
Vol.:(0123456789)

Surveys in Geophysics (2022) 43:437–481
https://doi.org/10.1007/s10712-022-09698-0

1 3

Modeling and Prediction of Aftershock Activity

Sergey Baranov1,3  · Clement Narteau2  · Peter Shebalin3 

Received: 7 March 2021 / Accepted: 19 February 2022 / Published online: 13 April 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
We provide an overview of the basic models of the aftershock processes and advanced 
methods used to predict postseismic hazard. We consider both the physical mechanisms for 
aftershock generation and models of aftershocks and time-dependent models of aftershock 
processes. In particular, we provide a validation of the aftershock process using a superpo-
sition of the Gutenberg–Richter and Omori–Utsu laws. We show that the key role in assess-
ment of postseismic hazard is earthquake productivity, which characterizes the ability of 
earthquakes to produce subsequent shocks. We discuss the recently established exponential 
law of earthquake productivity and show that the exponential form is invariant under vari-
ations in magnitude and focus depth. Being in discordance with the popular epidemic type 
aftershock sequence (ETAS) model, the law makes it possible to build a corrected model. 
We study versions of theoretical validation for the Båth law, which specifies the mean dif-
ference between the magnitudes of the main shock and the largest aftershock. We consider 
also the time-dependent Båth law. We provide a detailed review of modern approaches and 
methods for dealing with the estimation of the magnitude of the largest aftershock. As well, 
we review the problem of estimating the duration of aftershocks with magnitudes equal to 
or greater than a specified value, the hazardous period.
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Article Highlights 

• Earthquake productivity plays the key role for evaluation of postseismic hazard
• The productivity of direct aftershocks varies widely from case to case and statistically 

obeys an exponential law
• The combination of the exponential productivity law with the Gutenberg-Richter and 

Omori laws makes it possible to estimate future aftershock activity

1 Introduction

It frequently happens that a significant earthquake is followed by subsequent shocks along 
the earthquake rupture plane (aftershocks). The earthquake that is followed by aftershocks 
is called a main shock. Although the bulk of the energy release commonly comes from 
the main shock, aftershocks may turn out at least as destructive as the main shock. A main 
shock causes considerable weakening of a building structure to be subsequently destroyed 
by a large aftershock. It sometimes happens that the epicenter of a large aftershock turns 
out to be nearer a population center, so that its impact may happen to be greater, despite 
the magnitude being smaller. A phenomenon of this kind occurred, e.g., in New Zealand in 
2010–2011. The main shock of September 4, 2010, near the town of Darfield (magnitude 
7.1) did not produce much damage, because the epicenter was far from the main residen-
tial blocks. However, the aftershock of February 22, 2011 (magnitude 6.3) at the city of 
Christchurch was much more destructive, causing loss of 185 lives. Another aftershock 
took place on June 13, 2011, and caused more serious damage and killed a person.

This paper reviews the most popular models of aftershock processes, modern methods, 
and approaches to the assessment of aftershock hazard following large earthquakes.

2  Models of Aftershock Activity

Aftershocks are caused by relaxation of stress concentrations due to a main shock rupture. 
Probably, the first theory of aftershock occurrence was put forward by Benioff (1951), who 
explained the retardation in elastic energy release in an aftershock sequence by a successive 
diminution of static friction. These ideas were subsequently developed by Dieterich (1992, 
1994, 2007; Scholz 1998—review article; Heimisson and Segall 2018), who used the rate-and-
state model of aftershock generation based on the theory of nonlinear dry friction that depends 
on rupture velocity and the condition of the fault (rate-and-state friction model). According to 
the rate-and-state model, aftershocks are generated via a stepwise variation of stress occurring 
at the time of the main shock, while the decay follows the Omori law (see later in this paper).

According to the rate-and-state model, the intensity of seismicity after the stress drop 
ΔS exceeds the background intensity before the stress drop. Thus, the main shock gives 
rise to a stress change, which leads to increased rupture velocity on the fault and decreased 
time until failure (clock advance). In other words, aftershocks are just earthquakes whose 
times of occurrence have been accelerated compared with the background events owing to 
a stress change due to the main shock.

A good example of the rate-and-state model is an increase (by more than two times) in 
aftershock rate during sea tides near the shores of Kamchatka and New Zealand (Baranov 
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et al. 2019a; Shebalin and Baranov 2020). This provides evidence of two main mechanisms 
responsible for ocean tides as a factor influencing the rate of seismicity, namely increased 
pore pressure during high water or decreased normal stress during low water, which leads 
to a decrease in effective friction on faults.

At present, there are several physical models of aftershock processes and mecha-
nisms of aftershock generation. The most complete classification accompanied by a 
description and an exhaustive review of the literature can be found in (Lindman 2009; 
Hainzl et al. 2010). A general characterization of aftershock processes from the view-
point of rock failure is given in the well-known monograph of Scholz (2019). During 
the last 30 years, it has been generally thought that the time and location of aftershock 
occurrence are largely controlled by stress changes due to the main shock rupture. A 
connection between static stress changes and the spatial distribution of aftershocks was 
proposed by Kostrov and Das (1982) based on the results of a study in the aftershocks of 
several earthquakes (Das and Scholz 1981). Stein et al. (1992) showed that small events 
that occurred near the town of Landers, California, 17  years before the M 7.3 earth-
quake of 1992 led to an increase in the stresses at the epicenter and along the future 
rupture. As well, most ML > 1 aftershocks of the Landers earthquake occurred (Fig. 1) in 
the area where the failure stress increased by more than 0.1 bar (King et al. 1994). Few 
events are located where the stress has dropped.

Later, numerous studies revealed a quantitative correspondence between positive 
static stress changes and the location of subsequent shocks and aftershocks (Steacy et al. 
2005; King and Devès 2015; Hainzl et al. 2010; Hardebeck and Okada 2018; Lasocki 
et al. 2020).

Stress transfer models are based on a straightforward application of the Coulomb 
criterion

where ∆τ is the shear stress in the direction of slip, ∆σn is the normal stress changes (pos-
itive for unclamping or extension), μ is the friction coefficient, ∆p is the pore pressure 
change, µ′ = µ(1 − B) is usually called the effective friction coefficient, and 0 ≤ B ≤ 1 is the 
Skempton coefficient (Beeler et al. 2000; Cocco and Rice 2002).

A good example of the Coulomb criterion is induced seismicity in oil production 
zones in Alberta (Canada) where earthquake clustering is strongly related to pore pressure 
increase due to the nearby hydraulic fracturing operations (Schultz et al. 2017). In 2019, in 
the same area, fluid injection reactivated the preexisting faults by pore pressure diffusion 
and triggered earthquake sequence following the Richter local magnitude (ML) 4.18 main 
shock (Wang et al. 2020).

The main unresolved difficulties of straightforward application of the Coulomb crite-
rion with regard to the assessment of the hazard due to subsequent shocks are (Hainzl et al. 
2010): (1) the unknown distribution and orientation of the faults affected by the rupture; (2) 
nonuniqueness associated with the inversion of rupture models and fault geometry for the 
main shock; (3) small-scale variability of the rupture, which can give rise to large inhomo-
geneities in the stresses near the source fault, and (4) the spatial inhomogeneity of material 
and initial stress values. Besides, some scientists note significant inconsistency of the stress 
transfer mechanism with observations: aftershocks do not fill in all stress triggering lobes, 
the seismicity rate declines are not always apparent at negative Coulomb stress change areas 
(Marsan 2003; Felzer and Brodsky 2005), aftershocks are commonly abundant not only near 
the tips of the fault rupture, where a highest positive stress change is predicted, but also on 

ΔCFF = Δ� + � +
(
Δ�n + Δp

)
≈ Δ� + ��Δ�n
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the sides of the rupture zone (Hu et al. 2013). Some authors find that static Coulomb failure 
function (CFF) triggering is not statistically significant (Hardebeck et al. 1998; Kato 2006).

Although most researchers are unanimous concerning the point of view stating that 
aftershocks are triggered by stress steps due to a main shock, the time-dependent changes 
can also be important. In particular, viscoelastic relaxation in the lower crust (Freed and 
Lin 2002) and aseismic slip after the earthquake along the fault plane (afterslip) can affect 
the stress field and rate of events on scales ranging between a few days and a few years 
(Chan and Stein 2009; Helmstetter and Shaw 2009; Wang et al. 2010a; Sun et al. 2014), 
which decays according to the Omori–Utsu law.

Several researchers believe that seismic waves can trigger aftershocks (Freed, 2005; 
Felzer, Brodsky 2006; Sobolev and Zakrzhevskaya 2013; Kocharyan 2016; Zavyalov et al. 
2017; Zotov et al. 2018), especially in geothermal fields (Hill et al. 1993; Brodsky 2006). 

Fig. 1  Coulomb stress changes at a depth of 6.25 km caused by the Landers, Big Bear, and Joshua Tree 
earthquakes (King et al. 1994, Fig. 12)
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Baranov et  al. (2019a) also showed that the dynamic transfer of stress due to sea tides 
enhances the local rate of aftershocks in the ocean during high rates of tide decrease.

Gomberg and Johnson (2005) supposed that the rather rarely observed effect of 
dynamic triggering of aftershocks is apparently associated with a pronounced direc-
tionality of seismic radiation in such cases. It is usually assumed that dynamic stresses 
can promote failure at remote distances, while at short distances the influence of static 
stress transfer dominates (Gomberg et  al. 2001); however, Kilb et  al. (2000) showed 
that dynamic stresses can also trigger aftershocks nearby. Dynamic triggering of earth-
quakes may also explain that the significant fraction of aftershocks often is found to 
occur in main shock stress shadows in static Coulomb stress triggering studies (Felzer 
et al., 2002).

The idea of direct aftershock triggering by the dynamic transfer of stress was also 
based on an interesting feature of the spatial localization of aftershocks: The aftershock 
rate decays following a power law as we move away from the main shock (Huc and 
Main 2003; Felzer and Brodsky 2006; Richards-Dinger et al. 2010). The last two papers 
reflect the well-known discussion concerning the dynamic transfer of stress to after-
shock triggering. Felzer and Brodsky (2006) came to the conclusion that the observed 
power law for the distribution of the main shock–aftershock distance (Fig. 2) is consist-
ent with the fact that the probability of aftershock occurrence is practically proportional 
to seismic wave amplitude. These authors also showed that this distribution is in poor 
agreement with rate-and-state models, which describe movements on a fault involving 
a friction that is a function of static stress change, velocity, and state (Dieterich 1994; 
Scholz 1998). Bearing in mind this observation, as well as the fact that changes in static 
stress for more remote aftershocks are small, the authors hypothesized that aftershocks 
can be triggered by the dynamic transfer of stress from the main shock. Richards-Dinger 
et al. (2010) used an algorithm from Felzer and Brodsky (2006) to identify main shocks 
and aftershocks, showing that the power law decay in the rate of subsequent shocks over 
distance also applies to those aftershocks which had occurred before the seismic wave 
excited by the main shock arrived, and this violates the principle of causality when we 
deal with the dynamic transfer of stress. It thus appears that the power law decay in 

(b)(a)

Fig. 2  Distribution of distance from main shock hypocenters to its aftershock (Felzer and Brodsky 2006, 
Fig. 2). Aftershocks are Mm > 2 and occur in the first 5 min. (a) 2 ≤ Mm < 3 main shock; (b) 3 ≤ Mm < 4 main 
shocks. The data are fitted with an inverse power law (gray solid line). The fit is made from 0.2 to 50 km for 
both plots. Dashed lines give the decay of maximum seismic wave amplitude, a proxy for dynamic stress, as 
derived from the standard Richter relationship
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aftershock rate over distance does not support the hypothesis of the dynamic transfer of 
stress-producing aftershocks.

Other natural explanation of the specific spatial distribution of the aftershocks is 
fractal structure of the preexisting fracture systems where aftershocks occur. It was 
found that aftershock distributions become less clustered with increasing fractal dimen-
sions of the active fault system (Nanjo and Nagahama 2000).

