.
the dimensionless diffusion coefficient Dt/m2. This number
can be directly compared to its counterpart in the model

t0= Λd l
2
0

� �
. However, there is still one ingredient missing for

the determination of the {l0,t0} -values which has to be deter-
mined arbitrarily. For example, the l0 -value can be obtained
from the direct comparison between the dimension of the
system (in units of meters) and the size of the square lattice
(in units of l0). In this case, we get the t0 -value by matching
the dimensionless diffusion in the model to that in the material
under consideration.
Dune morphodynamics

Dunes are bedform features which propagate downstream
when the flow reactivates motion of particles that have been
buried in the lee. In nature, changes in direction and intensity
of the flow, variations in sediment supply, vegetation as well
as dune–dune interactions may produce a wide range of dune
field patterns. Hence the physics of sand dunes has often been
used as a paradigm for understanding and investigating
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)
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self-organization and complex systems (Baas, 2002; Kocurek
and Ewing, 2005; Nishimori and Ouchi, 1993; Werner, 1995;
Werner and Gillespie, 1993). In a continuation of this effort,
we use ReSCAL to couple a cellular automaton for sediment
transport and a lattice gas cellular automaton for flow dynam-
ics. The originality of the approach is to implement for the first
time the permanent feedback mechanisms between flow and
bedform dynamics using a set of discontinuous methods.
In the CA model of sediment transport, we consider three

states (fluid, mobile and immobile sediment) and different sets
of transitions to simulate erosion, transport, deposition, gravity
and diffusion (Figure 4a). These anisotropic sets of transitions
take into account the flow orientation, so that the model of
sediment transport alone can produce bed form features.
However, the main difference from classical models is that
we also simulate the flow to calculate the bed shear stress.
As previously detailed, the flow is calculated in 2D vertical

planes parallel to the direction of the wind and confined by two
walls of neutral cells at the top and the bottom of the system.
The fluid particles can only move within the fluid state of the
CA of sediment transport. Other states are considered as solid
boundaries on which the fluid particles are rebounding. In order
to implement this feedback mechanism of the topography on the
flow, we are continuously monitoring the evolution of the bed
topography (see ‘Avalanches’, above). Thus we can evaluate
the direction of the normal vector to this topography, and deter-
mine locally how a fluid particle rebounds on a sedimentary cell.
In practice, we simply impose no-slip boundary conditions on
the bed surface and free-slip boundary conditions along the
Figure 4. A CA dune model using ReSCAL. (a) In the CA model, three state
sitions for erosion, deposition and transport ensure conservation of mass. Th
where Λ0 is the maximum value of Λe (see Equation 9). Gravity and diffusion a
We chose Λd≪Λ0≪Λg, a=0.1 and b=10 (Zhang et al., 2010). (b) Topogr
responsible for the formation of dunes on a flat sediment layer and for the
the longitudinal and the transverse vertical slices of cells shown below. Tw
available in colour online at wileyonlinelibrary.com/journal/espl

Copyright © 2013 John Wiley & Sons, Ltd.
ceiling as a first approximation of a free surface. Then, motions
of fluid particles adapt to changes in topography, and the flow
field is strongly coupled to the bedform dynamics.

From the velocity V
→

expressed in terms of a number of fluid
particles and the normal n

→
to the topography we calculate the

bed shear stress:

τs ¼ τ0∂
→
V

∂→n
(8)

where τ0 is the stress scale of the model expressed in units of kg

l�1
0 t�2

0 . We then consider that the erosion rate is not constant
(see ‘Variable transition rates’, above), but linearly related to
the bed shear stress τs according to

Λe ¼
0 for τs≤τ1
Λ0

τs � τ1
τ2 � τ1

for τ1≤τs≤τ2

Λ0 else

8>><
>>:

(9)

where Λ0 is a constant rate, τ1 is the threshold for motion incep-
tion and τ2 is a parameter to adjust the linear relationship. By
definition, (τs� τ1) is the excess shear stress from which we
can account for the feedback mechanism of the bed shear
stress on the topography.

