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ABSTRACT:  In a lattice gas cellular automaton dune model, individual physical processes such as 

erosion, deposition and transport are implemented by nearest neighbor interactions and a time-dependent 

stochastic process. As a consequence, local sediment fluxes are not defined by a set of equations that 

incorporates the effect of flow and dune shape on transport capacity. Instead, there is a dynamic 

equilibrium between the topography, the flow and the sediment in motion that reduces the basal shear 

stress at the surface of the bed. Then, the saturation flux, the saturation length and the characteristic 

wavelength for the formation of dunes are emergent properties that can be estimated a posteriori from the 

numerical outputs. Here, we propose a simplified version of the model to establish asymptotic 

relationships between the microscopic erosion-deposition-transport rate parameters and the characteristic 

length and time scale of the flux saturation mechanism. Then, we discuss how we can use our results to 

determine the rate parameters of cellular automaton models that study the effect of heterogeneities in 

grain-size distribution on dune morphodynamics.  

 

 

1 INTRODUCTION 

 

   There are two main types of numerical experiments for the modeling of bed forms: 

 

 Continuous models are based on a set of partial differential equation that combine the principle 

of mass conservation with analytical descriptions of the flow and transport capacity (Sauermann 

et al., 2001; Kroy et al., 2002; Andreotti et al., 2002; Fischer et al., 2008). Their main advantage 

is related to the dimensionality of the system. Nevertheless, in such a continuous-homogeneous 

framework, it remains difficult to evaluate how the deterministic nature of specific ingredients 

affect the overall dynamics (e. g. effect of curvature, flow separation, recirculation eddies).  

 Cellular automaton models are discrete models that implement a set of rules to mimic sediment 

transport and the effect of the flow on topography (Nishimori and Ouchi, 1993; Werner and 

Gillespie, 1993; Werner, 1995). Their main advantage is that they reproduce a huge variety of 

bed forms at a reasonable computational cost. Nevertheless, they are constructed from an 

arbitrary elementary length-scale which is not always related to other characteristic length-scale 

of the problem. 

      

   The real-space cellular automaton dune model developed by Narteau et al., (2009) is an attempt to 

overcome these problems. If it belongs to the class of discontinuous models, its characteristic length a 

time scales have been entirely defined with respect to a linear stability analysis. This standard technique 

(used in many other branches of physics) identifies stable/unstable regimes across the entire parameter 

space of the model to reveal the mechanisms that, starting from a flat sand bed, spontaneously generate 
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bed forms.  As a result, we can quantitatively compare our numerical results to observations in nature and 

laboratory experiments, as well as to the predictions of other modeling techniques (Zhang et al., 2010).      

   The real-space cellular automaton dune model is a hybrid approach that combines a cellular automaton 

of sediment transport with a lattice-gas cellular automaton for high Reynolds-flow simulation (Frisch et 

al., 1986, d’ Humières et al., 1986). At the elementary length scale l0 of this cellular automaton, all the 

physical mechanisms are implemented by nearest neighbour interactions and a time-dependent stochastic 

process. In practice, there is a finite number of transitions associated with erosion, transport and 

deposition. Each set of transition being characterized by a rate parameter ȿ{e,t,d} with unit of frequency 

1/t0, we incorporate into the model the characteristic time scales of the physical processes under 

consideration. 

   In all natural environments where the dune instability can be observed, this model can be used by 

setting the length and time scales {l0, t0} to the appropriate values of the relevant physical parameters. 

Thus, we can set up the model to reproduce aeolian or subaqueous dune features on Earth and other 

planetary bodies (Claudin and Andreotti, 2006). For example, in units of the model, the barchan dune 

presented in Fig. 1 has a height of 25 l0 and a propagation speed of 0.028 l0/t0. In arid desert on Earth for a 

grain size d=200 μm, it corresponds to a dune height of 12.5 m and a propagation speed of 17.5 m/yr; in 

water, it corresponds to a dune height of 1.3 cm and a propagation speed of 10 m/h; on Mars for a grain 

size d=87 μm, it corresponds to a dune height of 375 m and a propagation speed of 9 cm/yr. 

 

 

 

Figure 1  Morphodynamics of a barchan in the lattice gas cellular automaton dune model. (a) Morphology of the 

barchan at t/t0=4063 and t/t0=7011. Note the presence of superimposed bed forms. (b-c) Sedimentary fluxes and 

basal shear stress on the barchan (see Narteau et al., (2009) and Zhang et al., (2010) for details about the model). 

