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Up and down cascade in a dynamo model: Spontaneous symmetry breaking
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A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a
primary field by a flow made of turbulent helical vortice&yclones of different ranges, and amplified by an
up and down cascade mechanism. The model displays symmetry breakings of different ranges although the
system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the
system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up
and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the
case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of
the secondary fieldcalled chrons of the geomagnetic fipld.ong intervals of constant polarity with quick
reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the
generated magnetic field during intervals of constant polarity are also observed in the model. Possible appli-
cations of the model to geodynamo modeling and various directions of future investigation are briefly dis-
cussed[S1063-651X99)10605-§

PACS numbdps): 05.40—a, 91.25.Cw, 47.65:.a

I. INTRODUCTION intervals. Sometimes, very long polarity intervals occur, as
the cretaceous superchron, which extends from 118 to 83
Current observations at the surface of the Earth show thatlyr before present. As for the intensity of the dipole, it
there exists a geomagnetic field that is grossly the field of aisplays strong temporal variations during a chron.
dipole located at the Earth’s center and inclined by (tb° In the present paper we will focus on the reversals process
day) on the Earth’s rotation axis. The difference between theand the succession of polarity intervals.
observed magnetic field and the dipole one—the nondipole The origin of the Earth’s magnetic field is probably the
field—is about 10% in relative root mean square valuemost outstanding problem of geophysics. Some basic prop-
There exist three kinds of observations that give us informaerties of the core of the Earth may be evaluated: the conduc-
tion about the time evolution of the geomagnetic field: directjyity of the core iron is about 10 (Q m) ™1, the velocity of
measurements, which do not go back beyond three centurigge flow stirring the fluid is of the order of I8 ms™?, as
[1], archeomagnetic datthe past magnetic field is fossilized nterred from the tempordkeculay variation of the geomag-

in artifacts like baked clays and paleomagnetic datéhe  ,gic field measured at the Earth’s surface; the corresponding
ancient field is fossilized in sedimentary and VOICan'CSmagnetic Reynolds number is1(2. Due, in particular, to
rocks. Direct measurements show that the time constant o his high value, it is generally believed that the origin of the

the nondipole field is of the order of two hundred yeldtk , P .
the time constant of the equatorial part of the dipole, as in—E arth's magnetic field is an autoexcited dynamo process at

ferred from archeomagnetic data, is rather of the order of é{vork n th_e metallic fluid core of the planet.
few hundreds yearks]. A considerable amount of work has been d_evot_ed to geo-
The present paper is devoted to the behavior of the gedlynamo theory.zA well-known approach consists in the so-
magnetic field over geological times; time constants of a fewfalled @w anda® dynamo models; in a somewhat loose way
hundred years are smoothed out. Paleomagnetic data firde will refer to this theory in our model. The magnetic field
show that, when averaged on a few thousands of years, tHaside the core is the sum of a poloidal ingredient, with a
geomagnetic field is indeed the field of an axial dipGe  radial component, whose field lines escape the core, and of a
agreement of the above time consjane., aligned along the toroidal ingredient whose field lines are horizontal and which
rotation axis. But, when considering longer time spans, ofs then confined inside the core. A differential rotation of the
millions to hundreds of millions of years, it comes out thatcore layers, attributed to convection and transfer of angular
the polarity of this axial dipole changes in time, going from momentum, is called for to generate—through the winding
North-South to South-North and vice versa. These are thef the magnetic field lines around the rotation axis—a toroi-
so-called reversals of the geomagnetic field. Periods betweeatal magnetic field from a poloidal one. The mechanism is
reversals are called polarity intervals, or chrons. The duratiogalled w effect. Unfortunately it cannot work in the reverse
of polarity intervals have changed during geological timesway. It is resorted to the so calledeffect[5—7]: a turbulent
[4]. For example, since 80 million yeafislyr) ago, it hagin small scale motion, nonmirror symmetric, generates, as
average decreased from about 1 Myr to 0.2 Myr. The dura- shown by a mean field theofy], a poloidal ingredient from
tion of the reversalgtypically 4 or 5 thousands of years a toroidal one, and conversely. It is important to emphasize
(kyr)] is quite short compared to the duration of the polaritythat the turbulent motion must be nonmirror symmetric, its
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FIG. 1. A flux rope twisted into &) by a right handed motion.
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helicity «= —u-VXu, averaged in a certain large scale do-

main, is not zero. Figure 1 shows schematically the effect of
an elementary helical motiofa cyclone, right-handed in the @
figure case,a<<0) on a large scale magnetic field, the

mechanism at the base afeffect. As a result, a flow made ,

of a large scale differential rotation and a small scale turbu-

lent helical flow can maintain the magnetic field against
ohmic dissipation; this is therw dynamo. But, as said

