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SUMMARY

Stacks of ambient noise correlations are routinely used to extract empirical Green’s func-

tions (EGF) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a

physically-intuitive non-linear denoising method that uses the phase coherence to improve

EGF convergence when the performance of conventional linear averaging methods is not suf-

ficient. The high computational cost of a continuous approach to the time-frequency transfor-

mation is currently a main limitation in ambient noise studies. We introduce the time-scale

phase-weighted stack (ts-PWS) as an alternative extensionof the phase-weighted stack that

uses complex frames of wavelets to build a time-frequency representation that is much more

efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In

addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS

methods to further improve noise attenuation, quality of the extracted signals and convergence

speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh

waves (up to the sixth Rayleigh wave train) from many years ofdata from the GEOSCOPE

global network. Finally we also show that fundamental spheroidal modes can be extracted

from these EGF.
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1 INTRODUCTION

The ubiquity of noise is making seismic ambient noise an excellent complement to earthquakes in

local to global tomography and monitoring studies. Seismicnoise analyses are important from

early studies (Gutenberg 1958) until today (e.g., GSN low-noise model (Berger et al. 2004)),

since it defines the weakest signal an instrument can detect.Seismic imaging and monitoring

using inter-station correlations became popular much later with works on the extraction of the

empirical Green’s function (EGF) (Campillo & Paul 2003; Shapiro & Campillo 2004; Snieder

2004) and the subsequent application to surface-wave tomography (Shapiro et al. 2005; Sabra

et al. 2005), see, e.g., Wapenaar et al. (2010) and Campillo &Roux (2015) for a review. The main

signals currently used are from wavefield fluctuations caused by scattered earthquake coda (Sens-

Schönfelder et al. 2015) and ambient noise. The strongest and most commonly used ambient noise

(of natural origin) is classified into (a) primary microseisms (periods of 10-20 s), generated by

interactions of ocean gravity waves with the coast, (b) secondary microseisms (1-12 s), generated

by wave-wave interactions between ocean gravity waves, and(c) hum (30-250 s), generated by

interactions of infragravity waves with continental shelves (Ardhuin et al. 2015).

Equipartition of wavefields is fundamental to extract the exact Green’s function. Direct corre-

lation of raw seismic records produces an undesired predominance of earthquakes and other large

amplitude signals over ambient-noise sources leading to low convergence rate towards the EGF.

To improve the EGF convergence, a single inter-station correlation is replaced by many much

shorter data sequences treated in processing flows that may include 1-bit amplitude normalization,

spectral whitening, phase cross-correlation, adaptive filtering and array processing (Campillo &

Paul 2003; Bensen et al. 2007; Baig et al. 2009; Schimmel et al. 2011). Ermert et al. (2016) use

minimal preprocessing for the stack of correlograms in order to obtain correlations that can be

easily forward modeled instead of EGFs. Later, Fichtner et al. (2017) also consider any linear and

nonlinear processing.
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In most applications, physically-intuitive signal-processing methods developed with other ap-

plications in mind (e.g., beamforming or phase-weighted stack) have proven useful for improving

EGF convergence and observing weak signals in otherwise toonoisy records. The search of more

powerful methods is needed to tackle new imaging and monitoring challenges using current data

volumes and to satisfy the need of better time and space resolution. Monitoring fast temporal vari-

ations (Grêt et al. 2005; Brenguier et al. 2008; Hadziioannou et al. 2011; D’Hour et al. 2016),

demands short time windows to resolve corresponding variations at a local scale promoting the

use of much less data to extract EGFs. Further, the extraction of body waves (e.g., at teleseismic

distances, see Gerstoft et al. (e.g., 2008); Landès et al. (e.g., 2010); Poli et al. (e.g., 2012); Boué

et al. (e.g., 2013, 2014); Poli et al. (e.g., 2015); Haned et al. (e.g., 2016); Farra et al. (e.g., 2016),

among others), which is possible through stacking and/or beamforming methods, demands further

SNR improvements to be able to constrain deep structure. In this context, stacking and denoising

strategies introduced by the seismology, exploration and signal-processing communities become

fundamental to boost the amount of high-quality observations.

Stacking (i.e., averaging) of a collection of traces (time series) is an ubiquitous method to

improve signal-to-noise ratio (SNR) by combining coherentsignals from many traces into a single

trace, often at the expense of losing resolution. Seismic exploration has a long tradition introducing

original stacking methods, see, e.g., Rashed (2014) for an historical review on common-mid-point

stacking. A key problem still facing many modern linear stacking methods is assigning a weight

to each trace in the stack (or locally to each time sample) andrejecting the anomalous ones (due

to, e.g., coherent noise). Common criteria employed to estimate these weights involve measuring

SNR (Neelamani et al. 2006) or correlation (Liu et al. 2009; Sanchis & Hanssen 2011; Deng et al.

2016) to a previously calculated reference trace. Non-linear methods such as the median stack

(Claerbout & Muir 1973) and the alpha-trimmed average (Bednar & Watt 1984; Rashed 2008)

help rejecting coherent noise. Other non-linear stacking methods used in seismology are the n-th

root stack proposed by Muirhead (1968), a norm-like function carrying the sign of the signals

that emphasizes small-amplitude signals at the expense of waveform distortion (Kanasewich et al.

1973), and the dual bootstrap stack proposed by Korenaga (2013), a linear stack weighted by signal
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significance and coherence to improve the detection of weak amplitude signals that also introduces

waveform distortion, particularly around zero crossings.