2.1  The Omori Law

Another approach to modeling aftershock processes is offered by statistical seismology. 
The law due to Omori (1984) is the first empirical model which states that the rate of 
aftershocks decays over time t as a hyperbolic function, 1/t. The history of the discovery 
of the law is briefly provided by Guglielmi and Zavyalov (2018) whose work is devoted 
to the 150th anniversary of Fusakichi Omori.

An analysis of aftershock activity for the Ms 8.0, 1891 earthquake of Nobi, Japan, 
showed that the hyperbolic decay has been preserved even after 100  years since the 
main shock (Utsu et al. 1995). This long-continued aftershock activity is explained by 
the fact that Nobi lies in a relatively quiet seismic region of Japan. Where more active 
seismic regions are concerned, the rate of aftershocks reaches the background level 
faster.

Utsu (1961) remarked that there are several cases in which the aftershock decay 
occurs faster than is prescribed by the function 1/t and accordingly proposed a generali-
zation of the Omori law commonly termed the Omori–Utsu law or the modified Omori 
law:

where t is the time elapsed since the main shock; λ(t) is the rate of aftershocks at time t; 
and K, c, and p are positive parameters in the model. (If p = 1, then Eq. (1) becomes the 
original Omori law.)

According to the results from at least 50 studies reviewed by Utsu et  al. (1995), the 
parameter p has values in the range between 0.6 and 2.5, with the median being 1.1. World-
wide statistics demonstrates distribution of both c and p values close to normal (Fig. 3).

The parameter K in Eq. (1), which is commonly called productivity, is a function of 
the lower magnitude level M0 for the aftershocks considered. The parameters p and c 
determine the shape of the cumulative curve (total number of aftershocks versus time). 
If the data are complete in the time span of interest, then p is independent of M0, while c 
is decreasing with increasing M0 (Utsu et al. 1995; Nanjo et al. 2007).

The physical meaning of K and c in Eq. (1) can be gathered from the rate-and-state 
model (Dieterich 1994; Cocco et al. 2010). The productivity K and the delay of the start 
of hyperbolic decay in aftershock activity c depend on the rate of tectonic deformation, 
the stress drop at the main shock, characteristics of the fault zone, and the seismicity 
rate before the main shock (Fig. 4). The parameter p referred to as the relaxation param-
eter depends on the velocity of aseismic slip after the earthquake on the fault plane 
(afterslip) (Helmstetter and Shaw 2009).

Narteau et  al. (2009) found the relationship between c and the difference of stress 
and strength in the aftershock area. Shebalin and Narteau (2017) discovered a persistent 
tendency for c to increase with increasing depth. It was found in laboratory experiments 

(1)�(t) =
K

(t+c)p
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on two identical sandstone specimens that, when failure occurs on a preexisting fault, p 
increases with increasing axial stresses, c decreases with increasing axial stresses and 
increases with increasing confining pressure (Smirnov et al. 2019). These authors also 
showed that the b value in the Gutenberg–Richter relation varies inversely to stress vari-
ation. Negative correlation between the values of b and p for intraplate seismicity is also 
observed in actual data (Wang 1994; Ogata and Guo 1997; Gasperini and Lolli 2006).

The Omori–Utsu law is the basic model for the aftershock process. It describes the 
decay of aftershock activity due to physical properties of the aftershock processes, 
including afterslip. The parameters that enter the law can be clearly interpreted in physi-
cal terms following the rate-and-state model and depend on material properties. The 
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parameters in Eq. (1) for an aftershock sequence can be estimated either by the method 
of maximum likelihood (Utsu et  al. 1995) or by the Bayesian method (Holschneider 
et al. 2012). The latter approach is advantageous in that it can incorporate prior infor-
mation on the distribution of the parameters and can obtain posterior estimates of the 
parameter values.

Due to the latter, surfaces of constant gravitational potential are no longer spherical. 
Its topography at the Earth’s surface is referred to as the geoid. Dynamical core pro-
cesses contribute to a quasi-steady part of the non-spherical gravity field.

2.2  Exponential Models

Power law decay describes a “long tail” of the aftershock sequences. But sometimes a 
faster decay is observed (Utsu 1957, Mogi 1962, Watanabe and Curoiso 1970, Otsuka 
1985). Various models have been suggested to describe this transition power law and 
exponential behavior (Mignan 2015). Otsuka (1985) introduced a model which is a 
product of exponential and Omori–Utsu laws:

where t means time after main shock, K, α, c, p are model parameters. Souriau et al. (1982) 
and Kisslinger (1993) suggested the stretched exponential function, often describing relax-
ation processes:

where Na is the number of “potential aftershock sites” at t = 0 (corresponding to the total 
number of aftershocks for t → ∞, t0 (relaxation time) and q are parameters. For q = 1, the 
model becomes the classical exponential decay, and for q = 0 it corresponds to the simple 
Omori model.

Using three declustering techniques, Mignan (2015) has compared power law, pure 
exponential, and stretched exponent models. As it turned out, the stretched exponen-
tial provides better fit than the power law. He concluded that aftershock occurrence is 
due to a simple relaxation process, in accordance with most other relaxation processes 
observed in the nature.

Narteau et  al. (2002) used the idea of Scholz (1968) about an explanation of the 
Omori–Utsu law by superposition of relaxation processes with different times to develop 
the limited power law (LPL) model:

where

Here, λ(t) is the rate of aftershocks at time t following the main shock; γ(ρ,x) is the 
incomplete gamma function; and A, q, λa, λb are positive model parameters.

(2)�(t) = Ke−�t(t + c)−p

(3)n(t) =
qNa

t
(

t

t0

)q

exp
[(

t

t0

)q]

(4)�(t) =
A[�(q,�bt)−�(q,�at)]

tq

�(�, x) =

x

∫
0

��−1 exp (−�)d�
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Equation (4) is derived analytically (Narteau et al. 2002) based on the following idea. 
At once after a main shock, the aftershock area is modeled by a finite number of isolated 
and independent undamaged domains. Each domain is triggered by a local overload 
that is a local combination of stress and strength. When the stress exceeds the strength, 
the overload is positive, the excess is removed by fracture, and the domain generates 
an aftershock. Accordingly, under the conditions of a constant stress, the response to 
the overload σ0 involving the triggering of a fracture is a final manifestation of fracture 
organization on small scales. The dependence on the time can come from the interaction 
between the growing number of microfractures and/or rates of chemical reaction, which 
control the growth of the fracture on the atomic scale (Das and Scholz 1981). The after-
shocks are distributed over time in conformance with the Markov process with a station-
ary rate of transition (Scholz 1968).

The parameters of the limited power law (LPL) model, λa and λb, are characteristic rates 
of aftershock generation where the linear type of aftershock decay gives way to a power law 
and then to an exponential type (Narteau et al. 2002). The variable 1/λb is an estimate of c in 
the Omori–Utsu law (1) and hence has a physical meaning that characterizes the delay in the 
power law decay of the aftershock process (Shebalin 2004; Narteau et al. 2002).

Using the estimates of q, λa, λb in the LPL model (4), one can estimate the characteristic 
times te, ta such that the aftershock decay changes in a linear manner as 0 < t < te and decreases 
according to the power law 1/tp as ta < t < te and exponentially as t > te (Narteau et al. 2002). 
We note that the existence of such times is in accordance with the rate-and-state model. We 
thus see that the decay of the aftershock process during the time interval (0, ta) as described by 
the LPL model is close to that according to the Omori–Utsu law (1). At late times, as t > te, the 
LPL model demonstrates faster (exponential) decay on a way similar to various exponential 
models described above.

An exponential decay rate is a major ingredient of the aftershock decay of the nuclear tests 
(Gross, 1996). The quantity ta for the aftershock sequences due to major explosions can be 
a few days or even a few hours (Narteau et al. 2002). Narteau et al. (2003) used the example 
of synthetical aftershock sequences to show that the parameter λa (hence the time ta) carries 
information on the maturity of a fault zone. The values of λa around 0 tell us that the fault zone 
of interest is smooth and mature. Large values of λa (a rapid transition to the exponential decay 
in aftershock rate) correspond to a fault zone of some roughness.

Large earthquakes generally occur on mature faults; accordingly, the power law decay 
phase for their aftershock sequences generally lasts until the aftershock activity has reached 
the seismic background level and thus cannot be distinguished. In connection with this fact 
and considering that the Omori–Utsu model is in general use, it should preferably be employed 
for hazard assessment.

We agree with Richards-Dinger et al. (2010) that the principal difference of the aftershock 
occurrence from other earthquakes is that their rate decays according to the Omori–Utsu law.

2.3  The Epidemic Type Aftershock Sequence (ETAS) Model

The increasing density of seismograph networks and enhanced sensitivity of the recording 
instruments resulted in accumulation of seismological data and helped detect aftershock pro-
cesses in which the events were themselves followed by sequences of subsequent shocks. In 
that case, each earthquake triggers an aftershock sequence of its own depending on its mag-
nitude. When these aftershocks are included in the total sequence, this leads to departures of 
the total rate of aftershocks from the steady decay described by the Omori–Utsu law (1). This 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



446 Surveys in Geophysics (2022) 43:437–481

1 3

branching process can be described by the epidemic-type aftershock sequence (ETAS) model 
proposed by the noted Japanese mathematician Ogata (1988). The ETAS model is a superpo-
sition of independent sequences that obey the Omori–Utsu law, with a new event “generating” 
(triggering) a sequence of its own whose rate depends on its magnitude:

where ti and Mi are the time and magnitude of event i; r (events per unit time) is the rate 
of the so-called background seismicity; K1 describes the productivity of an event with 
M ≥ Mmin; α measures the efficiency of an earthquake to trigger aftershocks relative to its 
magnitude; c, p are the parameters that determine aftershock decay rate according to the 
Omori–Utsu law (1). The model parameters r, K1, α, c, p are the same for all events in the 
catalog. The summation in Eq. (5) is over all aftershocks that have occurred until time t.

After the temporal ETAS model had been published, some spatiotemporal generaliza-
tions were developed. The generally accepted form of the space–time ETAS model was 
suggested by Ogata (1998, 2004):

This equation, in comparison with Eq. (5), introduces a dependency of background seis-
micity r and coefficient K1 on the spatial coordinates (x, y). Function f in addition may 
depend on the magnitude of the triggering event Mi. Several variants of the function have 
been suggested (see (Zhuang et al. 2011) and references therein). Among them, two vari-
ants are most common. Function suggested by Ogata (1998) is independent of magnitude:

Its modification (Falcone et al. 2010) introduces a magnitude scaling of the triggering 
distance di of the aftershock zone:

In various versions of the ETAS model, both the background seismicity and the produc-
tivity K (or K1 in Eq. (5)) are supposed to follow the Gutenberg–Richter law (Gutenberg 
and Richter 1956) with the same b value. Another commonly used simplification concerns 
the parameter α in Eqs. (5) and (6). In case α < b, the ETAS model is stable and station-
ary; otherwise, there is a finite probability that the number of events in a unit time interval 
becomes infinite as t increases to infinity (Helmstetter, Sornette 2002; Zhuang and Ogata 
2006; Saichev and Sornette 2007). Accordingly, it is often supposed that � = b ; this simul-
taneously contributes to a decrease in the number of model parameters (Felzer et al. 2004; 
Helmstetter et al. 2005; Falcone et al. 2010; Page et al. 2016).

The ETAS models are widely used to assess the seismic hazard due to aftershocks 
(Hainzl 2016; Helmstetter and Sornette 2003; Helmstetter et  al. 2006; Omi et  al. 2014, 
2015; Ebrahimian and Jalayer 2017; Harte 2017; Shcherbakov et  al. 2019; Trevlopoulos 
et al. 2020).