above, thea effect can as well build a toroidal ingredient
from a poloidal one, and can work alone; this is thé
dynamo. Energy is provided by the cooling of the Earth and

the corresponding increase of the solid inner core, giving
raise to thermal or/and compositional convection. In nearly

axisymmetricaw dynamos[8-13| a(x) is given,x being  other hand, scaling properties of the turbulence govern the
the current point in the core. For example, it is often assumegierarchical structure of the model. An inverse cascade re-
that a~cos®, © being the colatitude; helicity has different sults of the generation of structures of higher ranges through
signs in the two hemispheres. the electromagnetic interaction of lower ranges structures.

Of course, instead of computing these parametrical mod- Such a hierarchical model of dynamo, with an inverse
els, in which only some global effect of the mechanisms atascade as a main ingredightit without direct cascade and
work is considered, one can try to solve numerically directlywith a weakly nonmirror symmetric generation mechanijsm
the magnetohydrodynamic equations. Indeed, impressive nyvas already investigated {20] where differential rotation
merical codes have been recently built which have giverwas also considered to build a kind ef @ dynamo, al-
spectacular resultgl4,15. In particular, reversals are ob- though a very schematic one. The same kind of hierarchical
served, although their mechanism and meaning are not y&tructure and inverse cascade mechanism had been applied
well understood. Nevertheless these computations, howevefeviously to modeling seismicity and crack propagation
complex, cannot be performed for realistic values of the in{21-27,.
volved parameters, in particular the viscosity. The effect of physical assumptions determining the general construc-
viscosity in the rotating core is characterized by the Ekmanion of the model are presented in Sec. II. Section Ill con-
numberE = v/2Q0a®, v being the kinematic viscosity of the tains a general description of the model; basic notions and
core fluid, () the Earth’s rotationa the core radius. The definitions are given in Sec. Il A and Sec. Ill B contains the
value of E for the Earth’s core is probably typically 1%,  complete description of all the steps of the system evolution.
whereas théhyperviscousnumerical models cannot handle Properties and conditions for symmetry breaking are inves-
Ekman numbers smaller than19 It is possible that it is not tigated in Sec. IV. Possible applications and general direc-
necessary to go down to values Bfas small as 10" to  tions of future investigations are discussed in Sec. V.
reach the asymptotic regime of the numerical models. In any
case, due to this small viscosity, the Reynolds number of the
core fluid is of the order of 0 and a turbulent flow is
expected which cannot be described by the numerical codes. We consider, as said above, a multiscale turbulent motion

In the present work, instead of the small scale turbulencén a conducting fluid pervaded by a primary magnetic field.
postulated inow and o? dynamos, we will consider a fully Our model, rather abstract, is made of helical vorti¢es
developed turbulence, or rather a simplified model of fullycyclones of different embedded scales; a vortex of level
developed turbulence in the form of a multiscale helical mo-occupies a cell of levdlof a hierarchically organized system
tion. This multiscale motion is assumed to generate, in pressf cells (see Sec. 3 and Fig).2Ne therefore consider local-
ence of a primary large scale magnetic field, a secondarized vortices interacting together. Interaction of localized
large scale magnetic field. Multiscale turbulence is associvortices, especially point vortices, in fluid dynamics and
ated with a direct cascade of energh6—19; therefore a magnetohydrodynamics, is a time honored subject. Discrete
direct cascade is part of the present model of dynamo. On theortex representations are described28—30. These rep-

adjacent cyclones isolated cyclone

FIG. 2. Properties of vortices.

Il. BASIC NOTIONS
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resentations give raise to an elegant Hamiltonian formalism coupling of cyclones
[31-33. The formalism we adopt here is more phenomeno- adjacent cyclones
logical, with a less strong mathematical and physical basis,

but we systematically resort to renormalization methods to -

derive the general properties of our model. We attribute in-
teractions between vortices mainly to electromagnetic ef-

