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Abstract— Seismic noise cross correlation studies are of1

increasing importance in the seismological research community2

due to the ubiquity of noise sources and advances on how to3

use the seismic noise wave field for structural imaging and4

monitoring purposes. Stacks of noise cross correlations are now5

routinely used to extract empirical Green’s functions between6

station pairs. In regional and global scale studies, mostly surface7

waves are extracted due to their dominance in seismic noise8

wave fields. Group arrival times measured from the time-9

frequency representation of frequency dispersive surface waves10

are further used in tomographic inversions to image seismic11

structure. Often, the group arrivals are not clearly identified12

or ambiguous depending on the signal and noise characteris-13

tics. Here, we present a procedure to robustly measure group14

velocities using the time-frequency domain phase-weighted stack15

(PWS) combined with data resampling and decision strategies.16

The time-frequency PWS improves signal extraction through17

incoherent signal attenuation during the stack of the noise cross18

correlations. Resampling strategies help to identify signals robust19

against data variations and to assess their errors. We have20

gathered these ingredients in an algorithm where the decision21

strategies and tuning parameters are reduced for semiautomated22

processing schemes. Our numerical and field data examples show23

a robust assignment of surface-wave group arrivals. The method24

is computational efficient thanks to an implementation based on25

pseudoanalytic frames of wavelets and enables processing large26

amounts of data.27

Index Terms— Group velocities, seismic noise, seismology,28

surface waves.29

I. INTRODUCTION AND MOTIVATION30

SEISMIC surface waves are frequency dispersive, which31

means that their arrival time at a seismic sensor32

is frequency-dependent. The dispersion is caused by the33

frequency-dependent depth sensitivity of surface waves and34

the depth varying seismic velocities of Earth structure.35

Dispersion measurements are, therefore, useful to constrain36

subsurface structure. Indeed, surface-wave analyses are suc-37

cessfully established since the 1950s [1], [2] and have been38

widely used to image Earth structure at all scales. Owing to39
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their efficiency for imaging, many studies have focused on the 40

measurement of surface-wave dispersion (see [3]–[11]; among 41

others). These measurements are usually obtained through a 42

time-frequency representation (TFR) of the data based on 43

the multiple filter technique (MFT) or the moving window 44

analysis [3]. 45

Surface waves have different phase and group 46

velocities [2], [7], [12]. The phase velocity is the speed 47

of each individual wave while the group velocity is the speed 48

of the wave group. The group arrival time is thus related to 49

the propagation of wave energy and, therefore, identified as 50

an energy maximum. Its identification can be difficult due to 51

the presence of other seismic waves through scattering, mul- 52

tipathing, wave type conversions, and other signals and noise. 53

Group and phase-dispersion studies have been con- 54

ducted traditionally for earthquake or active source data 55

(human generated sources as explosions, vibrators, weight 56

drop, among others) [12]–[14]. Since the recent last 57

decade [15], [16], the importance of ambient seismic noise 58

imaging studies has been continuously growing in the seis- 59

mological and geoscientific community (see [17]–[21] among 60

many others), mainly, due to progress on how to use the 61

ubiquitous noise wave fields for imaging purposes. The key 62

difference between noise studies and their corresponding earth- 63

quake or active source studies lies in the data acquisition 64

and procedures to extract signal waveforms, often followed 65

by more traditional inversion approaches. 66

The signal extraction from noise is based on interferometric 67

principles [22], conventionally accomplished through cross- 68

correlating sequences of simultaneous noise recordings from 69

two stations and subsequent stacking of the resulting cross cor- 70

relations. If the noise wave field is sufficiently well balanced 71

with respect to the propagation direction of the constituent 72

waves, then empirical interstation Green’s functions (EGFs) 73

can be extracted from the noise as theoretically shown using 74

different approaches [23]–[29]. For ambient noise studies, 75

from local-to-global scales, these EGFs contain mainly surface 76

waves due to their dominance over body waves in noise at 77

the frequencies usually considered (<1 Hz) [30]–[33]. These 78

surface waves can be understood as waves generated at one of 79

the stations (virtual source) and recorded at the other station. 80

The primary goal of this contribution is to present a new 81

strategy for a robust and semiautomated estimation of seismic 82

group arrival times or group velocities. Our approach differs 83

from other existing techniques, which essentially implement 84

the MFT as described in [3] and [4] (as implemented in 85

the Computer Programs in Seismology package of [11] and 86
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other packages), by including the stack of cross correlations87