Denoising methods improve the SNR of a single trace in exchange of signal distortion. Like-

wise, they boost convergence in noise correlations by reducing the number of traces needed in the

stacking to get a desired SNR. Generally applied after stacking, denoising preserves the main com-

ponents of the signal and attenuates the rest. Most methods apply thresholding functions controlled

by the level of noise to signal representations well adaptedto the signal properties in order to boost

noise attenuation and promote the most energetic signals (Mallat 2008), see, e.g., Galiana-Merino

et al. (2003); Han & van der Baan (2015); Mousavi & Langston (2016) for some applications to

seismic data. Alternatively, Schimmel & Paulssen (1997) propose the phase-weighted stack (PWS)

to extract common coherent signals, regardless of their amplitude, instead of the most energetic

signals. The PWS approach boosts the SNR of the linear stacked trace and reduces waveform

distortion compared to more aggressive non-linear stacking methods such as the n-th root stack

and dual bootstrap stack. The time-frequency PWS (tf-PWS),introduced by Schimmel & Gallart

(2007) as an extension of PWS to the time-frequency domain, further improves the extraction of

weak coherent signals and reduces signal distortion. Firstapplied to clean lower crust and Moho

reflections/refractions in wide-angle data (Schimmel & Gallart 2007; Garcia Cano et al. 2014), to

detect coda phases, e.g., from upper mantle discontinuities (Schimmel & Gallart 2007) or from

long period data tf-PWS (Ringler et al. 2016); it has been extensively used to extract empirical

inter-station Green’s functions (EGF) in seismic ambient-noise studies from regional to global

scales (Baig et al. 2009; Schimmel et al. 2011; Kimman et al. 2012; Ren et al. 2013; Yang 2014;

Dias et al. 2015; Chao et al. 2015; Cheng et al. 2015; Haned et al. 2016; Szanyi et al. 2016; Jiang

et al. 2016; Pilia et al. 2016) and has proved useful for the analysis of low-frequency earthquakes

(Thurber et al. 2014; Matoza et al. 2015; Lyons et al. 2016).

The high computational cost derived from a continuous approach to the time-frequency trans-

formation is currently a limitation in main applications ofnoise correlations, tomography and

monitoring that often demand big data volumes. A solution tothis problem is developing bet-

ter implementations, e.g., Zeng & Thurber (2016) use the graphic processing unit to accelerate
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tf-PWS computation by a factor of 20 with respect to implementations using the FFTw3 library

(Frigo & Johnson 2005). For our research, we reduce the operation complexity (see section 3) by

building more efficient time-frequency representations instead.

This work is devoted to enhance the quality of stacked seismic data sequences, in particular

from ambient noise correlations, by improving SNR and EGF convergence. Then, having compu-

tational efficient methods help us to do more with less resources. In section 2, we analyze tf-PWS

as a non-linear denoising method which is related to approaches that use thresholding functions. In

section 3, we introduce the time-scale PWS (ts-PWS), a method that obtains the same performance

as tf-PWS with a much reduced computational cost and memory footprint. Further, in section 4,

we propose and discuss two strategies: the unbiased ts-PWS and the two-stage ts-PWS to improve

non-coherent noise attenuation, to reduce undesired attenuation of weak coherent signals, and to

increase convergence speed. In order to validate our method, we compare in section 5 linear stack

with alternative methods based on the ts-PWS using synthetic and field data examples. In these

examples, we assume a diffuse wavefield, for instance, due toa balance of source distribution. We

extract minor- and major-arc Rayleigh waves using many years of data, study and compare the

quality of the extracted signals, and measure their convergence before and after denoising. Finally,

we show that we can extract fundamental spheroidal modes from EGF.

2 UNDERSTANDING TF-PWS

Phase-weighted stack (PWS) is essentially the product of the linear stack multiplied by the phase

stack (Schimmel & Paulssen 1997). The time-frequency PWS (tf-PWS) method improves SNR

and reduces signal distortions compared to the PWS by being more data adaptive through the

attenuation of incoherent signal components in the time-frequency domain, better adapted to seis-

mic signals than the time domain. The tf-PWS implements the time-frequency expansion using

the physically-intuitive S-transform (Stockwell et al. 1996; Schimmel & Gallart 2005) because it

gives absolute phase information. Ventosa et al. (2008) further showed that the S-transform is a

Morlet wavelet transform up to a phase correction.

In a linear stack, the main distinguishing feature between signal and noise is that the signal is
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coherent across the prestacked traces while the noise is not. The actual physical sense of signal

and noise changes depending on the application. Assumingxk is thek-th (e.g., daily) correlation

sequence between a pair of stations composed by an EGF,s, andwk signals that do not contribute

to the EGF:

xk[m] = s[m] + wk[m] (1)

wherem is the index of the coefficients in the time-frequency domain. Then, the estimation of the

signals, s̃, from the noisy measurementsxk using the linear stack is

s̃ls[m] =
1

K

K∑

k=1

xk[m] (2)

whereK is the number of data sequences in the stack and the sum symboldenotes a linear stack.

The variance of the estimation of the EGF reduces in mean as the number of independent se-

quences increases and incoherent signal, e.g., due to isolated localized noise sources, average out.

Beyond using more and more data in the stack, non-linear denoising methods such as tf-PWS

improve signal estimation in stacked sequences by defining non-linear attenuation functions that

exploit known signal properties to further attenuate noise. Efficient non-linear estimators are con-

ventionally done by applying simple attenuation functionsin transformed domains (here the time-

frequency domain) where signal and noise are better separated.

To improve the SNR of̃s through denoising, regardless of the domain (e.g., time or time-

frequency) used for data representation, we multiply the linear stacked trace by an attenuation

functionc that promotes the main components of the signal and attenuates the rest,

s̃d[m] = s̃ls[m]c[m], (3)

wheres̃d is the estimation of the signals after denoising. In the PWS method,c is the phase stack,

an empirical noise attenuation function that measures the instantaneous coherence of a signal. The

phase stack,

cvps[m] =

∣∣∣∣∣
1

K

K∑

k=1

xk[m]

|xk[m]|

∣∣∣∣∣

v

=

∣∣∣∣∣
1

K

K∑

k=1

eiθ
k[m]

∣∣∣∣∣

v

, (4)

is a strictly-positive function that is one if and only if allthe data sequencesx at a coefficientm

are equal in phase (full similarity) and close to zero if theyare totally unrelated (full dissimilarity),
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where the sharpness of the transition between these two extremes is controlled byv. Observe that

the phase stack is a sum of phasors and consequently needsxk to be analytic to assess the phase

θk. For example, in the time domain, coefficientm is the time stept, andx(t) = a(t)eiθ(t) where

a is the envelope ofx andθ the instantaneous phase.