(5)𝜆(t) = r +
∑
i,ti<t

K110
𝛼(Mi−Mmin)

(t−ti+c)
p

(6)𝜆(t) = r(x, y) +
∑
i,ti<t

10𝛼(Mi−Mmin)

(t−ti+c)
p
f
�
x − xi, y − yi;Mi

�

(7)f (x, y) =
K

(x2+y2+d2)
q

(8)f
(
x − xi, y − yi;Mi

)
=

Kd2
i(

(x−xi)
2
+(y−yi)

2
+d2

i

)q , di = d010
�(Mi−Mmin)
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3  The Reasenberg and Jones Approach

The approach of Reasenberg and Jones (1989) consists in representing the aftershock 
process by superposition of a time-dependent model and the Gutenberg–Richter relation 
(Gutenberg and Richter 1956). One important assumption for this representation consists 
in the independence of times and magnitudes of aftershocks.

It is important to confirm this assumption due to the fact that the approach of 
Reasenberg and Jones underlies the methods of aftershock activity prediction (Ger-
stenberger et  al. 2005; Baranov et  al. 2019c, Shcherbakov et  al. 2018, 2021). At the 
same time, many studies indicate a variation of the b value before an earthquake, see, 
e.g., (Molchan et  al. 1999; Papadopoulos et  al. 2006; Nanjo et  al. 2012; Rodkin and 
Tikhonov 2016). Accordingly, it would be natural to expect that the aftershock pro-
cess returns to the common values. Within a concept of aftershock sequences as direct 
failure cascades (Marsan and Lengliné 2008; Smirnov et al. 2010; Gu et al. 2013), the 
b value is expected to gradually increase. This behavior was observed in laboratory 
experiments (Smirnov et  al. 2010, 2019; Sobolev et  al. 1996), as well as in real and 
synthetic aftershock sequences (Knopoff et  al. 1982; Helmstetter and Sornette 2002; 
Ogata and Katsura 2014; Rodkin and Tikhonov 2016; Tamaribuchi et al. 2018). How-
ever, the effect referred to may be due to catalog incompleteness, which depends both 
on magnitude and on time (Helmstetter et al. 2006; Hainzl 2016; Shebalin and Baranov 
2017; Baranov et al. 2019c). Gulia et al. (2018) in contrary observed a positive step of 
the b value after the main shock and its subsequent decrease. In recent studies (Gulia 
and Wiemer 2019; Dascher‐Cousineau et  al. 2019), characteristic b value changes 
before and after large earthquakes are considered to determine in real time whether an 
earthquake would become a foreshock and be followed by an even larger earthquake. 
The instability of b value in time is also observed in the induced seismicity that occurs 
due to fluid injection for oil production in Oklahoma (Vorobieva et  al. 2020). This 
observation, however, may reflect an effect of a break of slope of the magnitude–fre-
quency distribution at early stages of the aftershock sequences (Shebalin et al. 2021).

To eliminate the influence of catalog incompleteness after large earthquakes, 
Baranov and Shebalin (2019) investigated the global distribution of the larger after-
shocks in each aftershock sequence. Larger aftershocks are usually not missed even at 
short times after the main shock (Helmstetter et al. 2006). They used the ANSS Com-
Cat catalog for 1975–2017 to which the algorithm of Molchan and Dmitrieva (1992) 
was applied to extract 526 sequences after M ≥ 6.5 earthquakes.

From the hypothesis about the independence of times and magnitudes and thus the 
temporal constancy of the b value, it follows that the times of aftershocks, which are 
the largest in their sequence, should follow the same distribution as the distribution 
of aftershocks of arbitrary magnitude in each sequence. If we adopt the concept of 
aftershock sequences as direct failure cascades with growing b value, we can expect 
the times of the largest aftershocks to be shifted toward smaller values; therefore, the 
distribution function is biased toward larger values. The authors found no bias of the 
distribution function for the times of the largest aftershocks relative to the theoretic 
distribution obtained for the stack of aftershocks in 526 sequences (Fig.  5). Next, 
they compared distributions of times of k-largest aftershock from each sequence for 
1 < k ≤ 15 (Fig. 6). Again, no significant difference of the distributions has been found. 
Both results were obtained using Smirnov–Kolmogorov test at a significance level 5%.
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We note that the issue remains open as to possible variation in the b value in 
aftershock sequences, since the variation can take place owing to a changed frac-
tion of smaller aftershocks. It seems impossible to test this hypothesis, because it 
would be hard to distinguish a real deficit in smaller events from that due to catalog 
incompleteness.

In some individual cases, one can well encounter magnitudes showing some order-
liness over time. Since the results above were obtained by a joint analysis of many 
aftershock sequences in various regions, the independence of magnitudes and times of 
aftershocks may be considered true in average. This signifies that if in some regions 
actually magnitudes of aftershocks tend to gradually decrease, then in other regions 
this should be compensated by a gradual increase in the magnitudes. The dependence 
of aftershock times and magnitudes under a specific tectonic setting calls for a special 
study.

4  Earthquake Productivity

As pointed out above, productivity is a key parameter in statistical seismology, and is of 
critical importance for assessing the hazard posed by aftershocks, because it controls the 
rate of events within the space–time interval of observation. Viewed from the standpoint 
of earthquake magnitude distribution due to Gutenberg and Richter (1956), productivity 
is a constant quantity that can be treated as independent of the scale, the b value, which is 
the slope of the recurrence curve. Bearing in mind the whole process of earthquakes fol-
lowing each other, productivity is also the total number of events caused by the disturbance 
in the state of stress due to another, earlier earthquake. This concept of productivity was 
first used to develop a suitable model of aftershock generation (Utsu 1970). Knowing the 
productivity and using the Omori–Utsu law (1), one can find the number of subsequent 
shocks to be expected in a specified time interval from the magnitude of the main shock 
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Fig. 5  The distribution of times of largest aftershocks in the 526 sequences (Baranov and Shebalin 2019, 
Fig. 2). (a) The number of sequences with tj,1 < t (gray circles) and the Omori–Utsu fit (line); (b) posterior 
probabilities from the joint distribution of estimated parameters c and p in the Omori–Utsu fit (Holschnei-
der et al. 2012). The marked contours are level lines; the white circle marks the likelihood maximum. To 
avoid distortions due to catalog incompleteness immediately after main shocks, the times in the interval 
(tstart = 0.005, tstop = 365) days were considered
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Mm, the slope of decay rate, p, in accordance with a power law function, and the delay in 
time before the aftershock process would arrive to this decay behavior (Holschneider et al. 
2012; Shcherbakov et al 2018; Davidsen et al. 2015; Baranov et al. 2019c).

Since the first epidemic seismicity models appeared (i.e., ETAS), the study of earth-
quake productivity became the main subject of study, because it is the main parameter 
that controls the increase in seismicity rate after an earthquake (Kagan and Knopoff 1981; 
Ogata 1989; Helmstetter and Sornette 2002). All these models assume the rate of events 
due to an earthquake of magnitude m to vary as a Poisson process with rate

The values of α are between 0.5 and 2.3 (Felzer et al. 2004; Hainzl and Marsan 2008; 
Hainzl et al. 2013; Marsan and Helmstetter 2017; Wang et al. 2010b; Werner and Sornette 
2008; Zhuang et al. 2004, 2005), but they are invariably close to the observed b value. Nev-
ertheless, these estimates remain questionable because it is difficult to identify the relative 
contribution of successive events in a sequence.

(9)N(m) = Keαm

(a) (b)

(c) (d)

Fig. 6  The distribution of k-largest magnitudes  Mk (a, c) and the cumulative distribution of the correspond-
ing aftershock times tk(b, d) for k = 1, K: K = 5(a, b); K = 15 (c, d) (Baranov and Shebalin 2019, Fig. 4). 
Index k means the serial number of the aftershock in each sequence, sorted in descending order of mag-
nitude. M0—magnitude of the main shock. In plots a and c, gray circles mark relative magnitudes of the 
k-largest aftershock in individual sequence, black circles and the solid line represent mean values, and 
dashed lines show the standard deviations
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Even though the declustering methods in use are various and diverse, see the reviews 
of Van Stiphout et al. (2012); Gulia and Wiemer (2019); Pisarenko and Rodkin (2019), 
the study of cause-and-effect relationships within cascades of triggered seismicity is 
still in its infancy, no definitive classification has been developed yet. One approach 
to the issue consists in separating the branching structure of earthquake chains from 
background seismicity using an iteration algorithm related to maximum likelihood 
estimates in the epidemic model (Zhuang et al. 2002, 2004). There is another method, 
consisting of identifying events that were directly and indirectly triggered, assuming a 
linear contribution of each earthquake into the net level of seismicity without having 
recourse to any a priori model (Marsan and Lengline, 2008). Finally, there is an alterna-
tive approach which seeks to identify earthquake clusters using nearest neighbor method 
(Zaliapin et al. 2008; Zaliapin and Ben-Zion 2013, 2016) with a proximity function in 
time–space–magnitude domains (Baiesi and Paczuski 2004).

The nearest neighbor method stands out for its logical simplicity and convenience in 
calculating productivity. With this method, each seismic event can be a trigger (parent) 
for several events (offsprings), but each offspring can only have one parent triggering 
event (Fig. 7). Due to this, when summing (or averaging) the productivity values, there 
is no problem of multiple counting of the same offspring.

Practically, all declustering methods exploit the fact that productivity depends on the 
magnitude of the triggering event. Nevertheless, less attention is paid to the general varia-
bility in the rate of triggered events (Marsan and Helmstetter 2017) in earthquake catalogs.

Shebalin et al. (2020) examined global and regional earthquake statistics to find that the 
rate of seismic events triggered by an earlier earthquake obeys the exponential distribution 
rather than the Poisson distribution as commonly assumed (Fig. 8):

with density

Equations  (10) and (11) constitute the law of earthquake productivity. Here, Λ∆M, 
called clustering factor, is the mean rate of the events triggered by an earthquake with 
magnitude M ≥ Mm-∆M (Mm is the magnitude of the triggering event). To distinguish 
the productivity calculated in the ∆M-band of magnitudes from the productivity calcu-
lated with the general magnitude threshold, for example, the completeness magnitude, 
we will call it the ∆M-productivity or simply productivity when it is clear from the 
context.

Each hierarchical clustering tree was based on the main triggering event. At lower hier-
archical levels, the triggered earthquakes are themselves secondary triggering events, and 
so forth as far as the last branches of the cluster. The inset in Fig. 8 shows that the produc-
tivity distribution is invariant with respect to the hierarchical level of the triggering event. 
A similar behavior is observed for triggering events at all hierarchical levels, and the expo-
nential function seems to control the productivity of all M ≥ 6.5 earthquakes. The slope of 
the graphs is equal to the clustering factor in Eq. (10). Almost equal slopes indicate that the 
clustering factor remains constant from primary to secondary triggered events. This impor-
tant property allows productivity to be summed or averaged regardless of the hierarchy 
level in the clustering tree.

(10)F(x) = P(k < x) = 1 − e−x∕ΛΔM

(11)f (x) =
1

ΛΔM

e−x∕ΛΔM
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The productivity distribution remains an exponential one, when the minimum relative 
magnitude ∆M is increased from 1 to 2.6 (Fig. 9a). The means of ΛΔM decrease in accord-
ance with the b value in the distribution of earthquake magnitude (Fig. 9b) and show no 
dependence on the magnitude of triggering earthquakes Mm (Fig. 9c, d). As well, keeping 
the minimum relative cutoff value constant, ∆M = 2, we obtained the result that the distri-
bution of triggered events and its mean Λ2 are practically identical, whatever the triggering 
event magnitude Mm(Fig. 9c, d). It follows that the exponential distribution of productivity 
can be treated as a general property of all earthquakes, whatever the size.