to estimate group maxima robustly. Furthermore, incoher-88

ent noises are attenuated through their low phase coherence89

using the time-frequency phase-weighted stack (tf-PWS) [34].90

In Section II, we present the main ingredients of this method,91

briefly outlining the underlying theory and how these ingre-92

dients are adapted and combined to measure group velocities.93

Then, the method is tested using theoretical and field data,94

illustrating the performance, benefits, and limitations.95

II. MATERIAL AND METHODS96

Our main goal is the robust extraction of surface-wave group97

velocities from EGFs. The input of our approach is the ambient98

noise cross correlations before stacking and the ingredients of99

the method are outlined in the following.100

A. Green’s Function Retrieval101

It has been shown in the different theoretical deriva-102

tions [23]–[29] that EGFs can be extracted from stacks of103

seismic noise cross correlations. The cross correlations identify104

waves recorded by two stations. Ideally, in a system with105

equipartitioned waves, i.e., where wave energy is balanced106

as a function of travel direction, and in the presence of107

a significant number of waves, the noise cross correlations108

retain signals, which add constructively to the EGF. All other109

features (including the cross correlation cross terms [35]) are110

attenuated or canceled out through destructive summation.111

In practice, the EGF for a pair of stations is computed112

by cutting the continuous noise recordings into many data113

sequences, which are then cross-correlated and stacked. Large114

amplitude signals, as from earthquakes or localized noise115

sources, usually deteriorate the EGF and may even inhibit an116

EGF retrieval [17], [36]. Therefore, large data volumes are pre-117

processed to balance the amplitudes of the noise recordings in118

the time and frequency domain. Different strategies of ampli-119

tude normalization exist [17]. Note that amplitude balancing120

is not required for the phase cross correlation (PCC) [37], as121

shown in [36].122

B. Analytic Signal and Phase Coherence123

Reference [36] shows that the EGF retrieval can be124

improved using phase coherence based on analytical signal125

theory. In essence, the time series u(t) is transformed into126

the complex domain through computing their analytic signal127

s(t) = u(t) + i H [u(t)], where H [u(t)] is the Hilbert trans-128

form of u(t). The exponential form s(t) = a(t) exp(i(t))129

provides the envelope a(t) and the instantaneous phase (t).130

The usual implementation involves two Fourier Transforms:131

s(t) = IFT[ua(ω)] and u(ω) = FT[u(t)], where FT and IFT132

stand for the forward and inverse Fourier transforms with133

ua(ω) = 2u(ω) for ω > 0, ua(ω) = u(ω) for ω = 0, and134

ua(ω) = 0 for ω < 0.135

Phase coherence refers to signals with the same waveforms136

and, consequently, the same instantaneous phase (t). The137

phase coherence [38] is quantified through the summation of138

the envelope-normalized analytic signals139

c(t) =
������

1

J

J�

j=1

ei j (t)