) B0

fects, although keeping again a phenomenological point of isolated cyclones
view. The study of the magnetohydrodynamid4HD) of a o O ) @
helical flow can be found if34]; fully developed MHD —
turbulence has been considered 3%,36|. /\ /\
Let us now describe the general features of our model. @D O@ OO OO
The helical vorticegcyclones can be right-handed or left-
handed, we will say can have two orientations, 1 ard@ annihilation of cyclones rela>l<ing of
vortices are not at all 2D vortices; they are simplified repre- cyclones
sentations of 3D cyclonic structupesThe interaction of an ®® - ©®
helical motion with the existing magnetic field produces an ®@ — @O @ - @
electric current parallel or antiparallel to the applied primary
magnetic field, deperjdiljg on its orientati@] (see Fig. 1 . @@ - 00
a secondary magnetic field results. Let us say that the vorti-
ces of the first orientation give a positive contribution to the disintegration of cyclones
magnetic field, the vortices of the second orientation a nega-
tive one. Globally, the intensity and sign of the secondary @
magnetic field depend on the number, scales and orientations ~
of the vortices involved in the turbulent motion. 20 - @O
It is assumed that the turbulence generates vortices of 25 Zedh

both orientations, and sustains their existence during a ran-
dom time interval. A mirror symmetry of the turbulence gen- FIG. 3. Basic transformations of vortices.
eration is postulated: vortices of orientation 1 and vortices of

orientation 2 appear with the same probability. To respeciortices with the same orientation attract one another and can
this symmetry, the evolution of vortices of both orientationscouple; vortices with opposite orientation located nearby one
is ruled by the same parameters of the modelaim or a®>  another can annihilate each otli€ig. 3). The coupling pro-
models, as said earlier, it is assumed a priori that the turbl,bess transforms two Coup"ng vortices into one vortex of
lence is not mirror-symmetric, and the expression of the hehigher range and generates an inverse cascade. The annihi-
licity is given (e.g,a~cos®). The lack of symmetry and the |ation process amplifies the instability of interacting vortices:
change of sign ofx from an hemisphere to the other are it changes strong living states into weak living states, or
attributed in these models to the Earth’s rotation. Neverthedestroys weak vortice@ig. 3).
less, “insofar as homogeneous isotropic turbulence exists in  The evolution of the vortices governs the evolution of the
nature, it is difficult to find convincing reasons for such tur- secondary magnetic field which they generate. The sign of
bulence to be nonmirror symmetric[7]. In the present the secondary magnetic field is determined mainly by the
model, the generation of turbulence is supposed mirror symerientation of the vortices of high ranges. When there is a
metric, but spontaneous symmetry breakings will occurpalance between the two opposite orientations of vortices of
leading to large scale lacks of mirror symmetry. This is thehigh ranges, the intensity of the secondary magnetic field is
very subject of the paper. close to zero. A sufficient symmetry breaking in the vortices
The temporal evolution of a vortex is governed by a con-grientations is needed to generate a magnetic field with a
tinuously increasing instability which eventually leads to itssignificantly nonzero intensity. This symmetry breaking must
destruction. The increase of the vortices instability can beast long enough, and quick transitions from one polarity to
viewed as a relaxing process in the course of which the vorthe opposite one must occur, if we wish to mimic the behav-
tices properties change continuously; for the sake of simplicior of the geomagnetic field. The problem of the generation
ity, we introduce a discretization of the relaxing process: twoof a large scale secondary magnetic field with polarity inter-
living states of the vorticestrong and wegkare considered vals and reversals reduces to the investigation of large scale

(Fig. 2). The strong living state is characteristic of a vortex symmetry breakings in the evolution of the vortices.
soon after its appearance; the weak state is characteristic of a

vortex before its destruction. Destroying a vortex produces
its disintegration into vortices of similar orientation and
lower ranges. The disintegration process generates a direct A. Basic definitions of the model
cascade of energy transfer similar to the turbulent cascade
(Fig. 3.

Interactions between vortices are governed by repulsion Scaling properties of the turbulence govern the hierarchi-
(attraction of antiparallel(paralle) electric currents gener- cal construction of the model. It is assumed that the vortices
ated by these vortices in the magnetic field. Two basic kind®f different scales appear in hierarchically organized cells
of interaction between vortices of same range are considere(fig. 4); if two vortices of levell occupy one cell of higher

Ill. MODEL DESCRIPTION

Properties of vortices
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- ™ distinguished: coupling of two adjacent vortices and cou-
pling of two isolated vortices. The coupling of adjacent vor-
tices leads to a construction of the inverse cascade similar to
the one described if20,21,23-25,2] The coupling of iso-
lated vortices was not considered in previous models of in-
verse cascade; it reflects the possible displacement of iso-
lated vortices in the liquid.

