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1Equipe de Géosciences Marines, Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
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The great Sumatra earthquake of 26 December 2004 was the third
largest event to occur in a subduction zone in the past 50 years.
The rupture initiated at 30–40 km depth northwest of Simeulue
Island1 and propagated for ∼1,300 km to the northern Andaman
Islands2. The earthquake was caused by sudden slip along the
plate interface between the subducting Indo-Australian plate
and the overriding Sunda plate3,4. Although detailed knowledge
of the structure of the subduction interface is important
to define potential sources of large megathrust earthquakes,
available data5–8 have not provided such information so far.
Here we present a high-quality seismic section of the focal
region, from the abyssal plain down to 40 km depth below
the fore-arc. The seismic data reveal that the subducting crust
and oceanic Moho—the crust–mantle boundary—are broken
and displaced by landward-dipping thrust ramps, suggesting
that the megathrust now lies in the oceanic mantle. We image
active thrust faults at the front of the accretionary wedge,
consistent with thrust aftershocks on steeply dipping planes. Our
observations imply that very strong coupling leading to brittle
failure of mantle rocks accounts for the initiation of such an
exceptionally large earthquake.

Plate interface geometries of the northern Sumatra subduction
zone have been determined by fitting simple curves along
hypocentres of aftershock recordings of the main event6–8.
To gain structural knowledge, seismic refraction methods are
commonly used, but the resolution is of the scale of kilometres9.
Seismic reflection is capable of providing much higher resolution
images; however, the combination of poor penetration through
strongly deformed wedge sediments, seafloor scattering and severe
water-bottom multiples hampers imaging below ∼10 km with
conventional techniques10.

To improve on surveys5,6 hitherto insufficient to image
the plate boundary configuration at depth, we acquired deep
marine reflection data aboard WesternGeco’s marine seismic vessel
Geco Searcher (Tsunami Survey) (see Supplementary Information,
Method). Seismic profile WG1 was shot at a right angle to the
margin, as close as possible (54 km northwest) to the epicentre of
the 2004 earthquake (Fig. 1). It is 243 km in length and terminates
∼60 km off the coast of northwest Sumatra.

On the Indo-Australian plate, the highly reflective top of the
basalt is capped by a thin layer of pelagic sediment, in turn covered
by a thick, landward-thickening (2.1–3.16 s) turbidite sequence
(Fig. 2, Supplementary Information, Fig. S1). The oceanic Moho
is clearly imaged, which provides a crustal thickness estimate
of ∼4.5 km (∼1.4 s) assuming an average P-wave velocity of
6.3 km s−1 (ref. 11). Seaward of the accretionary wedge front,
the oceanic crust and pelagic deposits are cut and offset by two
landward-dipping thrust ramps (CMP 25700 and 28200). At the
tip of these thrusts, minor faulting is observed in the turbidites with
possible folding of the lower horizons (Fig. 3). A shallow northeast-
dipping reflector, which could be a thrust décollement within the
oceanic crust, links the outer (R1) with the inner (R2) thrust fault.
The latter clearly offsets the oceanic Moho, and penetrates into
the mantle (Fig. 3, Supplementary Information, Fig. S2), suggestive
of incipient thrust imbrication of oceanic crust slices. Offshore
southern Sumatra, landward-dipping reflectors have been observed
within the oceanic crust beneath the trench and interpreted as
crustal faults9.

As reported for the Middle America trench12, plate bending at
subduction zones generates trench-parallel conjugate normal faults
that dissect the entire sedimentary column and penetrate into the
basement, producing seafloor and basement offsets of 100–500 m.
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Figure 1 Study area. Location of seismic reflection profile WG1 superimposed on recently acquired bathymetric data5,6,15. Oceanic north–south fracture zones and magnetic
anomalies11 (numbers) are marked. Black contours indicate co-seismic slip3 of the 26 December 2004 earthquake. Other focal mechanisms correspond to Mw > 5.4
aftershocks: frontal thrust earthquakes in green, thrust events below the Simeulue plateau in blue, steep thrust events in red (see Supplementary Information, Tables S1,S2).
Hypocentre locations are from Engdahl et al.8 and fault plane solutions from the Harvard Centroid Moment Tensor catalogue. The rectangle delineates aftershocks projected
onto the depth cross-section in Fig. 4. WAF: west Andaman fault. The regional tectonic setting is shown in the inset.

