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Low-Frequency Ambient Noise Autocorrelations:
Waveforms and Normal Modes
by M. Schimmel, E. Stutzmann, and S. Ventosa

ABSTRACT

Seismic interferometry by ambient noise autocorrelations is
a special case of Green’s function retrieval for single-station
analysis. Although high-frequency noise autocorrelations are
now used to extract the reflectivity beneath seismic stations,
low-frequency autocorrelations are hardly applied. Here, we
present the observation of the Earth orbiting surface waves
from low-frequency noise autocorrelations which are used to
extract normal-mode frequencies for the Hum. The perfor-
mances of the classical and phase autocorrelations are analyzed
using seismic data from GEOSCOPE station TAM in Algeria.
Both approaches are independent and perform differently for
data with large amplitude variability. We show that the phase
autocorrelation can robustly extract Rayleigh waves and nor-
mal modes because it is not biased by large amplitude signals
(e.g., earthquakes). This is convenient because no data prepro-
cessing (data selection or amplitude clipping) is required as
usually employed for the classical approaches. This implies that
the phase correlation takes advantage of the full data set and
waveform information to achieve a high signal extraction con-
vergence. Single-station phase autocorrelations may become an
important tool in planetary seismology where data are limited
due to the expensive and difficult data acquisition and can con-
sist of high-amplitude variability due to unknown conditions.
The upcoming INSIGHT (Interior Exploration using Seismic
Investigations, Geodesy and Heat Transport) Mars mission
plans the deployment of one broadband seismometer and the
successful measurement of normal-mode frequencies and sur-
face-wave dispersion curves will constrain its reference struc-
ture. Although we present low-frequency autocorrelations, our
findings remain valid for cross correlations, other applications,
and other frequency bands.

Electronic Supplement: Amplitude spectra for the gravest modes
of the 11 March 2011 Tohoku-Oki earthquake as recorded on
GEOSCOPE station TAM in Algeria.

INTRODUCTION AND MOTIVATION

The whole Earth, as expected for finite bodies, resonates at
discrete frequencies that are the elasto-gravitational modes or

free oscillations of the Earth. The corresponding frequencies
are functionals of the Earth structure, shape, and movement.
The free oscillations are built up by the interference of propa-
gating waves, which therefore relate to the modes by mode
superposition (e.g., Woodhouse and Deuss, 2015). At the
lowermost frequencies, these are mostly the Earth orbiting sur-
face waves. These waves are excited by strong earthquakes or
strong ambient noise sources.

The low-frequency noise sources cause continuous free
background oscillations, called Hum, which are observed dur-
ing the absence of strong earthquakes on land (Kobayashi and
Nishida, 1998; Nawa et al., 1998; Suda et al., 1998; Tanimoto
et al., 1998) and since recently at the ocean bottom (Deen et al.,
2017). The more difficult to observe toroidal modes have also
been reported (Kurrle and Widmer-Schnidrig, 2008; Nishida,
2014). The Hum is driven by the interaction of infragravity
ocean waves with the sea floor (e.g., Rhie and Romanowicz,
2004; Webb, 2007; Ardhuin et al., 2015; Nishida, 2017). Fun-
damental normal modes and corresponding surface-wave wave-
forms can be extracted from noise cross correlations (CCs;
Ventosa et al., 2017). Rayleigh waves in the Hum frequency
band have been used in global ambient noise tomography stud-
ies (Nishida et al., 2009; Haned et al., 2016).

The signal extraction from ambient noise at any frequency
band follows seismic interferometry principles (Lobkis and
Weaver, 2001; Derode et al., 2003; Shapiro and Campillo,
2004; Snieder, 2004; Wapenaar, 2004; Roux et al., 2005; Curtis
et al., 2006; Sens-Schönfelder and Wegler, 2006; among
others) and is based on the CC of noise recorded at two sta-
tions. Ideally, with the CC one retrieves the empirical Green’s
functions (EGFs) for equipartitioned wavefields and canceled
noise cross terms. Equipartition is not warranted because noise
sources and wavefield scattering are not random. Hence, the
CCs are averaged over long time to assure a balanced source
coverage and to decrease the impact of correlation cross terms
(Medeiros et al., 2015).