L _J Annihilation of vortices.Two adjacent vortices with op-
posite orientations may annihilate, which leads to the trans-
formation of strong living states into weak ones and to the
disappearance of weak vortic€Big. 3). Disappearance of

vortices by annihilation is not equivalent to disintegration of
vortices and does not contribute to the appearance of new
vortices of lower ranges.
Recapitulation
Let us now recapitulate how vortices appear and disap-
pear.
Appearance of new vorticeShere are therefore three dif-

ferent causes for appearance of new vortices of a given range
o o o I: generation by the permanent turbulent motion, coupling of
vortices of lower levels, and disintegration of vortices of

higher levels.
é&éﬁé&é&é&é& (a) It is assumed that the turbulence generates continu-

ously new vortices at all levels of the system. This contribu-
FIG. 4. Hierarchical multiscale structure of cells. tion to the appearance probability does not depend on the
orientation of the appearing vortérirror symmetry of the

level (I+1), these vortices are referred to as adjacent. If generation mechanism _

vortex has no adjacent vortex, it is referred to as isolated (b) Coupling of two strong vortices of levélleads to the
(Fig. 2. According to the physical assumptions summarizecPPearance of a new vortex at level 1. Globally, the cou-

in the previous section, each vortex has an orientatishor ~ Pling process produces an inverse cascade from lower to
2nd) which remains unchanged as long as it exists in eithepigher levels of the system. _ _

living state(strong or weak(Fig. 2). New vortices appearin _ (¢) Weak vortices of level higher thanwhich have dis-

the strong living statedenoted ag+] vortices, and the mtegrated at tlme—_l contribute to the appearance of new
strong living state randomly transfers into the weak living vortices of levell at timet. Globally, the disintegration pro-
state(denoted a$—]). Only vortices in the weak living state C€SS produces a direct cascade from higher to lower levels of

can be disintegrated. the system. . .
Disappearing of vorticesThere are therefore three differ-
Relaxing of vortices ent ways for vortices to disappear at a given level in the

model (Fig. 3).

(a) Disintegration of weak vortices. New vortices appear
at lower levels at the next time moment.

(b) Coupling of strong vortices of levdl leads to the
disappearing of the coupling vortices at levednd to the

Weak vortices can be randomly disintegrated at each timeppearing of new vortices at the higher leyste supra
moment. A vortex of level disintegrating at timet(~1) (c) Annihilation of a weak vortex with an adjacent one of
disappears at this level and contributes to the appearance thie opposite orientation. No new vortex appears in this case.
time t of new vortices at all levels lower thdn(Fig. 3).

The process of transformation of the living state from
strong to weak is referred to as the relaxing pro¢€ss. 2).

Disintegration of vortices

Generation of the magnetic field

Interactions of vortices We choose the intensity of the secondary magnetic field

As said above, one assumes two kinds of interaction beas & global parameter characterizing the evolution of the
tween vortices of same level: Coup“ng of Strong VorticesmOdel. All vortices eXiSting at timecontribute addltlvely to
with the same orientation, and annihilation of adjacent vorthe intensity of the secondary magnetic field generated at this
tices with opposite orientation&ig. 3. time. The contribution of a vortex increases with its level.

Coup"ng of vorticesTwo Strong vortices of levdl may The Sign of the contribution depends on the orientation of the
be coupled if they have similar orientations; the probabilityvortex: vortices of the first orientation make a positive con-
of coupling of two vortices is different depending on wethertribution; vortices of the second orientation a negative one.
they are adjacent or not. The coupling of vortices leads to a
transition from level to levell + 1: the two coupled vortices
of levell disappear, and a new vortex of the same orientation For computational reasons, it is assumed that all the pro-
appears at level+1 (Fig. 3. Two kinds of coupling are cesses described above take place consecutively in time dur-

B. Temporal evolution of the system
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Adjacent cyclones with same orientations Strong pairs of adjacent cyclones
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\ P ¥ tions. The arrows denote possible transformations of vortices with
GD @:j O@ the probability indicated nearby. For vortices of leljghe value of
Sis equal to the probability of annihilatio8(l).
FIG. 5. Relaxing of{ +] vortices. The arrows denote possible
transformations of vortices with the probability indicated nearby.the transition probabilities possible for the given state. The
For vortices of level, the value ofD is equal to the probability of ~state of pairs of adjacent elements which are not displayed on
relaxingD(l). Fig. 5 does not change during this relaxing time substep.

i FIG. 6. Annihilation of adjacent vortices with opposite orienta-

ing one time step of the modeling. The following sequence Annihilation of mixed pairs
of state transformations at leviels assumed during one time

step: relaxing of vortices; annihilation of adjacent vorticesgjhjjate each other with probabili§(l). This probability
with opposite orientations; disintegration of vortices; directig ~onstant in time. does not depend on the statdsor [—]

cascade of appearance of new vortices; inverse cascade Gfihe yortices, and respects the higher stability of vortices of
appearance of new vortices; disappearing of coupling Vort'higher levels:

ces.
We give below a detailed description of these transforma- S(=Syo', o<1. (2
tions, expliciting quantitatively the features of the model
gualitatively described earlier. For strong vortices the annihilation means transition to the
weak state, for weak vortices it means the disappearing of
Relaxing of [+] vortices the vortex(Fig. 3). Possible transformations of a pair of ad-
The relaxing process is the transformation of strong voracent vortices with opposite orientations are presented on
tices into weak oneFig. 3. A [+] vortex of levell trans-  Fig- 6. The kinds of pairs which are not displayed on Fig. 6
forms into a[—] vortex of levell with probabilityD(1). This ~ rémain unchanged during this annihilation substep.
probability does not depend on the orientation of the vortex,
and does not change with time. It is expressed as follows:

