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A 3D cellular automaton is disclosed that enables modelling thedynamics of bedform. The overall mechanism
can be regarded as a Markov chain, a discrete system with a finite number of configurations and probabilities
of transition between them. Physical processes such as erosion, deposition and transport are modelled at the
elementary scale by nearest neighbour interactions. At larger length scales, topographic structures arise from
internal relationships based upon these short range interactions. This article focuses on crescentic barchan dunes
that are used as a benchmark for our numerical model of bedforms. Length and time scales of isolated barchan
dunes are studied in order to constrain the parameters of themodel. Then we discuss pattern selection and the
evolution of a population of dunes over a wide range of initial and boundary conditions. We eventually show
that our model can be generalized to bedforms through the increase of the sand availability.

1 Introduction

There is a considerable variation within bedforms
as they locally depend on the topography, the sed-
iment load, and the flow. Such variability might be
expressed by different relationships between erosion
and deposition rates and the fluid velocity field. While
empirical relationships estimate these quantities for a
given bed under particular conditions, theoretical re-
lationships simplify the turbulence problem to make
easier the description of the sediment capacity of the
flow. In both cases, it remains extremely difficult to
tackle the impact of the size distribution of sediment
particles. Despite these limitations, the study of aeo-
lian dunes has significantly filled the gap between ob-
servations and models (Bagnold 1941; Pye and Tsoar
1990; Lancaster 1995).

Under dry conditions, the transport of sand grains
by the wind involves similar physical mechanisms
than sediment transport in liquids. However the ab-
sence of cohesion, dissolution and sedimentation lim-
its the number of relations between fluid and solid in-
gredients. Then, in order to investigate couplings be-
tween wind and topography, it is sufficient to formal-
ize the wind velocity field with respect to the surface
profile as well as the erosion and deposition responses
to shear stress (Jackson and Hunt 1975; Hunt et al.
1988; Weng et al. 1991). In this framework, the prin-
ciple of mass conservation is commonly ensured by a

continuity equation for the height profile

∂t h = − ∂x q (1)

whereq is defined as a volumic sand flux per unit
of time and per unit of length perpendicularly to the
wind direction. The capacity of transport takes there-
fore the form of a saturated sand fluxqs, and the only
parameters are those which are relevant for the mag-
nitude ofqs according to the topography (Kroy et al.
2002a; Andreotti et al. 2002). Schematically, for a
strong enough wind, deposition dominates ifq ap-
proachesqs (i.e ∂x q < 0), else erosion occurs (i.e
∂x q > 0). In all cases, there are different ways the
grains can be put into movement. First, they can be
dragged, lifted and accelerated by the excess shear
stress exerted by the fluid on the surface. This corre-
sponds to saltation. Second, they can be released by
impacts of falling grains and crawl on the surface.
This corresponds to reptation. These two transport
modes are obviously related to one another, essen-
tially because saltation implies an irregular hopping
process through the retroaction of transported grains
on wind velocity.

In this paper, we concentrate on the formation and
the evolution of crescentic barchans dunes as a bench-
mark for a new model of sediment transport. Barchan
dunes are isolated structures with horns extending
downwind on both sides of an sand pile characterized
by a slip face and a windward face (Fig. 1). Saltation
and reptation are active on the windward face and the
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Figure 1: (a) Comparison between crescentic barchan
dunes in air and water, in desert and laboratory ex-
periments respectively (courtesy ofPhysical Review
Letters, Hersen et al. (2002)). (b) Tranverse view of
a barchan dune in Morocco (picture taken by B. An-
dreotti).

slope angle may vary from10o to 15o; the slip face
is not submitted to the dominant wind and its geome-
try is controlled by avalanches of grains reaching the
dune crest. The angle of repose of the sand being ap-
proximately of30o, the dune profile is asymmetric in
the direction of the wind. Barchans dunes have been
observed in different geophysical environments on
Earth (arid desert, icecap, deep water), on Mars, but
also in laboratory experiments (Fig. 1). They are prop-
agating downwind, and independent relationships can
be deduced from their dimensions, volumes and ve-
locities. Overall, the aim of this paper is to compare
the predictions of our model with these relationships.

