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Up and down cascade in a dynamo model: Spontaneous symmetry breaking
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A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a
primary field by a flow made of turbulent helical vortices~cyclones! of different ranges, and amplified by an
up and down cascade mechanism. The model displays symmetry breakings of different ranges although the
system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the
system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up
and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the
case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of
the secondary field~called chrons of the geomagnetic field!. Long intervals of constant polarity with quick
reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the
generated magnetic field during intervals of constant polarity are also observed in the model. Possible appli-
cations of the model to geodynamo modeling and various directions of future investigation are briefly dis-
cussed.@S1063-651X~99!10605-6#

PACS number~s!: 05.40.2a, 91.25.Cw, 47.65.1a
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I. INTRODUCTION

Current observations at the surface of the Earth show
there exists a geomagnetic field that is grossly the field o
dipole located at the Earth’s center and inclined by 11°~to-
day! on the Earth’s rotation axis. The difference between
observed magnetic field and the dipole one—the nondip
field—is about 10% in relative root mean square val
There exist three kinds of observations that give us inform
tion about the time evolution of the geomagnetic field: dir
measurements, which do not go back beyond three centu
@1#, archeomagnetic data~the past magnetic field is fossilize
in artifacts like baked clays!, and paleomagnetic data~the
ancient field is fossilized in sedimentary and volcan
rocks!. Direct measurements show that the time constan
the nondipole field is of the order of two hundred years@2#;
the time constant of the equatorial part of the dipole, as
ferred from archeomagnetic data, is rather of the order o
few hundreds years@3#.

The present paper is devoted to the behavior of the g
magnetic field over geological times; time constants of a f
hundred years are smoothed out. Paleomagnetic data
show that, when averaged on a few thousands of years
geomagnetic field is indeed the field of an axial dipole~in
agreement of the above time constant!, i.e., aligned along the
rotation axis. But, when considering longer time spans,
millions to hundreds of millions of years, it comes out th
the polarity of this axial dipole changes in time, going fro
North-South to South-North and vice versa. These are
so-called reversals of the geomagnetic field. Periods betw
reversals are called polarity intervals, or chrons. The dura
of polarity intervals have changed during geological tim
@4#. For example, since 80 million years~Myr! ago, it has~in
average! decreased from about 1 Myr to 0.2 Myr. The dur
tion of the reversals@typically 4 or 5 thousands of year
~kyr!# is quite short compared to the duration of the polar
PRE 591063-651X/99/59~5!/5112~12!/$15.00
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intervals. Sometimes, very long polarity intervals occur,
the cretaceous superchron, which extends from 118 to
Myr before present. As for the intensity of the dipole,
displays strong temporal variations during a chron.

In the present paper we will focus on the reversals proc
and the succession of polarity intervals.

The origin of the Earth’s magnetic field is probably th
most outstanding problem of geophysics. Some basic p
erties of the core of the Earth may be evaluated: the cond
tivity of the core iron is about 106 (V m)21, the velocity of
the flow stirring the fluid is of the order of 1023 ms21, as
inferred from the temporal~secular! variation of the geomag-
netic field measured at the Earth’s surface; the correspon
magnetic Reynolds number is;102. Due, in particular, to
this high value, it is generally believed that the origin of t
Earth’s magnetic field is an autoexcited dynamo proces
work in the metallic fluid core of the planet.

A considerable amount of work has been devoted to g
dynamo theory. A well-known approach consists in the
calledav anda2 dynamo models; in a somewhat loose w
we will refer to this theory in our model. The magnetic fie
inside the core is the sum of a poloidal ingredient, with
radial component, whose field lines escape the core, and
toroidal ingredient whose field lines are horizontal and wh
is then confined inside the core. A differential rotation of t
core layers, attributed to convection and transfer of angu
momentum, is called for to generate—through the wind
of the magnetic field lines around the rotation axis—a tor
dal magnetic field from a poloidal one. The mechanism
calledv effect. Unfortunately it cannot work in the revers
way. It is resorted to the so calleda effect @5–7#: a turbulent
small scale motion, nonmirror symmetric, generates,
shown by a mean field theory@7#, a poloidal ingredient from
a toroidal one, and conversely. It is important to emphas
that the turbulent motion must be nonmirror symmetric,
5112 ©1999 The American Physical Society
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helicity a52uW •¹W 3uW , averaged in a certain large scale d
main, is not zero. Figure 1 shows schematically the effec
an elementary helical motion~a cyclone, right-handed in th
figure case,a,0) on a large scale magnetic field, th
mechanism at the base ofa effect. As a result, a flow mad
of a large scale differential rotation and a small scale tur
lent helical flow can maintain the magnetic field again
ohmic dissipation; this is theav dynamo. But, as said
above, thea effect can as well build a toroidal ingredien
from a poloidal one, and can work alone; this is thea2

dynamo. Energy is provided by the cooling of the Earth a
the corresponding increase of the solid inner core, giv
raise to thermal or/and compositional convection. In nea
axisymmetricav dynamos@8–13# a(xW ) is given, xW being
the current point in the core. For example, it is often assum
that a;cosQ, Q being the colatitude; helicity has differen
signs in the two hemispheres.