Two adjacent vortices of levélwith opposite orientations

Disintegration of [—] vortices

Disintegration of weak vortices of levélinto vortices of
D(1)=Dod, 6<1. (1) lower levels results in the disappearing [6f] vortices at
) ) ) _ ~levell and appearing of new vortices with the same orienta-
The scaling relationship between the relaxing probabilitytion at all levels smaller thah (Fig. 3). Weak vortices of

D(l) and the level of the vortex accounts for the property of |evel| disappear with a probabilitg(1) invariant in time and
vortices of higher levels to keep longer their strong state; thendependent of the vortices orientation:

relaxing probabilityD(l) is indeed inversely proportional to

the average lifetime of &+ ] vortex of levell. All possible B()=Bob'. ®)
state transitions of a pair of adjacent elements are presented

on Fig. 5. Each arrow indicates a possible transition of a paiiThe lifetime of weak vortices is inversely proportional to the
between two states, with the corresponding probability indi-disappearing probability3(l). Larger scale vortices have a
cated nearby. A given pair keeps its current state with donger lifetime, and formula3) accounts for this scaling
probability which is the complement to 1 of the sum of all property.
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FIG. 8. Appearance of new vortices. The arrows denote possible
FIG. 7. Disintegration of —] vortices. The arrows denote pos- transformations of vortices with the probability indicated nearby. If
sible transformations of vortices with the probability indicated the direct cascade of appearance is considered, then for vortices of
nearby. For vortices of levé| the value ofB is equal to the prob- levell at timet, values ofA; (i=1,2) are equal to the appearance
ability of disintegrationg(l). probabilitiesA;(1,t); the valueA is equal toA(l,t). If the inverse
cascade of appearance is considered, then for vortices of llevel
All possible state transitions for a pair of adjacent ele-at timet, values ofA; (i=1,2) are equal to the appearance prob-
ments at this disintegration substep are presented in Fig. @bilities a;(l,t)/[a;(l,t)+ay(l,t)]; the valueA is equal toay(l,t)
The state of the pairs not present in Fig. 7 remains un-ay(l,t).
changed.

Densities of disintegrating vortices oth direction at  the disintegration process. Parametermndq determine the
level | and timet are scaling relationships between the different levels. To obtain
_ - an effective cascade effect the scaling paramgtatust be
fiD=pi (LUAD), @ chosen larger than unity.
The probability to obtain a neW+] vortex at levell,

where p; (I,t) denotes the density of weak vortices idi : . _ .
pi (1.) y regardless to its orientation, is then taken as

orientation {=1,2) atl level and timet.

Direct cascade of appearance A(l,t)y=1—exp —[E1(l,t) + Ex(I,t)]}. (6)

Direct cascade of appearance of new vortices is generated
by two processes: the appearance regularly generated by the The number of vortices dth direction among all the new
turbulence, and the appearance due to the disintegration @brtices of levell appearing at timet is proportional to
[-] vortices of higher levels at the previous time momentE;(l,t); in other words, the relative density of new vortices
(t—1). The helicity flow of rangd andith orientation, at of ith direction is
time t, is determined by a functiondt;(l,t) expressed as
follows: il (1)

! Y= E D+ 0D

E,(1,t)=Epe'+F, eri()\,t)q“', (5)
=1+

ALY, i=12. (7

All possible state transitions for a pair of adjacent ele-
whereE, characterizes the efficiency of the turbulence, thements corresponding to this substep are presented in Fig. 8.
same for both orientations,(\,t) (i=1,2) denotes the den- The state of other pairs does not change during this substep.
sities of vortices of levek disintegrated at the previous time On the plotA denotes the appearance probabifi},t) and
moment (—1) [Eq. (4)]. F, characterizes the intensity of A; probabilitiesA;(l,t), (i=1,2).
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Inverse cascade of appearance TABLE I. Common parameters of secondary magnetic field

There are two cases of coupling of strong vortices of theleneration for Figs. 9-13.
same level (Fig. 3): two adjacent vortices with similar ori-
entatpn; couple Wlt'h probablllty([), two |so[a}ted vortices Parameters of relaxing Dy 001
with similar orientations couple with probability(l). Cou- L

