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SUMMARY

Stacks of ambient noise correlations are routinely usedxttae empirical Green’s func-
tions (EGF) between station pairs. The time-frequency @hasighted stack (tf-PWS) is a
physically-intuitive non-linear denoising method thaesighe phase coherence to improve
EGF convergence when the performance of conventionalrlisnsraging methods is not suf-
ficient. The high computational cost of a continuous apgndadhe time-frequency transfor-
mation is currently a main limitation in ambient noise sasliWe introduce the time-scale
phase-weighted stack (ts-PWS) as an alternative extewsitre phase-weighted stack that
uses complex frames of wavelets to build a time-frequenpyesentation that is much more
efficient and fast to compute and that preserve the perfazenand flexibility of the tf-PWS. In
addition, we propose two strategies: the unbiased phasrente and the two-stage ts-PWS
methods to further improve noise attenuation, quality eféktracted signals and convergence
speed. We demonstrate that these approaches enable & extrar- and major-arc Rayleigh
waves (up to the sixth Rayleigh wave train) from many yeardaia from the GEOSCOPE
global network. Finally we also show that fundamental spiie modes can be extracted

from these EGF.
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1 INTRODUCTION

The ubiquity of noise is making seismic ambient noise an lexaciecomplement to earthquakes in
local to global tomography and monitoring studies. Seisnuise analyses are important from
early studies (Gutenberg 1958) until today (e.g., GSN lais@ model (Berger et al. 2004)),
since it defines the weakest signal an instrument can de&ecmic imaging and monitoring
using inter-station correlations became popular muchr katdh works on the extraction of the
empirical Green’s function (EGF) (Campillo & Paul 2003; $ha & Campillo 2004; Snieder
2004) and the subsequent application to surface-wave tapbyg (Shapiro et al. 2005; Sabra
et al. 2005), see, e.g., Wapenaar et al. (2010) and CampiRoéx (2015) for a review. The main
signals currently used are from wavefield fluctuations cabsescattered earthquake coda (Sens-
Schonfelder et al. 2015) and ambient noise. The strongdshast commonly used ambient noise
(of natural origin) is classified into (a) primary microsess (periods of 10-20 s), generated by
interactions of ocean gravity waves with the coast, (b) sdaoy microseisms (1-12 s), generated
by wave-wave interactions between ocean gravity waves(@nkdum (30-250 s), generated by
interactions of infragravity waves with continental sres\{Ardhuin et al. 2015).

Equipartition of wavefields is fundamental to extract thaeGreen'’s function. Direct corre-
lation of raw seismic records produces an undesired pretame of earthquakes and other large
amplitude signals over ambient-noise sources leadingwactmvergence rate towards the EGF.
To improve the EGF convergence, a single inter-stationetation is replaced by many much
shorter data sequences treated in processing flows thanclage 1-bit amplitude normalization,
spectral whitening, phase cross-correlation, adaptiterifig and array processing (Campillo &
Paul 2003; Bensen et al. 2007; Baig et al. 2009; Schimmel &04l1). Ermert et al. (2016) use
minimal preprocessing for the stack of correlograms in otdeobtain correlations that can be
easily forward modeled instead of EGFs. Later, Fichtnet.¢2817) also consider any linear and

nonlinear processing.
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In most applications, physically-intuitive signal-preseng methods developed with other ap-
plications in mind (e.g., beamforming or phase-weightedlgthave proven useful for improving
EGF convergence and observing weak signals in otherwisedisy records. The search of more
powerful methods is needed to tackle new imaging and mongarhallenges using current data
volumes and to satisfy the need of better time and spaceutesulMonitoring fast temporal vari-
ations (Grét et al. 2005; Brenguier et al. 2008; Hadziioanebal. 2011; D’Hour et al. 2016),
demands short time windows to resolve corresponding vanigiat a local scale promoting the
use of much less data to extract EGFs. Further, the extraofibody waves (e.g., at teleseismic
distances, see Gerstoft et al. (e.g., 2008); Landés et.gl, g910); Poli et al. (e.g., 2012); Boué
et al. (e.g., 2013, 2014); Poli et al. (e.g., 2015); Haned.deay., 2016); Farra et al. (e.g., 2016),
among others), which is possible through stacking and/amberming methods, demands further
SNR improvements to be able to constrain deep structur@igrcontext, stacking and denoising
strategies introduced by the seismology, exploration @gbéprocessing communities become
fundamental to boost the amount of high-quality observatio

Stacking (i.e., averaging) of a collection of traces (tineeiess) is an ubiquitous method to
improve signal-to-noise ratio (SNR) by combining coheraghals from many traces into a single
trace, often at the expense of losing resolution. Seisnpteation has a long tradition introducing
original stacking methods, see, e.g., Rashed (2014) forséorital review on common-mid-point
stacking. A key problem still facing many modern linear ktag methods is assigning a weight
to each trace in the stack (or locally to each time sampleyajedting the anomalous ones (due
to, e.g., coherent noise). Common criteria employed toredé these weights involve measuring
SNR (Neelamani et al. 2006) or correlation (Liu et al. 200&@n&is & Hanssen 2011; Deng et al.
2016) to a previously calculated reference trace. Noralimeethods such as the median stack
(Claerbout & Muir 1973) and the alpha-trimmed average (Bedh Watt 1984; Rashed 2008)
help rejecting coherent noise. Other non-linear stackiethiods used in seismology are the n-th
root stack proposed by Muirhead (1968), a norm-like functiarrying the sign of the signals
that emphasizes small-amplitude signals at the expensawdfarm distortion (Kanasewich et al.

1973), and the dual bootstrap stack proposed by Korenad&)20linear stack weighted by signal
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significance and coherence to improve the detection of wegitude signals that also introduces
waveform distortion, particularly around zero crossings.