Of course, instead of computing these parametrical m
els, in which only some global effect of the mechanisms
work is considered, one can try to solve numerically direc
the magnetohydrodynamic equations. Indeed, impressive
merical codes have been recently built which have giv
spectacular results@14,15#. In particular, reversals are ob
served, although their mechanism and meaning are not
well understood. Nevertheless these computations, how
complex, cannot be performed for realistic values of the
volved parameters, in particular the viscosity. The effect
viscosity in the rotating core is characterized by the Ekm
numberE5n/2Va2, n being the kinematic viscosity of th
core fluid, V the Earth’s rotation,a the core radius. The
value of E for the Earth’s core is probably typically 10215,
whereas the~hyperviscous! numerical models cannot hand
Ekman numbers smaller than 1026. It is possible that it is not
necessary to go down to values ofE as small as 10215 to
reach the asymptotic regime of the numerical models. In
case, due to this small viscosity, the Reynolds number of
core fluid is of the order of 108, and a turbulent flow is
expected which cannot be described by the numerical co

In the present work, instead of the small scale turbule
postulated inav anda2 dynamos, we will consider a fully
developed turbulence, or rather a simplified model of fu
developed turbulence in the form of a multiscale helical m
tion. This multiscale motion is assumed to generate, in p
ence of a primary large scale magnetic field, a second
large scale magnetic field. Multiscale turbulence is ass
ated with a direct cascade of energy@16–19#; therefore a
direct cascade is part of the present model of dynamo. On

FIG. 1. A flux rope twisted into aV by a right handed motion
The loop is accompanied by an electric current antiparallel to
magnetic field~after Krause and Ra¨dler, Ref.@7#!.
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other hand, scaling properties of the turbulence govern
hierarchical structure of the model. An inverse cascade
sults of the generation of structures of higher ranges thro
the electromagnetic interaction of lower ranges structure

Such a hierarchical model of dynamo, with an inver
cascade as a main ingredient~but without direct cascade an
with a weakly nonmirror symmetric generation mechanism!,
was already investigated in@20# where differential rotation
was also considered to build a kind ofa8v dynamo, al-
though a very schematic one. The same kind of hierarch
structure and inverse cascade mechanism had been ap
previously to modeling seismicity and crack propagati
@21–27#.

Physical assumptions determining the general const
tion of the model are presented in Sec. II. Section III co
tains a general description of the model; basic notions
definitions are given in Sec. III A and Sec. III B contains t
complete description of all the steps of the system evoluti
Properties and conditions for symmetry breaking are inv
tigated in Sec. IV. Possible applications and general dir
tions of future investigations are discussed in Sec. V.

II. BASIC NOTIONS

We consider, as said above, a multiscale turbulent mo
in a conducting fluid pervaded by a primary magnetic fie
Our model, rather abstract, is made of helical vortices~or
cyclones! of different embedded scales; a vortex of level
occupies a cell of levell of a hierarchically organized system
of cells ~see Sec. 3 and Fig. 2!. We therefore consider local
ized vortices interacting together. Interaction of localiz
vortices, especially point vortices, in fluid dynamics a
magnetohydrodynamics, is a time honored subject. Disc
vortex representations are described in@28–30#. These rep-

e

FIG. 2. Properties of vortices.
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5114 PRE 59BLANTER, NARTEAU, SHNIRMAN, AND LE MOUËL
resentations give raise to an elegant Hamiltonian formal
@31–33#. The formalism we adopt here is more phenome
logical, with a less strong mathematical and physical ba
but we systematically resort to renormalization methods
derive the general properties of our model. We attribute
teractions between vortices mainly to electromagnetic
fects, although keeping again a phenomenological poin
view. The study of the magnetohydrodynamics~MHD! of a
helical flow can be found in@34#; fully developed MHD
turbulence has been considered in@35,36#.