. A . . - Parameters of annihilation Sy 0.25
pling probabilities are invariant in time, do not depend on the

orientation of the coupling vortices, and increase with theParameters of disintegration Po 0.01

Number of levels L 13

— 4
level | as follows: Parqmeters of turbulence Eq 10

Scaling parametersy(q) 15

a(l)= OloMI, (8) Scaling parameterss(o,b,e,9, 1) 0.9

y() =" ©) _ . . .
L. The disappearance of coupling vortices at a given level

Cyclones coupling at levélmake a new vortex appear at the has a physical meaning similar to that of the defects healing
superior levell +1. The appearance probability of a new mechanism described if24]: a transition of perturbation
vortex of levell + 1 depends on the density of coupling pairs from lower to higher levels of the system.
as follows:

Intensity of the secondary magnetic field

_pt++ + 2
3i(1+ 10 =Pi (LY a(h+P7(1LO (D), (10 All vortices of levell existing at timet make a similar

ontribution to the intensity of the secondary magnetic field.

s announced in Sec. I, the contribution of vortices of the
first orientation is considered as positive, the contribution of
vortices of the second orientation negative. The secondary

time t. L o
All possible state transitions for a pair of adjacent eIe—lrg\?vg;e“C field generated at timtés thus expressed as fol-

ments at this substep of the computation are presented in Fig.

8. Now A denotes the total probability of appearing of a new L

vortex, i.e., a;(l,t)+ay(l,t); A, denotesa;(l,t)/[a,(l,t) H(t)=Ho>, (p1(1,0)—pa(l, ), (11)
+a,(l,t)] and represents the relative density of vortices of =1

;tSbgzleepn.t(zitli)nz)among all the new vortices appearing at thISWherepi(l ,t) denotes the density of vortices ah orienta-

tion at levell at timet.

wherei=1,2 denotes again the orientation of the appearin
vortex; P;; *(1,t) andP;"(I,t) denote respectively the densi-
ties of adjacent and isolated active vortices of rahgst

Disappearing of f+] vortices

. . . IV. MODEL BEHAVIOR
Strong vortices of level coupling at timet generate a

new vortex at level +1 (as detailed aboyeand disappear The model displays a very complex behavior. In the

from levell (Fig. 3). The density of coupling pairs disappear- present work we will focus on the features which can be

ing at levell is given by formula(10). Cyclones of the high- considered as symmetry breakings and might contribute to
est levelL of the system cannot generate a vortex of superiothe understanding of the origin of the large scale geomag-
level, therefore there is no disappearance at the highest leveettic field and of the occurrence of its polarity reversals.

80 T T T T T T T T T
60 e
40._
| ‘\
or | “ FIG. 9. Temporal evolution of
} the generated magnetic field inten-
H(t) of sity when the amplification effect
of both the direct and inverse cas-
s cades is zero:Fy=ay=7y,=0.
B See other parameters of the mod-
eling in Table I.
_40_
-60[- —
_800 015 1I 1 I5 é 2i5 ; 3I5 «It 4{5 5

Time
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H(t)

FIG. 10. Temporal evolution
of the generated magnetic field in-
tensity, when the amplification ef-
fect of the direct cascade is zero
300 . , r . ! , ! , , (Fo=0), for different parameters

' ' : : : ’ : : : of the inverse cascadef@) a
: e : » 5 : : =0.5, y0=0.5; (b) @=0.99, ¥,
200+ R TR 4 ~0.99. See other parameters of
: : : : : : : : the modeling in Table I.
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A. Choice of parameters larger[Dy=10"2, Bo=10"? see Eqgs(1) and(3)].

We have introduced quite general equations to describe W_e have no reason to consider diffe_rent durations for the
the evolution of the system; this approach allows us to keepVo lifestates(strong and weakof vortices; therefore we
open a wide field of possible applications of the model.take Do= B [Egs.(1) and(3)].