Denoising methods improve the SNR of a single trace in exgpba signal distortion. Like-
wise, they boost convergence in noise correlations by iadube number of traces needed in the
stacking to get a desired SNR. Generally applied after sigckenoising preserves the main com-
ponents of the signal and attenuates the rest. Most metpptistaresholding functions controlled
by the level of noise to signal representations well adajatdige signal properties in order to boost
noise attenuation and promote the most energetic signalgf2008), see, e.g., Galiana-Merino
et al. (2003); Han & van der Baan (2015); Mousavi & Langstodl@) for some applications to
seismic data. Alternatively, Schimmel & Paulssen (199@ppse the phase-weighted stack (PWS)
to extract common coherent signals, regardless of theiliaudp, instead of the most energetic
signals. The PWS approach boosts the SNR of the linear stackee and reduces waveform
distortion compared to more aggressive non-linear stgckierthods such as the n-th root stack
and dual bootstrap stack. The time-frequency PWS (tf-PWi8jhduced by Schimmel & Gallart
(2007) as an extension of PWS to the time-frequency domaithdr improves the extraction of
weak coherent signals and reduces signal distortion. &glied to clean lower crust and Moho
reflections/refractions in wide-angle data (Schimmel &l@&P007; Garcia Cano et al. 2014), to
detect coda phases, e.g., from upper mantle discontiafiehimmel & Gallart 2007) or from
long period data tf-PWS (Ringler et al. 2016); it has beermsively used to extract empirical
inter-station Green'’s functions (EGF) in seismic ambieoitse studies from regional to global
scales (Baig et al. 2009; Schimmel et al. 2011; Kimman et@l22Ren et al. 2013; Yang 2014;
Dias et al. 2015; Chao et al. 2015; Cheng et al. 2015; Handld2056; Szanyi et al. 2016; Jiang
et al. 2016; Pilia et al. 2016) and has proved useful for tradyais of low-frequency earthquakes
(Thurber et al. 2014; Matoza et al. 2015; Lyons et al. 2016).

The high computational cost derived from a continuous aggrdo the time-frequency trans-
formation is currently a limitation in main applications nbise correlations, tomography and
monitoring that often demand big data volumes. A solutiorthis problem is developing bet-

ter implementations, e.g., Zeng & Thurber (2016) use theljcaprocessing unit to accelerate
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tf-PWS computation by a factor of 20 with respect to impletagons using the FFTw3 library
(Frigo & Johnson 2005). For our research, we reduce the tpereomplexity (see section 3) by
building more efficient time-frequency representatiorssend.

This work is devoted to enhance the quality of stacked seislaia sequences, in particular
from ambient noise correlations, by improving SNR and EGiveogence. Then, having compu-
tational efficient methods help us to do more with less ressirin section 2, we analyze tf-PWS
as a non-linear denoising method which is related to appesathat use thresholding functions. In
section 3, we introduce the time-scale PWS (ts-PWS), a rddttai obtains the same performance
as tf-PWS with a much reduced computational cost and menoatyfint. Further, in section 4,
we propose and discuss two strategies: the unbiased ts-RiMBatwo-stage ts-PWS to improve
non-coherent noise attenuation, to reduce undesireduattien of weak coherent signals, and to
increase convergence speed. In order to validate our metlredompare in section 5 linear stack
with alternative methods based on the ts-PWS using syothatl field data examples. In these
examples, we assume a diffuse wavefield, for instance, dadatance of source distribution. We
extract minor- and major-arc Rayleigh waves using manysyeédata, study and compare the
quality of the extracted signals, and measure their comvexg before and after denoising. Finally,

we show that we can extract fundamental spheroidal modesHEGF.

2 UNDERSTANDING TF-PWS

Phase-weighted stack (PWS) is essentially the productediriear stack multiplied by the phase
stack (Schimmel & Paulssen 1997). The time-frequency PWBWS) method improves SNR
and reduces signal distortions compared to the PWS by beorg aata adaptive through the
attenuation of incoherent signal components in the tirmgtfency domain, better adapted to seis-
mic signals than the time domain. The tf-PWS implements ithe-frequency expansion using
the physically-intuitive S-transform (Stockwell et al.98 Schimmel & Gallart 2005) because it
gives absolute phase information. Ventosa et al. (2008héurshowed that the S-transform is a
Morlet wavelet transform up to a phase correction.

In a linear stack, the main distinguishing feature betwegnas and noise is that the signal is
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coherent across the prestacked traces while the noise.i§metactual physical sense of signal
and noise changes depending on the application. Assuniiigjthek-th (e.g., daily) correlation
sequence between a pair of stations composed by an£@ifclw” signals that do not contribute

to the EGF:

a*[m] = s[m] +w*[m] (1)
wherem is the index of the coefficients in the time-frequency dom@hen, the estimation of the

signals, 5, from the noisy measurement$ using the linear stack is

i 1.,
Silm] = = > a[m] (2)
k=1

whereK is the number of data sequences in the stack and the sum syleriaties a linear stack.
The variance of the estimation of the EGF reduces in meaneasumber of independent se-
guences increases and incoherent signal, e.g., due ttedddealized noise sources, average out.