Let us now describe the general features of our mo
The helical vortices~cyclones! can be right-handed or left
handed, we will say can have two orientations, 1 and 2~our
vortices are not at all 2D vortices; they are simplified rep
sentations of 3D cyclonic structures!. The interaction of an
helical motion with the existing magnetic field produces
electric current parallel or antiparallel to the applied prima
magnetic field, depending on its orientation@5# ~see Fig. 1!;
a secondary magnetic field results. Let us say that the v
ces of the first orientation give a positive contribution to t
magnetic field, the vortices of the second orientation a ne
tive one. Globally, the intensity and sign of the second
magnetic field depend on the number, scales and orienta
of the vortices involved in the turbulent motion.

It is assumed that the turbulence generates vortice
both orientations, and sustains their existence during a
dom time interval. A mirror symmetry of the turbulence ge
eration is postulated: vortices of orientation 1 and vortices
orientation 2 appear with the same probability. To resp
this symmetry, the evolution of vortices of both orientatio
is ruled by the same parameters of the model. Inav or a2

models, as said earlier, it is assumed a priori that the tu
lence is not mirror-symmetric, and the expression of the
licity is given ~e.g,a;cosQ). The lack of symmetry and the
change of sign ofa from an hemisphere to the other a
attributed in these models to the Earth’s rotation. Nevert
less, ‘‘insofar as homogeneous isotropic turbulence exist
nature, it is difficult to find convincing reasons for such tu
bulence to be nonmirror symmetric’’@7#. In the present
model, the generation of turbulence is supposed mirror s
metric, but spontaneous symmetry breakings will occ
leading to large scale lacks of mirror symmetry. This is t
very subject of the paper.

The temporal evolution of a vortex is governed by a co
tinuously increasing instability which eventually leads to
destruction. The increase of the vortices instability can
viewed as a relaxing process in the course of which the v
tices properties change continuously; for the sake of simp
ity, we introduce a discretization of the relaxing process: t
living states of the vortices~strong and weak! are considered
~Fig. 2!. The strong living state is characteristic of a vort
soon after its appearance; the weak state is characteristic
vortex before its destruction. Destroying a vortex produ
its disintegration into vortices of similar orientation an
lower ranges. The disintegration process generates a d
cascade of energy transfer similar to the turbulent casc
~Fig. 3!.

Interactions between vortices are governed by repuls
~attraction! of antiparallel~parallel! electric currents gener
ated by these vortices in the magnetic field. Two basic ki
of interaction between vortices of same range are conside
m
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vortices with the same orientation attract one another and
couple; vortices with opposite orientation located nearby o
another can annihilate each other~Fig. 3!. The coupling pro-
cess transforms two coupling vortices into one vortex
higher range and generates an inverse cascade. The an
lation process amplifies the instability of interacting vortice
it changes strong living states into weak living states,
destroys weak vortices~Fig. 3!.

The evolution of the vortices governs the evolution of t
secondary magnetic field which they generate. The sign
the secondary magnetic field is determined mainly by
orientation of the vortices of high ranges. When there i
balance between the two opposite orientations of vortice
high ranges, the intensity of the secondary magnetic fiel
close to zero. A sufficient symmetry breaking in the vortic
orientations is needed to generate a magnetic field wit
significantly nonzero intensity. This symmetry breaking mu
last long enough, and quick transitions from one polarity
the opposite one must occur, if we wish to mimic the beh
ior of the geomagnetic field. The problem of the generat
of a large scale secondary magnetic field with polarity int
vals and reversals reduces to the investigation of large s
symmetry breakings in the evolution of the vortices.

III. MODEL DESCRIPTION

A. Basic definitions of the model

Properties of vortices

Scaling properties of the turbulence govern the hierarc
cal construction of the model. It is assumed that the vorti
of different scales appear in hierarchically organized ce
~Fig. 4!; if two vortices of levell occupy one cell of higher

FIG. 3. Basic transformations of vortices.
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PRE 59 5115UP AND DOWN CASCADE IN A DYNAMO MODEL: . . .
level (l 11), these vortices are referred to as adjacent.
vortex has no adjacent vortex, it is referred to as isola
~Fig. 2!. According to the physical assumptions summariz
in the previous section, each vortex has an orientation~1st or
2nd! which remains unchanged as long as it exists in eit
living state~strong or weak! ~Fig. 2!. New vortices appear in
the strong living state~denoted as@1# vortices!, and the
strong living state randomly transfers into the weak livi
state~denoted as@–#!. Only vortices in the weak living state
can be disintegrated.

Relaxing of vortices

The process of transformation of the living state fro
strong to weak is referred to as the relaxing process~Fig. 2!.