������

ν

(1)140

where the index j labels the J traces (here noise cross 141

correlograms) used in the analysis. c(t) is a time-dependent 142

coherence measure of the degree of constructive summation, 143

which consists of real numbers that range from 0 to 1, where 1 144

means that all N signals are completely coherent at time t . The 145

exponent ν tunes the sensitivity of the measure being ν = 2 146

an excellent default value. The analytic coherence measure 147

c(t) is the weight of the time domain PWS strategy presented 148

in [38]. It basically down weights signals that are less coherent, 149

independently of their amplitudes. That is, the phase coherence 150

weight c(t) is amplitude unbiased, which permits the detection 151

of coherent weak-amplitude signals masked by other larger 152

amplitude noise. 153

C. Time-Frequency Phase-Weighted Stacking 154

The phase coherence concept has been extended to the 155

time-frequency domain to improve data adaptation [34]. For 156

this purpose, the PWS method is working with the TFR 157

of the data. The corresponding coherence weights c(t, f ) 158

are, therefore, determined as a function of time and fre- 159

quency to account for nonstationarities in time and frequency. 160

In principle, any TFR, which provides analytic signals, can 161

be used for the tf-PWS. The best results are expected using a 162

multiresolution approach where the window length for time- 163

frequency localization depends on frequency, as it is the case 164

for the wavelet transform and S-transform (ST) [39]. The ST 165

is a continuous wavelet transform written using the notation 166

of a windowed Fourier transform [40] to employ the more 167

physically intuitive concept of frequency in place of scale. 168

If Sj (τ, f ) is the TFR of the j th trace obtained using the 169

ST, then the time-frequency phase coherence c(τ, f ) can be 170

written as 171

c(τ, f ) =
������

J�

j=1

Sj (τ, f )ei2π f τ

|Sj (τ, f )|

������

ν

. (2) 172

The tf-PWS is then obtained through a matrix multiplication 173

Spws(τ, f ) = c(τ, f )Sls (τ, f ) (3) 174

where Sls (τ, f ) is the ST of the linear stack (LS) of all traces. 175

Here, we use the wavelet transform to implement the time- 176

frequency expansion [40] due to its much lower computational 177

costs and redundancy, key elements also to improve the 178

computational efficiency of the subsequent resampling strategy 179

to find robust group arrivals. We perform a time-scale decom- 180

position using discretized frames of wavelet to approximate 181

the continuous wavelet transform (see [41] for a comparison 182

between discrete and continuous wavelet transforms). For this 183

task, we opt for the complex Morlet as mother wavelet, since 184

it approximates an analytic wavelet with an optimal time- 185

frequency resolution. This wavelet writes as a modulated 186

Gaussian 187

ψ(t) = π−1/4eiω0 t e−t2/2 (4) 188

centered at the frequency ω0. A standard choice of ω0 = 189

π(2/ ln 2)1/2 makes the amplitude of the side lobes equal to 190

half of the main lobe. 191
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The continuous wavelet transform [42] of a signal x(t) is192