Beyond using more and more data in the stack, non-linearisieganethods such as tf-PWS
improve signal estimation in stacked sequences by defimdnglinear attenuation functions that
exploit known signal properties to further attenuate ndigécient non-linear estimators are con-
ventionally done by applying simple attenuation functiongansformed domains (here the time-
frequency domain) where signal and noise are better seplarat

To improve the SNR of through denoising, regardless of the domain (e.g., timenoe-t
frequency) used for data representation, we multiply thedr stacked trace by an attenuation

functionc that promotes the main components of the signal and attentia rest,
Salm] = Sis[m]clm], 3)

wheres, is the estimation of the signalafter denoising. In the PWS methads the phase stack,
an empirical noise attenuation function that measureswtamtaneous coherence of a signal. The

phase stack,

v

: (4)

K
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1~ at[m]
KZ [ [m]

is a strictly-positive function that is one if and only if &fle data sequencesat a coefficientn

(2

Cpslm] =

are equal in phase (full similarity) and close to zero if theg totally unrelated (full dissimilarity),
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where the sharpness of the transition between these twenes$ris controlled by. Observe that
the phase stack is a sum of phasors and consequently neéalde analytic to assess the phase
0*. For example, in the time domain, coefficientis the time step, andxz(t) = a(t)e?®®) where

a 1s the envelope aof andd the instantaneous phase.

3 TIME-SCALE PHASE-WEIGHED STACK

Improving the quality of extracted signals is one of the nteshanding operations (in the compu-
tational sense) along the seismic processing flow. The ctatipoal cost of tf-PWS is mainly due
to the regular sampling of the continuous time-frequenayaio when using the S-transform. This
leads to a very high redundancy (i.e., ratio of number offtments in the transformed domain to
number of coefficients in the original domain) and, consatjyeto many coherence measures to
be computed. In this section we present more computatidiiekat time-frequency representa-

tions of the tf-PWS through the wavelet transform.

3.1 Seeking for an efficient representation of the time-fregqency domain

The most suitable time-frequency resolution is often norienm and therefore Geophysical ap-
plications favor time resolutions proportional to periadatccount for the fast time variation of
ballistic signals at all frequency bands. These applicati@so favor analytic signal transforma-
tions because they are more suitable to process oscillsigmgls (here seismic signals) than real
transformations which suffer from serious shift varianoglgems, i.e., small time shifts of the sig-
nal leads to strong variations of the transformed coefftsi@anound singularities (e.g., Selesnick
et al. 2005). Analytic signal representations enable ngerahms that exploit magnitude and
phase information; in particular, to build weight functsomsing the phase coherency.
Traditionally, these time-frequency expansions use a fskawnd-pass Gaussian filters based
on the assumption that time series are derived from a mul&dsional normal distribution. These

filters are defined as

G(W*Wo)>2

Xa(w,wp) = Xa(w)e_%< “o (5)

where X, (w) = X (w)(1 + signw)) is the analytic signal following the Fourier transform con-
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vention X (w) = [~ xz(t)e"™!dt, sign is the signum functiony, is the central frequency of
the filter, ando the standard deviation of the Gaussian window. ObserveXhat, wy) is only
approximately analytic since band-pass Gaussian filteeslést term in eq. (5)) are strictly posi-
tive functions. The half-power bandwidth of these filterprisportional to their central frequency
Aw = 2v/1In 2w, /0o, equivalently, they are of constagtquality factor (ratio of central frequency

to bandwidth)

g

2v1In 2

and their impulse responses have an equal number of cy¢les; = ovIn2/w. In seismol-

Q=+"= (6)
ogy, this approach to the time-frequency expansion foaedliby Dziewonski et al. (1969) is
known as the multiple filter technique. Similarly, in the text of the short-time Fourier transform,
Gambardella (1971) proposes the use of modulated windowsrwdtant(), instead of constant
length, for audio analysis giving a "form invariant undené scaling”, and Petersen & Boll (1983)
show how to sample this time-frequency domain efficientbter on, the study of these ideas in
physics, engineering and pure and applied mathematiceoped to the wavelet transform (e.g.,
Daubechies 1992).

The Gaussian band-pass filters used in the multiple filtémiece, eq. (5), are equal up to a
scaling factor inversely proportional to their centralfuency. In appendix A, we show how this
scaling relationship and the close to zero mean (typically 1) enable an efficient implementa-
tion of multiple filter technique using the continuous Moreavelet transform, by defining scale
as\ = o/wy and the central frequency of the mother waveledas wo\ = o.

The continuous wavelet transform (CWT) (Daubechies 198th&et al. 2005; Mallat 2008)

of a data sequenceis given by its inner product with a wavelet collectign,,

[e.e]

£(r,\) = (£, Yra) = / (£ (D) dt, (7)

— 00

wherer is delay or lag-time\ is scale and)(¢) denotes the complex conjugate ©ft). The
mother wavelet) € L?(R) is a zero-mean function that generates a set of functionsyévelet

collection; », through scaling and translating operations. Convenliyrihis set of functions is
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normalized so that the transform is unitary,

Yrat) = X2t = 7). (8)

Wavelets can be real or analytic. Real wavelets are goodeiacting sharp signal transitions
and thus often used in, e.g., image processing (Mallat 2R@&jues et al. 2011). Complex analytic
wavelets are attractive for analyzing oscillatory sigrdale to their ability to separate magnitude
and phase and therefore useful for, e.g., studying seisgnals or measuring instantaneous fre-
guency (Selesnick et al. 2005; Sinha et al. 2005; Ventoska 2082; Bayram 2013).

To implement the multiple filter technique, eq. (5), we usealygiic wavelets. Pseudo-analytic

wavelets can be build with modulated windows. We use a meoeldil@daussian window,
Pt) = e, )

this mother wavelet is conventionally known as the Morlevelat despite of not being exactly
zero mean and has@ = &,/2vIn2. Zero mean is obtained in the exact Morlet wavelet with
an additional termy)(t) = m~/4e~*/2 (¢! — ¢=&/2); still, eq. (9) is a good approximation for
& > 1 due to its extremely small mean. For Igwvalues both Morlets are not pseudo-analytic

anymore.