3 TIME-SCALE PHASE-WEIGHED STACK

Improving the quality of extracted signals is one of the mostdemanding operations (in the compu-

tational sense) along the seismic processing flow. The computational cost of tf-PWS is mainly due

to the regular sampling of the continuous time-frequency domain when using the S-transform. This

leads to a very high redundancy (i.e., ratio of number of coefficients in the transformed domain to

number of coefficients in the original domain) and, consequently, to many coherence measures to

be computed. In this section we present more computational efficient time-frequency representa-

tions of the tf-PWS through the wavelet transform.

3.1 Seeking for an efficient representation of the time-frequency domain

The most suitable time-frequency resolution is often non-uniform and therefore Geophysical ap-

plications favor time resolutions proportional to period to account for the fast time variation of

ballistic signals at all frequency bands. These applications also favor analytic signal transforma-

tions because they are more suitable to process oscillatorysignals (here seismic signals) than real

transformations which suffer from serious shift variance problems, i.e., small time shifts of the sig-

nal leads to strong variations of the transformed coefficients around singularities (e.g., Selesnick

et al. 2005). Analytic signal representations enable new algorithms that exploit magnitude and

phase information; in particular, to build weight functions using the phase coherency.

Traditionally, these time-frequency expansions use a set of band-pass Gaussian filters based

on the assumption that time series are derived from a multidimensional normal distribution. These

filters are defined as

Xa(ω, ω0) = Xa(ω)e
− 1

2

(

σ(ω−ω0)
ω0

)2

(5)

whereXa(ω) = X(ω)(1 + sign(ω)) is the analytic signal following the Fourier transform con-
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ventionX(ω) =
´∞

−∞
x(t)e−iωtdt, sign is the signum function,ω0 is the central frequency of

the filter, andσ the standard deviation of the Gaussian window. Observe thatXa(ω, ω0) is only

approximately analytic since band-pass Gaussian filters (the last term in eq. (5)) are strictly posi-

tive functions. The half-power bandwidth of these filters isproportional to their central frequency

∆ω = 2
√
ln 2ω0/σ, equivalently, they are of constantQ quality factor (ratio of central frequency

to bandwidth)

Q =
ω0

∆ω
=

σ

2
√
ln 2

(6)

and their impulse responses have an equal number of cyclesNcycles = σ
√
ln 2/π. In seismol-

ogy, this approach to the time-frequency expansion formalized by Dziewonski et al. (1969) is

known as the multiple filter technique. Similarly, in the context of the short-time Fourier transform,

Gambardella (1971) proposes the use of modulated windows ofconstantQ, instead of constant

length, for audio analysis giving a "form invariant under time scaling", and Petersen & Boll (1983)

show how to sample this time-frequency domain efficiently. Later on, the study of these ideas in

physics, engineering and pure and applied mathematics converged to the wavelet transform (e.g.,

Daubechies 1992).

The Gaussian band-pass filters used in the multiple filter technique, eq. (5), are equal up to a

scaling factor inversely proportional to their central frequency. In appendix A, we show how this

scaling relationship and the close to zero mean (typicallyσ ≫ 1) enable an efficient implementa-

tion of multiple filter technique using the continuous Morlet wavelet transform, by defining scale

asλ = σ/ω0 and the central frequency of the mother wavelet asξ0 = ω0λ = σ.

The continuous wavelet transform (CWT) (Daubechies 1992; Sinha et al. 2005; Mallat 2008)

of a data sequencex is given by its inner product with a wavelet collectionψτ,λ,

x(τ, λ) = 〈x, ψτ,λ〉 =
ˆ ∞

−∞

x(t)ψτ,λ(t) dt, (7)

whereτ is delay or lag-time,λ is scale andψ(t) denotes the complex conjugate ofψ(t). The

mother waveletψ ∈ L
2(R) is a zero-mean function that generates a set of functions, the wavelet

collectionψτ,λ, through scaling and translating operations. Conventionally, this set of functions is
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normalized so that the transform is unitary,

ψτ,λ(t) = λ−1/2ψ(λ−1(t− τ)). (8)

Wavelets can be real or analytic. Real wavelets are good for detecting sharp signal transitions

and thus often used in, e.g., image processing (Mallat 2008;Jacques et al. 2011). Complex analytic

wavelets are attractive for analyzing oscillatory signalsdue to their ability to separate magnitude

and phase and therefore useful for, e.g., studying seismic signals or measuring instantaneous fre-

quency (Selesnick et al. 2005; Sinha et al. 2005; Ventosa et al. 2012; Bayram 2013).

To implement the multiple filter technique, eq. (5), we use analytic wavelets. Pseudo-analytic

wavelets can be build with modulated windows. We use a modulated Gaussian window,

ψ(t) = π−1/4e−t2/2eiξ0t, (9)

this mother wavelet is conventionally known as the Morlet wavelet despite of not being exactly

zero mean and has aQ = ξ0/2
√
ln 2. Zero mean is obtained in the exact Morlet wavelet with

an additional term,ψ(t) = π−1/4e−t2/2(eiξ0t − e−ξ20/2); still, eq. (9) is a good approximation for

ξ0 ≫ 1 due to its extremely small mean. For lowξ0 values both Morlets are not pseudo-analytic

anymore.

3.2 Discretization of the CWT: frames of continuous wavelets

We can severely reduce redundancy by using known signal properties to design bases or frames

(i.e., overcomplete bases) (Kovačevíc & Chebira 2007a,b) which capture efficiently the main fea-

tures of the signal. The frame coefficientsxkΨ of the data sequencexk are computed by inner

products with a frameΨ = {ψm}0≤m<M ,

xkΨ[m] =
〈
xk, ψm

〉
=
∑

n

xk[n]ψm[n]. (10)

The sequences{ψm}0≤m<M constitute a frame if there are two real numbersB ≥ A > 0 such that

A ‖x‖2 ≤
∑

m

|〈x, ψm〉|2 ≤ B ‖x‖2 (11)

for any possible sequencex, whereA andB are called the lower and upper frame bounds. When

eq. (11) is satisfied, the signalxk can be reconstructed from thexkΨ coefficients with the pseudo-
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inverse of the frameΨ, implemented with a dual frame{ψ̃m}0≤m<M ,

xk[n] =
∑

m

xkΨ[m]ψ̃m[n]. (12)

If A = B the frame is called tight (satisfies the Parserval’s identity) and the dual frame can be

approximated by the "forward" frame up to a constant factor (Daubechies 1992).