Exponential shape of the ∆M-productivity was confirmed for lower magnitudes of 
triggering earthquakes using seven regional earthquake catalogs (Fig.  10): Baikal, Italy, 
Japan, Kamchatka and the Kurile, northern California, southern California, and New Zea-
land, while the clustering factor Λ2 was found to vary from one region to another (Shebalin 

Fig. 7  A scheme of classification of events in the nearest neighbor method (Zaliapin and Ben-Zion 2013, 
Fig. 6). (1) Single event; (2) main shock; (3) foreshocks; (4) aftershocks. The aftershocks whose parent is 
the main shock are referred to as primary aftershocks; secondary aftershocks are produced by another after-
shock as parent

Fig. 8  Earthquake productivity in 
the worldwide ANSS Com-
prehensive Catalog (Shebalin 
et al. 2020, Fig. 1). Dots show 
the distribution of the number 
of triggered events for Mm ≥ 6.5 
earthquakes using a relative 
magnitude threshold ∆M = 2. 
The solid line is the exponen-
tial law with parameter Λ2, the 
mean number of triggered events 
derived from the data. The 
histogram shows the Poisson dis-
tribution with parameter Λ2. Inset 
shows the cumulative productiv-
ity distributions for primary and 
secondary triggering events
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et al., 2020). The similar properties of the ∆M-productivity were also observed for low-
magnitude mining-induced seismicity (the lower cutoff magnitude Mc ≥ 0) in the Khibiny 
Massif (Baranov et al. 2020).

Physical reasons of the variation of the earthquake productivity remain a subject of 
great interest. It was assumed that the high background stress characterizing the thrust 
faulting style is associated with increased productivity (Tahir et al. 2012; Tahir and Grasso 
2015). Zaliapin and Ben-Zion (2019) compared the productivity and other characteristics 

(a) (b)

(c) (d)

Fig. 9  Dependence of earthquake productivity on magnitude ranges in the worldwide catalog ANSS (She-
balin et al. 2020, Fig. 2). (a) Distribution of the number of triggered events of M ≥ 6.5 earthquakes using 
a relative magnitude threshold ∆M ∈ {1, 1.2, …, 2.6}. (b) The mean number of events Λ∆M with respect 
to the relative magnitude threshold ∆M. (c) Distribution of the number of triggered events with respect to 
the magnitude Mtriggering of the triggering event using a relative magnitude threshold ∆M = 2. We take 
Mmin  ≤ Mtriggering < Mmax with Mmax = Mmin + 0.2 and Mmax ∈ {6.5, 6.7, …, 8.1}. (d) The average number Λ∆M 
of triggered events with respect to the magnitude of the triggering event for ∆M ∈ {1, 2, 2.5}
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of the earthquake clusters with the heat flow level and type of deformation. They found 
that the dominant type of seismicity clusters depends on the heat flow and much less on 
the type and intensity of deformation. This confirmed earlier results obtained for California 
and showing positive correlation of the productivity and heat flow (Yang and Ben-Zion 
2009). Zaliapin and Ben-Zion (2019) suggested two dominant types of global clustering: 
burst-like and swarm-like clusters. The former are characterized by a brittle type of fractur-
ing in a relatively cold lithosphere (for example, surface earthquakes in subduction zones), 
and the latter are characterized by brittle–ductile deformation in hotter areas (for exam-
ple, mid-ocean ridges). Those results are in accordance with the observation that oceanic 
transform faults are characterized by relatively weak aftershock sequences (Boettcher and 
Jordan 2004).

Hainzl et  al. (2019) using a detailed earthquake catalog for the subduction zone of 
northern Chile, 2007–2014, found that the earthquake productivity decays systemati-
cally with depth. Similar result for worldwide catalog and for regional data in Japan, 
Kamchatka, New Zealand, and Italy (Fig. 10) was obtained by Shebalin et  al. (2020). 
Hainzl et al. (2019) compared the analysis of the earthquake catalog with three different 
coupling maps inferred from interseismic geodetic deformation data. They show that the 
observed depth dependence can be explained by a linear relationship between the pro-
ductivity and the coupling coefficient.
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Fig. 10  Earthquake productivity (clustering factor) versus depth (Shebalin et al. 2020, Fig. 3, Fig. 4). Mean 
rate of triggered earthquakes with minimum relative magnitude ∆M = 2 or greater plotted against the depth 
of triggering events. (a) Worldwide data, ANSS ComCat catalog, M ≥ 6.5, (b) Kamchatka, M ≥ 5, (c) Cali-
fornia, M ≥ 3.3, (d) New Zealand, M ≥ 4.5, (e) Italy, M ≥ 3.0. The horizontal bars represent the depth ranges 
around the mean, while the vertical bars show the standard deviation Λ2
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5  Productivity and the ETAS Model

As mentioned, the ETAS model is based on the hypothesis that the rate of generated 
aftershocks is constant for a given magnitude. The Poisson distribution is a natural 
means thereby to model deviations from the mean in specific samples. As a matter of 
fact, however, the rate of generated events follows an exponential distribution, hence is 
below the mean in the bulk of the cases. It is for this reason that the ETAS model can 
return overestimated aftershock rates when used for forecasting (Baranov et al. 2019b).

On the other hand, it is of utmost importance to see that the observed exponential dis-
tribution for the ∆M-productivity is not a consequence of the hierarchical declustering 
procedure based on the nearest neighbor method (Zaliapin and Ben-Zion 2013). With 
this end in view, Shebalin et al. (2020) applied the declustering procedure to catalogs 
that have been synthesized following the space–time ETAS model (Zhuang et al. 2002; 
Helmstetter and Sornette 2002; Felzer et al. 2004). The model consists of background 
events that obey a homogeneous stationary Poisson process of rate μ. Each earthquake 
in the catalog triggers the first generation; these events trigger sequences of their own in 
turn, and so on. The magnitudes are assumed to be independent and to obey the Guten-
berg–Richter distribution with a constant b value, while the times of the events obey the 
Omori–Utsu law (1) with p > 1. The total seismic rate consisting of the background and 
triggered events of all generation is given by the rate (Ogata 1998):

where M0 is a magnitude threshold and ti, xi, yi, zi, and mi are time, coordinates, and magni-
tude of the ith event. The temporal component corresponds to the Omori–Utsu law (1). Its 
spatial counterpart follows a similar power law distribution.

The model (12) is specified by eight scalar parameters {μ, b, K, c, p, α, d, q}. The 
parameter values were chosen with respect to the properties of seismicity in the global 
catalog: M0 = Mc = 4.5, b = 1.15, c = 0.0356 day and p = 1.08, ∆M = 2, Λ2 = 4.32. To obtain 
approximately the same spatial and temporal density of earthquakes as in the global cata-
log, it was chosen μ = 10 events per day in an area of 5000 × 5000  km2. The catalog was 
simulated with total duration of 20,000 days for different q values in a range of 1.5 to 3 and 
different d values in a range of 1 to 30.

For all versions of the synthetic catalog, distributions of the ∆M-productivity are in 
good agreement with Poisson distributions with modal values that are significantly differ-
ent from zero. These modal values are close to the Λ∆M value. Figure 11a shows an exam-
ple of the productivity distribution for ∆M = 2, q = 2 and d = 1 km and compared it to the 
Poisson and exponential distributions with parameter Λ2.

To incorporate earthquake productivity law into the ETAS model, Shebalin et al. (2020) 
modified a single ingredient of the spatiotemporal ETAS model (12). The productivity 
Λ∆M is the mean value of a random variable following an exponential distribution. When 
it comes to generating the synthetic catalog, this new ingredient takes the form of an addi-
tional random draw associated with each event. This modified ETAS model was called the 
 ETAS(e) model. It does not have an explicit form of the conditional intensity function, but 
one can still numerically simulate this process. The declustering procedure was applied 
to synthetic catalogs produced by the  ETAS(e) model; the ∆M-productivities are in good 
agreement with the exponential distribution and have maximum values at zero (Fig. 11b).

(12)𝜆(t, x, y, z) = 𝜇 +
∑

i∶ti<t

K

(t−ti+c)
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2
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Testing with synthetic catalogs demonstrates that hierarchical declustering procedure is 
able to recover both the predefined Poisson and exponential distributions of the productiv-
ity in synthetic catalogs produced by epidemic models of seismicity. Hence, the hypothesis 
that the exponential behavior observed in real catalogs is an artifact of the declustering 
procedure should be rejected.

6  Earthquake Productivity and the Båth Law

Seismology has the well-known Båth law (Båth 1965) stating that the difference between 
the magnitude of the main shock (Mm) and that of the largest aftershock (M1) is independ-
ent of main shock magnitude, being approximately equal to 1. At the same time, the bulk 
of larger aftershocks generally occurs during the few first hours. In practice, this activity is 
naturally perceived as a direct continuation of the main earthquake. The later larger after-
shocks occur upon the background of less frequent shocks, are less expected, and for this 
reason pose a hazard of their own.

The modeling of the distribution for the difference in magnitude between the main 
shock and the largest aftershock for t = 0 with a view to a theoretical validation of the 
Båth law was the subject of extensive research (Vere-Jones 1969, 2008; Lombardi 2002; 
Console et al. 2003; Helmstetter and Sornette 2003; Baranov and Shebalin 2018; Baranov 
et al. 2019c, Shebalin, Baranov 2021). Early work focused mainly on confirming a mean of 
about 1.2 regardless of the shape of the distribution, although the distribution was known 
to be quite large, with a standard deviation of about one unit of magnitude.

Vere-Jones (1969), based on the Gutenberg–Richter law and the assumption that the 
magnitudes of different events are independent, obtained a mean value equal to ∼ 1

�
=

1

ln10b
 . 

This gives about 0.5 which is significantly different from usually observed value 1.2. In 
addition, the author found that Mm-M1 depends on Mm. He suggested that the discrepancies 

(b)(a)

Fig. 11  Distribution of the earthquake ∆M-productivity in synthetic catalogs using (a) ETAS and (b) 
 ETAS(e) models (Shebalin et  al. 2020, Fig. S8). Dots show the distribution of the number of triggered 
events for M ≥ 6.5 earthquakes using a relative magnitude threshold ∆M = 2. The dashed line is the expo-
nential law with parameter Λ2, the mean number of triggered events derived from the data. The histogram 
shows the Poisson distribution with parameter Λ2
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with Båth law arise from hidden bias from the use of different lower thresholds for Mm and 
M1.

Following mainly the ideas of Vere-Jones (1969), Lombardi et al. (2002) and Console 
et al. (2003) noted that the quantities Mm and M1 are random variables with different distri-
butions, not because the main shocks are of a different nature than aftershocks, but because 
the ordinal statistics are not independent and equally distributed random variables, in con-
trast to a sample of random variables. They also concluded that the choice of thresholds for 
Mm and M1 is crucial for the distribution of Mm-M1.

Drawing on the work of Vere-Jones (1969) and Console et al, (2003), Helmstetter and 
Sornette (2003) showed that the origin of Båth law should be sought in the selection pro-
cedure used to determine the main shocks and aftershocks, and not in any differences in 
the mechanisms controlling the main shock and aftershocks. Using the ETAS model, the 
authors showed that this model agrees well with Båth law in a certain range of parameters 
(Fig. 12).

It has also been shown that the standard interpretation of Båth law is incorrect in terms 
of the two strongest events from a self-similar set of independent events. The authors 
believe that mean difference Mm-M1 is determined not only by the distribution of magni-
tudes, but also by the productivity of aftershocks. The large difference in magnitudes can 
be explained by the low productivity of aftershocks.

Vere-Jones (2008) proved a limit theorem that establishes conditions under which the dis-
tribution of the difference Mm-M1 approaches a limit form independent of Mm. He assumed 
that the magnitudes of individual events obey an exponential distribution and that the structure 
of the sequence approaches the structure of a Poisson process. It is shown that in these cases 
the form of the limiting distribution is a double exponent. If additionally, to take into account 
that the expected total number of aftershocks increases exponentially with increasing Mm, then 
this gives both an explanation of Båth law and its features in a wide range of conditions. We 
note that the research of Vere-Jones (2008) gives a good explanation of the mean observed dif-
ference Mm-M1, but gives significantly asymmetric distribution, while empiric distribution is 
rather symmetric.