3.2 Discretization of the CWT: frames of continuous wavelet

We can severely reduce redundancy by using known signakpiiep to design bases or frames
(i.e., overcomplete bases) (Ka@evic & Chebira 2007a,b) which capture efficiently the main fea-
tures of the signal. The frame coefficient$ of the data sequence® are computed by inner

products with a fram&@ = {¥, }o<,, <
wyfm] = (2*, ) = Y Ml n]. (10)
The sequenceg)y, },, ., constitute a frame if th;re are two real numbBrg A > 0 such that
Allzl* <) e, vm)|* < Bzl (11)

for any possible sequenae whereA and B are called the lower and upper frame bounds. When

eq. (11) is satisfied, the signat can be reconstructed from thé coefficients with the pseudo-



10 S. Ventosa, M. Schimmel and E. Stutzmann

inverse of the framd, implemented with a dual fram@m}ogm@b

2Mn) =Yl [m]n[n]. (12)

If A = B the frame is called tight (satisfies the Parserval’s idgnand the dual frame can be
approximated by the "forward" frame up to a constant fadb@ubechies 1992).

Frames of wavelets are good approximating CWT (Daubecl®®88)1 The frame elements are
distributed across the time-frequency domain accordirtgeo time and frequency resolutions in
order to contain redundancy. A common choice for discreizhe wavelet collection, ,, eq.
(8), is\ = 2° andT = u2’by, whereu is the time index at the scaleandb, the sampling period
at the scale 1, leading to a sampling period almost propwtitm scale on the time axis and to its

inverse on the frequency axis. The frame of wavelets is then

1 T —u2lslp
wu,s[n] - 23/21/] (n 22 0) 5 (13)

whereT is the sampling period of the original time series dnglis the lower integer part of.
Scales are usually organized in voieces [0,V — 1] and octaveg € Z, s = j + v/V, where

V e N is the number of voices; and they are downsample@’by in order to keep roughly a
constant number of samples per cycle in all frequency bdralsnoderate redundancids,> 4,

the reconstruction error is typically much lower than 1% wktge dual frame is approximated by
the forward frame and reduces fastlasncreases ané, decreases. For example, in the case of
the exact Morlet wavelet, for the standard choicépf w\/m, and withV = 4 andby = 1
(that double wherg, doubles), the redundancy is approximatelyp, = 4 and the normalized
root-mean-squared error is beldw1 x 1072,

The use of a sampling strategy adapted to the actual resolitis a major impact on operation
complexity and memory footprint. The redundancy of the\WW® is about half the number of
samples of each sequende,= N/2 + 1, while the redundancy of the ts-PWS is typically<
R < 16 and independent aV. For R < 4 the frame bounds diverge abruptly (« B) and the
wavelet collection stops being a frame. While frdtn= 16 the reconstruction error is extremely

low and the filtering improvements are very minor. Likewies operation complexity of the ts-
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PWS is proportional to the number of samples and scél¢3]S), and the tf-PWS, implemented

using fast Fourier transforms, 3(N? log, N).

3.3 Limits and alternatives to frames of Morlet Wavelets

The analytic approximation made in the Morlet wavelets ddgs as, (equivalentlyo in eq.
(5)) reduces and the negative frequency components bedesseand less negligible, which is
problematic in applications requiring high temporal resioin. The complex Mexican hat wavelet
(Addison et al. 2002) is an alternative with no negative fiestcy components anda= ﬁ ~
1.2. Equivalently to eq. (5), the band-pass filters of this watvate defined as

2w? _(w)?
Xa(w,wp) :Xa(w)%e <W0>
Wo

(14)

A more flexible option is the Morse wavelet (Lilly & Olhede Z0®012), a family of analytic
wavelets which permits the synthesis of a wide variety ofel@s from low to highy) quality
factors.

Frames of continuous wavelets have a far lower redundaray direct continuous imple-
mentations, still this redundancy is moderately high areddiscretization leads to a non-perfect
reconstruction. The discrete wavelet transform (DWT) ureed to get the lowest redundancy
and perfect reconstruction, e.g., Vetterli & K@ewic (1995). A certain degree of redundancy is
necessary to construct an analytic DWT because discretplegmavelets having a finite sup-
port cannot form an orthonormal or biorthogonal basis andrmytic or pseudo-analytic at the
same time, e.g., Selesnick et al. (2005). For example, thétdee complex wavelet transform
(Kingsbury 2001; Selesnick et al. 2005) uses wavelets witdwa(), has a redundancy of 2, and
an operation complexity af (V) which is lower than the fast Fourier transform. The duattre
rational-dilation complex wavelet transform (Bayram & &alick 2011) and rational-dilation fil-
ter banks Bayram (2013) allow for a more flexible choic&Xfredundancy and time-frequency
resolution. However, the filters obtained have to be constrlin the frequency domain to fulfill

perfect reconstruction which increase operation compjexi
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4 IMPROVING WEAK SIGNAL DETECTION

Most coherence measures can be used as empirical noisaaditenfunctions exploiting data
from several realizations, being the main difference betwteem the actual definition of similarity
(e.g., maximum coherence means amplitudes and waveforimg égual or just the waveforms)
and the class of signals considered (e.g., real or analytic)

The phase stack is an instantaneous coherence estimasoaigtic signals which gives more
stable measurements than alternative estimators foriggadls due to the near shift invariance of
magnitude and phase. Other coherence measures such aarsegrdohd geometrical-normalized
cross-correlation (GNCC) allow both real and analytic algr(Taner et al. 1979). Note that the
actual definition of similarity is not equal in these thre@iraators. The phase stack and GNCC
define full similarity as equal waveforms (not amplitudesyl afor this reason, are said to be
amplitude unbiased, whereas semblance defines full sityikes equal amplitude and waveforms
and therefore it is amplitude biased.