Disintegration of vortices

Weak vortices can be randomly disintegrated at each t
moment. A vortex of levell disintegrating at time (t21)
disappears at this level and contributes to the appearan
time t of new vortices at all levels lower thanl ~Fig. 3!.

Interactions of vortices

As said above, one assumes two kinds of interaction
tween vortices of same level: coupling of strong vortic
with the same orientation, and annihilation of adjacent v
tices with opposite orientations~Fig. 3!.

Coupling of vortices.Two strong vortices of levell may
be coupled if they have similar orientations; the probabi
of coupling of two vortices is different depending on weth
they are adjacent or not. The coupling of vortices leads t
transition from levell to level l 11: the two coupled vortices
of level l disappear, and a new vortex of the same orienta
appears at levell 11 ~Fig. 3!. Two kinds of coupling are

FIG. 4. Hierarchical multiscale structure of cells.
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distinguished: coupling of two adjacent vortices and co
pling of two isolated vortices. The coupling of adjacent vo
tices leads to a construction of the inverse cascade simila
the one described in@20,21,23–25,27#. The coupling of iso-
lated vortices was not considered in previous models of
verse cascade; it reflects the possible displacement of
lated vortices in the liquid.

Annihilation of vortices.Two adjacent vortices with op
posite orientations may annihilate, which leads to the tra
formation of strong living states into weak ones and to
disappearance of weak vortices~Fig. 3!. Disappearance o
vortices by annihilation is not equivalent to disintegration
vortices and does not contribute to the appearance of
vortices of lower ranges.

Recapitulation

Let us now recapitulate how vortices appear and dis
pear.

Appearance of new vortices. There are therefore three dif
ferent causes for appearance of new vortices of a given ra
l: generation by the permanent turbulent motion, coupling
vortices of lower levels, and disintegration of vortices
higher levels.

~a! It is assumed that the turbulence generates cont
ously new vortices at all levels of the system. This contrib
tion to the appearance probability does not depend on
orientation of the appearing vortex~mirror symmetry of the
generation mechanism!.

~b! Coupling of two strong vortices of levell leads to the
appearance of a new vortex at levell 11. Globally, the cou-
pling process produces an inverse cascade from lowe
higher levels of the system.

~c! Weak vortices of level higher thanl which have dis-
integrated at timet21 contribute to the appearance of ne
vortices of levell at time t. Globally, the disintegration pro
cess produces a direct cascade from higher to lower leve
the system.

Disappearing of vortices. There are therefore three differ
ent ways for vortices to disappear at a given level in
model ~Fig. 3!.

~a! Disintegration of weak vortices. New vortices appe
at lower levels at the next time moment.

~b! Coupling of strong vortices of levell leads to the
disappearing of the coupling vortices at levell and to the
appearing of new vortices at the higher level~see supra!.

~c! Annihilation of a weak vortex with an adjacent one
the opposite orientation. No new vortex appears in this ca

Generation of the magnetic field

We choose the intensity of the secondary magnetic fi
as a global parameter characterizing the evolution of
model. All vortices existing at timet contribute additively to
the intensity of the secondary magnetic field generated at
time. The contribution of a vortex increases with its lev
The sign of the contribution depends on the orientation of
vortex: vortices of the first orientation make a positive co
tribution; vortices of the second orientation a negative on

B. Temporal evolution of the system

For computational reasons, it is assumed that all the p
cesses described above take place consecutively in time
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5116 PRE 59BLANTER, NARTEAU, SHNIRMAN, AND LE MOUËL
ing one time step of the modeling. The following sequen
of state transformations at levell is assumed during one tim
step: relaxing of vortices; annihilation of adjacent vortic
with opposite orientations; disintegration of vortices; dire
cascade of appearance of new vortices; inverse cascad
appearance of new vortices; disappearing of coupling vo
ces.

We give below a detailed description of these transform
tions, expliciting quantitatively the features of the mod
qualitatively described earlier.

Relaxing of [1] vortices

The relaxing process is the transformation of strong v
tices into weak ones~Fig. 3!. A @1# vortex of levell trans-
forms into a@–# vortex of levell with probabilityD( l ). This
probability does not depend on the orientation of the vort
and does not change with time. It is expressed as follow

D~ l !5D0d l , d,1. ~1!