Following Nishimori and Ouchi (1993a) and
Werner (1995), our numerical approach is dedicated
to the analysis of emergence mechanisms in geo-
morphology. An emergence mechanism is met when
one phenomenon leads to another, not in a direct
cause/effect relationship, but in a manner that in-
volves pattern of interactions between the elements
of a system over time. In other words, an emergent
macroscopic behavior can not be anticipated from the
analysis of the constituent parts of the system alone,
but can only result from their capacity to produce
complex behaviours as a collective, through their mu-
tual and repeated interactions. Such a complexity is
an intrinsic property of cellular automata. Based on
a discrete structure and a finite number of states at
an elementary scale, cellular automata (CA) are sys-
tems that evolve on a network according to local in-
teraction rules. These rules determine how each ele-
ment responds to information transmitted from other
elements along the network connections. Most of
the time, these connections are simplified to include
only interactions at a microscopic scale between near-
est neighbors. CA are useful tools in physics, geo-

physics and biology to analyze pattern formation be-
cause their output match very well what we observe
in nature without being dependent on a complete de-
scription of small scale processes. Thus, the origin
of macroscopic behaviors as well as the emergence
mechanism itself may be analyzed from a limited set
of parameters. We exploit this property to implement
a model conceptual enough to be applied on differ-
ent types of geomorphological environments from ae-
olian dunes to river beds.

2 The model
Sediment transport is modelled by a Markov chain, a
stochastic process characterized by a finite number of
configurations evolving from one another according
to a set of actions with different transition rates.

2.1 Length and time scales
A three-dimensional regular lattice models an in-
terface between a turbulent fluid (air or water) and
a layer of erodible sediment lying on a solid flat
bedrock. This interface is subject to a so-calledfluid
action constant in magnitude and direction. An ele-
mentary cell has the shape of a parallelepiped, with
90o angles, a square base of lengthl and a heighth.
We focus on sediment flux rather than on individual
particle motions andh is therefore equal told, the dis-
tance for a grain to accelerate up to the average fluid
velocity:

ld =
ρs

ρf

d (2)

whereρs, ρf andd are the grain density, the fluid den-
sity and the characteristic length scale of a grain re-
spectively. The choice for such a length scale is mo-
tivated by observations in desert area and laboratory
experiments (Bagnold 1941; Hersen et al. 2002) as
well as by analytical results together with numerical
simulations (Kroy et al. 2002b; Andreotti et al. 2002).
The aspect ratioη = h/l corresponds to an upper limit
of the slope angleθ upward in the direction of the flow
(η = tan(θ) < 1). Finally, the characteristic time scale
τ is determined from the dimensions of an elementary
cell and an arbitrary volumic sediment fluxQ (see Eq.
1):

τ =
lh

Q
. (3)

2.2 The discrete dynamic
Erosion does not affect the underlying solid bedrock
and, at the bottom of the system, a layer of stable cells
forms a flat surface where the transport of particles
can create a topography. Then, we consider 4 states,
2 solid and 2 fluid. This is the minimum number
of states necessary to implement retroaction mecha-
nisms between a topography and a flow (Tab. 1). The
two solid states, grains (G) and mobilized grains (M),
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Action of fluid shear
stress on topography grains (G)

mobilized grains (M)

Action of topography
on fluid motions fluid (F )

Excess shear stress (S)

Table 1: 4 different states: 2 solid, 2 fluid. This is the
minimum number of states to explore feedback mech-
anisms between circulation patterns and evolving to-
pography.

allow to implement the action of fluid shear velocity
on the surface. The two fluid states, fluid (F ) and ex-
cess shear stress (S), allow to implement the action of
topography on the flow pattern.