In the ideal case, the EGF is the impulse response recorded
at one of the receivers with the other receiver being the virtual
source and consisting of body waves and the Earth orbiting sur-
face waves in the Hum frequency band. New data processing
approaches based on analytic signal theory aid small-amplitude
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signal extraction and now permit the efficient use of body
waves and the Earth orbiting Rayleigh waves with less data
and less computational effort (Schimmel et al., 2011; Haned
et al., 2016; Ventosa et al., 2017). Latter work uses the classical
CC and focuses on the stacking approach through wavelet
theory.

Here, we also work in the Hum frequency band but
focus on different autocorrelations to perform single-station
noise analyses. Autocorrelations are related to the spectral den-
sity of power or energy (e.g., Bornmann and Wielandt, 2013)
through their Fourier transform and are therefore employed,
implicitly or explicitly, when determining modes’ strengths and
frequencies from the spectral density. In seismic interferometry,
noise autocorrelations have been used at high-frequency bands
to extract the P-wave reflection response for the structure below
individual stations (e.g., Claerbout, 1968; Tibuleac and von Seg-
gern, 2012; Becker and Knapmeyer-Endrun, 2017). Ekström
(2001) used a modified autocorrelation through computing the
CC between the original and reverse-dispersed seismogram to
construct a Rayleigh-wave detection algorithm with which he
finds the Earth orbiting waves in the very low-frequency back-
ground noise. For low-frequency autocorrelations and orbiting
surface waves, the station is at a caustic and the stationary phase
region is wide (Snieder and Sens-Schönfelder, 2015), that is,
sources for all azimuths contribute to extract orbiting waves with
seismic interferometry.

Here, we analyze pure autocorrelations, that is, without
employing a model and reverse-dispersion operators and dem-
onstrate observations of the Earth orbiting Rayleigh waves
extracted from noise autocorrelations at Hum frequencies.
Different autocorrelation techniques are compared, and it is
shown that the phase cross correlation (PCC) by Schimmel
(1999) provides robust measurements which are not biased by
energetic signals in the data. An interesting implication is that
PCC can provide results for data acquired under difficult cir-
cumstances with a high-amplitude variability of signals and
noise. This is especially interesting when working with a lim-
ited amount of data that would reduce to an insufficient data-
base after removal of outlying amplitude segments. PCC may
therefore become an important tool for the analysis of seismic
data from future planetary missions. For instance, the deploy-
ment of a single broadband seismometer is planned for Mars
with first data arriving on the Earth by the end of 2018
through the INSIGHT (Interior Exploration using Seismic In-
vestigations, Geodesy and Heat Transport) mission (Banerdt
et al., 2013; Lognonné and Pike, 2015). Other future planetary
missions, for example, to Venus and Jupiter moon Europa, may
follow and revealing their interior structure may benefit from
robust single-station approaches. In any case, here we are work-
ing with the Earth’s Hum. That is, the low-frequency seismic
background noise on extra-terrestrial planets and bodies, if
present, has likely a different generation mechanism, especially
in the absence of oceans. Although this work focuses on the low-
frequency band, our findings are also valid at other frequencies
and for CCs.

LOW-FREQUENCY AUTOCORRELATION

At very low frequencies (f ≤ 5 mHz), the seismic motion is
better represented by modes than by traveling waves. which
justifies the frequency decomposition of seismograms to iden-
tify free oscillations and to measure their frequencies (and at-
tenuation rates). With increasing frequencies, the number of
normal modes becomes quickly too high and the resonant
peaks are distorted mainly by the coupling of singlets due to
heterogeneities. Consequently, it becomes more practical to an-
alyze the waveforms of propagating waves, mainly surface waves
and their dispersion characteristics. Both modes and waveforms
are important to constrain the Earth structure and can be ob-
tained with a single station through autocorrelations.

At very low frequencies, the identification of modes and the
determination of their frequencies are based on Fourier analysis
to decompose seismograms of single-station data. For this pur-
pose, usually the power spectral density (PSD) and/or energy
spectral density (ESD) are computed. The PSD and ESD can
be obtained through the Fourier transform of differently defined
autocorrelations, depending on whether one is dealing with in-
finite or finite length waveforms. The PSD has the advantage
that it can be employed when the time series cannot be directly
Fourier transformed, strictly due to infinite signal energy as hap-
pens for stationary (infinite duration) waveforms. The ESD
adequately describes finite duration (transient) waveforms and
equals the squared amplitude spectrum of the seismogram.