The scaling relationship between the relaxing probabi
D( l ) and the levell of the vortex accounts for the property o
vortices of higher levels to keep longer their strong state;
relaxing probabilityD( l ) is indeed inversely proportional t
the average lifetime of a@1# vortex of level l. All possible
state transitions of a pair of adjacent elements are prese
on Fig. 5. Each arrow indicates a possible transition of a p
between two states, with the corresponding probability in
cated nearby. A given pair keeps its current state with
probability which is the complement to 1 of the sum of

FIG. 5. Relaxing of@1# vortices. The arrows denote possib
transformations of vortices with the probability indicated near
For vortices of levell, the value ofD is equal to the probability of
relaxingD( l ).
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the transition probabilities possible for the given state. T
state of pairs of adjacent elements which are not displayed
Fig. 5 does not change during this relaxing time substep

Annihilation of mixed pairs

Two adjacent vortices of levell with opposite orientations
annihilate each other with probabilityS( l ). This probability
is constant in time, does not depend on the states@1# or @–#
of the vortices, and respects the higher stability of vortices
higher levels:

S~ l !5S0s l , s,1. ~2!

For strong vortices the annihilation means transition to
weak state, for weak vortices it means the disappearing
the vortex~Fig. 3!. Possible transformations of a pair of a
jacent vortices with opposite orientations are presented
Fig. 6. The kinds of pairs which are not displayed on Fig
remain unchanged during this annihilation substep.

Disintegration of [2] vortices

Disintegration of weak vortices of levell into vortices of
lower levels results in the disappearing of@–# vortices at
level l and appearing of new vortices with the same orien
tion at all levels smaller thanl ~Fig. 3!. Weak vortices of
level l disappear with a probabilityb( l ) invariant in time and
independent of the vortices orientation:

b~ l !5b0bl . ~3!

The lifetime of weak vortices is inversely proportional to th
disappearing probabilityb( l ). Larger scale vortices have
longer lifetime, and formula~3! accounts for this scaling
property.

.

FIG. 6. Annihilation of adjacent vortices with opposite orient
tions. The arrows denote possible transformations of vortices w
the probability indicated nearby. For vortices of levell, the value of
S is equal to the probability of annihilationS( l ).
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All possible state transitions for a pair of adjacent e
ments at this disintegration substep are presented in Fig
The state of the pairs not present in Fig. 7 remains
changed.

Densities of disintegrating vortices ofi th direction at
level l and timet are

r i~ l ,t !5pi
2~ l ,t !b~ l !, ~4!

where pi
2( l ,t) denotes the density of weak vortices ofi th

orientation (i 51,2) at l level and timet.

Direct cascade of appearance

Direct cascade of appearance of new vortices is gener
by two processes: the appearance regularly generated b
turbulence, and the appearance due to the disintegratio
@–# vortices of higher levels at the previous time mome
(t21). The helicity flow of rangel and i th orientation, at
time t, is determined by a functionalEi( l ,t) expressed as
follows:

Ei~ l ,t !5E0« l1F0 (
l5 l 11

L

r i~l,t !ql2 l , ~5!

whereE0 characterizes the efficiency of the turbulence,
same for both orientations,r i(l,t) ( i 51,2) denotes the den
sities of vortices of levell disintegrated at the previous tim
moment (t21) @Eq. ~4!#. F0 characterizes the intensity o

FIG. 7. Disintegration of@2# vortices. The arrows denote pos
sible transformations of vortices with the probability indicat
nearby. For vortices of levell, the value ofB is equal to the prob-
ability of disintegrationb( l ).
-
7.
-

ed
the
of
t

e

the disintegration process. Parameters« andq determine the
scaling relationships between the different levels. To obt
an effective cascade effect the scaling parameterq must be
chosen larger than unity.

The probability to obtain a new@1# vortex at level l,
regardless to its orientation, is then taken as

A~ l ,t !512exp$2@E1~ l ,t !1E2~ l ,t !#%. ~6!

The number of vortices ofi th direction among all the new
vortices of level l appearing at timet is proportional to
Ei( l ,t); in other words, the relative density of new vortice
of i th direction is

Ai~ l ,t !5
Ei~ l ,t !

E1~ l ,t !1E2~ l ,t !
A~ l ,t !, i 51,2. ~7!

All possible state transitions for a pair of adjacent e
ments corresponding to this substep are presented in Fi
The state of other pairs does not change during this subs
On the plotA denotes the appearance probabilityA( l ,t) and
Ai probabilitiesAi( l ,t), (i 51,2).