The indices(i, j, k), i ∈ [1,L], j ∈ [1,L], k ∈ [1,H ]
label the Cartesian coordinates and the cellci,j,k is ei-
ther

• Grains (G): aG-cell represents a volume of sed-
iment of uniform particle size.

• Mobilized Grains (M): a M-cell represents a
volume of sediment transported by the fluid.
Transportation of grains involves two transport
modes related to one another: saltation and repta-
tion. Here we do not differentiate between those
modes.

• Fluid (F ): a F -cell represents a volume of fluid
where the velocity is under a threshold of ero-
sion. Furthermore, particles can not be trans-
ported andF -cells are agent of deposition.

• Excess Shear Stress (S): a S-cell represents a
volume of fluid where the shear stress exerted by
the flow is above a threshold of erosion.S-cell
are agent of erosion and transport by saltation
and reptation.

NG, NM , NF , NS are the number ofG-cells,M-cells,
F -cells,S-cells respectively, and

N = NG + NM + NF + NS = L2H.

We do not consider long range interaction like other
discrete approaches (Nishimori and Ouchi 1993b;
Bishop et al. 2002), we only consider interactions
between two neighboring cells with a common side
(Von Neumann neighborhood, Fig. 2). These dou-
blets of neighboring cells are noted (ci,j,k, ci±1,j,k),
(ci,j,k, ci,j±1,k) and (ci,j,k, ci,j,k±1). As detailed below,

λi+1

λi−1

λk−1

λk+1

λj+1

λj−1

Figure 2: First neighbors in a regular rectangular par-
allelepiped mesh and the transition rates associated
with a ci,j,k-cell.

a cell may change states only if it shares an edge
with a neighboring cell in a different state. In addi-
tion, we make a distinction between the orientation
of the doublets according to gravity and the direction
of the flow. This choice yields the lowest number of
possible configurations and transitions while allow-
ing for modelling of the physical processes involved
in the formation of bedforms.

The whole process is defined in terms of a Poisson
process with stationary transition rates between the
various possible states of the doublets of neighboring
cells. Given a transition from stateu to v, the prob-
ability distribution of the waiting time until the next
transition is an exponential distribution with rate pa-
rameterλv

u. Then the probability that a pair of neigh-
boring cells in stateu undergoes a transition toward
the statev in the infinitesimal time intervaldt is λv

udt.
The practical way we proceed in the numerical simu-
lations is detailed in appendix. The main point is that
at each iteration three random numbers determine the
time step, the doublet which undergoes a transition
and the transition kind itself. Therefore the model
possesses the Markov property as the next configu-
ration (i.e. the future) is independent of the previous
configurations (i.e. the past), given the knowledge of
the present configuration. This probabilistic approach
and the physical processes represented by different set
of transitions distinguish our model from classical CA
(Narteau et al. 2001).

2.3 The physical processes
Each of the physical processes that we will now de-
scribe corresponds to a set of transitions. A transition
of a given set cannot be considered in isolation be-
cause only combined and repeated actions are capable
of reproducing these processes. For the same reason,
transition rates are determined by reference to charac-
teristic times representative of the given physical pro-
cesses.

2.3.1 Fluid flow
At a given altitude above a flat surface, the velocity
field might be considered constant in magnitude and
direction, and the velocity profile is known to increase
according to a logarithmic function (Landau and Lif-
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Figure 3: Transition rates of the permutation between
aS-cell located inci,j,k and aF -cell located inci±1,j,k,
ci,j±1,k, ci,j,k±1.

shitz 1963). This is not the case above a rough sur-
face, over which a flow might produce an highly tur-
bulent circulation especially when it involves erosion,
deposition and transport. Here, we adopt simplifying
assumptions to limit the scope of the model on fluid
velocity above topography.