Different Autocorrelation Approaches
The autocorrelation measures the similarity between a time
series and a delayed version of itself. It is the special case of
the CC (equation 1) where both time series are the same, that
is, s1�t� � s2�t�. Here, real-valued time series are considered,
and the following equations are written for discrete time t and
time delay or lag time τ:

EQ-TARGET;temp:intralink-;df1;311;325ccc�τ� �
XT

t�1

s1�t�s2�t � τ�: �1�

If s1�t� is modulus square integrable, then the Fourier trans-
form of the autocorrelation (as defined in equation 1 with
s1�t� � s2�t�) is the ESD following the Wiener–Khinchin
theorem (e.g., Alessio, 2015). The ESD describes the energy
distribution of the time series with respect to frequency and
equals the squared Fourier amplitude spectrum of s1�t�. In the
following, we use CC to indicate that a result is based on the
correlation of equation (1).

CCs are often employed as similarity measures, for in-
stance, to detect signals through their waveform similarity and
are therefore normalized by the energy of the used sequences to
limit the CC values between −1 and 1. Frequently used is the
normalization by the geometric mean energy (denominator of
equation 2). This geometrically normalized cross correlation
(CCGN) reduces the energy sensitivity of the numerator and
makes the correlation invariant to amplitude changes between
the two data sets:
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EQ-TARGET;temp:intralink-;df2;52;745cCCGN�τ� �
PT

t�1 s1�t�s2�t � τ�����������������������PT
t�1 s21�t�

p ������������������������������PT
t�1 s22�t � τ�

p : �2�

With s1�t� � s2�t�, equation (2) measures also the simi-
larity between a time series and a delayed version of itself. The
autocorrelation based on equation (2) and its Fourier trans-
form are therefore equally suited to detect multiple Rayleigh
wavetrains and normal modes. However, in contrast to equa-
tion (1), no energy is measured. Along the same line, PCC and
its Fourier transform can be used to detect multiple Rayleigh
wavetrains and to measure the normal-mode frequencies. PCC
(equation 3) has been designed by Schimmel (1999) in full
analogy to a normalized CC:

EQ-TARGET;temp:intralink-;df3;52;574cPCC�τ��
1
2T

XT

t�1

jeiΦ�t��eiΨ�t�τ�jν−jeiΦ�t�−eiΨ�t�τ�jν: �3�

It uses the instantaneous phases (Φ�t� and Ψ�t�) of the
analytic signal for the time series s1�t� and s2�t�, respectively.
The analytic signal of a real-valued time series is a unique com-
plex-valued representation of the time series, where the real and
complex parts are orthogonal. The analytic signal is con-
structed from the real-valued time series and its Hilbert trans-
form. Thanks to this representation, a real time series can be
decomposed into an instantaneous phase and instantaneous
amplitude. PCC (equation 3) uses this property, that is, it uses
only the instantaneous phases and is therefore explicitly ampli-
tude unbiased. Inherent to the analytic signal theory, the in-
stantaneous phases contain information of the neighboring
samples and therefore characterize a waveform as function of
time (e.g., Taner et al., 1979; Schimmel et al., 2011). The phase
autocorrelation is obtained using Φ�t� � Ψ�t�.

With PCC, waveform similarity is measured through the
amount of phase-coherent samples rather than the sum of
amplitude products. PCC and CCGN are fully independent
concepts, based on different philosophies, but which in full
analogy determine similarity as function of lag time. Inherent
to their different designs, the three definitions of cross/
autocorrelations (equations 1–3) have a different data perfor-
mance depending on signal and noise characteristics.

Example Using Earthquake Data
We now use the three autocorrelation approaches and show
their ability to detect normal modes from an earthquake re-
cording. We are analyzing the spectral composition as obtained
through a Fourier transform of the previously defined autocor-
relations based on equations (1)–(3). Our goal is to show that
these different approaches can be used for mode detection after
the occurrence of a strong earthquake.

Data Processing
We use a vertical-component record of the Tohoku-Oki main
earthquake (off coast of east Japan, moment magnitude 9.0, 11
March 2011) and its aftershocks recorded by the GEOSCOPE
station TAM (Tamanrasset, Algeria). This station has been

selected because it is installed at a calm place in the middle
of the African continent far from oceans, working continu-
ously for many years, and because its noise level is low at long
periods. Our time series starts at midnight and is three days
long. It has been converted to ground acceleration, decimated
to 10 s sampling interval and zero-phase bandpassed with fre-
quency plateau between 0.15 and 5 mHz.