given by the inner products with a collection of wavelets193

x(τ,λ) = x,ψτ,λ =
� ∞

−∞
x(t)ψ∗

τ,λ(t)dt (5)194

where τ is delay or lag-time and λ is scale. The collection195

of wavelets ψτ,λ is a set of zero-mean energy-normalized196

functions generated through scaling and translation operations,197

ψτ,λ(t) = λ−1/2ψ(λ−1(t − τ )). Therefore, the frequency198

resolution is proportional to 1/λ and the time resolution199

proportional to λ.200

Frames of wavelets allow us to sample the time-scale201

domain according to the actual time-frequency resolution, and202

thus implement the continuous wavelet transform efficiently203

and accurately, without losing freedom in the choice of the204

mother wavelet. We specifically discretize scale as λ = 2 j+v/V
205

and delay as τ = 2 j b0. Index j ∈ Z is the octave, v ∈206

[0, . . . , V − 1] is the voice, and b0 is the sampling period at207

scale zero, j = v = 0. The number of samples used in the208

time-scale domain with respect to the time domain increases209

by a (redundancy) factor of 2V/b0. A common choice for the210

complex Morlet is V = 4 and b0 = 1, leading to a redundancy211

factor of 8, in contrast to redundancies proportional to the212

number of samples of the time sequence of direct continuous213

implementations and in particular of the ST.214

D. Group Arrival Determination215

The group arrival determination is performed on the TFR216

of EGFs, which are the stacked noise cross correlations.217

Seismological imaging studies need the group arrival times or218

group velocities (for surface waves) as a function of frequency.219

We, therefore, transform the time-scale domain PWS into220

a tf-PWS for the final analysis. The transformation can be221

performed by just employing an inverse wavelet transform222

and subsequent forward ST or more directly by employing223

[40, eq. (22)]. To find the group arrivals, we identify amplitude224

(or energy) maxima as a function of frequency in the TFR.225

Ambiguous detections are common for problematic data or226

cross correlations with a small signal-to-noise ratio (SNR)227

at certain frequency bands. Different maxima can coexist228

due to multipathing, scattering, or the presences of other229

signals and noise. Some of them might be due to fortuitous230

or accidental summation. As shown later, we reduce signal231

identification ambiguities by selecting the maxima after a232

data resampling approach. A welcomed side benefit of this233

strategy is the robustness assessment of the measurements due234

to their variability with respect to changes in the database.235

At any moment, arrival time t ( f ) can be transformed to group236

velocities vg( f ) = x/t ( f ) using the travel distance x , which237

equals the interstation distance of the cross correlations.238

1) Random Sampling and Subset PWSs: We employ repeat-239

edly the simple random sampling (SRS) strategy [43] to draw240

N different sets of subsidiary noise cross correlation data bases241

for N successive tf-PWS analyzes. SRS is the most basic and242

unbiased sampling procedure. More sophisticated sampling243

procedures can be employed without any loss of generality.244

In our implementation, each cross correlation is subjected to245

Fig. 1. Flowchart illustrates the decision flow and corresponding actions to
build the tf-PWS and the different tf-PWS subsets. The tf-PWS subsets form
the base of the robust group arrival extraction.

an independent Bernoulli trial [44], which determines whether 246

a cross correlation becomes part in a subsidiary database. Each 247

cross correlation has an equal probability of being included 248

in a subset. The probability of success is the subset fraction 249

p = K/J , where J is the total number of cross correlations 250

(i.e., the population number of the entire database) and K 251

the targeted total number of cross correlations in the drawn 252

final subsets. Note that K should be large enough to guarantee 253

signal extraction in the resulting EGFs. 254

We construct the different tf-PWS subsets while building 255

the tf-PWS of the entire database, large gray box in the flow 256

diagram of Fig. 1, and LS and PS stand for linear stack 257

and phase stack (2), respectively. All computations can be 258

performed in the time-scale domain. Here, we compute the 259

LSs in the time domain and use their TFR for computing the 260

tf-PWS for each subset. 261

2) Robust Group Arrivals: We localize the amplitude max- 262

ima as a function of frequency in each tf-PWS subset starting 263

from the lowest frequency within a predefined frequency band. 264

The group velocity curve or ridge tracking starts at the lowest 265

frequency and largest energy maximum and progressively 266

goes to higher frequencies by finding the group velocity, 267

which is closest to its previous measure. For each of the N 268

tf-PWS subsets, we determine the group velocities of the four 269

largest maxima within a predefined velocity window and store 270

the value with the smallest velocity jump as a function of 271

frequency. Anomalous velocity jumps are discarded and, in 272

case of spectral holes and temporarily vanishing maxima, the 273

last value is kept as long as the jump is not too large. We 274
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Fig. 2. Finding robust group arrivals based on repeated detections
in tf-PWS data subsets. (a) Black dots are energy maxima for the subset j .
Bold dots mark selected maxima, tracked starting from the lowest frequency.
Gray area represents a spectral hole without maxima. (b) Similar as in (a), but
blue dots mark maxima with amplitudes below a predefined threshold value.
These values are not considered in the median, but optionally used for the
group arrival tracking. (c) Selected maxima from all J subsets (black dots)
and their median velocities (red bars). Left and right examples sketch the fix
and adaptive bin strategies to count measurements around each median value.
(d) Median group arrivals are marked in red and used to find the nearest group
arrival (black dots) in the tf-PWS of the entire database.