The instantaneous coherence estimation of the phase sth&sed in the sense that it gives
positive coherence values for full dissimilarity signalgiereas instantaneous GNCC coherence
estimation is unbiased since coherence can become nedativd illustrates the impact of the
coherence bias by showing the amplitude attenuation of liase stack, eq. (4), as function of
the SNR of full coherent signals contaminated by white Ganssoise for the standard choice of
v = 2. The signal attenuation is small for SNRs of the prestackdrighan 1, and it increases on
average to a maximum value &f for pure incoherent noise, see appendix B for the demonmtrat
In practice, this saturation of attenuation leads to lowantexpected SNR increments for low
SNR signals, but it guarantees a positive coherence.

We can improve weak signal detection by (i) promoting seqasmith high SNR in a weighted
phase stack, (ii) improving their SNR before tf/ts-PWS tlgle two-stage stack, and (iii) correct-
ing the coherence bias of the phase stack to increase nteseiation with the unbiased phase

coherence estimator. More specifically:

(i) Weighted phase stacktroducing weights in the phase stack helps to promotegtedity

data sequences and to reject the anomalous ones. Modeandiaeking methods used in explo-
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ration can be adapted to estimate these weights, congidéanthe phase stack is a linear sum of
phasors.

(i) Two-stage stacklhe phase stack attenuates low SNR signals much more thatridnger
ones. For this reason, we obtain better results if we phask stfew sequences with high SNR
than if we stack many of much lower SNR, even when their lirgacks are identical. Conse-
qguently, if the number of sequences available is high, itrseasonable to arrange them in few
groups and apply linear stacking to each group to genergteesees with reduced signal variabil-
ity (higher SNR) in a first stage, and then apply the phase $te@ second stage. In this manner,
coherence is increased before tf/ts-PWS and thereforalsigme less downweighted. Note that
in ambient noise data the coherence can be increase beferBWYS using longer data windows
in the cross-correlations. However, this reduces the adidjty to real data with gaps and the
applicability of other processing steps, such as normiidza and weights to promote or reject
sequences according their quality. For example, Jiang €@l6) linearly stack daily correlation
in ten-days periods before using tf/ts-PWS to improve SNBhairt-period ambient noise data.

(i) Unbiased phase coherenddoise attenuation can improve by using unbiased coherence
measures, such as GNCC coherence, or by correcting thefliias phase stack. In appendix B,

we show that an unbiased phase coherence estimgfocan be constructed using the phase stack

with v = 2,
K, —1
C?lpc = ﬁ (15)

In Fig. 1 we show that, in mean, the attenuation of the unbigg®se coherence (solid lines)
is much higher than the attenuation of the phase stack (ddstes) when the SNR of the data
sequences is very low and that both are similar when the SMRjlner than one. The akin PWS,

constructed using,,. rather thare,, is now called "unbiased" tf/ts-PWS.

In the next sections, we construct the two-stage ts-PWSyukalinear stack in the first stage and

the unbiased ts-PWS in the second.
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5 EXAMPLES

In the following we use synthetic and real datasets to etaline performance of the linear stack,
ts-PWS and two-stage ts-PWS. As measure of performanceewbesimilarity which we define

as the cross-correlation coefficient CC between the origigaal s and the estimated signa|

o lts9)

= ENER (16)
where(s, 3) is the inner product ands|| the norm. The corresponding misfit is defined asCC.
Since time and frequency resolutions are often main canstran distinct applications, the
quality factor (defined in eq. 6) helps determining the beéstpted wavelets. Generally, high
wavelets are suitable for studies using surface waves dineitodispersion with frequency, while

low Q wavelets are better adapted for analyzing body waves dieitoghort duration.

5.1 Synthetic data example: high Q wavelets
The test data, Fig. 2(a), consists of a chirp function,

sin(2rmfot)  iftg <t <t
x(t) = : (17)

0 otherwise

windowed with a 20% raised cosine taper, whére= f, + (f1/fo)""" ") with f, = 0.005
Hz, fi = 0.03 Hz,t, = 100 s andt; = 1001 s, Fig. 2(b), embedded in white Gaussian noise of
variance equal to 1 and sampled at 1 sample/s. Fig. 2(c) sthew®nvergence to the unperturbed
chirp signal using three methods (black) linear stack,gplifts-PWS, and (red) two-stage ts-
PWS. Finally, Figs 2(d) and 2(e) show the extracted signiadstheir differences, respectively.
The two-stage stack first arranges the original data seggento 10 groups to linearly stack the
sequences of each group, and then applies the unbiased3sWiiti 10 groups we seek a balance
between increasing SNR before the ts-PWS and reducing tteenea of the coherence estimation.

The main parameters to chose for the time-frequency tramstftion are the) quality factor
and the frequency band of interest. We opt for a Morlet waweieh a relatively high@ of 5
(&0 = 8.33 or about 2.2 cycles) considering the long signal duratiahieshigh number of cycles.

For extracting much shorter waveforms, such as body wavksyer value is recommended to
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increase time resolution. The center frequencies of theelgaeollection ares,/\. We opt for
using 8 octaves starting at the scale- 4, which is more than enough to cover the frequencies of
interest. Using a narrower frequency range would have énmtémoved noise. We discretize the
wavelet collection from the standard choicespf= 5.34, and withV = 4 andb, = 1 by scaling
the V andb, parameters in proportion i§. ThenV is rounded to the closer integer value and
by to the largest power of two lower thag, leading toV = 6 andb, = 1 and a redundancy of
R ~ 6. The misfit (. — CC) of the ts-PWS using these parameterzds< 10~2 and the misfit of
the tf-PWS using an equivalent configurationti8 x 10~3. This minor difference is mainly due
to the different discretization used. Further increasingr b, leads to very minor reduction of the
misfit (Fig. S1).