Using this dune model, we can reproduce a huge variety of
dune patterns according to specific wind regimes (Figures 4b
and 5). Simultaneously, the bedform dynamics can explore a
full hierarchy of length scales, from the elementary wavelength
that perturbs the initial flat sand bed (λmax) to the size of the
s are used to reproduce the fluid, mobile and immobile sediment. Tran-
e rates for erosion, deposition and transport are such that Λc<Λ0<Λt,
re occurring over much shorter and longer periods of time, respectively.
aphy of a barchan dune in the CA dune model. The same instability is
development of superimposed bedforms. Dashed line corresponds to
o insets zoom in on regions of high sediment transport. This figure is
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Figure 5. Dune patterns produced by the CA dune model using ReSCAL. (a) Barchan dune calving smaller barchans off its horns while
superimposed dune patterns nucleate and propagate on the faces exposed to the flow. Velocity field lines show the recirculation zone on the lee side.
(b) An isolated longitudinal dune produced by two winds of equal strength and duration with an angle Θ=2π/3. (c) Population of longitudinal dunes
using the same wind regime. (d) A population of transverse dunes produced by two winds of equal strength and duration with an angle Θ= π/3. (e) A
star dune produced by five winds of equal strength and duration. The angle between two consecutive winds is always the same (Θ=2π/5), so that the
total sediment flux is null. Insets show the wind roses. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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giant dune that scales with the depth of the flow. On these giant
dunes, superimposed dunes are likely to develop, favouring
complex dune–dune interactions and the development of sec-
ondary dune features (Figure 4b).
In the framework of this paper, it is important to underline

that the physical mechanisms responsible for the emergence
of these dune patterns had not been numerically accessed so
far. This is mainly because previous continuous and discrete
models consider empirical laws that have been established
according to specific conditions (Eastwood et al., 2011;
Werner, 1995). When these conditions are not met, the law is
no longer valid and may limit pattern formation on more realistic
dune features. This is not the case for our CA dune model, in
which the dynamic equilibrium between flow and topography
arises as an emergent property. Then, the instability responsible
for the formation of dunes from a flat sand bed can also generate
superimposed waveforms on the top of large dunes, as is
commonly observed in dune fields (Elbelrhiti et al., 2005).
Confinement of the flow is also essential for the limitation of dune
size and for the final shape of dune fields (Andreotti and Claudin,
2007). One more time, we do not impose any ad hoc retroaction
mechanism in our CAdunemodel. Instead, the limitation in dune
size is just the result of the acceleration of the flow induced by
confinement and of consecutive changes in the distribution of
the bed shear in the neighbourhood of dune crests. Then, we
can show that, as in nature, the characteristic wavelength of
giant dunes can be directly related to the average depth of flow
(Zhang et al., 2010).
Copyright © 2013 John Wiley & Sons, Ltd.
However, the most important point for our present purpose is
that the outputs of numerical simulations can be quantitatively
compared to real bedforms to provide the scaling of the model
and fully determine the {l0,t0} -values. Indeed, our model spon-
taneously generates periodic dune patterns from a flat sand
bed, so that the instability responsible for the formation of
dunes in nature can be studied by a linear stability analysis
(Narteau et al., 2009). As a result, we can quantify the charac-
teristic length scale for the formation of dunes in the model and
compare the λmax -value in units of l0 with its counterpart in
nature in units of metres (Elbelrhiti et al., 2005). Thus, we deter-
mine the characteristic length scale l0 of the model. Using this
value, we set the characteristic time scale t0 by matching the
average saturated flux in the model to that in the dune field.
In this case, because the λmax -value may be directly related
to the ratio between the sediment and the fluid density times
the grain diameter (Hersen et al., 2002), the {l0,t0} -values can
be entirely defined from the values of these physical parameters
in all types of physical environments where the dune instability
has been observed. There is no doubt that this rescaling strategy is
a major step for a CA dune model and for reduced complexity
models in general.
A landscape evolution model

The development of Earth’s surface topography is often the
result of sediment transport in dilute phases and high water
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)
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discharges. Under these conditions, the characteristic time
scales of fluid flows may be many orders of magnitude shorter
than those of the erosional processes. In addition, the computa-
tional cost of multiphase flow simulation by a real-space CA
may be too high to be manageable in practice. For these rea-
sons, we neglect here the modelling of water flows to focus
on the motion of a sediment phase with high concentration.
As for the dune model, the landscape evolution model needs

at least three states (land, mobile sediment and atmosphere)
to simulate erosional, depositional and transport processes
(Figure 6a). However, in this case, erosion is related to different
denudation mechanisms of weathering, surface splash and
mass wasting, while deposition may be related to settling, co-
hesion or sedimentation. All these mechanisms are incorpo-
rated into two symmetric sets of transitions for the production
(erosion) and stabilization (deposition) of mobile sedimentary
cells (Figure 6a). The contrast in density between the two sedi-
mentary states determines the number n of mobile cells that
may be produced by a single land cell. Then, the mobile sedi-
mentary cells may move through transport transitions, which
are strongly anisotropic to take into account gravity. In this
way, mass transport is driven by the slope and magnitude of
Figure 6. A landscape evolution model using ReSCAL. (a) In the CA model,
sphere. One land cell can produce n mobile sedimentary cells. Transitions fo
we only show transitions along one specific direction, but there are six times
two symmetric doublets). For erosion and deposition, the transition rates are
transitions: vertical transition rates are set to 0 and 105Λt for ascending an
through a chain of transitions that generates a new level of interaction from
from a constant slope with a horizontal surface of 200� 200 l20. In this model,
and n=3. (c) Evolution of themean elevation. The solid line is themean elevatio
The dotted line is the best fit of he + (h0�he)exp(�t/T) to the data with h
wileyonlinelibrary.com/journal/espl

Copyright © 2013 John Wiley & Sons, Ltd.
the erosion/deposition processes, which both control the distri-
bution of mobile sedimentary cells. Nevertheless, with this sim-
ple set of transitions, there is not yet a retroaction of transport
on the erosion rate.