On profiles collected 65–175 km south of WG1, Franke et al.13

interpret minor faulting within the sediments as originating from
bending-related extension. Minor faulting within the turbidites is
also observed on profile WG1 (Fig. 3), but the absence of normal
fault scarps at the sea floor and the geometry of the offsets
associated with R1 and R2 at the top and base of the oceanic
crust suggest that these deep crustal faults are not bending-related
normal faults. Furthermore, seafloor mapping14 and seismological
studies15 on the Indo-Australian plate indicate the presence
of reactivated fracture zones oriented N5◦ E, with dominantly
left-lateral slip15, active since ∼7.5 Myr ago. Their shallow
expressions have been imaged on both northwest–southeast and
southwest–northeast trending 3.5 kHz mud penetrator profiles16,
and seismic data reveals they can be followed from the sea floor
down to the basement11. The interpreted deep faults ahead of
the wedge front have dips of 10◦–30◦; hence, a projection in the
direction perpendicular to the strike of the fracture zones would
yield dips of 30◦–50◦—very small for strike-slip faults. Therefore,
these are unlikely to be reactivated fracture zones. Because of their
small dip-slip component (15–30 m vertical throw at the sea floor,

with eastern block downthrown), the reactivated fracture zones
may accommodate bending-related deformation.

A clear landward-dipping thrust (MT), marked by
high-amplitude reflections, reaches the sea floor at the base of the
main continental slope (Figs 2,3). Both the strong signature and the
1-km-high, steep (30◦) wedge front that extends for at least 300 km
northwards (Fig. 1) suggest that most of the relative plate motion is
taken up by this ‘main thrust’. The ∼100 m cumulative vertical
offset of the sea floor and underlying turbidite beds confirms
that MT is active and indicates it might have been the principal
emergent dislocation of the 26 December 2004 earthquake. This
thrust steepens downdip from ∼15◦–20◦ to ∼30◦–40◦ at ∼10 km
depth. It is difficult to identify any associated vertical offset at the
top of the oceanic crust, but MT is aligned with a deeper reflector
that penetrates into the oceanic mantle, and which we interpret
as a deep-penetrating thrust ramp (R4). Two other splays in the
accreted sediments (T1 and T2) merge onto a similar reflector at
depth (Fig. 3).

Beneath the frontal part of the wedge, two steeply dipping
(31◦,35◦) thrust aftershocks occurred at 17.5 km depth8, falling
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Figure 2 Seismic profile WG1. Interpreted seismic reflection image as a function of two-way travel time, plotted using a time-varying automatic gain control. Vertical
exaggeration is 1:6 at 1.5 km s−1. R1–R4: thrust ramps cutting through the oceanic crust. FT: frontal thrust, MT: main thrust, T1 and T2: near-surface wedge thrusts, RZ1 and
RZ2: pairs of reflectors bounding less reflective zones in the outer fore-arc, WAF: west Andaman fault, BT: backthrust. Solid red lines: interpreted thrust faults; dashed red
lines: faults where less certain; dashed yellow lines: deep-penetrating reflectors interpreted as thrust faults within igneous oceanic crust or mantle. Blue and black boxes
indicate locations of images shown in Fig. 3 and Supplementary Information, Fig. S2, respectively. The lower panel shows a 17-km-wide strip of bathymetry along the profile.

close to the oceanic Moho (Fig. 4) (refs 7,8). Two other deep
thrust events (16, 22 km depth) with steep dips (33◦, 41◦)
were reported in this area, and at least four more occurred
farther northwestwards (depths 17–20 km; dips 34◦–44◦) (Fig. 1,
Supplementary Information, Table S1). An aftershock study6 using
ocean-bottom seismometers also located deep earthquakes near the
trench. The presence of such events further confirms the existence
of thrust ramps in the oceanic crust/mantle next to or seaward
of the wedge toe, as indicated by the seismic image. Although the
exact value is poorly constrained17, a significant amount (5–30 m)
of co-seismic slip in the frontal part of the wedge has been inferred
for the 26 December 2004 earthquake3 (Fig. 1).

The top and bottom of the subducted crust can be followed
along significant portions of the profile (Fig. 2). At a more detailed
level, these reflectors are discontinuous, as if broken up and
offset by faults (Fig. 2). Beneath the outer fore-arc basin (CMP
13500–16000), a pair of strong reflectors (RZ2), separated by a less
reflective zone, can be seen between 7 and 10 s, above the subducted
crust (Figs 3,4). A band of reflectivity was observed at similar
depths beneath Vancouver Island above the Cascadia subduction
megathrust18. Calvert et al.18 suggest that these features are the
result of either tectonic underplating of oceanic crustal material
in a duplex in the fore-arc continental lower crust, or crustal
erosion of the fore-arc continental crust followed by downward
transportation with the subducting plate. The evidence from WG1,
summarized in the schematic section of Fig. 4, supports an oceanic
crustal underplating model for these reflectors. The presence of
an ophiolite associated with a pronounced gravity anomaly on
Simeulue Island19 further supports this hypothesis.