illustrate this procedure in Fig. 2(a) where black dots mark up275

to four energy maxima per frequency and bold dots mark the276

selected group velocity at each frequency.277

The group velocity ridge is also followed for amplitudes278

below an amplitude threshold, but the corresponding velocities279

are only output to the subsequent statistics if the amplitudes280

are larger than the threshold. This is shown in Fig. 2(b) where281

the blue dots mark maxima with amplitudes smaller than282

a threshold. They help bridging weak energy zones but are283

likely less well constrained and are not kept for the statistics.284

This way, we propose for each of the N tf-PWS subsets an285

independent group velocity curve, which can be discontinuous286

at different frequencies.287

Next, we compute the median group velocities as a function288

of frequency and count the number of successful detec-289

tions within a small velocity window around the medium290

group velocity. Alternatively, we determine the amount of291

detected maxima, which cluster around the median. This last292

approach helps to improve data adaption, since the maxima293

detection density can adapt to frequency-dependent resolution.294

Both strategies are shown in Fig. 2(c). The gray boxes mark295

the zones for counting the maxima and the red bars mark296

the median group velocities. If the number of detections is297

high enough, then the group velocity measure is considered to298

be robust against data variations and the corresponding final299

group velocity is measured on the TFR of the tf-PWS for300

the entire data set. This is shown in Fig. 2(d). The red bars301

mark the median values and the black dots the nearest energy302

maxima in the TFR of the tf-PWS of the entire data set.303

The robustness of the measurements is estimated from the304

data subset detection density and through the absolute median305

Fig. 3. Theoretical data example. (a) Input data trace. (b) Waveforms for
one randomly selected tf-PWS subset (blue line), the tf-PWS of all data
(black line), and the chirp function without noise (red line). (c) Contour plot
of the TFR of the entire data tf-PWS. The extracted group velocities and
95% amplitude contours are shown as white lines. (d) Contour plot of the
frequency normalized TFR of the entire data tf-PWS. Black dots mark all
detected maxima from all subsets. (e) Black dots are the selected maxima
for all subsets. The dashed line is the expected group velocity. (f) Colored
dots mark the median group velocity for the selected measurements from all
subsets. The final measurements are taken from the tf-PWS of all data based
on these median velocities. The colors indicate the normalized number of
measurements clustered around the median.