Because tf-PWS and ts-PWS give identical waveforms, indheviing we only show results
for the ts-PWS which we call tf/ts-PWS. In the misfit{ CC) results, Fig. 2(c), we see that the
tf/ts-PWS reduces misfit much faster than linear stackingebyoving noise across all frequency
bands. Further, the linear stack needs more than 100 sexpigngive results with the misfit that
ts-PWS obtains using 10 sequences. For higher number oésegs, we observe that the tf/ts-
PWS misfit starts saturating at about 20 sequences (andsrasubnger improve) while the linear
stack keeps improving. When comparing the differences, Fid), of the linear stack and the
tf/ts-PWS, we can conclude that this saturation is due tcsitpeal attenuation produced by the
reduction of the phase coherency (the attenuation functsad in the ts-PWS) on signals with
low SNR, as predicted in Fig. 1.

We avoid the misfit saturation by introducing a two-stagelstay approach. The linear-stack
stage delivers a few sequences with a much higher SNR thaoritlieal data sequences that are
then stacked in the second stage using the unbiased ts-PWdarate number of sequences
(10 in this example) is sufficient to estimate coherencesfgatiorily in practice. In exchange, we
obtain a higher SNR that has a major impact on the misfit réslu¢equivalently, decrement on
waveform distortion) which now improves linearly with thember of sequences in parallel to

the linear stack. The unbiased phase coherence helpsheifumprove misfit in the single-stage
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ts-PWS (number of sequences lower than 10) and the two-&&d@@/S as a result of the higher
noise attenuation predicted in Fig. 1.

An implication of this result is that a faster convergenceatmbust signal can be achieved
through the introduced modifications. The fast convergaidbe ts-PWS and the two-stage ts-
PWS proposed here should be useful for, e.g., seismic morgtas it allows us to use much

shorter data windows leading to higher temporal resolytiey in these applications.

5.2 Field data example: extracting surface waves and normahodes from ambient noise

We extract minor- and major-arc Rayleigh waves from intatign correlations using three differ-
ent stacking strategies. For further information on thdyamsof dispersion of Rayleigh waves see
Levshin & Ritzwoller (2001); Herrmann & Ammon (2002); Schimel et al. (2017) among others
and, e.g., Haned et al. (2016) for a recent study derivingbajlupper-mantle tomographic model
and Zhao et al. (2017) building phase velocity maps acrasy8A. Fig. 3 shows the velocity EGF
extracted from the vertical component (LHZ) of two pairs adddband seismic stations from the
GEOSCOPE network from the year 2006 to 2016 and convergémties final waveforms. In Figs

5 and 6, we present the waveforms extracted from twentyostatiirs using 500 days of data and
more than 2000 days, respectively. See Medeiros et al. {Z66.5ome guidance on the choice of
the window length and the number of correlations that ersscaress-terms canceling. In the pre-
processing we remove the mean and trends, correct for ttranmsnt response to produce ground
velocity, apply a band-pass filter from 4 to 32 mHz, decimata sampling period of 4 s, reject
seismograms having energies much higher than the averagetie same time period (higher than
15 times the median of their standard deviations), and aligd-amplitude signals (higher than 4
times the standard deviation of the seismogram). Then, wgate GNCC of 1-day long velocity
seismograms, reject correlations having energies mudiehitpan average, and stack remaining
correlations using linear stacking, ts-PWS and two-stag®W/S. The two-stage ts-PWS consists
of a first stage formed by several linear stacks, which geadi@ correlation sequences having a
SNR much higher than the original correlations, followedtiy unbiased ts-PWS. Assigning an

optimal weight to each inter-station correlation in theektaould potentially improve results. This
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strategy is hindered in this example due to the very low SNR@forrelations and is also out of
the scope of this paper. Therefore, for the sake of simp|isié weight the correlations uniformly.

We use a power of = 2 for the ts-PWS and the unbiased ts-PWS. For the time-fregyuen
representation, we use the continuous Morlet wavelet fmamswith the standard choice gf =
w\/m, equivalently@ = 3.20, discretized using a frame withig = 1 and 4 voices along
3 octaves, corresponding to a collection of 12 band-passdilvith central frequencies from 4
to about 27 mHz. Memory requirements reduce compared toghwaent configuration of the
tf-PWS due to the lower redundandy,= V' /b, = 4 versusi126 (half the number of lags in Fig.
3), and the possibility of analyzing only the frequency aafinterest. Similarly, ts-PWS is much
faster to compute than tf-PWS. The ts-PWS results showngngtb) take about 70 s to compute
with a common desktop, and the results of the two-stage t§;FNg. 6(c), 18 s, mainly consumed
in input/output operations.

The first minor-arc Rayleigh (R1) wave is the main signal usesimbient-noise studies from
global to local tomography. In Fig. 3, we show up to the thirgion-arc Rayleigh (R6) wave train.
These observations are important for global tomographgiesuto improve coverage in regions
otherwise poorly sampled due to the lack of seismic statismsh as the oceans, or earthquakes.
In Figs 3(a) and 3(b), we detect with the linear stack the fast Rayleigh waves quite clearly,
partially due to the strict rejection of anomalous data beénd after computing the correlations.
We observe that with the linear stack, the level of noiseilsssgnificant even when using all
the data available (about 11 years). With the ts-PWS, thel wnoise reduces dramatically, but
also the amplitude of the signals as a result of their low SMRontrast, the two-stage ts-PWS
reduces the level of noise with a much lower signal atteonadilowing to observe up to R5 and
R6, because (1) the linear stacks performed in the first gtamyede correlations with higher SNR
to the unbiased ts-PWS, and therefore reduce signal attenwuseverely, and (2) the unbiased
ts-PWS helps to further attenuate non-coherent noise. IR® twave trains are harder to observe
when we limit the dataset to 500 days, Figs 3(c) and 3(d). #dke signals are better observed
using the two-stage ts-PWS, despite of the little signainathtion.