Frames of wavelets are good approximating CWT (Daubechies 1992). The frame elements are

distributed across the time-frequency domain according totheir time and frequency resolutions in

order to contain redundancy. A common choice for discretizing the wavelet collectionψτ,λ, eq.

(8), isλ = 2s andτ = u2jb0, whereu is the time index at the scales andb0 the sampling period

at the scale 1, leading to a sampling period almost proportional to scale on the time axis and to its

inverse on the frequency axis. The frame of wavelets is then

ψu,s[n] =
1

2s/2
ψ

(
nT − u2⌊s⌋b0

2s

)
, (13)

whereT is the sampling period of the original time series and⌊s⌋ is the lower integer part ofs.

Scales are usually organized in voicesv ∈ [0, V − 1] and octavesj ∈ Z, s = j + v/V , where

V ∈ N is the number of voices; and they are downsampled by2jb0 in order to keep roughly a

constant number of samples per cycle in all frequency bands.For moderate redundancies,R ≥ 4,

the reconstruction error is typically much lower than 1% when the dual frame is approximated by

the forward frame and reduces fast asV increases andb0 decreases. For example, in the case of

the exact Morlet wavelet, for the standard choice ofξ0 = π
√

2/ ln 2, and withV = 4 andb0 = 1

(that double whenξ0 doubles), the redundancy is approximatelyV/b0 = 4 and the normalized

root-mean-squared error is below3.61× 10−4.

The use of a sampling strategy adapted to the actual resolution has a major impact on operation

complexity and memory footprint. The redundancy of the tf-PWS is about half the number of

samples of each sequence,R = N/2 + 1, while the redundancy of the ts-PWS is typically4 ≤

R ≤ 16 and independent ofN . ForR < 4 the frame bounds diverge abruptly (A ≪ B) and the

wavelet collection stops being a frame. While fromR = 16 the reconstruction error is extremely

low and the filtering improvements are very minor. Likewise,the operation complexity of the ts-
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PWS is proportional to the number of samples and scales,O(NS), and the tf-PWS, implemented

using fast Fourier transforms, isO(N2 log2N).

3.3 Limits and alternatives to frames of Morlet Wavelets

The analytic approximation made in the Morlet wavelets degrades asξ0 (equivalentlyσ in eq.

(5)) reduces and the negative frequency components becomesless and less negligible, which is

problematic in applications requiring high temporal resolution. The complex Mexican hat wavelet

(Addison et al. 2002) is an alternative with no negative frequency components and aQ =
√

3/2 ≈

1.2. Equivalently to eq. (5), the band-pass filters of this wavelet are defined as

Xa(ω, ω0) = Xa(ω)
2ω2

ω2
0

e
−
(

ω

ω0

)2

. (14)

A more flexible option is the Morse wavelet (Lilly & Olhede 2009, 2012), a family of analytic

wavelets which permits the synthesis of a wide variety of wavelets from low to highQ quality

factors.

Frames of continuous wavelets have a far lower redundancy than direct continuous imple-

mentations, still this redundancy is moderately high and the discretization leads to a non-perfect

reconstruction. The discrete wavelet transform (DWT) is required to get the lowest redundancy

and perfect reconstruction, e.g., Vetterli & Kovačevíc (1995). A certain degree of redundancy is

necessary to construct an analytic DWT because discrete complex wavelets having a finite sup-

port cannot form an orthonormal or biorthogonal basis and beanalytic or pseudo-analytic at the

same time, e.g., Selesnick et al. (2005). For example, the dual-tree complex wavelet transform

(Kingsbury 2001; Selesnick et al. 2005) uses wavelets with alow Q, has a redundancy of 2, and

an operation complexity ofO(N) which is lower than the fast Fourier transform. The dual-tree

rational-dilation complex wavelet transform (Bayram & Selesnick 2011) and rational-dilation fil-

ter banks Bayram (2013) allow for a more flexible choice ofQ, redundancy and time-frequency

resolution. However, the filters obtained have to be constructed in the frequency domain to fulfill

perfect reconstruction which increase operation complexity.
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4 IMPROVING WEAK SIGNAL DETECTION

Most coherence measures can be used as empirical noise attenuation functions exploiting data

from several realizations, being the main difference between them the actual definition of similarity

(e.g., maximum coherence means amplitudes and waveforms being equal or just the waveforms)

and the class of signals considered (e.g., real or analytic).

The phase stack is an instantaneous coherence estimator foranalytic signals which gives more

stable measurements than alternative estimators for real signals due to the near shift invariance of

magnitude and phase. Other coherence measures such as semblance and geometrical-normalized

cross-correlation (GNCC) allow both real and analytic signals (Taner et al. 1979). Note that the

actual definition of similarity is not equal in these three estimators. The phase stack and GNCC

define full similarity as equal waveforms (not amplitudes) and, for this reason, are said to be

amplitude unbiased, whereas semblance defines full similarity as equal amplitude and waveforms

and therefore it is amplitude biased.

The instantaneous coherence estimation of the phase stack is biased in the sense that it gives

positive coherence values for full dissimilarity signals,whereas instantaneous GNCC coherence

estimation is unbiased since coherence can become negative. Fig. 1 illustrates the impact of the

coherence bias by showing the amplitude attenuation of the phase stack, eq. (4), as function of

the SNR of full coherent signals contaminated by white Gaussian noise for the standard choice of

v = 2. The signal attenuation is small for SNRs of the prestack higher than 1, and it increases on

average to a maximum value ofK for pure incoherent noise, see appendix B for the demonstration.

In practice, this saturation of attenuation leads to lower than expected SNR increments for low

SNR signals, but it guarantees a positive coherence.