In order to simulate the effect of mechanical incision
resulting from sediment motion along slopes or channels, a fun-
damental characteristic of the real-space CA landscape model
is to introduce a coupling between transport and erosion using
only next-neighbour interactions. Practically, it takes the form
of a chain of transitions: a horizontal transition of transport
can trigger a vertical transition of erosion with the probability
Pv (Figure 6a). Thus we generate a new microscopic level of
interaction between two independent physical processes (see
‘Chains of transitions’, above) and we end up with a discrete
model in which there is a complete feedback mechanism be-
tween sediment transport and topography (Figures 6b and 7).

Figure 6b shows the evolution of a flat slope in the absence
of any tectonic uplift. We consider closed boundary conditions
except at the downstream border where the sediment can
escape the system above a certain limit, defined as the outlet
height. From the numerical results, we identify different stages
in the evolution of topography. First, random erosion and
three states are used to reproduce land, mobile sediment and the atmo-
r erosion, deposition and transport ensure conservation of mass. Here,
more transitions in 3D (three doublet orientations and, for each of them,
isotropic. To take into account gravity, this is not the case for transport
d descending motions, respectively. Erosion by overland flow occurs
transport to erosion processes. (b) Evolution of the topography starting
τ0 is an arbitrary time scale. We setΛeτ0 =1,Λdτ0 =5,Λtτ0 =10, Pv=10�2

n over long times. The black dashed line shows the outlet height he =55 l0.

0 =130 l0 and T/τ0 =16.5. This figure is available in colour online at
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Figure 7. Sediment transport in a natural landscape using ReSCAL.
The model applied on the actual topography of the Guadeloupe island,
FrenchWest Indies. Mobile sedimentary cells are shown in white above
the topography to highlight zones of sediment transport (top). The cen-
tral vertical layer of cells going from left to right (bottom). This figure is
available in colour online at wileyonlinelibrary.com/journal/espl
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deposition events produce a small-scale roughness. Near the
outlet, these small-scale topographic features grow to length
scales that can eventually impact themotions ofmobile sedimen-
tary cells. The localization of the flow promotes incision and
results in the formation of gullies. These gullies are unstable be-
cause of the positive feedback from transport to erosion. They
are rapidly becoming channels that propagate upstream due to
regressive erosion. On each side of these channels a new
generation of gullies may appear. Thus the transport of mobile
sedimentary cells form a drainage network that exhibits different
levels of hierarchy and basins of different sizes. Upstream, as the
slope is increasing, gravitational effects compensate for channel
incision rate. On the eroded part downstream, a floodplain forms
from the accumulation of mobile sedimentary cells. Finally,
Figure 6c shows that the overall evolution of the landscape can
be characterized by a single exponential decay (Granjon, 1996;
Lague, 2001) with a characteristic time scale that could be related
to the magnitude of the physical mechanisms implemented at the
elementary length scale of the model.
All the landscape features produced by the model are macro-

scopic expressions of local patterns of interaction. As for the
outcomes of laboratory experiments and in situ observations,
these numerical results may be used to derive empirical laws
statistically representative of the evolution of the topography.
However, it is first necessary to determine precisely the length
and time scales of the model. Different strategies may be suitable
to set up these dimensions but, given the systematic occurrence
of evenly spaced ridges and valleys in nature, the most promis-
ing lies in the mechanism of channel incision. By comparison
with natural observations and solutions of nonlinear advec-
tion–diffusion equations (Perron et al., 2009), the characteristic
wavelength for channel inception in the model may be used to
evaluate the elementary length scale of the cubic lattice. The time
scale may then be derived from sediment flux in active channels.
Using this preliminary version of the real-space CA land-

scape model, we have observed that it is difficult to reproduce
Copyright © 2013 John Wiley & Sons, Ltd.
large-scale depositional features like alluvial fans. For this
purpose, the model can certainly be improved by including
more realistic dependence of the transport capacity on the
local configuration of mobile sedimentary cells. Nevertheless,
this version of the model has already raised an important issue.
Using only a single set of nearest-neighbour transitions, it is
possible to reproduce a wide range of structures and dynamical
behaviours that may be directly compared to the development
of topography in nature. Overall, this indicates that, from steep
unchannelled valleys to zones of deposition, a simple set of
transitions may play the same role as a large number of
geomorphological laws (see Table 1 of Dietrich and Perron,
2006). This opens new perspectives for the future of reduced-
complexity models in geomorphology.
Concluding Remarks