FIG. 8. Appearance of new vortices. The arrows denote poss
transformations of vortices with the probability indicated nearby
the direct cascade of appearance is considered, then for vortic
level l at time t, values ofAi ( i 51,2) are equal to the appearanc
probabilitiesAi( l ,t); the valueA is equal toA( l ,t). If the inverse
cascade of appearance is considered, then for vortices of lel
at time t, values ofAi ( i 51,2) are equal to the appearance pro
abilities ai( l ,t)/@a1( l ,t)1a2( l ,t)#; the valueA is equal toa1( l ,t)
1a2( l ,t).
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5118 PRE 59BLANTER, NARTEAU, SHNIRMAN, AND LE MOUËL
Inverse cascade of appearance

There are two cases of coupling of strong vortices of
same levell ~Fig. 3!: two adjacent vortices with similar ori
entations couple with probabilitya( l ), two isolated vortices
with similar orientations couple with probabilityg( l ). Cou-
pling probabilities are invariant in time, do not depend on
orientation of the coupling vortices, and increase with
level l as follows:

a~ l !5a0m l , ~8!

g~ l !5g0gl . ~9!

Cyclones coupling at levell make a new vortex appear at th
superior levell 11. The appearance probability of a ne
vortex of levell 11 depends on the density of coupling pa
as follows:

ai~ l 11,t !5Pii
11~ l ,t !a~ l !1Pi

1~ l ,t !2g~ l !, ~10!

where i 51,2 denotes again the orientation of the appear
vortex; Pii

11( l ,t) andPi
1( l ,t) denote respectively the dens

ties of adjacent and isolated active vortices of rangel at
time t.

All possible state transitions for a pair of adjacent e
ments at this substep of the computation are presented in
8. Now A denotes the total probability of appearing of a ne
vortex, i.e., a1( l ,t)1a2( l ,t); Ai denotesai( l ,t)/@a1( l ,t)
1a2( l ,t)# and represents the relative density of vortices
i th orientation among all the new vortices appearing at
substep (i 51,2).

Disappearing of [1] vortices

Strong vortices of levell coupling at timet generate a
new vortex at levell 11 ~as detailed above! and disappear
from level l ~Fig. 3!. The density of coupling pairs disappea
ing at levell is given by formula~10!. Cyclones of the high-
est levelL of the system cannot generate a vortex of supe
level, therefore there is no disappearance at the highest
e

e
e

g

-
ig.

f
is

r
vel

L. The disappearance of coupling vortices at a given le
has a physical meaning similar to that of the defects hea
mechanism described in@24#: a transition of perturbation
from lower to higher levels of the system.

Intensity of the secondary magnetic field

All vortices of level l existing at timet make a similar
contribution to the intensity of the secondary magnetic fie
As announced in Sec. II, the contribution of vortices of t
first orientation is considered as positive, the contribution
vortices of the second orientation negative. The second
magnetic field generated at timet is thus expressed as fo
lows:

H~ t !5H0(
l 51

L

„p1~ l ,t !2p2~ l ,t !…x l , ~11!

wherepi( l ,t) denotes the density of vortices ofi th orienta-
tion at levell at time t.

IV. MODEL BEHAVIOR

The model displays a very complex behavior. In t
present work we will focus on the features which can
considered as symmetry breakings and might contribute
the understanding of the origin of the large scale geom
netic field and of the occurrence of its polarity reversals.

TABLE I. Common parameters of secondary magnetic fie
generation for Figs. 9–13.

Number of levels L 13
Parameters of relaxing D0 0.01
Parameters of annihilation S0 0.25
Parameters of disintegration b0 0.01
Parameters of turbulence E0 1024

Scaling parameters (x,q) 1.5
Scaling parameters (d,s,b,«,g,m) 0.9
-
t
-

d-
FIG. 9. Temporal evolution of
the generated magnetic field inten
sity when the amplification effec
of both the direct and inverse cas
cades is zero:F05a05g050.
See other parameters of the mo
eling in Table I.
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FIG. 10. Temporal evolution
of the generated magnetic field in
tensity, when the amplification ef
fect of the direct cascade is zer
(F050), for different parameters
of the inverse cascade:~a! a0

50.5, g050.5; ~b! a050.99, g0

50.99. See other parameters
the modeling in Table I.
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A. Choice of parameters

We have introduced quite general equations to desc
the evolution of the system; this approach allows us to k
open a wide field of possible applications of the mod
However in the present paper we consider only a few f
parameters, the majority of them being fixed~see Table I!.
We assume that the dynamics of vortices is characterize
the same scaling for all the involved processes~coupling,
disintegration, relaxing, . . .!, i.e., by the same value of pa
rametersd,s,b,«,g,m. The lifetime of vortices increase
with their dimension, i.e., with the scale level; we therefo
take the common value of the above scaling parameter,
c, less than unity. And, as we do not want too large a d
ference between two consecutive levels, we takec50.9. On
the other hand, the contribution of the disintegrated vorti
to the direct cascade, as well as the contribution of all vo
ces to the magnetic fieldH @Eq. ~11!# increase with their size
So, we takeq5x51.5.