Three autocorrelation functions have been computed us-
ing PCC, CCGN, and CC. Because the autocorrelations are
symmetric with respect to zero lag time, we compute only the
causal part to then construct the symmetric autocorrelation.
The symmetric autocorrelations were Hanning tapered (width
0.5) and their spectra determined after zero padding of the
time series to a power of 2 samples and applying a conventional
fast Fourier transform algorithm. We plot the square root of
the amplitude spectra. In the case of CC, it means that we
determined the ESD, which is nonnegative for real-valued time
series and where the ESD square root equals the Fourier am-
plitude spectrum of the seismogram.

Results
All spectra have been normalized for visual purposes and are
shown in Figure 1. Solid and dotted lines mark fundamental
and higher modes, respectively, as expected for the spherically
symmetric preliminary reference Earth model (PREM) by
Dziewonski and Anderson (1981). Mostly spheroidal modes S
are expected on the vertical components. Toroidal modes may
also appear on the vertical components due to Coriolis cou-
pling between spheroidal and toroidal modes (Zürn et al.,
2000), but most of their energy is expected on the horizontal
components, and therefore, in the following we only consider
spheroidal modes. Spheroidal modes are denoted as nSml , in
which n is the mode number and m and l label the azimuthal
degree and order of the spherical harmonic functions. Each
multiplet consists of 2l � 1 singlets. For a spherical-symmetric
nonrotating Earth model, the multiplets are degenerate, that is,
have the same frequency. Indexm, which marks each singlet has
therefore been omitted. Some fundamental and higher modes
have been marked in Figure 1a,c.

Although the same data have been used, the spectra for
PCC (Fig. 1a), CCGN (Fig. 1b), and CC (Fig. 1c) are suffi-
ciently different to catch attention. Some of the multiplets seem
to be better detected by PCC (e.g., 0S6; 1S4; 1S7; 1S8; 2S8) than
by the other two approaches. Conversely, 2S10 and 2S12 are not
detected with PCC while visible with CC. The differences are
inherent to the different autocorrelation definitions. In particu-
lar, the PCC is amplitude unbiased and a large signal means that
this mode is built up, thanks to its phase coherence and phase
incoherence of other signals. The latter means that the PCC is
cleaner due to the attenuation of phase incoherent signals that
translates into the spectrum through the Fourier transform of
PCC. The spectra with the gravest Earth modes (f < 1 mHz)
are shown in Ⓔ Figure S1 (available in the electronic supple-
ment to this article) for completeness, where some splitting of
multiplets is visible. We did not further analyze singlets or earth-
quake data, which is out of the scope of this article.
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Ambient Noise
Here, our primary goal is to understand the performance of the
three correlation methods on ambient noise data.

Main Data Processing
We use vertical-component seismograms for 8 yrs (2007–2014)
of continuous recordings at the GEOSCOPE station TAM
(Tamanrasset, Algeria). The data have been cut into three-
day-long segments separated by one day, instrument corrected
to ground acceleration, decimated to 10 s sampling interval,
and zero-phase bandpassed with frequency plateau between

0.15 and 10 mHz. The three autocorrelations
(CC, CCGN, and PCC) have been computed
for each data segment with a maximum lag time
of one day. No further preprocessing is per-
formed for PCC, CC, and CCGN, but we also
define CCGNN as follows. The band-passed
seismograms have been amplitude balanced using
the 1-bit time-domain normalization and spec-
tral whitening and again bandpassed to then
compute autocorrelations based on equation (2)
which we label as CCGNN. Time- and fre-
quency-domain normalizations are often used
to reduce bias in the correlations from large am-
plitude signals and noise (e.g., Bensen et al., 2007;
Schimmel et al., 2011). Alternative strategies are
to identify data segments with larger amplitudes
and to exclude them from the subsequent
processing or to clip the amplitudes above a cer-
tain threshold.

The individual autocorrelograms are then
linearly stacked for each of the employed ap-
proaches. The averaging is a common procedure
to attenuate noise and signal variability and to
enhance robust signals in the autocorrelations.
No nonlinear stacking is shown here, as we are
interested to focus on the performance of the
correlation approaches and stacking can only en-
hance signals which are present in the correla-
tions. Furthermore, the spectra of the stacked

autocorrelograms are computed as described in the example with
the earthquake data.