As the streamlimes approach an obstacle, they con-
verge and the velocity increases; after this obstacle,
the streamlines diverge and the velocity decreases.
Such observations are put into practical effect through
the motions ofS-cells in an ocean ofF -cell by con-
sidering the following transitions:

λk−1
w

−−−−−−→

λk+1
w

−−−−−−→

λi−1
w

−−−−−−→

λi+1
w

−−−−−→

λ
j−1
w

−−−−−−→

λ
j+1
w

−−−−−−→

Each of these transition can be characterized by a vec-
tor according to the orientation of the doublet and the
magnitude of the transition rate (Fig. 3). The resulting
vector, i.e. the sum of the six vectors, determines the
direction of the flow as well as the intensity of the tur-
bulent diffusion.λw being an estimate of the turbulent
diffusion, we takeλj−1

w = λj+1
w = λk−1

w = λk+1
w = λw

andλi+1
w > λw > λi−1

w . As a consequence, the flow is
going eastward (Fig. 3). On the other hand, the ve-
locity of this flow cannot be determined only by the
transition properties, but, as explained below, it can
be approached through the proportion ofS-cells in
the fluid.

2.3.2 Erosion

Grains are lifted and dragged by the shear stress ap-
plied by the moving fluid and set in motions in the di-
rection of the flow. This erosion process, which does
not discriminate between saltation and reptation, in-

volves two types of transition:

λs
−−−−→

λs
−−−−→

Practically,S-cells in contact withG-cells produce
M-cells upward and in the direction of the flow. These
transitions are the only source of transport in the
model. Taking the sediment fluxQ as a control param-
eter, the magnitude of the transition rateλs is derived
directly fromτ (see Eq. 3).

2.3.3 Transport

If the fluid velocity is high, grains already in motion
can be transported upward and in the direction of the
flow. Such a transportation involves two transitions
based on the permutation ofM-cells in contact with
S-cells:

λs
−−−−→

λs
−−−−→

The magnitude of this sediment transport is propor-
tional toQ and, by convention, the transition rates is
taken equal toλs.

2.3.4 Deposition

When the fluid velocity is not high enough to main-
tain particles in suspension, deposition occurs. This
deposition of fluid-borne grains is enhanced by topo-
graphic obstacles and occurs faster on slopes of ex-
isting structures. This process involves the following
transitions

λs
−−−−→

aλs
−−−−−→

whereG-cells are created fromM-cells if they are not
in contact withS-cells.a > 1 and, for the sake of sim-
plicity, we assume that the deposition rate is equal to
λs, the erosion rate.

2.3.5 Diffusion

Horizontal diffusion disperses the grains and flattens
the topography. This process involve the following
permutations betweenG-cells andF -cells:

λi−1

d
−−−−−−→

λi+1

d
−−−−−→

λ
j−1

d
−−−−−−→

λ
j+1

d
−−−−−−→

whereλd = λi−1

d = λi+1

d = λj−1

d = λj+1

d is the inverse
of a characteristic time for diffusion.
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ld 0.44 m
Θ 11.3o

Q 100 m2.yr−1

λsτ 6
λwτ 6
λdτ 0.06
λgτ 6000
a 10

Table 2: Parameters of the model and their values.

2.3.6 Gravity

Sand grains fall under their own weight and exert
pressure on all the other grains. Gravity prevents fur-
ther motions and leads to deposition. We attribute the
following transition to these gravitational processes:

λg

−−−−→

λg

−−−−→

λg

−−−−→

λg

−−−−→

They include downward permutations betweenG-
cells and fluid-states as well as depositions ofM-cells
located under solid-states.λg is determined from the
Stokes velocity and it is generally few orders of mag-
nitude larger than all the other transition rates.

3 Numerical simulations

The model involves 20 transitions characterized by a
limited number of independent transition rates. Be-
fore we present the results of the numerical simula-
tions, different aspects of the model can be addressed
when looking at all the transitions together. First, the
conservation of mass is ensured by the constant num-
ber of solid cells (NG + NM = cte). Second,S-cells
are persistent in all transitions (NS = cte) in such a
way as to ensure the fluid forcing. As a consequence,
we are dealing with an open system which relies on
the balance between erosion and deposition to en-
sure the conservation of momentum at a macroscopic
scale. For this reason, the proportion ofS-cells in the
fluid has to be low,β = NS/NF ≪ 1, and the fluid
velocity can only be derived fromβ.