We also consider that the influence of direct injection
turbulence is small in regard to the lifetime of vortices; t
value of E0 @Eq. ~5!#, characterizing the appearance fr
quency of turbulent vortices, is taken as 1024, whereas the
parameter governing the lifetime is two orders of magnitu
e
p

l.
e

by

ay
-

s
i-

f

e

larger @D051022, b051022 see Eqs.~1! and ~3!#.
We have no reason to consider different durations for

two lifestates~strong and weak! of vortices; therefore we
takeD05b0 @Eqs.~1! and ~3!#.

All the model parameters are then fixed, except for
ones characterizing the coupling probability@a0 , and g0,
Eqs.~8! and~9!# and the intensity of the direct cascade@F0,
Eq. ~5!#. In the following we investigate the model behavi
in function of the strength of the direct and inverse casca
mechanisms.

In short, for the aim of the present study, we keep o
three free parameters (F0 ,a0 ,g0). It will remain possible to
extend the study by varying other parameters.

B. Symmetry breaking

We are interested in the possibility for the system to p
duce large scale symmetry breakings. These symm
breakings will be characterized by two features: the durat
of the intervals of constant polarity of the secondary ma
netic field, and the intensity of this field. We will also com
pare the average duration of these constant polarity inter
with the characteristic time needed to change polarity.
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FIG. 11. Temporal evolution of the generated magnetic field intensity, when the amplification effect of inverse cascade is za0

5g050), for different parameters of the direct cascade:~a! F051; ~b! F0520. See other parameters of the modeling in Table I.
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The effect of the inverse cascade

Let us first investigate the effect of the inverse cascad
appearance alone@there is no direct cascade of appearan
F050 in Eq. ~5!#. If the coupling probabilitiesa0 and g0
@Eqs.~8! and~9!# are close to zero, there are only small a
short-duration symmetry breakings related to the rand
fluctuations of the turbulent flow~Fig. 9!. When coupling
probabilitiesa0 and g0 increase, the amplitudes and dur
tions of the symmetry breakings increase@Fig. 10~a!#. The
maximum value of the magnetic field intensity is determin
by the total volume of the system and the value of the sca
parameterx. It may be reached if the coupling probabilitie
are large enough@Fig. 10~b!#. The average duration of con
stant polarity intervals cannot exceed a maximal value de
of
:

m

d
g

r-

mined by the lifetime of the highest range vortices. It is th
impossible to obtain long intervals of constant polarity, ev
if the coupling probabilities are close to unity@Fig. 10~b!#.

Remark: No physical unit has been introduceda priori in
our abstract model. But, to calibrate the time scale, one
consider that the mean duration of the polarity intervals
Fig. 12 is, say, 33105 yr; and, to calibrate theH ~ordinate!
axis, it is enough to consider that the maximum value wh
H can reach (H05( lx

l) is, say, 1024 T.

The effects of the direct cascade

Let us now investigate the effect of the direct casca
alone; there is no inverse cascade and the coupling proba
ties a0 andg0 are zero. As the disintegration parameterF0
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FIG. 12. Temporal evolution of the generated magnetic field intensity for a two-side cascade effect.~b! is a zoom of the first part of~a!.
Parameters of cascades:~a!, ~b! F050.5, a050.1, g050.01; ~c! F050.3, a050.2, g050.01. See other parameters of the modeling
Table I.
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grows @Eq. ~5!#, amplitudes and durations of the symmet
breakings increase@compare Fig. 9 and Fig. 11~a!#. Maximal
values of the magnetic field intensity are achieved for la
values of the disintegration parameterF0 @Fig. 11~b!#; the
average duration of constant polarity intervals is of the sa
order as in the case of the strong pure inverse cascade@see
Figs. 10~b! and 11~b!#. Thus, in the case of a pure dire
cascade alone, it is also impossible to obtain long lived sy
metry breakings.

The physical meaning of a large value of the disinteg
tion parameterF0 is arguable; in this case indeed an unre
sonable increase of the helicity flow appears when high le
vortices are destroyed; conditions of such an increase sh
be discussed for each particular system. If reasonable va
e

e

-

-
-
el
ld
es

of F0 are considered, only low values of the magnetic fie
intensity can be achieved, and the durations of polarity in
vals are of the same order as the polarity changes~reversals!
durations.