For the following analyses, we also determine the amplitude
variability in our data. To that end, we compute for each data
segment the ratio of the absolute maximum amplitude to the
root mean square amplitude (Max/rms) in the 1–5 and 5–40
mHz frequency band. The corresponding Max/rms distribution
of our data is shown in Figure 2. Data with a lowMax/rms ratio
should contain no strong earthquakes or other energetic signals
that manifest through a large Max/rms ratio. The gray areas of
Figure 2a mark the subsidiary data sets with Max/rms ≤ 10 and

Max/rms ≥ 30 that are used to obtain the results
of Figure 3a–d. In analogy, the gray areas of Fig-
ure 2b mark the subsidiary data sets with Max/
rms ≤ 20 and Max/rms ≥ 30 for Figure 5a,b. For
the considered frequencies, an event catalog can
be used alternatively to select calm periods
(Tanimoto and Um, 1999), nevertheless, we pre-
fer to use the Max/rms ratio to also detect other
outlying noise features.

Results
Max/rms, determined from the 1–5 mHz band-
passed data, is now being used as selection cri-
terion to stack only autocorrelations with
corresponding Max/rms ≥ 30. The waveforms
and spectra obtained from the autocorrelation
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▴ Figure 2. Distribution of the maximum amplitude to root mean square (rms)
amplitude ratio (Max/rms) determined for the (a) three-day and (b) 30-hr-long seis-
mogram sequences after band-passing the data in frequency band (a) 1–5 mHz
and (b) 5–40 mHz. Gray areas mark subsidiary data sets with Max/rms ≤ 10 and
Max/rms ≥ 30 in (a) and Max/rms ≤ 20 and Max/rms ≥ 30 in (b) as used for
Figures 3a–d and 5a,b, respectively.
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▴ Figure 1. Amplitude spectra for the 11 March 2011 Tohoku-Oki earthquake as
recorded at the GEOSCOPE station TAM in Algeria. Seismic recordings had a length
of three days and spectra were obtained through the Fourier transform of the au-
tocorrelations computed following equations (1) (cross correlation [CC]), (2) (geomet-
rically normalized cross correlation [CCGN]), and (3) (phase cross correlation [PCC]).
Plotted are the normalized amplitudes after taking the square root of the spectra
amplitudes. Solid and dotted vertical lines mark the fundamental and higher sphe-
roidal modes following preliminary reference Earth model (PREM). The color version
of this figure is available only in the electronic edition.
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stacks are shown in Figure 3a,b. The waveforms were filtered
between 1.5 and 5 mHz and are shown for a zoom from 5.500
to 27.000 s lag time.

The extracted waveforms show two wavetrains which are
multiple orbit Rayleigh waves. For earthquakes sources, Ray-
leigh waves that travel from the source on the minor and major
arc path to the receiver are labeled R1 and R2, respectively.
Accordingly, R3 and R4 are R1 and R2 waves that traveled in
addition one entire Earth orbit. Because we are using autocor-
relations, virtual source and receiver locations are the same and
minor/major arc wavetrains merge to entire orbit wavetrains.
We therefore mark with R1 + R2 and R3 + R4, one and two

orbit Rayleigh wavetrains. It can be seen that
the R3 + R4 wavetrain is much longer than
the R1 + R2 wavetrain, which is inherent to the
extra orbit and Rayleigh-wave dispersion. The
dispersive character of the wavetrain is seen
with the lowest frequency components traveling
faster than the higher frequency waves.

It is further observed that the different
methods provide different waveforms in which
CCGNN resembles most the PCC waveform.
The differences between the different waveforms
are due to the amplitude bias of the autocorre-
lation approaches. CCGNN uses time- and fre-
quency-domain normalized data and resembles
therefore most to the amplitude unbiased PCC.

The corresponding spectra are shown in
Figure 3b. As expected from the waveforms
(Fig. 3a), the lower frequency modes (e.g., 0S7)
are less represented in the spectra for CCGN
and CC than in the spectra for PCC and
CCGNN, where we can appreciate the detec-
tion of more modes.

Figure 3c,d shows in full analogy to Fig-
ure 3a,b the results for data with Max/rms ≤ 10.
These data are expected to contain less amplitude
variability due to the decreased amplitude ratio.
Data sequences that contain strong earthquakes
or other outlying signals and noise are therefore
not included in this data set. Indeed, we now ob-
serve that CCGN resembles mostly to the PCC
waveform. Also their spectra are more similar.
The CCGN and CC waveform show now more
dispersion than in Figure 3a, but R3 + R4 is hid-
den in the noise. CCGNNdid not improve much
because more data are needed for the EGF con-
struction due to the waveform manipulation
using the 1-bit normalization and spectral whiten-
ing. Indeed, both operations are nonunique and
there exists an infinite number of waveforms that
reduce to the same 1-bit and/or spectral whitened
representation of the data, which decreases the sig-
nal extraction convergence.