Table 2 shows all the model parameters and their
numerical values for all the simulations presented
in this work. In this caseτ ≈ 3.5 day and ld/τ ≈

0.13 m.day−1. Initial conditions and boundary con-
ditions are essential aspects of the long-term develop-
ment of topography and we focus here on two differ-
ent set of conditions in order to analyze the evolution
of some physical quantities as well as different prop-
erties of pattern formation.

L

L
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H

H

(c)

(b)

Wall

Flow

Flow

Flow

Grains

Grains

Wall Wall

Fluid
+ Excess

shear stress

Wall

Figure 4: Model for a conical pile of sediment in a
corridor. Three layer of cells are represented without
the aspect ratio: (a) a horizontal layer just above the
flat bedrock, (b) a vertical layer parallel to the flow,
(c) a vertical layer perpendicular to the flow. In each
figures, black lines indicate layer intersections.

3.1 Evolution of a conical bump

First we are interested in stationary patterns and we
analyze the evolution of a conical bump of sediment
in a corridor (Fig. 4):L = 200, H = 40, β = 0.15 and
two walls facing each other form a corridorL/2 wide
parallel to the flow; the cone has a base radius of45
and a half summit angle equal toΘ. In addition, we
consider asymmetric boundary conditions in the di-
rection perpendicular to the flow in order to satisfy si-
multaneously mass conservation and a homogeneous
injection of material. Practically, eachG-cell ejected
from the system in the direction of the flow is rein-
jected randomly through the opposite boundary.

Under such conditions, the distribution ofS-cells
rapidly changes on both sides of the obstacle as they
abandon slopes oriented in the direction of the flow
and accumulate on the slopes oriented against the di-
rection of the flow. Where the density ofS-cell in-
creases, shear stress is higher and erosion and trans-
port dominate (see the location ofM-cells in Fig. 5).
On opposite slopes, where the density ofS-cell de-
creases, fluid velocity is lower and deposition is more
likely to occur. Then a flux of sediment results from
the motion of grains (i.e.M-cells) from one side to
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another of the sediment pile and the symmetry of the
cone shape is broken (Fig. 5). Interestingly, the slope
is smaller on the face oriented against the direction
of the flow than on the opposite face. The height of
the cone varies and, where it is lower, particles prop-
agate more rapidly in the direction of the flow. This
produces horns of both sides on the cones (Fig. 5).
As this evolution proceeds the structure moves in the
direction of the flow and converges toward a station-
ary state which is commonly describes as a crescentic
shape barchan dune.

Fig. 6 shows the evolution of the dimension of such
a barchan dune over long time. Width, length and
height reach a stable value despite important varia-
tions inherent to our discrete approach. Stronger fluc-
tuations of the length result from unstable behaviors
along the horns where the density ofG-cells is lower.
The emergence and persistence of a stationary cres-
centic shape (see contours in Fig. 6) demonstrate that
erosion and deposition can balance each other un-
der specific (unrealistic?) conditions. However, from
a theoretical point of view, this is a chance to ana-
lyze different physical quantities under a statistically-
stable regime.

As the flux of grains on the crest and in the horns
stabilize as well, the barchan dune reaches a con-
stant velocity ofv = 0.18 ld/τ (Fig. 7). In more con-
ventional units,v = 8.25 m.yr−1 for an height of
H ≈ 10.2 m. Over short time, the barchan tends to
accelerate with respect to a loss of volume associated
to a redistribution of grains in the entire system (see
contour plots in Fig. 7). This relationship between the
volume of the dune and its velocity is of primary im-
portance in dune fields because it results inevitably in
dune interaction patterns.