The up and down cascade effect

In contrast with the cases of one-sided cascades con
ered above, the interaction of both inverse and direct c
cades produces strong and long symmetry breakings for r
tively small values of the coupling and disintegratio
parameters@Fig. 12~a!#. The duration of constant polarity
intervals is no longer directly limited by the lifetime of th
vortices, and can be arbitrary large@Fig. 12~c!#. The maxi-
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mum possible value of the intensity of the secondary field
reached. The polarity reversals are completed in a very s
time compared with the duration of the corresponding c
stant polarity intervals@Fig. 12~b!#.

C. Properties of polarity intervals and reversals

If both cascades are operating, there is a domain of
rameters for which high range long lived symmetry brea
ings are observed, as illustrated by Fig. 12. The distribut
of the lengths of the constant polarity intervals, which w
will call chrons as in the case of the geomagnetic field
then exponential~Fig. 13, curve 2!. But a similar trend can
also be obtained in the case of a direct cascade alone~Fig.
13, curve 3!.

It is also to be stressed that complex variations of the fi
generated by the model are observed during constant pol
intervals ~Fig. 13!, as in the case of the actual field. Th
detailed characteristics of these variations can be change
changing the model parameters.

V. DISCUSSION AND CONCLUSIONS

Large scale symmetry breakings occur in various phys
systems. In most geodynamo models, thea effect is sup-
posed asymmetrica priori, the lack of mirror symmetry be
ing attributed to Earth’s rotation. The present work descri
a way to obtain large scale and long lived symmetry bre
ings in a symmetric model of multiscale turbulent vortices
has been shown that this kind of symmetry breaking res
from an up and down cascade of energy transfer; it canno
obtained in the case of a direct cascade alone, neither in
case of an inverse cascade alone. The cascade mecha
can amplify a primary magnetic field~this is why we call our

FIG. 13. The cumulative number of chrons vs its duration
real data~1!, two-side cascade modeling~2!, and pure direct cas
cade modeling~3!. All curves are approximated by the exponent
law ~dashed straight lines! with similar slopes:~1! 1.05, ~2! 0.79,
and ~3! 0.83.
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model a dynamo model!. In the case of one-sided cascad
working alone~direct or inverse!, this amplification needs
large values of the cascades parameters (a, g, or F0). In the
case of an up and down cascade, only moderate value
these parameters are needed to obtain a large scale pert
tion from small values of the turbulent intensity.

The comparison of the behavior of our model with t
behavior of the actual geomagnetic field is certainly exc
sive, at the present time, since our model is not a self-exc
dynamo model A primary fieldH0 is given, and we look at
the behavior of the secondary fieldH(t) generated fromH0,
given by Eq.~11!. H(t) is strictly the amount of secondar
field generated at timet during a time step; it would be the
secondary field itself in the limit case of strong diffusion; t
amplification H(t)/H0 @Eq. ~11!# is meaningless since n
reaction ofH on the flow is considered. But the multisca
turbulent mechanism studied here can be considered a
ingredient of a self-excited dynamo model, as in@20#, and
the next step of our work will indeed be to close the syst
by introducing diffusion and reaction of the magnetic fie
on the flow. The behavior of the submodel considered h
with its large scale and long lived symmetry breakings, w
be retrieved in the complete model.

As said in the Introduction, the magnetic field of the Ea
has reversed a large number of times during the geolog
history. The durations of the polarity intervals~chrons! are
much larger than the durations of the reversals. The distr
tion of the chrons lengths obeys an exponential law@37#
~Fig. 13, curve 1!. During polarity intervals, the geomagnet
field presents complex time variations, with different tim
scales~paleomagnetic data essentially show the variation
the dipolar field!. As shown in Sec. IV C, the secondary fie
generated by our model shares all these features. In fu
work we will further investigate the characteristics of th
variations of the model during polarity intervals. It has be
shown that the exponential distribution of chrons lengths
too rough a feature to really characterize the different kin
of symmetry breaking. It is more promising to study th
relation between durations of chrons and durations of rev
sals ~which appears to be specific in the case of the ac
geomagnetic field! in order to get a measure of the differe
kinds of symmetry breaking.

Independently of these comparisons with an actual pl
etary magnetic field, we think that our simplistic hierarchic
model of turbulence is worth considering by itself. In pa
ticular, the result that the system can present large scale
long lived symmetry breakings~in the form of periods of
constant sign of a parameterH characterizing some larg
scale organization of the system! might be of general inter-
est.
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