We can improve weak signal detection by (i) promoting sequences with high SNR in a weighted

phase stack, (ii) improving their SNR before tf/ts-PWS through two-stage stack, and (iii) correct-

ing the coherence bias of the phase stack to increase noise attenuation with the unbiased phase

coherence estimator. More specifically:

(i) Weighted phase stack: Introducing weights in the phase stack helps to promote top-quality

data sequences and to reject the anomalous ones. Modern linear stacking methods used in explo-
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ration can be adapted to estimate these weights, considering that the phase stack is a linear sum of

phasors.

(ii) Two-stage stack: The phase stack attenuates low SNR signals much more than the stronger

ones. For this reason, we obtain better results if we phase stack a few sequences with high SNR

than if we stack many of much lower SNR, even when their linearstacks are identical. Conse-

quently, if the number of sequences available is high, it seems reasonable to arrange them in few

groups and apply linear stacking to each group to generate sequences with reduced signal variabil-

ity (higher SNR) in a first stage, and then apply the phase stack in a second stage. In this manner,

coherence is increased before tf/ts-PWS and therefore signals are less downweighted. Note that

in ambient noise data the coherence can be increase before tf/ts-PWS using longer data windows

in the cross-correlations. However, this reduces the adaptability to real data with gaps and the

applicability of other processing steps, such as normalizations and weights to promote or reject

sequences according their quality. For example, Jiang et al. (2016) linearly stack daily correlation

in ten-days periods before using tf/ts-PWS to improve SNR ofshort-period ambient noise data.

(iii) Unbiased phase coherence: Noise attenuation can improve by using unbiased coherence

measures, such as GNCC coherence, or by correcting the bias of the phase stack. In appendix B,

we show that an unbiased phase coherence estimator,cupc can be constructed using the phase stack

with v = 2,

c2upc =
Kc2ps − 1

K − 1
. (15)

In Fig. 1 we show that, in mean, the attenuation of the unbiased phase coherence (solid lines)

is much higher than the attenuation of the phase stack (dashed lines) when the SNR of the data

sequences is very low and that both are similar when the SNR ishigher than one. The akin PWS,

constructed usingcupc rather thancps, is now called "unbiased" tf/ts-PWS.

In the next sections, we construct the two-stage ts-PWS using the linear stack in the first stage and

the unbiased ts-PWS in the second.
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5 EXAMPLES

In the following we use synthetic and real datasets to evaluate the performance of the linear stack,

ts-PWS and two-stage ts-PWS. As measure of performance we use the similarity which we define

as the cross-correlation coefficient CC between the original signals and the estimated signals̃,

CC =
|〈s, s̃〉|
‖s‖ ‖s̃‖ , (16)

where〈s, s̃〉 is the inner product and‖s‖ the norm. The corresponding misfit is defined as1−CC.

Since time and frequency resolutions are often main constraints in distinct applications, theQ

quality factor (defined in eq. 6) helps determining the best adapted wavelets. Generally, highQ

wavelets are suitable for studies using surface waves due totheir dispersion with frequency, while

low Q wavelets are better adapted for analyzing body waves due to their short duration.

5.1 Synthetic data example: high Q wavelets

The test data, Fig. 2(a), consists of a chirp function,

x(t) =





sin(2πfst)

0

if t0 ≤ t ≤ t1

otherwise

, (17)

windowed with a 20% raised cosine taper, wherefs = f0 + (f1/f0)
(t−t0)/(t1−t0) with f0 = 0.005

Hz, f1 = 0.03 Hz, t0 = 100 s andt1 = 1001 s, Fig. 2(b), embedded in white Gaussian noise of

variance equal to 1 and sampled at 1 sample/s. Fig. 2(c) showsthe convergence to the unperturbed

chirp signal using three methods (black) linear stack, (blue) tf/ts-PWS, and (red) two-stage ts-

PWS. Finally, Figs 2(d) and 2(e) show the extracted signals and their differences, respectively.

The two-stage stack first arranges the original data sequences into 10 groups to linearly stack the

sequences of each group, and then applies the unbiased ts-PWS. With 10 groups we seek a balance

between increasing SNR before the ts-PWS and reducing the variance of the coherence estimation.

The main parameters to chose for the time-frequency transformation are theQ quality factor

and the frequency band of interest. We opt for a Morlet wavelet with a relatively highQ of 5

(ξ0 ∼= 8.33 or about 2.2 cycles) considering the long signal duration and its high number of cycles.

For extracting much shorter waveforms, such as body waves, alower value is recommended to
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increase time resolution. The center frequencies of the wavelet collection areξ0/λ. We opt for

using 8 octaves starting at the scaleλ = 4, which is more than enough to cover the frequencies of

interest. Using a narrower frequency range would have further removed noise. We discretize the

wavelet collection from the standard choice ofξ0 ∼= 5.34, and withV = 4 andb0 = 1 by scaling

theV andb0 parameters in proportion toξ0. ThenV is rounded to the closer integer value and

b0 to the largest power of two lower thanb0, leading toV = 6 andb0 = 1 and a redundancy of

R ≃ 6. The misfit (1 − CC) of the ts-PWS using these parameters is2.9× 10−3 and the misfit of

the tf-PWS using an equivalent configuration is4.3 × 10−3. This minor difference is mainly due

to the different discretization used. Further increasingV or b0 leads to very minor reduction of the

misfit (Fig. S1).

Because tf-PWS and ts-PWS give identical waveforms, in the following we only show results

for the ts-PWS which we call tf/ts-PWS. In the misfit (1 − CC) results, Fig. 2(c), we see that the

tf/ts-PWS reduces misfit much faster than linear stacking byremoving noise across all frequency

bands. Further, the linear stack needs more than 100 sequences to give results with the misfit that

ts-PWS obtains using 10 sequences. For higher number of sequences, we observe that the tf/ts-

PWS misfit starts saturating at about 20 sequences (and results no longer improve) while the linear

stack keeps improving. When comparing the differences, Fig. 2(d), of the linear stack and the

tf/ts-PWS, we can conclude that this saturation is due to thesignal attenuation produced by the

reduction of the phase coherency (the attenuation functionused in the ts-PWS) on signals with

low SNR, as predicted in Fig. 1.