Waveforms and spectra for the entire data
set are shown in Figure 3e,f. The PCC and

CCGNN results are similar to their respective results, obtained
with the two subsidiary data sets. It further shows the invari-
ance to the amplitude differences of these approaches and that
these waveforms converged to the same result. Conversely, the
CC waveform and spectrum resemble only to the results ob-
tained with the Max/rms ≥ 30 data (Fig. 3a,b). This is expected
due to the strong energy bias of CC. CCGN is less energy
biased due to the normalization by the geometric mean energy
and as a consequence the waveform and spectrum obtained
with all data are less similar to the Max/rms ≥ 30 results.
CC and CCGNwaveforms did not converge to the same wave-
form for the three data sets.
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▴ Figure 3. (a,c,e) Waveforms and (b,d,f) amplitude spectra for the differently
computed autocorrelations. (a,b) Based on the Max/rms ≤ 30 data set; (c,d) based
on the Max/rms ≥ 10 data; and (e,f) based on the entire database. Solid vertical
lines mark the fundamental modes following PREM. The color version of this figure
is available only in the electronic edition.
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In any case, Figure 3 shows that we can de-
tect and extract propagating waves at the lower-
most frequencies, that is, these frequencies are
lower than the frequencies usually used in global
Hum tomography studies (e.g., Nishida et al.,
2009; Haned et al., 2016). These waveforms can
be used to extract group velocities (e.g., Schim-
mel et al., 2017) to further constrain the seismic
structure. Figure 4a,b shows the group velocities
for the two subsidiary data sets (Max/rms ≥ 30
and Max/rms ≤ 10) and the R1 + R2 wave-
form. The group velocities were obtained from
the time–frequency representation of the wave-
forms shown in Figure 3 using 40,030.174 km
for the propagation path and plotting the
strongest amplitude maximum per frequency as
group arrival. The solid line marks the theoreti-
cal group velocity curve for PREM, whereas
the symbols correspond to the measured group
velocities. It can be seen that PCC (squares)
measures correctly the velocities down to the
lowest frequencies, even for the data with large
Max/rms (Fig. 4a). For large Max/rms,
CCGNN (circles) and CCGN (triangles) fail
to provide expected group velocities at frequen-
cies below 2 mHz. Same happens for CCGNN
for low Max/rms data (Fig. 4b). This is due to
the spectral whitening and 1-bit normalization
that deteriorate the waveforms and therefore
decrease the detectability of the weak-amplitude
signals, especially at the lowest frequencies. The other methods
provide group velocity measurements close to the expected val-
ues and supposed for the data set without outlying amplitude
events.

The group velocity residuals with respect to PREM (top
panels of Fig. 4c,d) are typically less than 1%. At frequencies
below 2 mHz, PCC (squares) shows similar frequency-depen-
dent deviations for Max/rms ≥ 30 (Fig. 4c) and Max/rms ≤ 10
(Fig. 4d). This trend is also seen for CCGN and CCGNN
when Max/rms ≤ 10 (Fig. 4d). The lowermost panels of Fig-
ure 4c,d show the standard deviations of the measured group
velocities for randomly down sampled subsidiary data sets. The
resampled data sets use 80% of the autocorrelations. The lowest
standard deviations are seen for frequencies of about 3–7 mHz.
This means the dispersion curves at these frequencies are more
robust with respect to data variability than at the frequencies
outside this band, which suggests a better waveform conver-
gence at 3–7 mHz. Further, the standard deviations for
CCGNN (circles) for Max/rms ≥ 30 and Max/rms ≤ 10 show
a similar frequency dependence as for PCC (squares) and
CCGN (triangles), but displaced to higher values. We inter-
pret this higher overall variability and standard deviations as
an inferior EGF waveform convergence at all frequencies due
to the additional preprocessing for CCGNN.