deviation of the maxima used to estimate the number of 306

detections. Note that these values are not errors, and they only 307

give confidence into a measure through repeated detection with 308

respect to variations in the database. 309

3) Numerical Example: For this example, we use a linear 310

chirp function u(t) = A0e−at2
e−iω(t)t with ω(t) = ω0 + bt to 311

obtain a synthetic waveform, which is dispersed in frequency. 312

Here, we use ω0 = 2π0.04 Hz, a = 0.0001 s−2, and 313

b = 0.0008 s−2. The corresponding group arrival time can 314

be computed analytically to τg(ω) = dφ/(dω) = 0.5b(ω − 315

ω0)
2/(a2 + b2), where φ(ω) is the phase spectrum of u(t), 316

obtained after a Fourier transformation. Fig. 3(a) shows one 317

out of 20 chirp functions contaminated by white noise. In 318

Fig. 3(b), we show the tf-PWS of 20 noise contaminated chirps 319

(black curve), the chirp without any noise contamination (red 320

curve), and the tf-PWS for a subsidiary data set of three traces 321

(blue curve). For this example, we use N = 10 data subsets 322

and an independent Bernoulli trial sampling probability of 323

p = 0.1. The corresponding ten subsidiary data sets contain 324

1–7 traces with a mean and a median of 3.3 and 3 traces, 325

respectively. 326

Fig. 3(c) shows the amplitude S-spectrum of the tf-PWS of 327

all 20 chirp functions [black curve in Fig. 3(b)]. The amplitude 328

spectrum is normalized to 1 and the color scale is shown to the 329

right. The group arrival time has been transformed to group 330

velocity assuming a propagation distance of 2640 km. The 331

central white line is the extracted group velocity curve and 332

the outer white lines mark the 5% amplitude decay from the 333

group maximum. The TFR of the same data, but normalized 334

to one per frequency is shown in Fig. 3(d). This normalization 335

is sometimes used to identify and track the group arrival also 336
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Fig. 4. Field data example using GEOSCOPE stations CAN (Can-
berra, Australia) and TAM (Tamanrasset, Algeria). Interstation distance is
16.233 km (145.9°). (a) Randomly selected cross correlation. (b) tf-PWS using
all data (black line), the LS of all data (blue line), and a randomly selected
subset tf-PWS (red line). (c) Contour plot of the TFR of the tf-PWS for all
data [black line in (b)]. The extracted group velocities and 95% amplitude
contours are shown as white lines. The black bars are the absolute median
deviations. (d) Contour plot of the frequency normalized TFR of the tf-PWS
for all data [black line in (b)]. Black dots mark all detected maxima from
all subsets. (e) Black dots are the selected maxima from all tf-PWS subsets.
(f) Colored dots mark the median group velocities for the selected measure-
ments from all subsets. The final measurements are taken from the tf-PWS of
all data based on these median velocities. The colors indicate the normalized
number of measurements clustered around the median.

for small amplitude maxima. The black dots show the up to337

four largest amplitude maxima per frequency for all subsidiary338

data sets. Amplitude maxima are defined as maxima whenever339

there are no larger amplitudes for the previous and next two340

time samples. In consequence, this is the reason why at lower341

frequencies, no maxima have been found.342

From these maxima, we keep those higher than a threshold343

amplitude, set at the 20% of the median amplitude in the TFR344

of each subset tf-PWS. We further limit the maximum velocity345

jump to a detected maximum at the nearest lower frequency346

to less than 0.2 km/s. Maxima, which satisfy these selection347

criteria, are plotted as black dots in Fig. 3(e). The blue line348

marks the expected group velocity curve for all frequencies.349

Increasing, for instance, the permitted velocity jump from350

0.2 to 2 km/s manifests in the existence of maxima at a351

broader group velocity band for frequencies larger than 0.1352

Hz. This, however, does not change the final result. For these353

maxima, we estimate the median group velocity per frequency354

and count the number of maxima within a ±0.02 km/s win-355

dow. The median group velocity and the number of maxima356

are shown in Fig. 3(f), where 1 means 100% of possible357

detections, i.e., 10 in this example. Finally, we take the final358

group velocity measurement from the tf-PWS of all traces by359

choosing the maxima nearest to the median velocities with at360

least 70% of possible detections within a ±0.02 km/s window.361

The central white curve of Fig. 3(c) represents the result.362

4) Phase Velocity Determination: This publication focuses363

on the group velocity determination; nevertheless, we mention364

that the presented strategies can also be employed to measure365

Fig. 5. Field data example using GEOSCOPE stations CLF (Chambon la
Foret Observatory, France) and SCZ (Santa Cruz, CA, USA). Interstation
distance is 9.100 km (81.9°). (a)–(f) Similar as in Fig. 4. (g) Contour plot of
the TFR of the LS of all data. The black dots mark maxima. (h) Similar as
(g) but using the frequency normalized TFR.

phase velocities. For this purpose, one can adopt the strategy 366

by [17] and [45] [their (11) and (7), respectively], who measure 367

phase velocities based on the previously identified group 368

arrivals. Note that the tf-PWS (3) does not alter the phases 369

φ(tg,ω), since the coherence weight c(τ, f ) is a positive real 370

number. The tf-PWS may help identifying the group arrival 371

through attenuation of incoherent signal summation, which 372

translates to the phase velocity estimation. 373

III. FIELD DATA EXAMPLES 374

In this section, we show the group velocity extraction 375

for two seismic station pairs: CAN-TAM and CLF-SCZ. 376

The stations CAN (Canberra, Australia), TAM (Tamanrasset, 377

Algeria), CLF (Chambon la Foret Observatory, France), and 378

SCZ (Chualar Canyon, Santa Cruz, California, USA) are 379

GEOSCOPE stations and their data can be freely downloaded 380

(www.geoscope.ipgp.fr). The vertical components for one year 381

of data were cut into 1-h overlapping, 4-h duration windows, 382

and bandpass filtered (Butterworth, two poles) from 5- to 383

40-mHz frequency. PCC has been used to compute the cross 384

correlations without any further preprocessing. Classical 385

cross correlations could have been computed, although the 386

correlation approach is not relevant to present the group 387

velocity extraction. 388

Fig. 4 shows the extraction of the dispersion curve for 389

CAN-TAM. The interstation distance is 16.233 km (145.9°). 390

A randomly selected PCC is shown in Fig. 4(a). The tf-PWS 391

and LS of all PCCs are shown as black and blue curves in 392

Fig. 4(b). The red curve is a randomly selected subset tf-PWS. 393

For the group velocity extraction, we use a Bernoulli trial 394
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TABLE I