 

   Here, our goal is to quantify the saturated flux and the saturation length of our model with respect to the 

transition rates that characterize the mechanisms of erosion, transport and deposition at the elementary 

length scale of the cubic lattice. Such analytical relationships are critical to incorporate into the model a 

real-space representation of heterogeneous granular systems: particle size distributions, variability in 

particle density as well as the role of cohesion and vegetation. 
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2 A SIMPLIFIED REAL SPACE CELLULAR AUTOMATON MODEL 
 
   To measure sediment flux in the model, we adopt here the experimental protocol proposed by Bagnold, 
(1941). As shown in Fig. 2, the initial condition is a thick flat layer of sediment preceded, in the direction 
of the flow, by a non-erodible flat bed. Then, the sediment load increases as the flow reaches the erodible 
bed. The principle of the experiment consists in measuring sediment flux as a function of distance in the 
direction of flow. In practice, this experience is extremely difficult to implement in situ or in laboratory 
experiments because it is difficult to maintain a flat sediment bed over long time scales. The two main 
reasons are (a) the formation/migration of an erosion front at the discontinuity from non-erodible to 
erodible bed and (b) the formation of sedimentary structures such as ripples or dunes. The same problem 
exists in our simulations. It is even more pronounced because of the ratio between our elementary scale 
(l0=0.5 m) and the grain size in nature (d=200 μm). Indeed, the amplitude of the smallest surface 
roughness plays against us in the model. Fortunately, our numerical approach offers the opportunity to 
overcome this obstacle.  
 

 
 

Figure 2 (a) Initial condition of the cellular automaton. Fluids cells (cyan) and neutral cells (yellow) 

that make up  the ceiling are transparent for the sake of readability. (b) Distribution of mobile 

sedimentary cells (red) when the system reaches a dynamic equilibrium state. Note the increasing 

number of mobile sedimentary cells in the direction of the flow. Their size gives the elementary 

length scale l0. The dashed line indicates the limit between the non-erodible and the erodible bed. (c) 

A vertical slice of cells in the direction of the flow. Note the presence of the ceiling that confines the 

flow. 

 
   To eliminate the influence of bed topography on the flow, we simplify the cellular automaton of 
sediment transport using the same three states (fluid, immobile sediment, sediment in motion) but only 
three transitions (Fig. 3). This new set of transitions has the advantage to preserve the initial bed 
topography composed of stable cells. Nevertheless, these transitions violate the principle of mass 
conservation if the mobile sedimentary cells have a non-null density. In the following, we therefore 
arbitrarily consider that the mass of mobile sedimentary cells is null. Conceptually, we should admit that, 
when a sediment cell becomes mobile, it is immediately replaced by a stable sediment cell with exactly 
the same properties. By symmetry, when a mobile sediment cell becomes stable, it is immediately 
removed from the surface of the bed. Then, the flow is only disturbed by sediment transport and it is not 
affected by changes in bed topography. In this case, we can focus on the saturation mechanism by 
studying the evolution of shear stress as well as the screening/armouring effect produced by the mobile 
sedimentary cells.  
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Figure 3  Active transitions of 

doublets in the simplified cellular 

automaton model for sediment 

transport. Different transitions are 

associated with erosion, transport 

and deposition. Transition rates 

with units of frequency are ȿe, ȿt, 

ȿd. 

 

    
 

   Overall, the simplicity of this new cellular automaton of sediment transport also allows us to derive 
(and numerically verify) a number of analytical relationships involving  ȿe , ȿt , ȿd, the rate parameters of 
the model. 

 
3 SATURATION LENGTH AND SATURATED FLUX 
 
   At the beginning of each simulation, we stabilize the flow. As a result, the basal shear stress is 
statistically constant across the entire domain. Then, we activate the transitions of doublets (Fig. 2) 
incrementing the time for each of them (see Appendix B in Narteau et al., (2009)). In vertical planes 
perpendicular to the flow, we systematically count the total number of transport transitions to average the 
sediment flux over the entire width of the domain. Fig. 4a shows the sediment flux with respect to 
distance downstream for ȿet0 =4.10

-5
, ȿtt0 =50, ȿdt0 =2. Above the erodible area (i.e. x>x0=50 l0), we 

observe that the flow relaxes to an equilibrium value Qsat over a characteristic distance lsat. The quality of 
the approximation by a law of the form  
 

                                                              
                                       
shows that we have an exponential relaxation process. We discuss below the Qsat and lsat-values according 
to the parameters of the model. 
 