However in the present paper we consider only a few free All the model parameters are then fixed, except for the
parameters, the majority of them being fixézke Table).  ones characterizing the coupling probabiljty,, and vy,

We assume that the dynamics of vortices is characterized bigs.(8) and(9)] and the intensity of the direct cascdde,

the same scaling for all the involved procesgesupling, Eq.(5)]. In the following we investigate the model behavior
disintegration, relaxing, .), i.e., by the same value of pa- in function of the strength of the direct and inverse cascades
rametersé,o,b,e,9,u. The lifetime of vortices increases mechanisms.

with their dimension, i.e., with the scale level; we therefore |n short, for the aim of the present study, we keep only
take the common value of the above scaling parameter, salree free parameter$ §, ey, o). It will remain possible to

lﬂ, less than Unity. And, as We. do not want too Iarge a dif'extend the Study by Varying other parameters_
ference between two consecutive levels, we téke0.9. On

the other hand, the contribution of the disintegrated vortices
to the direct cascade, as well as the contribution of all vorti-
ces to the magnetic field [Eq. (11)] increase with their size. ~ We are interested in the possibility for the system to pro-
So, we takeg= y=1.5. duce large scale symmetry breakings. These symmetry
We also consider that the influence of direct injection ofbreakings will be characterized by two features: the duration
turbulence is small in regard to the lifetime of vortices; theof the intervals of constant polarity of the secondary mag-
value of Ey [Eq. (5)], characterizing the appearance fre- netic field, and the intensity of this field. We will also com-
quency of turbulent vortices, is taken as fQwhereas the pare the average duration of these constant polarity intervals
parameter governing the lifetime is two orders of magnitudewith the characteristic time needed to change polarity.

B. Symmetry breaking
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FIG. 11. Temporal evolution of the generated magnetic field intensity, when the amplification effect of inverse cascadedg zero (
=vy,=0), for different parameters of the direct casca@e:F,=1; (b) F;=20. See other parameters of the modeling in Table I.

The effect of the inverse cascade mined by the lifetime of the highest range vortices. It is thus

Let us first investigate the effect of the inverse cascade offiPOssible to obtain long intervals of constant polarity, even
if the coupling probabilities are close to unitifig. 1Qb)].

appearance alorighere is no direct cascade of appearance. . ) ; T
PP i PP Remark: No physical unit has been introdu@egriori in

F,=0 in Eq. (5)]. If the coupling probabilitiesxy; and . .
[qus (SI) an(gi (‘E’))i]are close tlé)pzlergo pthere :';llrcla on?y sma)I/IOandour abstract model. But, to calibrate the time scale, one can
i ' onsider that the mean duration of the polarity intervals of

short-duration symmetry breakings related to the randonf’ ) . X
fluctuations of the turbulent flowFig. 9. When coupling Fig. 1.2.'5’ say, ¥10° yr;.and, to calibrate .thH (ordinatg .
probabilities ¢y and vy, increase, the amplitudes and dura- axis, it is enough to clon_5|der that t?e maximum value which
tions of the symmetry breakings incred$ég. 10@)]. The H canreachkio==x) is, say, 10° T.

maximum value of the magnetic field intensity is determined
by the total volume of the system and the value of the scaling
parametetry. It may be reached if the coupling probabilities  Let us now investigate the effect of the direct cascade
are large enougfFig. 10b)]. The average duration of con- alone; there is no inverse cascade and the coupling probabili-
stant polarity intervals cannot exceed a maximal value detetties ay and yg are zero. As the disintegration parameftgr

The effects of the direct cascade
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FIG. 12. Temporal evolution of the generated magnetic field intensity for a two-side cascade(effisch zoom of the first part d@).
Parameters of cascadds), (b) F;=0.5, ¢;=0.1, y,=0.01; (c) Fy=0.3, ¢(=0.2, y,=0.01. See other parameters of the modeling in
Table I.

grows[Eq. (5)], amplitudes and durations of the symmetry of F, are considered, only low values of the magnetic field
breakings increadeompare Fig. 9 and Fig. 14)]. Maximal  intensity can be achieved, and the durations of polarity inter-
values of the magnetic field intensity are achieved for largeyals are of the same order as the polarity charigeeersals
values of the disintegration parameteg [Fig. 11(b)]; the  durations.
average duration of constant polarity intervals is of the same
order as in the case of the strong pure inverse cascaie
Figs. 1Gb) and 11b)]. Thus, in the case of a pure direct
cascade alone, it is also impossible to obtain long lived sym- In contrast with the cases of one-sided cascades consid-
metry breakings. ered above, the interaction of both inverse and direct cas-
The physical meaning of a large value of the disintegra-cades produces strong and long symmetry breakings for rela-
tion parameteF is arguable; in this case indeed an unrea-tively small values of the coupling and disintegration
sonable increase of the helicity flow appears when high levgparameterdFig. 12a)]. The duration of constant polarity
vortices are destroyed; conditions of such an increase shouldtervals is no longer directly limited by the lifetime of the
be discussed for each particular system. If reasonable valugsrtices, and can be arbitrary largeig. 12c)]. The maxi-

The up and down cascade effect
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10000 — model a dynamo modglin the case of one-sided cascades
working alone(direct or inversg this amplification needs
large values of the cascades parameteatsy, or Fg). In the

case of an up and down cascade, only moderate values of
these parameters are needed to obtain a large scale perturba-
tion from small values of the turbulent intensity.