VARIABLE DESCRIPTION AND VALUES USED FOR FIGS. 4–6. VALUES ARE FLEXIBLE, AND DIFFERENT SETS CAN PROVIDE SIMILAR RESULTS.
THE LAST COLUMN CONTAINS THE VALUES FOR THE FIRST ITERATION WITH MORE THAN 70% SUCCESS. NUMBERS IN BRACKETS

ARE FOR THE SECOND ITERATION ADJUSTMENTS. NOTE THAT DATA WITH DIFFERENT CHARACTERISTICS

(FREQUENCY RANGE, EGF CONVERSION, AND QUALITY) MAY NEED DIFFERENT VALUES

probability of p = 0.5, the number of subsets of N = 25, and395

60% detection threshold meaning that more than 15 subsets396

should provide a velocity measure clustered around the median397

velocity of all subsets. Fig. 4(c) and (d) shows the TFR of the398

tf-PWS of all data [Fig. 4(b) (black curve)], where amplitudes399

are normalized to their overall maximum and their maximum400

per frequency, respectively. The white lines and black bars401

[Fig. 4(c)] mark the 5% amplitude decay and the absolute402

median deviation. As the absolute median deviation is very403

small in this example, we also show a zoomed-in view of the404

measurements at high frequencies. The thin white line seen405

in the center of the inlet is the final measured group velocity.406

The black dots in Fig. 4(d) mark the detected maxima of all407

subset tf-PWSs. The selected maxima are shown in Fig. 4(e).408

Fig. 4(f) shows the corresponding median velocity and number409

of detections clustered around the median velocity normalized410

to 1. This median velocity is used to find the nearest group411

arrival in the tf-PWS of all data. This example shows a clear412

group velocity detection.413

In full analogy, the results for the station pair CLF-SCZ414

(interstation distance of 9100 km or 81.9°) are presented in415

Fig. 5. Here, we used p = 0.3, N = 25, and 20% detection416

threshold. It can be seen from Fig. 5 that the final tf-PWS is417

not as clean as in the previous example and different maxima418

are detected for different tf-PWS subsets [Fig. 5(d)], specially419

at frequencies higher than 0.01 Hz. Fig. 5(c) shows that the420

presented algorithm extracts a group velocity curve, which421

is equivalent to the one an analyst would have extracted.422

The absolute median deviations (black vertical bars) reflect423

the increased ambiguities at the higher frequencies. These424

ambiguities are also reflected in the decrease of signals clus-425

tered around the median [colored points in Fig. 5(f)]. Using a426

Bernoulli trial probability of p = 0.6 and a 30% detection427

threshold yields the same dispersion with filled gaps and428

decreased absolute median deviations. The new probability p429

Fig. 6. Dispersion curves for 50 GEOSCOPE station pairs (black dots) and
expected group velocity for the PREM model (red line).