We avoid the misfit saturation by introducing a two-stage stacking approach. The linear-stack

stage delivers a few sequences with a much higher SNR than theoriginal data sequences that are

then stacked in the second stage using the unbiased ts-PWS. Amoderate number of sequences

(10 in this example) is sufficient to estimate coherence satisfactorily in practice. In exchange, we

obtain a higher SNR that has a major impact on the misfit reduction (equivalently, decrement on

waveform distortion) which now improves linearly with the number of sequences in parallel to

the linear stack. The unbiased phase coherence helps to further improve misfit in the single-stage
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ts-PWS (number of sequences lower than 10) and the two-stagets-PWS as a result of the higher

noise attenuation predicted in Fig. 1.

An implication of this result is that a faster convergence toa robust signal can be achieved

through the introduced modifications. The fast convergenceof the ts-PWS and the two-stage ts-

PWS proposed here should be useful for, e.g., seismic monitoring as it allows us to use much

shorter data windows leading to higher temporal resolution, key in these applications.

5.2 Field data example: extracting surface waves and normalmodes from ambient noise

We extract minor- and major-arc Rayleigh waves from inter-station correlations using three differ-

ent stacking strategies. For further information on the analysis of dispersion of Rayleigh waves see

Levshin & Ritzwoller (2001); Herrmann & Ammon (2002); Schimmel et al. (2017) among others

and, e.g., Haned et al. (2016) for a recent study deriving a global upper-mantle tomographic model

and Zhao et al. (2017) building phase velocity maps across the USA. Fig. 3 shows the velocity EGF

extracted from the vertical component (LHZ) of two pairs of broadband seismic stations from the

GEOSCOPE network from the year 2006 to 2016 and convergencesto the final waveforms. In Figs

5 and 6, we present the waveforms extracted from twenty station pairs using 500 days of data and

more than 2000 days, respectively. See Medeiros et al. (2015) for some guidance on the choice of

the window length and the number of correlations that ensures cross-terms canceling. In the pre-

processing we remove the mean and trends, correct for the instrument response to produce ground

velocity, apply a band-pass filter from 4 to 32 mHz, decimate to a sampling period of 4 s, reject

seismograms having energies much higher than the average from the same time period (higher than

15 times the median of their standard deviations), and clip large-amplitude signals (higher than 4

times the standard deviation of the seismogram). Then, we compute GNCC of 1-day long velocity

seismograms, reject correlations having energies much higher than average, and stack remaining

correlations using linear stacking, ts-PWS and two-stage ts-PWS. The two-stage ts-PWS consists

of a first stage formed by several linear stacks, which generate 10 correlation sequences having a

SNR much higher than the original correlations, followed bythe unbiased ts-PWS. Assigning an

optimal weight to each inter-station correlation in the stack could potentially improve results. This
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strategy is hindered in this example due to the very low SNR ofthe correlations and is also out of

the scope of this paper. Therefore, for the sake of simplicity, we weight the correlations uniformly.

We use a power ofv = 2 for the ts-PWS and the unbiased ts-PWS. For the time-frequency

representation, we use the continuous Morlet wavelet transform with the standard choice ofξ0 =

π
√

2/ ln 2, equivalentlyQ ∼= 3.20, discretized using a frame with ab0 = 1 and 4 voices along

3 octaves, corresponding to a collection of 12 band-pass filters with central frequencies from 4

to about 27 mHz. Memory requirements reduce compared to the equivalent configuration of the

tf-PWS due to the lower redundancy,R = V/b0 = 4 versus4126 (half the number of lags in Fig.

3), and the possibility of analyzing only the frequency bands of interest. Similarly, ts-PWS is much

faster to compute than tf-PWS. The ts-PWS results shown in Fig. 6(b) take about 70 s to compute

with a common desktop, and the results of the two-stage ts-PWS, Fig. 6(c), 18 s, mainly consumed

in input/output operations.

The first minor-arc Rayleigh (R1) wave is the main signal usedin ambient-noise studies from

global to local tomography. In Fig. 3, we show up to the third major-arc Rayleigh (R6) wave train.

These observations are important for global tomography studies to improve coverage in regions

otherwise poorly sampled due to the lack of seismic stations, such as the oceans, or earthquakes.

In Figs 3(a) and 3(b), we detect with the linear stack the firstfour Rayleigh waves quite clearly,

partially due to the strict rejection of anomalous data before and after computing the correlations.

We observe that with the linear stack, the level of noise is still significant even when using all

the data available (about 11 years). With the ts-PWS, the level of noise reduces dramatically, but

also the amplitude of the signals as a result of their low SNR.In contrast, the two-stage ts-PWS

reduces the level of noise with a much lower signal attenuation allowing to observe up to R5 and

R6, because (1) the linear stacks performed in the first stageprovide correlations with higher SNR

to the unbiased ts-PWS, and therefore reduce signal attenuation severely, and (2) the unbiased

ts-PWS helps to further attenuate non-coherent noise. R3 toR6 wave trains are harder to observe

when we limit the dataset to 500 days, Figs 3(c) and 3(d). All these signals are better observed

using the two-stage ts-PWS, despite of the little signal attenuation.

Figs 3(e) and 3(f) show the convergence to the EGF using as a reference signal the waveforms
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extracted by each method using the entire data set (Figs 3a and 3b). We see that the ts-PWS and the

two-stage ts-PWS converge faster than the linear stack, thelinear stack needs about 1000 days to

get the similarity that the two-stage ts-PWS gets in about 250 days due to the lower non-coherent

noise attenuation. As we have seen in the synthetic data example, Fig. 2(c), the misfit (equivalently

similarity) saturates for ts-PWS while improves in parallel to the linear-stack for the two-stage ts-

PWS.

The performance of the tf/ts-PWS and the two-stage ts-PWS isshown more in detail in Fig.