Figs 3(e) and 3(f) show the convergence to the EGF using dsr@nee signal the waveforms
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extracted by each method using the entire data set (Figsd3agnWe see that the ts-PWS and the
two-stage ts-PWS converge faster than the linear stachinier stack needs about 1000 days to
get the similarity that the two-stage ts-PWS gets in aboOtddys due to the lower non-coherent
noise attenuation. As we have seen in the synthetic dataggakig. 2(c), the misfit (equivalently
similarity) saturates for ts-PWS while improves in paiditethe linear-stack for the two-stage ts-
PWS.

The performance of the tf/ts-PWS and the two-stage ts-PVg8ads/n more in detail in Fig.
4. Here we zoom to the R1 and R4 wave trains from Fig. 3 withesponding waveforms shown
in Fig. 4(a) and 4(b). Figs 4(c) and 4(d) show the SNR which e#ne as the ratio of the max-
imum amplitude to the standard deviation of the noise<( medianz| /0.6745). Both methods,
tf/ts-PWS and the two-stage ts-PWS provide better SNR thahrtear stack. But this information
does not evaluate the quality of the waveforms, e.g., a Rdylgave which is reduced to a signal
pulse has a high SNR. Figs 4(e) and 4(f) do not contain infionan the SNR, neither on the
similarity to the unknown Rayleigh waveform. But, it doe®wtthe robustness and conversion of
the extracted waveform to the best possible and expectedfarav obtained by using all avail-
able data. It can be seen that the tf/ts-PWS and the two-&a@@/S converge faster to a stable
waveform. This also means that we can obtain robust resitlissmaller amounts of data.

Fig. 5 shows extracted Rayleigh waves from 20 inter-statamelations normalized to better
observe later-arriving phases using 500 days of data agdéFiising all the data available. When
using linear stacking on 500 days of data, Fig. 5(a), we Ijlessre the first two Rayleigh waves
(R1 and R2) but Rayleigh wave trains arriving later are diffito observe due to the still high
level of noise. We need to use all data, Fig. 6(a) in order ®eole R3, R4 and eventually R5.
When using ts-PWS, Figs 5(b) and 6(b), we get similar obsienvawith an improved noise level
but with a reduced amplitude due to the low SNR of the dat&seontrast, we see the first four
Rayleigh waves (R1-R4) clearly at most of the station paingnvusing the two-stage ts-PWS,
Figs 5(c) and 6(c), and the third minor- and major-arc Raylevaves (R5-R6) in Fig. 6(c) but
with a lower SNR.

In Fig. 7, we show spheroidal modes extracted from EGF fostagon pairs used in Fig. 6,
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applying the linear stack and the two-stage ts-PWS. Changbs preprocessing with respect to
the previous example are that we now produce ground actiele@d we band-pass filter from
0.5 to 10 mHz. The time-frequency representation used insH®VS changes accordingly, we
now use 4 voices and 5 octaves corresponding to 20 band-tass With central frequencies
from 0.5 to about 13.5 mHz. In Figs 7(a) and 7(b), we only defigmdamental modes, which is
reasonable considering that EGF correspond to Green fumftir a surface vertical force at the
locations of one of the stations recorded by the other stalibe most energetic mode, detected
at all station pairs, is the fundamental spheroidal mgggeat about 0.81 mHz. Much weaker,
we detect other fundamental modes clearly at all intefestatistances, they are however better
observed at frequencies lower than 4 mHz and short distaWeesesolve the same modes in both
stacking methods, the results are slightly cleaner whemguie linear stack, Fig. 7(a). This is
expected since the Fourier domain is the natural represamfar normal modes. The contribution

of earthquakes has not been analyzed since here we focus apghcability of the modified PWS.

6 CONCLUSIONS

We improve the EGF convergence of the tf/ts-PWS by incregasmn-coherent noise attenua-
tion with the unbiased ts-PWS, and by reducing signal adgon with the two-stage ts-PWS.
These improvements are essential to increase the resolatinonitoring studies and to improve
the quality of extracted signals. We show that using thesthods one can obtain high-quality
minor- and major-arc Rayleigh waves from R1 to R6 from irgtion EGF. We also clearly ob-
serve many fundamental spheroidal modes with eigenfregesiower than 4 mHz with the same
dataset, beingS, the most energetic. Constraints obtained from furtheryamlof high-order
surface waves and normal modes extracted from ambient narseomplement earthquake data
in upper-mantle studies because they sample regions adeepworly covered due to the lack of
seismic stations or earthquakes.

The ts-PWS based methods are much faster and require mgaméssory than tf-PWS. The
parameter controlling computational cost and memory reguents of the tf-PWS and ts-PWS

is the redundancy of the signal representation in the tireguency domain. Analytic discrete
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wavelets enable the lowest redundancy and analytic canimwavelets the highest. In between
these extremes, a variety of solutions exist with a richrdity of choices on the competing param-
eters of redundancy, time-frequency resolution and cbatrahe wavelet function. In this paper,
we opt for frames of continuous wavelets because they pedvigher time-frequency resolutions
and better wavelet control. For applications which demasdegt reconstruction or the lowest
redundancy, alternative solutions based on analytic elisavavelets can be of interest.
Non-linear stacking methods such as unbiased ts-PWS andtage ts-PWS help improving
SNR in exchange of possible signal distortion due to vargiggal coherence throughout its time
and frequency components. These gains in signal qualityatable for applications analyzing
signals such as body or surface waves that benefit from ctomahstacking methods. Other data,

as earthquake recording could have been used in full analodyvithout losing generality.
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Figure 5. Waveforms extracted by stacking ambient noise correlat{@rday long GNCC) from 20 pairs
of GEOSCOPE stations using up to 500 days of data with (agdistack, (b) ts-PWS and (c) two-stage
stack constructed using the unbiased ts-PWS. The norrtiafizinctions are applied to better observe
later-arriving phases. Each station pairs is normalizaétstmaximum amplitude.