increases the number of traces in each tf-PWS subset, which 430

decreases the detection variability and, consequently, the 431

absolute median deviations. The absolute median deviations 432

depend on the parameters, but used as a function of frequency 433

they point to the robustest measurements. Furthermore, as long 434

as the algorithm proposes a median group velocity closer to the 435

correct group velocity maximum than to any other maximum, 436

the correct velocity will be extracted from the tf-PWS of all 437

data. This last step does not depend on the parameters of 438

the algorithm. A fine tuning of parameters is to control the 439

measurement of group velocities at frequencies with a more 440

complex TFR due to the presence of other dominant signals. 441

It permits to add or remove measurements for an optimum 442

dispersion curve extraction. Furthermore, Fig. 5(g) and (h) 443

shows the TFR of the LS of all data in analogy to 444

Fig. 5(c) and (d). It can be seen that the TFR of the LS is 445

much noisier than the TFR of the tf-PWS and yields to a 446

wrong group velocity estimation. 447

Fig. 6 shows the automatically extracted dispersion curves 448

for 50 GEOSCOPE station pairs (black dots) and the expected 449

velocities for the spherical symmetric Preliminary reference 450

Earth model PREM [46]. For less than 30% of the dispersion 451

curves, the algorithm was ran a second time with adjusted 452
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variables to extract group velocities in areas with increased453

ambiguities. The spread around the reference is mainly due to454

the different paths of the globally distributed station pairs and455

seismic inhomogeneities. This type of data is used for imaging456

the seismic structure.457

In Table I, we summarize the parameters used in our field458

data examples. The values are flexible and variations in the459

results should manifest in areas with increased ambiguities460

first. Other data with other characteristics (frequency range,461

SNR, EGF conversion, preprocessing, among others) may462

require different values. For instance, a slower convergence463

to a robust surface-wave signal may need larger p values to464

increase the number of traces in each subset.465

IV. CONCLUSION AND DISCUSSION466

Our algorithm extracts robust dispersion measurements from467

surface waves emerging from the stacks of noise cross corre-468

lations. The approach uses the stacks of subsidiary data sets469

to help finding the dispersion measurements in the stacks of470

the entire data set. Data resampling strategies are often used471

in different applications to assess the robustness of measure-472

ments against data variability and are often used to evaluate473

measurement errors. In our approach, we use resampling to474

guide the search of group arrivals rather than to evaluate a475

final measurement. A side product of the resampling strategy476

is that one can use the variability of measurements to assign477

a robustness or consistency measure, for instance, the median478

of absolute median deviations or the standard deviation. The479

variability does not give the error in the data, but it provides a480

relative measure on how much the group velocity estimation481

is consistent.482

Another distinction of our method consists in using the483

tf-PWS [34], [36] to attenuate incoherent noise considering484

the coherence in the time-frequency domain. This approach485

is data adaptive due to a time-frequency coherence analy-486

sis and, therefore, suited to deal with nonstationary signals487

and noise. The main purpose is to attenuate the contribu-488

tion of incoherent signals in the noise correlation stacks.489

Other independent approaches to measure group velocity are490

mainly based on MFT [3], [4], [47] and use other cleaning or491

quality criteria to guarantee the correct measurement of group492

arrivals. Other quality criteria are based on SNR, agreement493

to smooth and continuous spline fit group velocity curves494

[18], and antidispersion or phase-matched filters [48], which495

compress the dispersed waveforms to clean them from unre-496

lated energy before applying an inverse phase-match filter to497

uncompress the waveforms. The way we clean the stacks from498

incoherent signals is completely data adaptive. The seismic499

attribute used, phase coherence, does not depend on a model500

and is obtained from the individual constituents of the data501

stack rather than from the final stack itself, i.e., prestack502

information rather than poststack information. The PWS has503

been used before in many different applications (see [49]–[53]504

as examples from 2015) to enhance small coherent signals505

and in analogy is suited to measure group velocities [54], [55]506

robustly. It has further been shown in [55] (their Fig. 1) that507

robust dispersion curves can be obtained from less data when508

the tf-PWS approach is being used rather than a conventional509

stack. This faster convergence to a robust dispersion curve or 510

structural response means that less data are needed for imaging 511

studies and that a higher time resolution can be achieved in 512

monitoring surveys. 513

The different variables, which guide the decision strategy, 514

can be changed and adjusted for fine tuning. For a robust 515

detection, however, empirical variables are quickly found, so 516

that this approach becomes useful for semiautomated detec- 517

tions in large data sets. The task of controlling the extracted 518

data is not taken by the algorithm. Our method has been 519

tested with theoretical and field data. This method is already 520

operational and being used in different studies (see [55] for a 521

global ambient noise tomography study). 522
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