ReSCAL is a scientific computing tool dedicated to the develop-
ment of CA models in natural sciences. In geomorphology in
particular, there are still a lack of theoretical formalisms and a
limited understanding of the role of structural and composi-
tional heterogeneities (Dietrich et al., 2003). The CA approach
can then be described as an alternative which focuses more on
organization and pattern formation than on an exact descrip-
tion of small-scale physical and chemical processes. The basic
assumption is that it is possible to work at another level of de-
scription on the basis of a collection of interacting elements.
Therefore, it is necessary to develop new methods that take into
account discontinuities and patterns of interaction between the
various components of a system over time. Ultimately, the
objective is to identify collective behaviours that depend only
on a limited number of control parameters. Thus we may de-
scribe in greater detail the feedback mechanisms that may be
encountered in natural sciences using comparisons between
observations and the outputs of numerical simulations.

ReSCAL can be applied and developed to address challenging
issues in the interdisciplinary field of complexity science. Tradi-
tionally, different methods have been used for the analysis of
complex systems. The most popular method is based on the
theory of dynamical systems (Manneville, 1991). It uses sets
of coupled differential equations to reproduce a large variety of
highly nonlinear behaviours. Nevertheless, as the number of
degrees of freedom increases, it is generally impossible to find
analytical solutions and all the results rely on the accuracy of
the underlying numerical methods. In addition, as the solutions
strongly depend on a predefined set of parametrized equations,
this approach requires a deep understanding of all the micro-
scopic couplings that may play a role in the dynamics of the
system. Statistical physics is another method which focuses on
systems with an infinite number of degrees of freedom (e.g. an
ideal gas) and uses different techniques of averaging to describe
the global equilibrium states of these systems. However, this
approach does not adequately account for pattern formation
and organization in open systems (Nicolis and Prigogine, 1977).

Dealing with a finite, but large, number of elements
interacting with one another, the complex system science lies
at the interface between dynamical systems and statistical
physics. In this line of research, it is admitted that each com-
plex system is different and that there is not a unique framework
based on a comprehensive and codified set of laws. Then, the
CA approach exploits computing power to study pattern forma-
tion by means of numerical simulations. Using ReSCAL, the
general idea is not to address complex system analysis as an
abstract modelling approach reserved to a small community of
specialists, but to develop new collaborative efforts based first
on observation. Indeed, CA models should not only be used to
Earth Surf. Process. Landforms, Vol. 39, 98–109 (2014)
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reproduce known phenomena but also to identify new observ-
ables that will provide additional information on the global
dynamics of complex systems. Then, numerical outputs can be
used as a predictive tool to isolate precursory phenomena that
would otherwise remain invisible (Shebalin et al., 2011, 2012).
We do not only propose here a CA method, but also a strategy

to determine the arbitrary length scales which are always in-
volved in this type of discrete modelling approach. As shown
by Narteau et al. (2009) with a CA dune model, the method con-
sists of directly comparing, with the same techniques (e.g. linear
stability analysis), the collective behaviours of the model with
large-scale phenomena in nature. Thus we work at a macro-
scopic level of description to identify similar mechanisms of
emergence and derive from them the elementary length and time
scales of the model. Using this scaling, we can try to establish
new links between CA methods and continuum mechanics to
constrain the expression of complexity by a set of well-defined
physical quantities. In all cases, we may learn lessons from the
most distinctive features of the numerical objects under investiga-
tion (Le Mouël et al., 2005).
ReSCAL has been shown to be effective in reproducing

patterns that have never been accessible to numerical simula-
tions before (Zhang et al., 2010, 2012). We infer that it is because
we focus first on nearest-neighbour interactions instead of
predetermined sets of laws, which are assumed to be true for all
time and places. This is also due to the stochastic nature of the
model. Indeed, even if they are extremely rare, low-probability
events may occur and trigger an instability which can develop
at all scales.
Using a real-space representation, the cellular spaces of the

different models may also be compared to analogue laboratory
experiments and should be constructed following the same
standards (e.g. physical environment, boundary conditions).
An advantage of the CA models is that the entire configuration
of the system can be easily adapted by changing the states of
well-identified cells. In addition, as in all agent-based models,
individual cells can be tracked in order to quantitatively esti-
mate their migration history.
Finally, we conclude that ReSCAL provides a useful method

to further explore complex systems in natural and human
sciences with reasonable numerical efficiency. Obviously, it
has to be done through the collaborative development of
models that may be applied by various scientific communities.
Data and Resources

The Real-Space Cellular Automaton Laboratory (ReSCAL) is free
software under the GNU general public licence. The source
codes can be downloaded from http://www.ipgp.fr/~rozier/
rescal.
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