Fig. 12  Average magnitude difference < ∆m >  =  < Mm-M1 > between a main shock and its largest after-
shock (Helmstetter and Sornette 2003, Fig. 2), for numerical simulations of the ETAS model with param-
eters b = 1, c = 0.001 day, p = 1.2, a minimum magnitude m0 = 2, a maximum magnitude mmax = 8.5 and a 
constant loading m = 300 events per day. Each curve corresponds to a different value of the ETAS param-
eters: a = 0.8 and n = 0.76 (crosses), α = 0.5 and n = 0.8 (diamonds) and α = 1 and n = 0.6 (circles). The 
error bars give the uncertainty of < ∆m > (1 standard deviation). The horizontal dashed line is the empirical 
value < ∆m >  = 1.2
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Baranov and Shebalin (2018) observed that the average difference between the magnitudes 
of the main shock and the largest aftershock, which occurs in the interval beginning sometime 
after the main shock, gradually increases. They used worldwide data to show that the distribu-
tion of Mm-M1 can be fitted with the normal distribution. As time goes on, the distribution is 
displaced toward lower magnitudes while retaining its shape and width. The authors called 
this feature the dynamic Båth law. The amount of the displacement depends on the b value in 
the Gutenberg–Richter law, on the parameters c, p in the Omori–Utsu law, and the time span 
of interest.

A little later, Baranov et al. (2019c) found a theoretical explanation of the Gaussian-like 
form of the Båth law distribution taking into account the exponential earthquake produc-
tivity law. Combining for aftershocks the Omori–Utsu law (1) for time distribution, Guten-
berg–Richter law (Gutenberg and Richter 1956) for magnitude distribution (times and mag-
nitudes are assumed to be independent, see Sect. 3), the exponential earthquake productivity 
law (see Sect. 4), and finally the Poisson distribution for the actual realization of the number 
of aftershocks at a given rate, they came to a logistic distribution of the M1-Mm quantity. The 
shape of the logistic distribution is very close to Gaussian distribution.

The Gutenberg–Richter law (Gutenberg and Richter 1956) in the form of a probability dis-
tribution is written as follows:

where β/ln10 = b is the slope of the recurrence curve for the events in the sequence; Mc—is 
the lower cutoff magnitude.

Equation (13) determines the probability that an arbitrary aftershock has a magnitude 
less than M. Then, the probability that N aftershocks have magnitudes less than M is 
equal to F(M)N. Accordingly, under assumption that N obeys the Poisson distribution 
with rate Λ and following the formula of complete probability, we can obtain that the 
probability distribution for magnitude M1 in an individual aftershock sequence is a dou-
ble exponent (Vere-Jones 2008; Zöller et al. 2013):

In order to pass to the Båth law and to derive the distribution of M1 based on all 
sequences, we need to recall that Λ obeys the exponential distribution, in accordance 
with the earthquake productivity law Eqs. (10) and (11). Taking account Eqs. (10) and 
(14), Baranov et al. (2019c) found that the distribution of M1 based on all sequences has 
the form

On integration they found (here, as in Sect. 4, we use positive value ∆M):

The distribution (15) is known as logistic distribution. Baranov et  al. (2019c) 
found that this distribution also held for an arbitrary time interval (t, T). In that case, 
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the quantity ΛΔM in Eq. (15) must be replaced with the time-dependent ΛΔM (t,T). The 
dependence of the value of ΛΔM (t,T) on time is given by the Omori–Utsu law (1):

where c, p are the parameters in the Omori–Utsu law; the function D(t1,t2;c,p) is specified 
by the relations

Thus, the quantity M1(t,T)-Mm in the dynamic Båth law has a logistic-type distribu-
tion with a shape similar to the Gaussian distribution:

and its density is

The mean, the median, and the mode are identical and have the form

The variance is

The quantity −∆M + lg(Λ∆M)/b in Eq. (20) specifies the mean difference in magnitude 
between the largest aftershock and the main shock E[M1(0,T)-Mm]. According to the empir-
ical Båth law, this value is equal to about −1.2. The third term in Eq. (20) determines the 
temporal decay of this mean value.

To test Eqs. (18) and (19) on real data, Baranov et al. (2019c) and Shebalin and Baranov 
(2021) used the technique of aftershock stacking (Shebalin and Narteau 2017). All after-
shock sequences are stacked together, and the magnitudes M in each sequence are replaced 
with differences M-Mm. Times are calculated relative to the time of corresponding main 
shock. This data set is then rearranged in increasing time.

The estimate of the b value in the Gutenberg–Richter law for relative magnitudes has 
the following advantage. It is known that completeness magnitude for early aftershocks 
depends on the magnitude of the main shock, while the relative completeness magnitude 
does not (Helmstetter et al. 2006; Hainzl 2016; Shebalin and Baranov 2017).

Correct estimation of b value from an earthquake catalog is a critical problem of statisti-
cal seismology. In practice, the magnitudes are binned in δM intervals, typically δM = 0.1. 
The binned magnitudes led to biased estimate of b value. Marzocchi et  al. (2003, 2020) 
reviewed many methods for estimating b value, studied some potential source of bias, and 
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also provided some recipes to minimize the impact of these potential sources of bias. In the 
spirit of this work, Baranov and Shebalin (2018) estimated the b value for the stack of 777 
sequences with main shocks of magnitude M ≥ 6.5 identified in the ANSS ComCat cata-
log, 1980–2016, using the method of Molchan and Dmitrieva (1992) (Fig. 13). They esti-
mated b = 1.0 using the procedure described by Bender (1983) in the interval [−2, −0.5]. 
Limiting the estimate on the right at −0.5 was introduced to exclude a possible effect of 
finite volumes (Romanowicz 1992) or break of slope in magnitude–frequency distribution 
caused by postseismic creep (Shebalin, Baranov 2017; Shebalin et al., 2021). Both effects 
are expressed in a deficit of larger events, which may lead to significant overestimation of 
the b value (Marzocchi et al. 2020) when the completeness magnitude is 2 units below the 
maximum magnitude. The parameters c and p in the Omori–Utsu law (1) were estimated 
(Fig. 14) by the Bayesian method (Holschneider et  al. 2012) for the interval (0.01, 365) 
days using uniform prior distributions for c in the interval [0.005, 0.02] and for p in [0.5, 
1.5].

Parameter ΛΔM was estimated as the mean rate of aftershocks in the sequences during 
the time (0, 365) days after the main shock. The list of estimated parameters for the world-
wide catalog and three regional catalogs is given in Table 1 (Shebalin, Baranov, 2021).

Those estimates were used to calculate using Eqs. (20) and (21) the means and the 
standard deviations for the M1(t,365)-Mm quantity at a set of times t and compare them 
with the observed values (Fig. 15). For all four considered catalogs, the dynamic Båth law 
is in good agreement with observations.

The above combination of the Gutenberg–Richter law and earthquake productivity ena-
bles one to explain the shape of the associated distribution in addition to validating the 
empirical Båth law. Indeed, incorporation of the decay for the aftershock process using the 
Omori–Utsu law has enabled the dynamic Båth law to be derived, this law being an exten-
sion of the Båth law to include the time factor.
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Fig. 13  Estimating Gutenberg–Richter b value for the stack of 777 aftershock series (Baranov and Shebalin 
2018, Fig. 2). Cumulative (circles, thick line) and differential graphs (squares, thin line) of frequency–mag-
nitude relationship for M – Mm. Dashed lines mark the interval (− 2, − 0.5) for estimating b value. Estimated 
b value is 1.0
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7  Predicting the Magnitude of the Largest Aftershock 
and the Hazardous Period of Aftershock Activity

Estimating the future activity of aftershocks after a main shock has occurred is an impor-
tant practical problem facing statistical seismology, because the larger aftershocks may 
constitute severe threat for infrastructure weakened by the impact of the main shock. Here, 
we touch upon two most important aspects of forecasting aftershocks: what maximum 
magnitude should be expected and how long the danger of destructive aftershocks will 
persist.

The forecasting aftershocks is based on modeling their activity. Although different 
models can be used, the most common are the ETAS model and the Reasenberg–Jones 
(1989) approach discussed above. When using models, the question arises about the 
estimation of the parameters. Verification methods are needed to test how well the 
models predict the activity of aftershocks. Below, before proceeding to the descrip-
tion of the predictive methods used, we consider separately these two most important 
issues.

If the Reasenberg–Jones approach is applied, the forecasts can be derived directly from 
the model. In the case of ETAS model, it is necessary to simulate a set of forecasts and cal-
culate the required probabilities as frequencies of occurrence.
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Fig. 14  Estimating parameters c and p of Omori–Utsu law (1) for the stack of 777 aftershock series 
(Baranov and Shebalin 2018, Fig. 3): (a) a posteriori distribution of Bayesian estimates of c and p. Contours 
with markers show lines of levels of quantiles; white circle marks position of maximum likelihood; (b) dis-
tribution of times of aftershocks. Thick gray line shows empirical distribution over the stack; thin black line 
shows distribution by Omori–Utsu law with estimated parameter values c = 0.04 day and p = 1.016

Table 1  The estimated 
parameters to test the dynamic 
Båth law (18)

Catalog Period ∆M b c p Λ∆M

ANSS ComCat 1975–2017 2 1.0 0.04 1.016 7.5
Kamchatka 1969–2017 2 1.2 0.08 0.9 16.3
Baikal 1960–2014 2.5 0.84 0.02 0.87 7.1
Caucasus 1962–2015 2 0.81 0.123 1.014 5.2
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7.1  Estimating Model Parameters

Basic mathematical concepts of the ETAS model are summarized in Zhouang et al. (2012). 
The ETAS parameters are estimated by the method of maximum likelihood (Ogata et al. 
1993). This method gives point estimates for the parameters ignoring the inherent uncer-
tainty that arises from historical earthquake catalogs (Ross 2021) or incomplete detection 
after large earthquake when many aftershocks are skipped during processing due to over-
lapping seismic waves.

Another way to estimate the parameters is Bayesian approach which is more preferred 
for incomplete data. Omi et al. (2014) suggested a method based on Bayesian approach for 
estimating the ETAS model from data of incompletely detected early aftershocks. The idea 
is to jointly estimate the b value of Gutenberg–Richter distribution and the time-varying 
detection rate function, which describes the lack of aftershocks, using Bayesian procedure 
applied, e.g., to data for 24 h after the main shock. Then, these values were used as a prior 
information for estimating the α value of the ETAS (5). Later, the same authors (Omi et al. 
2015) tested this method using data of 38 aftershock series selected by window procedure 
from JMA catalog. The ETAS parameters were estimated from 1-day data after the main 
shock and an expected aftershock number for 1–30 day was estimated using the so-called 
scenario approach.

(a) (b)

(d)(c)

Fig. 15  Comparing observed and estimated using Eqs.  (20) and (21) means (circles and solid lines) and 
standard deviations (dots and dashed lines) for the magnitude difference between the largest aftershock and 
the main shock M1(t,365)—Mm for the worldwide ANSS ComCat catalog (a), Kamchatka (b), Baikal (c), 
and the Caucasus (d) catalogs with the parameter values from Table 1
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Strictly speaking, an empirical procedure by Omi et al. (2014, 2015) is not completely 
Bayesian. Applying full Bayesian statistics to the ETAS model is difficult because of com-
plex nature of the resulting posterior distribution, which makes it infeasible to apply to cat-
alogs containing more than a few hundred earthquakes. Ross (2021) developed a procedure 
to estimate parameters of the space–time ETAS model in fully Bayesian way, which can be 
efficiently scaled up to large catalogs containing thousands of earthquakes and provided an 
appropriate software.

The “scenario” approach is commonly employed to predict aftershock activity following 
large earthquakes (Kagan and Jackson 2000). The parameters are estimated from data for 
a period of time (it may the initial part of the aftershock sequence of a large earthquake) 
in an area (Omi et al. 2014, 2015; Ebrahimian and Jalayer 2017). Afterward, the model is 
simulated multiple times with these parameter values, and the distribution of the desired 
quantity (as an example, the last aftershock of a specified magnitude) is estimated from the 
frequency observed in these model samples. However, this gives rise to several problems 
that call for extra conditions and restrictions to be introduced in the model that are fre-
quently little justified. The problems that are the most important for the present study are 
the following.