3.2 Evolution of randomly distributed sediment
We are now interested by these patterns of interaction
between dunes and we analyze the evolution of homo-
geneously distributed sediment in a corridor (Fig. 8).
As before,L = 200, H = 40, β = 0.15, and two walls
facing each other form a corridorL/2 wide parallel
to the flow; on two layers just above the flat bedrock,
G-cells are randomly distributed with the probability
p = 0.65. In addition we consider periodic boundary
conditions.

Over short time, grains form clusters which deform
in the direction of the flow (Fig. 9). These clusters
coalesce to produce elongated structures that start to
modify significantly the density ofS-cells in their
neighborhood. All these structures propagates at dif-
ferent velocity according to their geometry and vol-
ume. Smaller structures being faster, they merge with
larger ones which in turn decelerate. Thus, a set of
crescentic barchan dunes emerge. Each of them is
similar to the one describe in the previous section but

τ

τ

τ

τ

t /    = 290

t /    = 54

t /    = 144

t /    = 25

t /    = 83

t /    = 114

τ

Flow

t /    = 0

τ

τ

τ

t /    = 200

Figure 5: Evolution of a conical bump over short time.
Each figure is obtained by smoothing the topography
obtained fromG-cells. Dots are theM-cells. They are
essentially located on the slope oriented against the
direction of the flow.
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Figure 6: Evolution of the width, the length and the
height of the conical bump in a logarithmic scale over
long time. Note that the dimensions of the barchan
stabilize. The inset shows the stationary crescentic
shape where the height between level-lines is1.5 ld.

their interaction make their respective evolution much
more complicated. Finally, in this particular simula-
tion, the last configuration of dunes (i.et/τ = 1187)
is not subject to strong changes and the set of dunes
of similar size is extremely resilient. The main reason
for such a behavior is the small size of the system and
the periodic boundary conditions which impose that
all dunes propagate within their own shadow.

Nevertheless, the formation and the evolution of
dune fields provides the opportunity to compare
model predictions to field measurements. To reduce
significantly finite size effect, model statistics have
been computed on much larger systems withL = 103

andH = 102, with similar initial conditions than in
Fig. 8 but without walls.

Structural properties are estimated from the output
of the model at one point in time. For barchans ob-
served in arid deserts and in the numerical simula-
tions, Fig. 10 shows the relationships between width
and length, Fig. 11 shows the relationships between
width and height. These two independent morpho-
logical relationships are well fit by lines and there
are good agreements between synthetic data and field
measurements.
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Figure 7: Position of the sediment pile with respect
to time (solid line) in (a) linear and (b) logarithmic
scales. Over long time, the velocity of the barchan is
constant (dotted lines:y ∼ 0.03x). Over short time,
the sediment pile accelerates during the transition
from a conical shape to a barchan shape. It corre-
sponds to a loss of volume associated with the redis-
tribution of grain escaping from the horns (see con-
tour plots).

In the model, the dune measured in Figs. 10 and
11 are studied over long time (∆t/τ = 335) to ap-
proximate their average velocityv. Fig. 12 shows the
relationship between height and velocity for numeri-
cal and observed barchan dunes. One more time, the
output of the model and the natural data are in good
agreement and it is possible to fit both set of measure-
ments with

v =
Q1

H + H0
.

whereQ1 is a volumic sand flux andH0 a character-
istic height. Here, we haveQ1 = 7 l2d.τ

−1 andH0 =
4.0 ld. In more conventional units,Q1 = 140 m2.yr−1

andH0 = 1.7 m.

4 Discussion and Conclusion
Under specific conditions, our model reproduces cres-
centic barchan dune patterns that compare well with
observations. Firm morphological and velocity con-
straints are satisfied and validate the predictions of our
model based on short scales interactions. Flux mea-
surements have now to be investigate as we are aware
that a full understanding of dune dynamics should
include estimation of transport capacity on different
parts of the topography.