The waveforms have also been compared in a higher
frequency band (5–40 mHz), to which end we reprocessed

the continuous data as described before but with following
differences: cutting the data into 30 hrs segments, decimating
to 5 s sample interval, and band-passing with flat plateau from
5 to 40 mHz. The Max/rms distribution is shown in Figure 2b
and the waveforms obtained with Max/rms ≤ 20 and ≥ 30 are
shown in Figure 5a and 5b, respectively. As expected, PCC and
CCGN resemble each other for low Max/rms (Fig. 5a). Fur-
ther, PCC shows almost no waveform variations for the two
different data sets. Only with CC, the R1 + R2 and R3 + R4
waveforms improve when there is more amplitude variability in
the data (Fig. 5b). We believe this is due to energetic signals, for
example, as caused by strong earthquakes, which are included in
the data set for Max/rms ≥ 30. On contrary, CCGNN is less
affected by energetic signals due to the applied amplitude bal-
ance (1-bit, spectral whitening) on each seismogram. This ex-
plains why the final CCGNN waveforms resemble each other
for the two different data sets. Its signal-to-noise ratio (SNR)
is expected to improve for more data. The waveform manipu-
lation by the amplitude normalizations difficult the signal
extraction and consequently slows down the convergence to
a cleaner EGF.

DISCUSSION

We extracted spheroidal modes and Rayleigh waveforms from
single-station low-frequency noise recordings using different
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▴ Figure 4. (a,b) Group velocities extracted for the waveforms shown in Figure 3a,
c using the Max/rms ≥ 30 (left) and Max/rms ≤ 10 (right) data sets. The solid line
corresponds to the fundamental-mode group velocities expected for the spherical
symmetric Earth model PREM. (c,d) The corresponding group velocity residuals
with respect to the expected values for PREM (upper panels) and the standard
deviations of measured group velocities for randomly resampled subsidiary data
sets (lower panels). The subsidiary data sets use 80% of the available autocorre-
lations for corresponding Max/rms data. The color version of this figure is available
only in the electronic edition.
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autocorrelation approaches. Although the high-frequency
noise autocorrelations provide the zero-offset reflection re-
sponse at the recording station (e.g., Claerbout, 1968; Wape-
naar et al., 2004; Galetti and Curtis, 2012), the low-frequency
autocorrelations contain mainly the Earth orbiting surface
waves. This is why long-period noise autocorrelations can
be used to measure surface-wave dispersion and the Earth eigen
frequencies, which give constraints on large-scale velocity mod-
els. To that end, autocorrelations can be computed using PCC
or the classical CC (e.g., CC, CCGN, and CCGNN). Both
correlation approaches are built on different and independent
principles which cause that their performances depend on sig-
nal and noise characteristics (Schimmel, 1999). Using indepen-
dent correlation methods is an advantage since jointly used
they permit to determine the consistency of measurements and
to fill measurement gaps whenever one of the methods fails
to see the signal (Bonatto et al., 2015). A joint use of both
approaches may aid the search of less-observed modes or propa-
gating waves.

The determination of ESDs can further be sophisticated,
for example, using multitaper methods (Thomson, 1982; Prieto
et al., 2007) to reduce spectral leakage. This or other processing
methods can be applied similarly on any of the presented auto-
correlations and has not been used to avoid masking the perfor-
mance of the correlations, which is the backbone for any further
analysis and understanding. In addition, the here presented strat-
egy can be used to extract orbiting Love waves and toroidal
modes.

PCC is explicitly amplitude unbiased and finds the signals
through their instantaneous phase coherence, while the signal
detection with the classical correlation is due to the construc-
tive summation of amplitude products, which makes this
correlation technique amplitude biased. Because PCC is am-
plitude unbiased, no data preprocessing is required to balance
the amplitudes through time- and/or frequency-domain nor-
malizations or amplitude clipping (Sabra et al., 2005; Bensen
et al., 2007) to reduce the influence of energetic features as
strong earthquakes, sensor failures, local episodic noise, and so
on. Normalization approaches as spectral whitening, 1-bit, and

clipping are commonly used and remove the
uniqueness of waveforms because an infinite
number of waveforms reduces to the same
clipped signal. In comparison to correlating
the full signal waveforms, usually longer time
series are needed for signal extraction (e.g.,
D'Hour et al., 2016). We believe this slower
convergence is to compensate the lost informa-
tion through the nonunique normalization,
which increases ambiguities between signals and
noise. In other words, signals and noise may
share same or similar waveforms after nonunique
normalizations, which hinder signal extractions
and noise attenuation. In that spirit, the mini-
mum preprocessing required with PCC is an ad-
vantage over the other methods.