First, as follows from Eq. (5), the number of primary aftershocks (that is, those which 
are not aftershocks of aftershocks) of any event only depends on the difference in magni-
tudes between that event and the minimum magnitude used, while the parameters K1 and 
α are assumed to be constants. This may make the estimates based on the ETAS model 
unreliable (Marsan and Helmstetter 2017). It is also known that the number of aftershocks 
can vary within a few orders (Marsan and Helmstetter 2017); indeed, according to the law 
of earthquake productivity, this quantity obeys an exponential distribution whose mode is 
at zero, when the difference between the main shock magnitude and the minimum magni-
tude used is fixed (Shebalin et al. 2020). At the same time, the ETAS model assumes the 
aftershock rate to obey the Poisson distribution. That assumption and the nonlinear form of 
Eq. (5) leads to overestimation of expected rates in aftershock sequences even if the condi-
tion α < b is true (Baranov et al. 2019b).

The Reasenberg–Jones (1989) approach assumes that the magnitudes and times of after-
shocks are independent, and the model is a direct product of the Gutenberg–Richter law 
and the Omori–Utsu model. The total set of parameters is: b value of the Gutenberg–Rich-
ter law (13), parameters c, p and K of the Omori–Utsu law (1). In recent studies, the most 
common way to estimate parameter values is based on likelihood: either a point maximum 
likelihood, or an interval Bayesian estimate. The Bayesian method additionally makes it 
possible to regularize estimates.

A standard way to apply the Bayesian approach consists in simultaneous optimization of 
the whole set of parameters and constructing posterior distribution for the target value. For 
example, Shcherbakov et al. (2018) obtained Bayesian estimates of the parameters by mul-
tiple integration of Bayes’ formula to derive a posterior distribution for the magnitude of 
the largest aftershock M1(t,T). Usually, a “flat” prior (uniform distribution in a given range 
of values) is applied to each parameter.

At the same time, retrospective testing based on worldwide data showed (Baranov et al. 
2019c) that some aftershock sequences frequently displaced the maximum of the posterior 
distribution for the parameter so that it was near the boundary of specified prior limits, and 
this ultimately led to erroneous estimates of M1(t,T). Regularization of estimates requires a 
more detailed prior information on the parameters. Thus, it is technically more convenient 
to separate the estimate of the b value and the parameters of the Omori law.
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Correct estimating b value from an earthquake catalog is a critical problem of statisti-
cal seismology. In practice, the magnitudes are binned in δM intervals, typically δM = 0.1. 
The binned magnitudes led to biased estimate of b value. Marzocchi et  al. (2003, 2020) 
reviewed many methods for estimating b value, studied some potential source of bias, and 
also provided some recipes to minimize the impact of these potential sources of bias. The 
Bayesian procedure of Bender (1983) allows, among other advantages, to estimate the b 
value for a two-sided limited magnitude range. A “cookbook” on the application of this 
procedure can be found in (Vorobieva et al. 2013).

Bender’s standard procedure assumes a flat prior. Baranov et al. (2019c) modified this 
procedure using Gaussian prior for the b value. They have considered 334 aftershock 
sequences and estimated the b value using Bender’s procedure with a uniform prior dis-
tribution in [0.5, 1.5] (Fig. 16). The distribution of the estimates then was fitted using a 
normal function, which was then used as a prior for other b value estimates.

Correct estimation of the b value depends on a correct choice of the completeness mag-
nitude Mc. This problem is well reflected in the literature; there are many methods for 
assessing Mc, for example, the method of Woessner and Wiemer (2005). For aftershock 
analysis, however, this problem has an essential feature: Mc depends on time from the main 
shock. We discuss this in more detail below.

When estimating the b value in an aftershock sequence, the result can significantly 
depend on the declustering method and the parameters of the declustering procedure. 
Using the catalog of earthquakes in California since 1980, Mizrahi et  al (2021) showed 
that the b value after declustering procedure (aftershocks removed) decreases by up to 30% 
due to declustering. However, we think, this may be a result of usual assumption that mag-
nitude of aftershock does not exceed the magnitude of its main shock. This automatically 
forms a general deficit of larger aftershocks and results in an increase in the b value in 
aftershocks and corresponding decrease in the declustered catalog.

Bayesian estimates for c and p in the Omori–Utsu law can be obtained using the method 
of Holschneider et al. (2012). The input information are times of aftershocks in an inter-
val [tstart, tstop]. The recommendations in this publication are to search for the optimal 
parameter value for the quantity lg(c). Flat priors for lg(c) and p are the default option 
in the program provided in the public domain by the authors of the paper. Baranov et al. 
(2019c) modified the procedure for the use of the normal prior. In a similar manner to 
the estimation of b, using 334 aftershock sequences, they obtained normal approximations 

Fig. 16  Empirical distribution 
of b value estimates (Baranov 
et al. 2019c, Fig. 1). Density 
f(b) (histogram) is based on 334 
aftershock series from world’s 
earthquakes with Mm ≥ 6.5. 
Heavy line is normal approxima-
tion with mean Eb = 1.12 and 
standard deviation σb = 0.3
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for the distributions of lg(c) and p with Elg(c) = –1 and Ep = 1.05 and standard deviations 
σlg(c) = 0.74 and σp = 0.25.

The choice of tstart is an important element when applying the Holschneider’s proce-
dure. Obviously, some of the aftershocks that occur immediately after the main shock are 
not included in the catalog, primarily because their waveforms are overlapped by the main 
shock, and also because of the overlapping the aftershock waveforms. Helmstetter et  al. 
(2006) analyzed the Californian earthquake catalog to detect an approximate relationship 
between main shock magnitude Mm, the completeness magnitude Mc, and time tstart after 
which the catalog is complete for M ≥ Mc They obtained:

where time is in days relative to the main shock. Baranov et al. (2019a, b, c) found for 
worldwide seismicity:

Hainzl (2016) proposed an approach for estimating the pair (Mc, tstart), based on the 
idea that a catalog becomes incomplete, when the rate of events is too high. This approach 
requires adjustment of the parameters, but there is no universal criterion for such an 
adjustment.

Another approach, proposed by Shebalin and Baranov (2017), is to find a tstart value that 
stabilizes the b value estimates (or a mean magnitude that has a one-to-one correspondence 
with b value according to (Aki 1965).

There is another version (Baranov et  al. 2019c) which supposes that the parameter c is 
really small for aftershocks of a large earthquake and considerably below the estimate based 
on values of Mc by Eq. (23). The actual estimate of c can thus serve to determine tstart for the 
associated value of Mc. At the first step the parameters in the Omori–Utsu law are estimated 
for the interval (0.0001, t) days, say, for M ≥ Mc. The next step would be to use [c = tstart, t] 
with M ≥ Mc to find new estimates of c, p.

Baranov et al. (2019c) tested all the four methods for estimating the {tstart, Mc} pair based 
on the world data for 777 aftershock sequences extracted from epy ANSS ComCat catalog. 
They found a method that used Eq. (23) as the most suitable for such a worldwide analysis.

7.2  Testing Forecasts

Evaluation of forecasts and comparison of different forecasts is an issue in its own right in 
statistical seismology. There are two generally different approaches for this. Alarm-based fore-
casts, usually also called predictions specify areas in time, space, or both in time and space 
and magnitude interval (Zechar 2010). Another common format for earthquake forecasts is 
a gridded rate forecast, in which the geographic region of interest is divided into sections 
and the forecast indicates the expected number of earthquakes in each section. This format is 
widely used by the Collaboration for Earthquake Predictability Research (CSEP) testing cent-
ers (Jordan 2006; Zechar et al. 2010).

Two types of error analysis are used to evaluate alarm-based predictions: target misses 
and false alarms. The most commonly used are receiver operating characteristic (ROC) dia-
gram (Mason 2003, and references therein) and Molchan diagram (Molchan 1991). Molchan 
diagram, which is a plot of the miss rate versus the fraction of space–time volume occupied 
by “alarms”. An important feature of the Molchan diagram which makes it preferable in 

Mc = Mm − 4.5 − 0.761 lg
(
tstart

)

(23)tstart = 10(Mm−Mc−3.5)∕0.7
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comparison to ROC diagram is that the time–space may be defined using a reference model. 
The reference model specifies what is the probability that an event occurs within the 
time–space of alarms. Alarm-based forecasts usually imply a control parameter. “Alarms” are 
“switched on” in case the control parameter exceeds a given threshold. Increasing threshold 
leads to an increasing number of the target misses but decreasing the time–space of alarms. 
The whole range of the control parameter forms a trajectory in Molchan diagram. If the trajec-
tory goes below the diagonal (0.1; 1.0), then the tested predictions are more performant than 
the reference model.

The reference model can define the distribution of a control parameter, not necessarily 
related to space or time—for example, to predict only the magnitude of an earthquake. In this 
case, the time–space of alarms on the Molchan diagram can be replaced by the function of the 
distribution of the control parameter (Baranov et al. 2019c).

For the format of the gridded rate forecasts a set of tests have been developed based on the 
joint likelihood function (Zechar 2010). The forecasts are done in a form:

where M is the binned magnitude range of interest, S is the binned spatial domain of inter-
est, and fij specifies the probability of observing zero earthquakes, one earthquake, etc.

The locations of the observed earthquakes are binned using the same discretization:

where �(i, j) specifies the number of observed earthquakes within a bin (i, j). The joint 
likelihood is the probability to observe �(i, j) earthquakes in all bins according to the fore-
cast model. It is assumed that the values in different cells are independent. In this case, 
the joint likelihood is the product of the probabilities calculated in each bin, and the log-
likelihood is convenient for replacing the product with the sum:

Assuming that the number of earthquakes in each bin has a Poisson distribution, the 
probabilities fij can be calculated using the modeled rates in the bins. In that case Eq. (26) 
is:

where λ(i, j) is Poisson rate in bin (i, j). In more general case the probabilities can be calcu-
lated using numerical simulations.

Several likelihood-based tests have been developed for gridded-type forecasts: L-test, 
N-test, S-test, and R-test (see Zechar 2010 and references therein).

The Likelihood test (L-test) answers a question: is the observed catalog of earthquakes 
consistent with the forecast? The test is based on multiple simulations of the earthquake 
catalog. For each catalog, the joint log-likelihood is calculated by Eq.  (26) or (27) and 
compared to the log-likelihood value calculated using the real catalog. The proportion γ of 
cases in which the likelihood value according to the simulated catalog is less than accord-
ing to the real one is calculated. A very small value of γ indicates that the observation is 
inconsistent with the forecast (at a 100(1-γ)% confidence level).

The Number test (N test) is aimed to verify whether the number of observed target 
earthquakes is consistent with the forecast. Using catalog simulations or expected Pois-
son rates if appropriate, one may calculate the distribution function for the total number 

(24)Λ =
{
fij|i ∈ M, j ∈ S

}

(25)Ω = {�(i, j)|i ∈ M, j ∈ S}

(26)L(Ω�Λ) = ∑
log

�
fij(�(i, j)

�

(27)L(Ω�Λ) = ∑�
−�(i, j) + �(i, j) log �(i, j) − log(�(i, j)!

�
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of earthquakes according to the forecast model. At a given significance level α, the total 
observed number of earthquakes is consistent with the model if this value lies between α/2 
and 1-α/2 quantiles of the obtained distribution.

The Magnitude test (M-test) and Space test (S-test) are designed to consider only the 
magnitude or spatial distributions of the model and the observation. The forecast is reduced 
to a set of magnitude bins by summing expected rates over spatial bins in M-test and to a 
set of spatial bins in S test. In multiple simulations of catalogs, the “reduced” log-likeli-
hood is compared between the simulated and real catalogs, and a proportion g analogous 
to that calculated in L test is determined. Again, a very small value of γ indicates that the 
observation is inconsistent with the forecast at a 100(1-γ)% confidence level.