Time-scale PWS and beyond 33

10
£ s
Z
0
180 . . .
RL  R2 R3S R4 R5  R6
1601 - J N A e e
A \
UV (i
1407 iy [Sovcssvart | ot MWMW’“WWW
1\ A 4 A
~ 10 u U e RO A )
R — R S (e
= 100 i vt tnore il el e v et o RN
8 ;—-—W‘Wﬂﬁ-’\ﬂ/\/wvwwm '\W\/\m«nww
a 80 i,
o N
a
(a) Linear Stack (2000 4500 traces) Time (hours)
2000
% 1000
z
0
180 : : . . . . .
RI  R2 R3 R4 R5 R6
160+ i A
0 A e M:WW
i iy
€ 100 u L= - | ,
3 " - . -
S 801 (i W A "
0 | i i iaad!
~ B | MWNMAMV—*\/W |
a 60 i dis A AR WW‘A“’\V/,\/” WA ,%WWMWWW&&
M= ey s
204," S s
0 i ‘ il
0 1 2 3 4 5 6 7 8 9
(b) ts—PWS (2000 - 4500 traces) Time (hours)
) 40 .
€20
Z
0
180
RL  R2 R3S R4 R5  R6
160 "“‘*‘“‘M‘N\/\”’_‘J\%\: m/\/b\f%ﬁ AN AN AN AN e]
M J
140 VMV : ‘p A\ S~ N
120 il um W\ \AA\AN\/\M W VA |
§’ il e MWMWWMAMMNWWWWWWNWWMN/%}WW
< 100 ﬁﬂ@” i ey ; y y ]
3 i~ VW Ao~ A - = NSNS
§ SO*MWMMWMWW Y — w9 [Py oot
) | I A e y 0 i
o 60 -—-—wy&i\/\M “’th 4}1]1“%;%““‘” Mottt/ iy AU JW’M‘
= [l rcepert| e ’
201 0 W\MWW ooty ool
—‘/V\» Mvh
0 1 2 3 4 5 6 7 8 9
(c) Two-stage ts—PWS (2000 - 4500 traces) Time (hours)
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Figure 7. Normal modes using the same station pairs as Fig. 6 usingn@grlstack and (b) two-stage
stack constructed using the unbiased ts-PWS. For eacbrstataveforms are normalized to the maximum
amplitude on the both sides of the thick black line sepayatelred, eigenfrequencies of the fundamental
normal modes up to 5 mHz using the PREM model (Dziewonski &e&adn 1981).
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APPENDIX A: IMPLEMENTING THE MULTIPLE FILTER TECHNIQUE WIT H
WAVELETS

We can identify the set of band-pass filters of constarguality factor in eq. (5) as a wavelet
collection rewriting the product between the analytic sigk, (w) and the band-pass filters in the

frequency domain as a convolution of the real signalith a modulated Gaussian window in the

time domain,
* wol  ~3(#0C=)" o(r—p)
To(T,wp) = r(t)—/———e 2\ ¢ e dt. A.l
( 0) e ()W ( )

When comparing the result with eq. (7), we obtain an "amg@étnormalized" Morlet wavelet

defining the scale as = o /w, and the central frequency of mother wavelefas- wy\ = o, that

is,
o (l) = — P gieo(5) (A2)
’ Al V2r ’
or equivalently,
Pea(t) = AT (AT (E - 7)) (A.3)
with
W(t) = (2m) V2T 2ot (A.4)

Seismic studies traditionally use time-frequency trameftions that preserve the amplitude
of the signal in each frequency band, convenient for theyaigbf oscillatory signals, instead
of unitary transformations that conserve their energyhis paper, we favor unitary transforms
because they are better adapted for denoising (e.g., tadytdescale-independent thresholds for
white Gaussian noise) and a default choice in the signalgsging literature. The difference be-

tween both is just cosmetic since equations (8) and (A.3egteal up to a scaling factor of to

A2,
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APPENDIX B: UNBIASED PHASE COHERENCE

To prove the coherence estimation of a phase stack with 2 and without time smoothing is

biased, we rewrite the phase stack,

9 1 & Tr|n
as
2~ L adn] )
wlr = 1 2 2 ol o) (8.2

by using the property that the square modulus of a sum edquefdduct of a sum by its conjugate.

Then, we separate the elements whete; from the others,

n xz z
=L (@Zm o +Z v ) ©3

i=1 5>t

and notice that the second term is constant,

N 1
— B.4
Cpsln] = K2ZZ|%R| |z, ]n]] +K (B.4)

=1 j>1

In this form, it is clear that the first term is zero in mean i tsignalse;[n] andz;[n| are fully
dissimilar and(K — 1)/ K if they are fully similar. The second term is consequentky itias of
the phase stack with = 2 for non-coherent signals.

Coherence is also measured using geometricalIy-normiadilzlss-correlations (GNCO),

(B.5)

TZJ
wherer;;[n] is a local correlation at zero-lag between the data seqsene@dz;. These estimator
is coherence unbiased but allows for negative values ofrealse. In the particular case of using
a single sample in this correlation,[n] = x;[n]z;[n], the GNCC and the phase-stack coherence

estimators are related by

K - 1 Cxcorr + 1
cgs = ( )K . (B.6)

Both estimators progressively diverge as the window leimgtteases due to the different treatment

of the amplitude of the time-sequences.
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Using this relation we construct an unbiased phase coheestonator as

K —1
LA p— L E— B.7
Cupc K —1 ( )

by correcting the bias of the phase stack withk 2.