In the last decades, different scientists have ex-
plored a variety of CA approach in order to model
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Figure 8: Model for randomly distributed sediment in
a corridor. Three layer of cells are represented with-
out aspect ratio: (a) a horizontal layer just above the
flat bedrock whereG-cells are randomly distributed
with the probabilityp = 0.65, (b) a vertical layer par-
allel to the flow, (c) a vertical layer perpendicular to
the flow. In each figures, black lines indicate layer in-
tersections.

dune patterns under dry conditions (Nishimori and
Ouchi 1993a; Werner 1995; Nishimori et al. 1999).
Models are based on a characteristic saltation length
and on rules involving long range interactions. In all
cases, despite a stochastic ingredient, the trajectory
of an elementary volume of grains is given from the
present configuration of cells, and the rules do not
allow to dissociate between transport and erosion-
deposition processes. In addition, there is no treat-
ment of aerodynamics effect. Here, we present a CA
approach in which erosion and deposition locally de-
pend on flow patterns that are affected in turn by the
surface profile. Such an innovation will allow to con-
centrate on relationships between shear stress and to-
pography and to characterize turbulent flow patterns
on an evolving surface (Wiggs 2001). This goal can
be achieved by considering more realistic small scale
interactions for the dynamic ofS-cells.

In this preliminary work, the transport is simplified
to the extreme in order to concentrate on the first re-
quirement of this kind of models, the formation and
the development of realistic structural patterns. Nev-
ertheless, we have shown that anisotropic motions

τ
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τt /    = 203

t /    = 102

τ

τ

t /    = 721

t /    = 0

τt /    = 513

τt /    = 928

τt /    = 1187

Figure 9: Evolution of homogeneously distributed
sediment over long time. Figure are obtained by
smoothing the topography obtained fromG-cells.
Dots are theM-cells.
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Figure 10: Relationships between barchan width and
length in arid deserts (gray◦) and in the model (black
x ). Field measurements are averaged by ranges of
height. Predictions of the model represent individ-
ual dune. The solid line (y = 1.40x − 1.27) and the
dashed line (y = 1.39x− 6.5) fit the synthetic and the
real data respectively (Andreotti et al. (2002) com-
piled observations from Finkel (1959), Hastenrath
(1967), Hastenrath (1987)).

of S-cells and an evolving topography are enough
to reproduce the existence of a shadow zone down-
wind, the concentration of shear stress on the wind-
ward face, and, as said above, dynamical properties
of barchan dune fields. Such qualitative features of
physical fluid behaviour have now to be replaced by
more quantitative analysis. In the field of turbulence,
it is common to analyze fluid dynamics from particle
collisions (Frisch et al. 1986). This lattice gas method
converts discrete motions into physically meaningful
quantities and dispenses with the need to solve the
Navier-Stokes equations. The discrete nature of our
system offers the opportunity to develop such a lattice
gas method based, as the actual model, on short range
interactions between a finite number of states. As a re-
sult of a more generalized set of transitions (i.e. ero-
sion, deposition and transport occurring in all direc-
tion), realistic structures and fluid circulations might
appear together.

This model has been developed to be applied to dif-
ferent type of systems, in particular for the analysis of
bedform. Fig. 13 shows a snapshot of a model simu-
lation similar to the one presented on Fig. 8 but with
10 times more sediment (i.e.G-cells). There is no in-
dividual structures and larger structures perpendicular
to the flow develop. These structures exhibit similar-
ities with bars in river. The bar dynamic and the sub-
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Figure 11: Relationships between barchan width and
height in arid deserts (gray◦) and in the model (black
x). Field measurements are averaged by ranges of
height. Predictions of the model represent individual
dune. The solid line (y = 0.13x − 1.01) and dashed
line (y = 0.14x − 2.1) fit the real and the synthetic
data respectively (Andreotti et al. (2002) compiled
observations from Finkel (1959), Hastenrath (1967),
Hastenrath (1987)).

sequent morphology of river will be studied by going
further in this direction.