The Likelihood Ratio test (R-test) is designed to compare two forecast models. It is 
based on the natural idea that a forecast with a higher joint log-likelihood is better. The 
likelihood ratio for two forecasts ΛA and ΛB is the difference of the joint log-likelihoods:

The likelihood scores and the Molchan (2010) diagram may complement each other. 
Shebalin et  al. (2014) demonstrated that in the error diagram, relatively more weight is 
given to successful forecasts and false alarms in bins with high forecasted rates. In contrast, 
likelihood criteria give relatively more weight to bins of low probability of events (includ-
ing target misses). For likelihood tests, moreover, there is often a problem of zero or very 
low expected rates. The Molchan diagram, in turn, has the disadvantage that it is not appli-
cable for assessing the forecast of the overall expected rate, but only its distribution in time 
and / or space.

7.3  Magnitude of the Largest Aftershock

Very popular Båth law forecasts the magnitude of the largest aftershock as the magnitude 
of the main shock minus about 1. This is probably the reason that little attention has been 
paid to the problem of forecasting this value, although Båth law gives a forecast only in 
general, and the actual values vary greatly. In addition, as shown above, over time, the 
magnitude of the subsequent strongest aftershocks decreases, and often the strongest after-
shocks occur in the first hours after the main shock.

The procedure to use for estimating the maximum magnitudes of future aftershocks 
based on observations of past ones was developed by a joint team of researchers from 
Canada and Japan (Shcherbakov et  al. 2018; Shcherbakov 2021) and by a Russian team 
(Baranov and Shebalin 2018; Baranov et  al. 2019c). The approaches of both teams are 
based on using a straightforward superposition of the Gutenberg–Richter and Omori–Utsu 
laws with a view to simulating aftershock processes (see above). Both approaches make 
use of the Gutenberg–Richter law (13), the Omori–Utsu law (1), and Vere Jones’ Eq. (14) 
in the form of a double exponent.

The main differences between the two approaches are as follows. First, Baranov et al. 
(2019) estimate the parameters with due account of catalog incompleteness at the begin-
ning of a sequence. To do this, these authors estimate, not only the completeness mag-
nitude, but also the time since the main shock when the magnitude actually starts to be 
complete. Second, they use the Bayesian method merely to regularize the estimates of the 
parameters of the Gutenberg–Richter and Omori–Utsu laws rather than for estimating the 
magnitude distribution of the largest aftershock, as was done by Shcherbakov et al. (2018). 

(28)R = L
(
Ω|ΛA

)
− L

(
Ω|ΛB

)
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Third, they regularize the estimates of the parameters by using their distributions based on 
worldwide data as Bayesian priors. Shcherbakov et al. (2018) use 17 aftershock sequences 
from several different regions worldwide. Baranov et al. (2019c) use global data for 777 
aftershock sequences as identified by the algorithm of Molchan and Dmitrieva (1992) from 
the ANSS ComCat catalog for the period 1980–2016.

Baranov et  al. (2019c) compare these two approaches by integral collation of results 
from a retrospective estimate for the magnitude of the largest aftershock for the time inter-
val (t, T = 365) days, i.e., the quantity M1(t, T). Two independent tests are used for the 
comparison. One test, R test (see Sect. 7.2), is based on the ratio between the likelihood 
function of the estimate under analysis and the estimate using the dynamic Båth law (15) 
using the actual maximum magnitudes (Schorlemmer et al. 2007). The other test uses of 
the error diagram due to Molchan (1991) relative to the dynamic Båth law which is the 
reference model.

Using the R test Eq. (28), the authors calculate the geometric mean LG(N) of the value 
exp(R) in the N terminated forecasts. The LG(N) value is the greater, the more often the 
values of M1,i(t,T) fall into the region of higher probability density in the tested model 
compared to the reference model, and the less often they fall into the region of low prob-
ability density.

In the Molchan diagram the control parameter is the distance to the maximum density 
(mode) of the forecast distribution, δM, since the forecast is considered the better the nearer 
is the sample to the mode. Time–space of alarms in this case is replaced by the probability 
of M1(t,T) falling in  [Edb(t) – δM,  Edb(t) + δM], and the fraction of failures-to-predict is the 
number of cases in which Mi,1(t,T) < E(t) − δM or Mi,1(t,T) > E(t) + δM, where E(t) is the 
mode of the distribution for the tested model, while the mode of the distribution for the 
dynamic Båth law, Edb(t), is given by Eq. (20).

The tangent of the angle in the straight line passing through the point (0,1) and a point 
at the trajectory in the Molchan diagram is called probability gain (Molchan 1991; Sheba-
lin et al. 2014). The better the model, the greater the probability gain. For convenience in 
the comparison for different values of t that quantity was considered at ν = 0.5; we denote it 
as PG0.5. The value 1 for both tests means that the performance in predicting M1(t, T) using 
the method being tested is the same as the estimate based on the dynamic Båth law, that is, 
without appealing to the information on past aftershocks. Values greater than 1 mean that 
the method is preferable compared with the reference model, while values below 1 make 
the dynamic Båth law the method of choice.

Estimates were made when the number of aftershocks above the completeness magni-
tude in the interval (tstart, t) was at least N0. Otherwise, the estimate based on the dynamic 
Båth law was used. Since the evaluation of performance assumed the dynamic Båth law as 
the reference model, such cases were excluded from the evaluation. The quantity N0 is the 
only free parameter in this method due to Baranov et al. (2019c). Tests with N0 varying 
between 4 and 20 resulted in the choice of the optimal value, N0 = 5. That value was after-
ward used in all tests.

The testing results are listed in Table 2. For all times t tested, the values of the LG and 
PG0.5 tests were greater than 1 and were 1.22 on average. It thus appears that the proce-
dure described here incorporates information on past aftershocks to yield considerably bet-
ter time-dependent estimates of the future largest aftershock compared with the estimates 
based on the dynamic Båth method. The mean gain in probability was approximately 22%.

Comparison of these results (Table  2) with the results obtained by the basic method 
showed a substantial advantage of the basic option where point parameter estimates are 
employed. The same retrospective data were used to compare the estimates using our 
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method with those from (Scherbakov et al. 2018). These results are also listed in Table 2. It 
has turned out that the estimates following (Shcherbakov et al. 2018) were much worse, not 
better than those based on the dynamic Båth law.

7.4  Hazardous Period Duration

Many researchers considered the problem of estimating the time of the largest aftershock 
(Saichev and Sornette 2005; Tahir et al. 2002; Shcherbakov et al. 2018). The problem can 
be dealt simultaneously with that of estimating the magnitude of the largest aftershock 
(Shcherbakov et al. 2018). In our opinion, there is a problem that is more urgent in prac-
tice, namely, the estimation of the time of the last aftershock with a magnitude above a 
specified value, since it is not only the largest aftershock may pose serious threat, but other 
large aftershocks too.

A natural way to solve this problem would be applying the ETAS model with multiple 
simulations to find the distribution of the time of the last aftershock with magnitude above 
a given threshold. The ETAS model implies that large aftershocks may significantly change 
the duration of the hazardous period by breaking an Omori-like behavior of the sequence. 
Spassiani et  al. (2018) studied theoretical probabilities of such a break. They found that 
for some sequences conform to the Omori law, some do not. In our opinion, this is a con-
sequence of the productivity law (Sect. 4), from which it follows that the number of after-
shocks in an event of a given magnitude can be both large and, most likely, very small.

Shebalin and Baranov (2019) constructed a solution to this problem based on the model 
of the aftershock process in accordance with the Omori–Utsu law (1) and taking into 
account the exponential productivity law (Eq. (11)). The magnitude threshold can be speci-
fied with regard to how dangerous are events of this magnitude for the region in question.

Table 2  The results of 
retrospective testing of the 
procedure for forecasting  M1(t,T) 
(Baranov et al. 2019c, Table 2)

N is the number of sequences for which the number of completely 
reported aftershocks in the interval (tstart, t) is 5 or greater.

t, days N(1) Basic method 
(from point 
parameter esti-
mates)

Method based 
on the Bayes-
ian approach 
for estimating 
M1(t,T)M1(t,T)

After (Scherba-
kov et al. 2017)

LG PG0.5 LG PG0.5 LG PG0.5

0.25 107 1.392 1.337 1.222 1.215 1.081 0.743
0.5 180 1.354 1.292 1.224 1.006 1.078 0.756
1 257 1.243 1.218 1.136 1.007 1.036 0.812
2 318 1.273 1.146 1.176 1.034 1.084 0.839
4 362 1.266 1.155 1.201 1.103 1.121 0.929
8 407 1.302 1.093 1.203 1.056 1.116 0.923
16 447 1.148 1.096 1.139 1.045 1.096 0.961
32 486 1.216 1.055 1.178 1.033 1.155 1.014
64 523 1.265 1.159 1.220 1.147 1.206 1.062
Mean 343 1.273 1.172 1.189 1.072 1.108 0.893

1.223 1.130 1.000
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The density and distribution function for the time t of an arbitrary aftershock for an 
assumed case in which times are considered within some interval T (everywhere below we 
will be using the value T = 365 days) after the main shock and have the form (Holschneider 
et al. 2012):

Here, c and p are the parameters in the Omori–Utsu law (1), and function Dc,p

(
t1, t2

)
 is 

defined by Eq. (17).
The probability that all k aftershocks will occur before a time τ, given τ < T, is F(τ)k. We 

will assume the Poisson distribution with mean Λ to hold for the rate of aftershocks in the 
interval (0,T) in each sequence. In that case, according to (8), the probability distribution 
for the time τ when the last aftershock of a specified magnitude will occur (given τ < T) is

and its density is

Note that Eq.  (30) does not vanish at τ = 0, since there is always a certain probability 
that the earthquake will not be followed by aftershocks of the indicated magnitude, which 
the larger, the smaller Λ. All other things being equal, that quantity can vary from earth-
quake to earthquake by an order or greater (Marsan and Helmstetter 2017). As was shown 
above, when there is a fixed threshold for the magnitudes under consideration relative to 
the main shock magnitude, the global and regional distributions of Λ have the exponential 
form, Eq.  (10). As well, the parameter Λ∆M (the mean rate of M ≥ Mm-∆M aftershocks) 
decreases with increasing main shock depth on the global (Fig. 10a) and on the regional 
level (Fig. 10b–c). This tells us that depth should be incorporated in the calculation.

The quantity Λ∆M frequently has values near 0 in some sequences. For such sequences, 
the probability of large subsequent shocks is low in a short time after the main shock. Aver-
age estimates obviously require the distribution (10) to be included. Based on Eqs. (10) and 
(30), we derive an average distribution function FΛ(τ) and the density fΛ(�) for τ under the 
condition τ < T (Shebalin and Baranov 2019):

The key parameter in Eq.  (32) is Λ∆M, which determines the probability function at 
τ = 0. The smaller Λ∆M, the higher is the probability of no aftershocks of the specified 
magnitude at all. The quantity Λ∆M depends on the magnitude threshold selected relative 
to main shock magnitude. The value ∆M = 2.0 is a convenient threshold to use. This is 
considerably below the mean magnitude difference between the largest aftershock and the 
main shock as given by the Båth law, but high enough for the events to be above the com-
pleteness magnitude in most cases.

Shebalin and Baranov (2019) estimated of the parameters in Eq. (32) based on world-
wide and regional data and plotted against depth. Figure  17 shows the parameter Λ2 as 

(29)f (t) =
Dc,p(0,T)

(1+t∕c)p
, F(t) =

Dc,p(0,T)

Dc,p(0,t)

(30)FΛ(�) = e−Λ[1−F(�)]

(31)fΛ(�) = Λf (�)e−Λ[1−F(�)]

(32)FΛ(�) =
∞

∫
0

FΛ(�)f (Λ)dΛ =
1

ΛΔM

∞

∫
0

e−Λ∕ΛΔMe−Λ[1−F(�)]dΛ =
1

1+ΛΔM [1−F(�)]

(32a)fΛ(�) =
ΛΔMf (�)

{1+ΛΔM[1−f (�)]}2
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a function of depth of focus for aftershock sequence due to large (Mm≥ 6.5) earthquakes 
worldwide based on the ANSS ComCat catalog and for Kamchatka and the Kurile (Mm≥ 
6.0). It has turned out that Λ2 can vary by factors of a few tens over depth. For both of 
these cases it has turned out that the dependence is exponential for depths between 10 and 
100 km.