The amplitude bias of CC and CCGN explains why the
waveforms differ for our data sets with large or small Max/rms.
Conversely, the amplitude variations in these data sets were
neutralized for CCGNN and the corresponding final wave-
forms are therefore more similar. Nevertheless, more data
are needed to increase the SNR to obtain cleaner waveforms
as often presented with PCC. That is, using the same limited
amount of data may lead with CCGNN to signals that are not
fully extracted as shown in figures 11a,b Schimmel et al.
(2011), figures 3 and 4 of DHour et al. (2016), and figure 1
of Haned et al. (2016) for different frequency bands and wave
types. It also explains the increased standard deviation of group
velocity measurements shown in Figure 4c,d (bottom panel).

Rejecting data segments with outlying amplitudes (Peder-
sen and Krüger, 2007) is an excellent alternative to the nor-
malization but reduces the database. In monitoring studies,
this may imply a decrease in time resolution because one needs
to compensate for the rejected length of data. Because PCC is
less sensitive to amplitude variability it might be a good can-
didate to analyze data acquired under difficult conditions and
limited length. However, one needs to keep in mind that PCC
fails whenever the signals cannot be detected through their
phase coherence, that is, whenever signals are less phase coher-
ent than the surrounding noise.

PCC has been presented here for single-station analyses to
also show its potential for extraterrestrial seismology, where the
amount of stations might be restricted to one due to the high
costs of stations and deployment. For example, the upcoming
Mars mission (INSIGHT, e.g., Banerdt et al., 2013; Lognonné
and Pike, 2015; Panning et al., 2017) is planned to place a single
broadband seismometer onMars. The corresponding data might
be limited and of unknown characteristics. In any case, little is
known on the seismic structure and seismic activity of extrater-
restrial planets and bodies, and besides revealing local structure
through the reflectivity obtained with autocorrelations at high
frequencies (e.g., Tibuleac and von Seggern, 2012; Taylor et al.,
2016; Becker and Knapmeyer-Endrun, 2017), the low-frequency
autocorrelations may provide constraints on the deep average
structure through the identification of modes and orbiting
surface waves.
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▴ Figure 5. Waveforms for the differently computed autocorrelations in the 5–40 mHz
frequency band. (a,b) Based on the Max/rms ≤ 20 and Max/rms ≥ 30 data, respec-
tively. The Max/rms distribution is shown in Figure 2b.
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CONCLUSION

Low-frequency autocorrelations are useful to extract normal
modes and the Earth orbiting surface waves from single-station
ambient noise recordings. As a single-station approach, it is
important in planetary seismology owing high cost and con-
sequently sparse sensor deployment. At low frequencies, the
deep average structure can be constrained from the normal-
mode frequencies and surface-wave dispersion measurements.
We show that for that purpose different autocorrelation ap-
proaches can be employed and that their performance depends
on the signal and noise characteristics. If the noise has a large
amplitude variability and the signals are more phase coherent
than the noise, then PCC outperforms the classical correlation
(CC, CCGN, or CCGNN) approaches. This is mainly because
the classical approaches are amplitude biased and may have a
lower signal extraction convergence depending on the required
data preprocessing steps to balance amplitudes in the data. The
preprocessing to balance amplitudes reduces the data informa-
tion contents through either discarding data with larger ampli-
tudes or reducing waveform complexity to clipped waveforms.
In that spirit, PCC is a good candidate for the upcoming
INSIGHT Mars mission because data might be limited due to
unfavorable deployment and detection conditions. However, if
signals are detected through their energy rather than their
coherence then the classical approaches are expected to per-
form better.

We further remark that the correlation is an important
ingredient of seismic interferometry because any subsequent
stacking approach can only enhance what has been detected
in the correlation. We also advocate the joint usage of inde-
pendent approaches because they may provide complementary
constraints besides of being a means of testing the robustness
or consistency of any measurement. All our findings can be
extended to CCs whenever two or more stations are available
and are also valid for different other applications and fre-
quency bands.

DATA AND RESOURCES

The data used in this article are owned by the French GEO-
SCOPE observatory and are freely available through download
from GEOSCOPE (http://geoscope.ipgp.fr/index.php/en/) or
Incorporated Research Institutions for Seismology (IRIS;
http://ds.iris.edu/ds/). The data processing was performed on
a linux laptop without any special hardware requirements and
the Fortran codes for the computation of correlations are freely
distributed by the authors. The article was written using the free
LaTex software and all plots were done with the Generic Map-
ping Tools v.5.2.1 (www.soest.hawaii.edu/gmt; Wessel and Smith,
1998). All websites were last accessed on May 15.
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