The hypocentre of the December 2004 main shock projects
below CMP 11572 on profile WG1, ∼155 and ∼165 km to the
northeast of seafloor traces of MT and FT, respectively (Fig. 4).
Although poorly constrained, the focal depth of the event is
estimated to be 36±5 km (ref. 7). Under the most sedimented part
of the Simeulue fore-arc basin, a landward-verging reflector (BT) is
observed, possibly marking the position of the continental backstop

of the wedge, that is, of Sumatran continental crust. This inference
is corroborated by the presence of sub-horizontal reflectors at
∼9 s, where the continental Moho would be anticipated20 (Figs 2,4).
Therefore, the hypocentre seems to lie below the continental Moho,
either at the continental mantle/subducted crust interface or in the
oceanic mantle (Fig. 4).

Subduction megathrusts are generally thought to lie near the
top of the subducting basaltic layer or in the overlying sediments21.
Here there is no evidence for a reflector in the sediments that
could be interpreted as a décollement, which suggests a plate
interface at or below the top of the igneous crust. Although the
subduction interface must have been along the basalt/sediment
contact in the past—because subducted oceanic crust is imaged
down to 40 km depth, not stacked in the wedge—its irregular
(saw-toothed) geometry broken by crustal thrust ramps suggests it
no longer is. Indeed, the development and persistence of significant
irregularities, which would otherwise get abraded by repeated slip,
suggests the location of the plate interface has changed. Moreover,
stress release on active thrust faults cutting through the oceanic
crust would hinder building, at the basalt–sediment interface, the
amount of stress required to produce a very large earthquake.
Fracturing and slicing of the oceanic crust along landward-dipping
thrust faults can be accounted for by a décollement level mostly
lying in the upper mantle of the downgoing plate, possibly just
below the Moho (Fig. 4).

Assuming a quasi-planar geometry between the hypocentre and
the ‘roots’ of the active frontal thrust faults (R2–R4) would yield
an approximately 165-km-wide locked zone with a dip of 10–12◦,
consistent with most seismological and geodetic estimates17,22,23. In
the vicinity of profile WG1, the presence of a set of six aftershocks
(in blue on Figs 1 and 4; Supplementary Information, Table S2)
with 13◦–18◦ dips, projecting at distances of 145–165 km and
located at 25–28 km depth—hence in the lower plate—suggests
active thrust faulting within and at the base of the subducting
plate. Figure 1 shows that these aftershocks lie in the region of
co-seismic slip3,17. In Japan, intra-slab earthquakes are found to
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closely follow the oceanic Moho over more than 150 km (ref. 24).
Although unconventional, the mantle megathrust model shown in
Fig. 4 is compatible with most of the different lines of evidence
in the Simeulue focal region. The December 2004 main shock
rupture would have nucleated beneath the continental mantle and
propagated upward to the sea floor by way of the crustal thrust
faults MT/R4 and FT/R3 at the front of the wedge.

The upper and lower limits of locked subduction interfaces
are usually thought to correspond to temperatures of 150 and
350 ◦C, respectively25, the former coinciding with the dehydration
transition from clay (stable sliding) to illite–chlorite (stick–slip),
and the latter with the onset of plastic flow in crustal rocks.
For a mantle megathrust however, such inferences ought to be
reconsidered, with the upper limit lying farther upwards, including
at the sea floor, and the lower one, farther downwards (for example,
40–50 km depth) as suggested by geodetic studies23,26 and the
occurrence of a deep (45 km) earthquake in September 2007. In
any event, seismic coupling in mantle rocks, which fail brittly at
temperatures as high as ∼600 ◦C (ref. 27), ought to be stronger
than between accreted sedimentary material and oceanic basalt28.
This might account for the exceptional magnitude and long return
period of the 26 December 2004 event, (>500 yrs, possibly 1000 yrs
or more), longer than usually observed for M ∼ 8 earthquakes on
fast subduction zone segments, including in central Sumatra29. If
the mantle megathrust geometry is correct, models of accretionary
wedge mechanics30 should be revisited.

Perhaps the 2004 Sumatran event should be considered an
example of a novel class of exceptionally large and infrequent
megathrust earthquakes (‘Mantle Megaquakes’: Mw > 9), typical
of subduction zones and great collision ranges such as the
Himalayas31, rupturing deep mantle interfaces with a mechanical
strength much greater than that of thrusts in the crust. The
common occurrence of slices of mantle peridotites attached
to oceanic crust in ophiolite complexes along most suture
zones implies that such giant quakes, although fortunately rare,
may be the rule rather than the exception along convergent
plate boundaries.
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