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‘ Abstract |

The Real Space Cellular Automaton Laboratory (ReSCAL) is a
generator of 3D multiphysics, markovian and stochastic cellular
automata with continuous time. The objective of this new soft-
ware released under a GNU licence is to investigate the dynam-
ics of complex geophysical systems and develop interdisciplinary
research collaboration.

‘ ReSCAL key features |

e Stochastic process for transition of neighboring cells (doublets).
e Setting physical environments and boundary conditions.

e Computation of the physical length and time scales.

e Detection of solid surfaces and steepest slopes.

e Avalanche dynamics (segregation and stratification).

e Localized control and forcing of the transition rates.

e Optional coupling with a multispeed lattice gas automata.

¢ Real-time rendering and light shading.

‘ Stochastic cellular automaton |

Our cellular automaton consists of a discrete dynamic system
within a 2D or 3D grid of cells with a finite number of states.
The evolution processes are defined in terms of stationary or non-
stationary transition rates between the various possible states of
the doublets (e. g. Poisson process).
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‘ Model #1: Roughness of the core-mantie boundary |
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‘ Lattice gas coupling |

Optionally, a 2D fluid flow can be

computed from the discrete mo- =
tions of particles along 8 direc- Y
tions, according to a set of colli- Q| ol
sion rules. Numerical methods - =
provide the mean velocities for A A
the local modulation of transition S N
rates. Thus we obtain a perma- o = <‘
nent feedback between the to- TR A
pography and the flow. Collision rules
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‘ Model #2: Dune morphodynamics |
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‘ Algorithm |

Star dune (5 winds)

creation of the cellular space;
initialization of the lattice gas;

surface topography:;

time scale;

while end_of_simulation = FALSE do
if elapsed_time > Igca_delay then
lattice gas collisions;

lattice gas propagations;
interpolation of the velocity field;

end

probability distribution;

stochastic transition of doublet cells:
time evolution;

end

Structured data

e Cross referenced arrays of cells and doublets, providing direct
access to the cellular space location.

e Polymorphism of the cells.

Optimization

We implemented dynamic arrays of active doublets with automatic
defragmentation. Thus we obtain contiguous memory pools for
each kind of active doublets.
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Execution speeds
e Up to 10° transitions/min. without lattice gas.

e Up to 3 - 107 transitions/min. and 1000 cycles/min of lattice gas.

Conclusion

Our modular approach can be applied (and developed) to analyze
various complex geophysical systems with reasonable numerical
efficiency.

‘ Supplementary informations |

Sources available online via
http://www.ipgp.fr/~rozier/ReSCAL/rescal-en.html
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