4. Here we zoom to the R1 and R4 wave trains from Fig. 3 with corresponding waveforms shown

in Fig. 4(a) and 4(b). Figs 4(c) and 4(d) show the SNR which we define as the ratio of the max-

imum amplitude to the standard deviation of the noise (σ = median|x| /0.6745). Both methods,

tf/ts-PWS and the two-stage ts-PWS provide better SNR than the linear stack. But this information

does not evaluate the quality of the waveforms, e.g., a Rayleigh wave which is reduced to a signal

pulse has a high SNR. Figs 4(e) and 4(f) do not contain information on the SNR, neither on the

similarity to the unknown Rayleigh waveform. But, it does show the robustness and conversion of

the extracted waveform to the best possible and expected waveform obtained by using all avail-

able data. It can be seen that the tf/ts-PWS and the two-stagets-PWS converge faster to a stable

waveform. This also means that we can obtain robust results with smaller amounts of data.

Fig. 5 shows extracted Rayleigh waves from 20 inter-stationcorrelations normalized to better

observe later-arriving phases using 500 days of data and, Fig. 6, using all the data available. When

using linear stacking on 500 days of data, Fig. 5(a), we clearly see the first two Rayleigh waves

(R1 and R2) but Rayleigh wave trains arriving later are difficult to observe due to the still high

level of noise. We need to use all data, Fig. 6(a) in order to observe R3, R4 and eventually R5.

When using ts-PWS, Figs 5(b) and 6(b), we get similar observations with an improved noise level

but with a reduced amplitude due to the low SNR of the dataset.In contrast, we see the first four

Rayleigh waves (R1-R4) clearly at most of the station pairs when using the two-stage ts-PWS,

Figs 5(c) and 6(c), and the third minor- and major-arc Rayleigh waves (R5-R6) in Fig. 6(c) but

with a lower SNR.

In Fig. 7, we show spheroidal modes extracted from EGF for thestation pairs used in Fig. 6,
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applying the linear stack and the two-stage ts-PWS. Changesin the preprocessing with respect to

the previous example are that we now produce ground acceleration and we band-pass filter from

0.5 to 10 mHz. The time-frequency representation used in thets-PWS changes accordingly, we

now use 4 voices and 5 octaves corresponding to 20 band-pass filters with central frequencies

from 0.5 to about 13.5 mHz. In Figs 7(a) and 7(b), we only detect fundamental modes, which is

reasonable considering that EGF correspond to Green function for a surface vertical force at the

locations of one of the stations recorded by the other station. The most energetic mode, detected

at all station pairs, is the fundamental spheroidal mode0S0 at about 0.81 mHz. Much weaker,

we detect other fundamental modes clearly at all inter-station distances, they are however better

observed at frequencies lower than 4 mHz and short distances. We resolve the same modes in both

stacking methods, the results are slightly cleaner when using the linear stack, Fig. 7(a). This is

expected since the Fourier domain is the natural representation for normal modes. The contribution

of earthquakes has not been analyzed since here we focus on the applicability of the modified PWS.

6 CONCLUSIONS

We improve the EGF convergence of the tf/ts-PWS by increasing non-coherent noise attenua-

tion with the unbiased ts-PWS, and by reducing signal attenuation with the two-stage ts-PWS.

These improvements are essential to increase the resolution in monitoring studies and to improve

the quality of extracted signals. We show that using these methods one can obtain high-quality

minor- and major-arc Rayleigh waves from R1 to R6 from inter-station EGF. We also clearly ob-

serve many fundamental spheroidal modes with eigenfrequencies lower than 4 mHz with the same

dataset, being0S0 the most energetic. Constraints obtained from further analysis of high-order

surface waves and normal modes extracted from ambient noisecan complement earthquake data

in upper-mantle studies because they sample regions otherwise poorly covered due to the lack of

seismic stations or earthquakes.

The ts-PWS based methods are much faster and require much less memory than tf-PWS. The

parameter controlling computational cost and memory requirements of the tf-PWS and ts-PWS

is the redundancy of the signal representation in the time-frequency domain. Analytic discrete
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wavelets enable the lowest redundancy and analytic continuous wavelets the highest. In between

these extremes, a variety of solutions exist with a rich diversity of choices on the competing param-

eters of redundancy, time-frequency resolution and control on the wavelet function. In this paper,

we opt for frames of continuous wavelets because they provide higher time-frequency resolutions

and better wavelet control. For applications which demand perfect reconstruction or the lowest

redundancy, alternative solutions based on analytic discrete wavelets can be of interest.

Non-linear stacking methods such as unbiased ts-PWS and two-stage ts-PWS help improving

SNR in exchange of possible signal distortion due to varyingsignal coherence throughout its time

and frequency components. These gains in signal quality arevaluable for applications analyzing

signals such as body or surface waves that benefit from conventional stacking methods. Other data,

as earthquake recording could have been used in full analogyand without losing generality.
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by the unbiased ts-PWS). Velocity waveforms extracted using, (a) and (b), all the data
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use the same amplitude normalization, except ts-PWS results that are multiplied by 7.
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4 (a) and (b) First and fourth Rayleigh wave trains extractedusing all the data avail-
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Figure 1.Attenuation of a linear-stacked signals as function of the SNR of the prestacked signal for (dashed
lines) the phase stack withv = 2 and (solid lines) the unbiased phase coherence.
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Figure 2.Extracted signal from 200 data sequences that contain a windowed chirp signal perturbed by white
Gaussian noise using (black) linear stack, (blue) tf/ts-PWS (Q = 5) and (red) two-stage ts-PWS, firstly using
the linear stack to produce 10 sequences and secondly using the unbiased ts-PWS. (a) Waveform of the test
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Figure 3. Convergence to the EGF of stacked ambient noise correlations (1-day long GNCC) of two pairs
of GEOSCOPE stations with (black) linear stack, (blue) tf/ts-PWS and (red) two-stage ts-PWS (formed by
a linear stack generating 10 sequences followed by the unbiased ts-PWS). Velocity waveforms extracted
using, (a) and (b), all the data available (from about 2006 until 2016) and, (c) and (d), up to 500 days.
All these figures use the same amplitude normalization, except ts-PWS results that are multiplied by 7.
Convergence, (e) and (f), to the waveforms shown in (a) and (b), respectively.
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Figure 4. (a) and (b) First and fourth Rayleigh wave trains extracted using all the data available shown in
Fig. 3 with (black) linear stack, (blue) tf/ts-PWS and (red)two-stage ts-PWS. (c) and (d) Evolution of SNR
with the number of correlations stacked. (e) and (f) Convergence to the waveforms extracted shown in (a)
and (b), respectively.
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(a) Linear Stack (500 traces)
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(b) ts−PWS (500 traces)
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(c) Two−stage ts−PWS (500 traces)