 
 

Figure 4  Saturation length and saturated flux in the simplified cellular automaton model. (a) 

Downstream of the transition from a non-erodible to an erodible bed, the sediment flux adjusts to the 

basal shear stress and reaches a stable value Qsat over a characteristic distance lsat. (b) Charge and 

discharge mechanisms follow the same exponential relaxation regime (see blue/black lines). 
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   To better understand the origin of the lsat-value in our model, we take the same initial condition as 
in the previous numerical experiment (Fig. 4a), but add a non-erodible zone downstream. Fig. 4b 
shows how the sediment load returns to zero when the flow reaches the non-erodible zone at x1 = 
500 l0. Not surprisingly, a law of the form 
 

                                                        
 

fits very well the evolution of sediment flux for x>x1. Once again, we find that the sediment load 
relaxes towards its equilibrium value over the characteristic distance lsat. The increase and the 
decrease of the sediment load follow the same exponential process. Therefore, we conclude that, in 
our simplified cellular automaton model, the saturation length is the mean distance over which a 
mobile sedimentary cell is transported.  
   Let us consider that the average distance X traveled by a mobile sedimentary cell is a discrete 
random variable with probability density function f. Then, we can write 
 

 
 
In the model, a mobile sedimentary cell moves if it participates in a transition of transport. It becomes 
stable if it participates to a transition of deposition. For a given mobile sedimentary cell, these two 
transitions occur with probabilities 
 

          and           
                                         
Then, from the probability tree of the dynamics of a mobile sedimentary cell, we obtain 
 

                                                         
 
By injecting these last three relations in the expression of lsat, we obtain 
                                                      

 
 
Thus, we show that the saturation length is directly the ratio between the characteristic time for deposition 
and the characteristic time for transport. For a given flow rate, this dependence on deposition and erosion 
is exactly the same as for many continuous models (Charru, 2006). Fig. 5 shows that the numerical 
solutions verify the analytical solution. 
 



River, Coastal and Estuarine Morphodynamics: RCEM2011  
© 2011  

 
 

 

          
 
Figure 5  Relation between lsat and the rate parameters of the cellular automaton model. (a) lsat with respect to ȿt for 
ȿdt0=2. Two examples show the sediment flux for (1) ȿtt0 =10 and (2) ȿtt0 =100. (b) lsat with respect to 1/ȿd for ȿtt0=1. 
Two examples show the sediment flux for (1) ȿdt0 =0.04 and (2) ȿdt0 =0.4. (c) lsat with respect to ȿt/ȿd, the mean 
distance traveled by a mobile sedimentary cell. 

 
   The saturated sediment flux Qsat is the number of transition of transport at a given point. This number 
depends only on a transition of erosion upstream followed by a sufficient number of transitions of 
transport. In all respects, the saturated flow can be written 
 

                                            
 

This formula shows that the saturated flow is the direct product of the erosion rate by the average 
distance traveled by a mobile sedimentary cell. Fig. 6 shows that the numerical solutions verify this 
analytical solution. 
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Figure 6  Relation between Qsat and the rate parameters of the cellular automaton model. (a) Qsat with respect to 1/ȿd 

for ȿtt0=1. Two examples show the sediment flux for (1) ȿdt0 =0.2 and (2) ȿdt0 =0.04. (b) Relation between Qsat and ȿt 

for ȿdt0=2. Two examples show the sediment flux for (1) ȿtt0 =10 and (2) ȿtt0 =120. (c) Qsat with respect to ȿt/ȿd, the 
mean distance traveled by a sedimentary cell. The slope of this relationship is proportional to ȿe.   

 
4 THE SATURATION TIME AND THE DENSITY OF MOBILE SEDIMENTARY  
 
   The sediment flux does not adjust immediately to its local Qsat-value. It always takes some time to reach 
this dynamic equilibrium state. To estimate this time, we can count the number Nm of mobile cells on the 
erodible bed. These mobile cells protect the bed from further erosion. More exactly, because they cannot 
move vertically, they prevent erosion of cells that compose the flat erodible bed just below them. Then, if 
Ns is the number of erodible cells exposed to the flow, we can write 
 

                                                             
 
This is a system of coupled linear equations with solution of the form exp(ɚ t). The eigenvalues can be 
found by solving  
 

                                            
 
The only non-zero solution is equal to -(ȿe+ȿd). As a consequence, the number of mobile sedimentary 
cell in the system relaxes exponentially to its equilibrium value over a characteristic time 
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With Fig. 7, we verify numerically this exponential relaxation process at all location downstream of the 
transition from a non-erodible to an erodible bed. 
 