The comparison of the behavior of our model with the
behavior of the actual geomagnetic field is certainly exces-
sive, at the present time, since our model is not a self-excited
dynamo model A primary fieltH, is given, and we look at
the behavior of the secondary figt{t) generated fronH,,
given by Eq.(11). H(t) is strictly the amount of secondary
field generated at timeduring a time step; it would be the
secondary field itself in the limit case of strong diffusion; the
amplification H(t)/H, [Eq. (11)] is meaningless since no
reaction ofH on the flow is considered. But the multiscale

0.0 2.0 40 6.0 8.0 turbulent mechanism studied here can be considered as an
Duration of chrons (in average times) ingredient of a self-excited dynamo model, as[20], and

FIG. 13. The cumulative number of chrons vs its duration for (€ Next step of our work will indeed be to close the system
real data(1), two-side cascade modelir@), and pure direct cas- PY introducing diffusion and reaction of the magnetic field
cade modeling3). All curves are approximated by the exponential ON the flow. The behavior of the submodel considered here,
law (dashed straight lingswith similar slopesi(1) 1.05,(2) 0.79, ~ With its large scale and long lived symmetry breakings, will
and(3) 0.83. be retrieved in the complete model.

As said in the Introduction, the magnetic field of the Earth
has reversed a large number of times during the geological
history. The durations of the polarity intervalshrong are

mum possible value of the intensity of the secondary field isnuch larger than the durations of the reversals. The distribu-

reached. The polarity reversals are completed in a very shotion of the chrons lengths obeys an exponential [&8/7]

time compared with the duration of the corresponding con{Fig. 13, curve L During polarity intervals, the geomagnetic

stant polarity interval§Fig. 12b)]. field presents complex time variations, with different time
scales(paleomagnetic data essentially show the variation of
the dipolar field. As shown in Sec. IV C, the secondary field

C. Properties of polarity intervals and reversals generated by our model shares all these features. In future

. . : work we will further investigate the characteristics of the

If both casca_des are operating, th_ere is a domain of P ariations of the model during polarity intervals. It has been
_rameters for which h|g_h range long I|_ved Symmet_fy l?rea?k'shown that the exponential distribution of chrons lengths is
ings are observed, as illustrated by '.:'g'. 12. The d'St.”bUt'o%o rough a feature to really characterize the different kinds
Of. the lengths of the constant polarity intervals, ‘.Nh'.Ch WE ot symmetry breaking. It is more promising to study the
mlgn(:zl)l(p%hr:grr:tsia?lisig;n fgec%?\s/g ;f éﬁ? agi?rzqi;%nt?gr? dﬂzﬁ; Srelation _between durations of chr_on_s and durations of rever-

. I : . sals (which appears to be specific in the case of the actual
also be obtained in the case of a direct cascade dléige geomagnetic fieldin order to get a measure of the different
13, curve 3 - , A<inds of symmetry breaking.

It is also to be stressed that complex variations of the fiel Independently of these comparisons with an actual plan-

g?neralted':py tr11e mod(_el atrhe observe? (tjhunng t(:orlls;alrlé p_?_:?”ytary magnetic field, we think that our simplistic hierarchical
intervals (Fig. 13, as in the case of the actual field. The model of turbulence is worth considering by itself. In par-

detaile_d characteristics of these variations can be changed t?%ular the result that the system can present large scale and
changing the model parameters. y

long lived symmetry breakingén the form of periods of
constant sign of a parametét characterizing some large

scale organization of the systemmight be of general inter-
V. DISCUSSION AND CONCLUSIONS est.

L L1kl

1000

100

Cumulative numbers of chrons

10

Large scale symmetry breakings occur in various physical
systems. In most geodynamo models, the=ffect is sup-
posed asymmetria priori, the lack of mirror symmetry be-
ing attributed to Earth’s rotation. The present work describes
a way to obtain large scale and long lived symmetry break- The present work was completed in IPG, Paris while E.
ings in a symmetric model of multiscale turbulent vortices. ItBlanter and M. Shnirman received a scientist visitation grant
has been shown that this kind of symmetry breaking resultin the form of a IPGP/MITPAN Cooperation Agreement.
from an up and down cascade of energy transfer; it cannot b€&he present work was also supported by the Russian Foun-
obtained in the case of a direct cascade alone, neither in ttdation of Fundamental Researtfroject No. 96-05-65710
case of an inverse cascade alone. The cascade mechaniamd by the INTAS FoundatiofProject No. INTAS-93-457-
can amplify a primary magnetic fieldhis is why we call our  ext).
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