Figure 5. Waveforms extracted by stacking ambient noise correlations (1-day long GNCC) from 20 pairs
of GEOSCOPE stations using up to 500 days of data with (a) linear stack, (b) ts-PWS and (c) two-stage
stack constructed using the unbiased ts-PWS. The normalization functions are applied to better observe
later-arriving phases. Each station pairs is normalized toits maximum amplitude.



Time-scale PWS and beyond33

0

5

10

N
or

m
.

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

Time (hours)

D
is

ta
nc

e 
(d

eg
)

R1 R2 R3 R4 R5 R6

(a) Linear Stack (2000 − 4500 traces)
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(b) ts−PWS (2000 − 4500 traces)
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(c) Two−stage ts−PWS (2000 − 4500 traces)

Figure 6. Waveforms extracted by stacking ambient noise correlations (1-day long GNCC) from 20 pairs of
pairs of GEOSCOPE stations using all the data available (from about 2000 until 2016) with (a) linear stack,
(b) ts-PWS and (c) two-stage stack constructed using the unbiased ts-PWS. The normalization functions are
applied to better observe later-arriving phases. Each station pair is normalized to its maximum amplitude.
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(b) Two−stage ts−PWS
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Figure 7. Normal modes using the same station pairs as Fig. 6 using (a) linear stack and (b) two-stage
stack constructed using the unbiased ts-PWS. For each station, waveforms are normalized to the maximum
amplitude on the both sides of the thick black line separately. In red, eigenfrequencies of the fundamental
normal modes up to 5 mHz using the PREM model (Dziewonski & Anderson 1981).
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APPENDIX A: IMPLEMENTING THE MULTIPLE FILTER TECHNIQUE WIT H

WAVELETS

We can identify the set of band-pass filters of constantQ quality factor in eq. (5) as a wavelet

collection rewriting the product between the analytic signalXa(ω) and the band-pass filters in the

frequency domain as a convolution of the real signalx with a modulated Gaussian window in the

time domain,

xa(τ, ω0) =

ˆ ∞

−∞

x(t)
|ω0|√
2πσ2

e
− 1

2

(

ω0(τ−t)
σ

)2

eiω0(τ−t) dt. (A.1)

When comparing the result with eq. (7), we obtain an "amplitude-normalized" Morlet wavelet

defining the scale asλ = σ/ω0 and the central frequency of mother wavelet asξ0 = ω0λ = σ, that

is,

ψτ,λ(t) =
1

|λ|
√
2π
e−

1
2
( t−τ

λ
)2eiξ0(

t−τ

λ
), (A.2)

or equivalently,

ψτ,λ(t) = |λ|−1 ψ(λ−1(t− τ)) (A.3)

with

ψ(t) = (2π)−1/2e−t2/2eiξ0t. (A.4)

Seismic studies traditionally use time-frequency transformations that preserve the amplitude

of the signal in each frequency band, convenient for the analysis of oscillatory signals, instead

of unitary transformations that conserve their energy. In this paper, we favor unitary transforms

because they are better adapted for denoising (e.g., they lead to scale-independent thresholds for

white Gaussian noise) and a default choice in the signal-processing literature. The difference be-

tween both is just cosmetic since equations (8) and (A.3) areequal up to a scaling factor of to

λ−1/2.
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APPENDIX B: UNBIASED PHASE COHERENCE

To prove the coherence estimation of a phase stack withv = 2 and without time smoothing is

biased, we rewrite the phase stack,

c2ps[n] =

∣∣∣∣∣
1

K

K∑

k=1

xk[n]

|xk[n|

∣∣∣∣∣

2

, (B.1)

as

c2ps[n] =
1

K2

K∑

i=1

K∑

j=1

xi[n]

|xi[n|
xj [n]

|xj [n]|
(B.2)

by using the property that the square modulus of a sum equals the product of a sum by its conjugate.

Then, we separate the elements wherei = j from the others,

c2ps[n] =
1

K2

(
2

K∑

i=1

K∑

j>i

xi[n]

|xi[n|
xj [n]

|xj [n]|
+

K∑

i=1

xi[n]xi[n]

|xi[n|2

)
(B.3)

and notice that the second term is constant,

c2ps[n] =
2

K2

K∑

i=1

K∑

j>i

xi[n]

|xi[n|
xj [n]

|xj [n]|
+

1

K
. (B.4)

In this form, it is clear that the first term is zero in mean if the signalsxi[n] andxj [n] are fully

dissimilar and(K − 1)/K if they are fully similar. The second term is consequently the bias of

the phase stack withv = 2 for non-coherent signals.

Coherence is also measured using geometrically-normalized cross-correlations (GNCC),

cxcorr[n] =
2

K(K − 1)

K∑

i=1

K∑

j>i

rij[n]√
rii[n]rjj[n]

(B.5)

whererij [n] is a local correlation at zero-lag between the data sequencesxi andxj . These estimator

is coherence unbiased but allows for negative values of coherence. In the particular case of using

a single sample in this correlation,rij [n] = xi[n]xj [n], the GNCC and the phase-stack coherence

estimators are related by

c2ps =
(K − 1)cxcorr + 1

K
. (B.6)

Both estimators progressively diverge as the window lengthincreases due to the different treatment

of the amplitude of the time-sequences.
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Using this relation we construct an unbiased phase coherence estimator as

c2upc =
Kc2ps − 1

K − 1
(B.7)

by correcting the bias of the phase stack withv = 2.