Model (32) was examined for consistency with empirical data based on the global cat-
alog (Shebalin, Baranov, 2019) for four ranges of depth, resulting in an estimate of Λ2. 
There is not enough data for the Baikal and Caucasian regions to estimate the dependence 
of Λ2 on depth, consequently, the estimates used for the two regions were common values 
for all depths.

It seems to be impossible to estimate real values of c for the aftershock sequences of 
large earthquakes, but one can obtain indirect estimates of the parameter based on the 
aftershocks of smaller earthquakes, doing a joint analysis of many sequences (Narteau 
et al. 2009). Shebalin and Narteau (2017) have identified a dependence of c on main shock 
depth. Indeed, it has turned out that c is little dependent on the magnitude of both the main 
shock and aftershocks. The values of c vary within  10−4 −  10−1 days for strike slip faults 
in California, demonstrating a persistent tendency of decreasing with increasing depth in 
the interval 2—15  km, with the bulk of Californian earthquakes occurring in this layer. 
Shebalin and Baranov (2019) obtained a similar tendency for the Japan subduction zone 
(Fig. 18a) in the range down to 40 km depth where c decreases from  10−2 to  10−3 days.

An analogous analysis has also been done for the earthquakes in the Kuril–Kamchatka 
region (Fig.  18b). It has turned out that the parameter decreases similarly in the depth 
range down to 40 km from  10−2 days to  10−3 days, while increasing somewhat again from 
40 to 100 km. It can be surmised that the parameter c varies over depth in a similar man-
ner in about the same limits at other subduction zones. The subduction earthquakes make 

(a) (b)

Fig. 17  Dependence of parameter Λ2 on source depth for aftershock sequences (Shebalin and Baranov 
2019, Fig. 2) (a) from world earthquakes with Mm ≥ 6.5, 1980–2018; (b) from earthquakes with Mm ≥ 6.0 
in Kuril–Kamchatka region. Solid line estimates of parameter Λ2 from main shocks ordered by increasing 
source depth in moving window of 50 events with step of 5 events (average over 50 events is assumed as 
depth value); dashed line, piecewise linear approximation on logarithmic scale (see text)
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the bulk of all world earthquakes; hence c must have the same order of magnitude over 
all large earthquakes on average. With this consideration in mind, Shebalin and Baranov 
(2019) adopted values of c for the four depth ranges used for testing the model.

It is quite legitimate to use aftershock sequences of large earthquakes in order to esti-
mate the parameter p in the Omori–Utsu law (1), provided the initial segment of each 
sequence has been excluded from estimation. Shebalin and Baranov (2019) used the world-
wide catalog and the Kuril–Kamchatka data to obtain dependences of p on depth of focus 
(Fig. 19). For the worldwide catalog they also obtained analogous estimates for the four 
depth ranges considered here.

The model for the distribution of τ was tested (Shebalin and Baranov 2019) by com-
paring theoretical and empirical distribution functions for this quantity in the four 
depth ranges using the worldwide catalog and three regional catalogs (Fig.  20). The 
theoretical distributions were constructed in accordance with Eq.  (32). The empirical 

(a) (b)

Fig. 19  Dependence of parameter p on source depth for aftershock sequences (a) from world earthquakes 
with Mm ≥ 6.5, 1980– 2018; (b) from earthquakes with Mm ≥ 6.0 in Kuril–Kamchatka region (Shebalin 
and Baranov 2019, Fig. 4). Circles mark estimates of parameter p from main shocks ordered by increasing 
source depth in moving window of 50 events with step of 5 events (average over 50 events is assumed as 
depth value); dashed line is piecewise linear approximation on logarithmic scale

(a) (b)

Fig. 18  Dependence of estimates of parameter c of Omori–Utsu law on  source depth of main shock (She-
balin and Baranov 2019, Fig. 3) obtained by method of Shebalin and Narteau (2017): (a) earthquakes in 
subduction zones near Japan; (b) Kuril–Kamchatka earthquakes. Maximum likelihood estimates (circles) 
and confidence intervals at level of 95% are indicated in graphs
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distributions differ considerably among themselves, but the theoretical ones differ from 
the respective empirical distributions much less. The best agreement is achieved for 
h ≥ 50 km when using the worldwide catalog (at confidence level 0.99 for the Kolmogo-
rov test) and the worse agreement for h = 30 − 50 km (confidence level 0.52). Consider-
ing that each aftershock sequence can involve some local fluctuations over time from the 
Omori–Utsu law and that the model Eq. (32) is a strongly nonlinear function of c and 
p, the results can be considered a good confirmation of the model. This good agreement 
between theoretical and empirical distributions also corroborates that the use of indirect 
(rather than impossible direct) estimates of c whose values strongly affect the distribu-
tion shape is legitimate.

Shebalin and Baranov (2019) suggested also to incorporate the information on the 
first aftershocks to obtain more accurate estimates of the duration of the hazardous 
period. But the interval before the time tstart from which the catalog can be considered 
complete, must be excluded. Equation 30 is again the basis for such forecasts. The total 
rate Λ of aftershocks with magnitude above the relative threshold Mm—2 in the interval 
[0, T] is estimated using Omori–Utsu model:

where the function Dc,p is given by Eq. (17).
For the forecasts the authors used the predefined values of parameters c, p, b in the 

same way as without using data on the first aftershocks. The results were evaluated 
based on data on the first aftershocks using the information gain test LG (LG is defined 
as a geometric mean of the value exp(R) in the N forecasts, and R is the value of R test, 
Eq.  (28), for each forecast). Equation  (32) was used as the reference model for the R 
test. The results are listed in Table  3. Forecasts using information on the first after-
shocks are significantly more performant.

Duration of the hazardous period obviously depends on the total duration of the after-
shock sequences, a problem that has received much more attention. In particular, it was 
found that the magnitude of the main shock is not a determining factor for the duration 

(33)Λ = nc
(
tstart, t0

)
10b(Mc−Mm+2) Dc,p(tstart ,t0)

Dc,p(0,T)

(c)(b)(a)

Fig. 20  Empirical and theoretical distribution functions of duration of aftershock hazardous period τ2 (a), 
(b) for global catalog Mm ≥ 6.5, depth intervals of main shock (a) 0 ≤ h < 10 km (circles), 10 ≤ h < 30 km 
(triangles), (b) 30 ≤ h < 50  km (plus signs), 50  km ≤ h (crosses)) and (c) for regional catalogs: Kuril–
Kamchatka region, Mm ≥ 6.0 (heavy line), Baikal region, Mm ≥ 5.5 (thin line), Caucasus region, Mm ≥ 5.0 
(medium heavy line). Theoretical distribution functions Eq. (32) are shown by dashed lines. (Shebalin and 
Baranov 2019, Fig. 5.)
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of the series of aftershocks (Ziv 2006; Toda and Stein 2018). Important here finding is 
that duration depends on the faulting style: longer aftershock duration is characteris-
tic to extensional tectonic settings or normal faulting (Tahir and Grasso 2015; Valerio 
et al. 2017). Accordingly, not only depth, but also faulting style of main shock should be 
taken into account in forecasts of the duration of the hazardous period.

8  Conclusions

We have reviewed the main models and contemporary approaches and methods used 
for predicting aftershock activity in application to evaluation of postseismic hazard. We 
considered both the physical mechanisms and models of aftershock generation on the 
one hand and time-dependent models on the other.

We present validation of the approach to the representation of the aftershock process 
as a direct superposition of the Omori–Utsu and Gutenberg–Richter laws as suggested 
by Reasenberg and Jones (1989). Among other things, worldwide data were used to cor-
roborate the hypothesis that aftershock times and magnitudes are independent.

We noted that earthquake productivity plays the key role for evaluation of postseis-
mic hazard; the productivity characterizes the ability of different earthquakes to gen-
erate subsequent shocks. We review the main approaches to the study of productivity. 
The ∆-analysis as applied to worldwide and regional data showed that productivity (the 
number of events triggered by an earlier earthquake) obeys the exponential whose only 
parameter is independent of main shock magnitude and can be viewed as a clustering 
factor. Productivity decreases with increasing depths of events, while the exponential 
shape of the distribution persists for different depths and magnitudes of the triggered 
events. That result is a recent achievement in statistical seismology and bears the name 
of earthquake productivity law.

An analysis of data synthesized for the spatial ETAS model showed that the earth-
quake productivity law is violated in this case, because the model assumes productivity 
to obey the Poisson distribution. This contradiction was eliminated by incorporating the 
productivity law in the ETAS model, with the result being called ETAS(e).

The empirical Båth law is another important pattern in statistical seismology. We 
cite the main publications that contained attempts at theoretical validation of the Båth 
law. A recent achievement in this area is validation of the Båth law using the Guten-
berg–Richter relation and the earthquake productivity law. Modeling the decay of after-
shocks using the Omori–Utsu law has enabled the Båth law to be generalized, resulting 

Table 3  The results of a retrospective test for estimates of the duration of the hazardous period due to the 
M ≥  Mm−2 aftershocks using the information on the aftershocks in the interval [0, 0.5] days (Shebalin and 
Baranov 2019, Table 2.)

Catalog Number of sequences N with nc(tstart, t0) ≥ 5 
nc(tstart, t0) ≥ 5

LG(N)

Worldwide ANSS catalog, Mm ≥ 6.5 181 1.48
Kuril–Kamchatka region, Mm ≥ 6.0 32 1.59
Caucasus, Mm ≥ 5.0 10 1.39
Baikal, Mm ≥ 5.5 4 1.64
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in the distribution of the difference between the magnitudes of the largest aftershock 
and main shock over time. The distribution was called the dynamic Båth law. This law 
has been shown to be consistent with worldwide and regional data.

Estimating the magnitude of the largest aftershock is an important problem in statis-
tical seismology. The general approach to such estimation consists in representing the 
aftershock process by a superposition of the Gutenberg–Richter and Omori–Utsu laws 
(the model of P. Reasenberg and L. Jones) followed by using the Bayesian method either 
to estimate the model parameters or to regularize the estimates based on worldwide 
data. The modern studies based on worldwide data showed that the latter approach is to 
be preferred, while a straightforward application of the Bayesian method to parameter 
estimation gains nothing compared with the dynamic Båth law.

There is another important problem, namely estimating the duration of the hazard-
ous period in aftershock activity i.e., the time span where aftershocks with magnitudes 
equal to or greater than a specified value are to be expected. We cite the main publica-
tions where the problem was examined. The most significant results here include the 
derivation of the distribution for the duration of the hazardous period in an aftershock 
sequence and of an averaged distribution for the duration of the hazardous period based 
on the totality of all sequences. This last result was derived using the law of earthquake 
productivity. We quote estimates for the parameters in the averaged distribution based 
on worldwide and regional data. It is shown that the estimates using the averaged model 
can be improved using the information on the first aftershocks.

It is also necessary to point out that the practical application of these procedures 
consists in the Aftershock Hazard Assessment System, AFCAST (https:// itpz- ran. ru/ 
afcast/). The system uses the worldwide ANSS catalog and performs near-real-time esti-
mation of areas of aftershock activity, the magnitude of the largest aftershock, and the 
duration of the hazardous period for the M ≥ 6.5 earthquakes.

In our opinion, one promising line of research in the estimation of largest aftershock 
magnitudes and hazardous period duration is a scenario approach based on the genera-
tion of synthetic catalogs using the ETAS(e) model.
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