 
 
Figure 7  Relation between the saturation time tsat and the rate parameters of the cellular automaton model. (a-c) 
Density of mobile sedimentary cells in vertical plane perpendicular to the flow at x={2, 5, 21} with respect to time. x 
is expressed in units of l0 and x=0 is the transition from a non-erodible to an erodible bed. (d) Density of mobile 
sedimentary cells in vertical plane perpendicular to the flow with respect to x for different times. 
 

Finally, the equilibrium solution of our system of coupled linear equations is simply 
 

                                                                          
 
Since the density of mobile cell on the bed can be written 
 

                                                                     
 
we have 
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With Fig. 8, we verify numerically this relationship within this simplified version of the cellular 
automaton dune model. 
 

 
 
Figure 8  Relation between the density of mobile sedimentary cells on the bed and the rate parameters of the cellular 
automaton model. (a) Density of mobile sedimentary cells with respect to ȿe  for ȿdt0 =2. (b) Density of mobile 
sedimentary cells with respect to ȿd  for ȿet0 =4.10-5. (b) Density of mobile sedimentary cells with respect to 
ȿe/(ȿe+ȿd). 
 

 
5 CONCLUDING REMARKS 

 
   From the outputs of this simplified version of the model, we are now able to infer the Qsat and lsat-values 
of the cellular automaton dune model (Narteau et al., 2009, Zhang et al., 2010). We show that these values 
depend directly on the rate parameters that characterize the erosion-deposition-transport process at the 
elementary length scale of the cubic lattice. This is of primary importance in determining the 
characteristic length scale for the formation of dunes in monodisperse granular system. In addition, we 
can play with our parameterization to compare the results of our simulations with predictions of 
theoretical models and results of field and laboratory experiments (Elbelrhiti et al., 2005; Andreotti et al., 
2008). 
   In order to study polydisperse granular beds with the cellular automaton dune model, different transition 
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rates can be assigned to different granular states. In this case, we can use the results presented here to 
constrain the value of these transition rates with respect to the physical properties of the granular medium 
(density, grain size). For example, we can take 
 

          and           
 

where 0 has units of shear stress, d is the grain diameter, ȹɟ=(ɟg-ɟf)/ɟf   and ɟg  and ɟf  are the grain and the 
fluid density, respectively. In addition, it will be necessary to incorporate dependence on the strength of 
the flow for the magnitude of ȿt. At the microscopic length scale, Lajeunesse et al. (2010) has shown that 
this dependence can take different forms according to the speed of moving grains at the threshold of 
motion inception. 
   In our cellular automaton, when the density of mobile sedimentary cell increases (Fig. 8), it happens 
more and more frequently that two of them are aligned in the direction of flow. Such a configuration 
prevents the occurrence of a transport transition for the upstream mobile sedimentary cell. So, there is a 
feedback of the number of mobile sedimentary cell on transport properties. If this feedback takes different 
form (see the paragraph below), it is important to note that our analytical expression of Qsat and lsat are 
only valid when the probability to have transport transitions is not affected by the number of mobile 
sedimentary cells. To overcome this problem, it is easy to create a dependency between vertical motions 
of mobile sedimentary cells and their number. Nevertheless, this is a new level of complexity which is 
unnecessary for dune morphodynamics since ds < 0.1 across the entire domain. 
   Even in this simplified model, there is a retroaction of the sediment in motion on the flow and transport 
properties. First, mobile sedimentary cells create a dynamical armoring of the bed that prevents for further 
transition of erosion just below them. Second, they also reduce the basal shear stress by increasing the 
roughness of the sedimentary layer.  This second effect has not been studied here because it requires more 
realistic trajectories for mobile sedimentary cells. 

Finally, the comparison between our estimates and Qsat and lsat and theoretical models such as the 
one developed by Charru, 2006 allows us to better understand the ingredients that need to be incorporate 
into our cellular automaton approach to describe transport properties at the length scale of a grain. 
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