More generally, our model can also be adapted to
different types of geometry and boundary conditions.
In order to compare the predictions of the model with
classical observations of physical geography, it is pos-
sible to concentrate on

1. the impact of the variability of wind direction as
well as the impact of sediment availability (com-
pare Figs.9 and 13). The primary objective will
be to reproduce different types of dune (e.g. lin-
ear dunes, star dunes) and to locate them in a
phase diagram. Another objective could be to es-
timate the orientation of dune crests according
to the magnitude of the wind fluctuation in order
to analyze dune attractor trajectories (Anderson
1996) and defect behaviors (Werner and Kocurek
1997).

2. the role of vegetation on erosion and deposition
rates, and the effect of a vegetal cover on struc-
tural and dynamical dune patterns.

3. the interaction between dune patterns and struc-
tures related to human activity (e.g. accumula-
tion of sand around constructions).
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for the barchan dune shown in Fig. 5. (Andreotti et al.
(2002) compiled observations from Finkel (1959) (∗),
Hastenrath (1967) (◦), Hastenrath (1987) (◦), Slattery
(1990) (square), and Long and Sharp (1964) (+)).

Note that in all cases there are reciprocal applications
in the analysis of bedforms underwater.

In geomorphology, as in many domains in sci-
ence, description in terms of differential equations
have limits that can be related to a lack of theoreti-
cal backgrounds, the role of heterogeneities and nu-
merical limitations. Then, CA approach can be de-
scribed as an alternative which focus on self organi-
zation and the emergence of structure without taking
into account all the diversity of the small scale phys-
ical processes. Trough our model, we try to provide
a link between classical CA methods and continuum
mechanics in such the way that we will be able to
constrain structural complexity of geophysical system
by a set of well-defined physical quantities. We be-
lieve that the discontinuous nature of our model and
the feedback mechanisms between different types of
states will allow this system to move between differ-
ent basins of attractions and therefore capture in detail
some of the more distinctive features of the evolution
of bedforms.
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Appendix

Here we present in more detail how we combine a
Poisson process with a Markov chain with stationary
transition rates. The algorithm is schematically de-
scribe in Fig. 14.

As said above, we consider only first neighbors in-
teractions and transition of doublets of cells in aD-
dimensional parallelepipedic mesh. Overall, all tran-
sitions and doublets are independent of one another.
Each cell can be in one ofNs states. Then, the num-
ber of different doublets is

Nd = DN2

s
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Figure 13: A snapshot of a model simulation with more sediment. This figure is obtained by smoothing the
topography obtained fromG-cells. Dots are theM-cells.

and the number of doublets in aL×W ×H mesh is

N = HL(W − 1) + WH(L− 1) + LW (H − 1)

.
For a given configuration at timet, we first deter-

mineni the number of doublets in statei:

N =

Nd∑

i=1

ni.

A transition of doublet from statei to j is modelled
by a Poisson process with a rate parameterλj

i . Then,
the occurrence of such a transition in a population of
doubletsi follows also a Poisson process with rate
parameter

πj
i = niλ

j
i .

Generalized to all doublets and transitions, the total
transition rate in the entire system is

π =

Nd∑

i=1

Nd∑

j=1

πj
i .

At each iteration, only one doublet makes a tran-
sition from one state to another. The time step∆t
is therefore variable, randomly chosen according to
the magnitude ofπ. Practically, we draw at random a
valueR1 between0 and1, and we consider that the
characteristic time necessary for a transition to occur
is

∆t = −
1

π
ln(R1).

During this time step, the type of transition is also
randomly chosen with respect to a weighted probabil-
ity determined from theπj

i -values

P j
i =

πj
i

π
.

Numerically, we define a cumulative step function
ranging from0 to 1, where jumps are proportional to

the P j
i -values. Then we draw at random a valueR2

between0 and 1. This value falls within a jump of
the cumulative step function which determines in turn
the type of transition to occur. Thus, transition with
the highest rates have more chance to be selected but
transitions with small rates may also occur. Theserare
events are an essential ingredient of the modelling de-
veloped in this paper.

Finally, when the transition fromi to j is selected,
we draw at random an integer between1 andni. Thus
we identify the doublet which makes a transition.
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