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ABSTRACT

Interstation correlation is the basic operation in seismic noise
and coda-wave interferometry for signal extraction in imaging
and monitoring applications. Conventional cross-correlations
evaluate the similarity between two signals along lag time, and
they are efficiently computed by the fast Fourier transform
(FFT), valuable to manage the large data volumes that ambient
noise applications demand. The phase cross-correlation (PCC)
method contributes to increase convergence, a key issue in seis-
mic ambient noise imaging and monitoring; however, it is
much more computationally demanding. PCC evaluates sim-
ilarity by subtracting the modulus of the sum and difference of
the instantaneous phase of two signals. We introduce solutions
to dramatically reduce the high-computational cost of PCC.
We show that PCC can be rewritten as a complex cross-corre-
lation and computed by the FFT when the moduli are raised
to the power of 2, and we demonstrate PCC can improve
waveform coherence and increase convergence compared with
the default processing flow of 1-bit amplitude normalization
and standard cross-correlation. Moreover, we develop a graphics
processing unit implementation to accelerate computations
when using powers other than 2 and particularly when using
the power of 1. Finally, we extract Rayleigh- and body-wave sig-
nals from many years of data from seismic stations distributed
worldwide using PCCwithout a significant increase in computa-
tional cost compared with conventional cross-correlation.

INTRODUCTION

Cross-correlation is a ubiquitous method in seismic data
processing important for picking, empirical Green’s function
extraction, ambient noise monitoring, waveform comparison,
and signal, event, and pattern detection or identification
among others. Phase cross-correlation (PCC) was conceived
to better detect weak P-to-S conversions at the upper-mantle
discontinuities (Schimmel, 1999). In this work, PCC is intro-
duced to estimate travel-time differences by searching for the
lag time that maximizes an amplitude-unbiased misfit function
between the pilot and converted waveforms, their phase

coherency. Phase coherency is useful for detecting weak signals
in the coda of stronger waves because it effectively considers a
larger portion of the waveforms than conventional correlation-
based methods that consider mainly the most energetic com-
ponents. Later, PCC was found useful to improve waveform
coherence and convergence of interstation correlations, thanks
to its amplitude-unbiased property (Schimmel et al., 2011).
Essentially, PCC can be useful for applications demanding
more information on the waveform.

Interstation correlations of seismic ambient noise and
scattered coda waves complement direct arrivals from earth-
quakes in surface-wave tomography, monitoring, and Earth’s
deep interior studies in regions otherwise poorly illuminated.
Convergence to the empirical Green’s function or a robust seis-
mic signal extraction increases compared with the direct cor-
relation of raw seismic records through customized processing
flows that improve the balance of noise sources and reduce the
influence of anomalous signals. These processing flows com-
pute many correlations on relatively short-data sequences.
The preprocessing of the raw data may include instrument
response correction, anomalous signal rejection, spectral
whitening, and time-domain normalization (Bensen et al.,
2007), and once the correlations are computed, weighted stack-
ing and denoising (Baig et al., 2009; Schimmel et al., 2011;
Cheng et al., 2015; Moreau et al., 2017). Finally, subsequent
measurements of group and phase velocity dispersion are done
in surface-wave tomography applications (e.g., Haned et al.,
2016; Obermann et al., 2016; Schippkus et al., 2018), of veloc-
ity and structure variations in monitoring (e.g., Hadziioannou
et al., 2011; D’Hour et al., 2016; Takano et al., 2017; Sánchez-
Pastor et al., 2018), or of travel times of body waves from ambi-
ent noise or earthquake coda in Earth’s deep interior studies
(e.g., Nishida, 2013; Boué et al., 2014; Phạm et al., 2018;
Tkalčić and Phạm, 2018).

Spectral whitening or band-pass filtering to the frequency
band of interest followed by 1-bit amplitude normalization and
geometrical-normalized cross-correlation (GNCC) is the
processing flow most often used, in which GNCC is the con-
ventional cross-correlation divided by the standard deviation of
the signals. The 1-bit cross-correlation method applies corre-
lation on the sign of the input sequences (e.g., Bensen et al.,
2007; Cupillard et al., 2011). This instantaneous amplitude
normalization reduces the influence of poorly distributed
high-energy features such as earthquakes, but it distorts
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waveforms and slows down convergence (Schimmel et al.,
2018). The PCCmethod measures similarity between two ana-
lytic signals of unitary amplitude, that is, two instantaneous
phases. Schimmel et al. (2011) show that PCC is a less aggres-
sive alternative to 1-bit cross-correlation that may help to
improve waveform coherence and increase convergence. This
has been confirmed, for example, in D’Hour et al. (2016) for
monitoring of hydromechanical changes, in Taylor et al. (2016)
and Becker and Knapmeyer-Endrun (2018) for retrieving
P-wave Moho reflections from noise autocorrelations, in
Haned et al. (2016) for extracting group velocity observations
for global tomography using seismic hum, in Schimmel et al.
(2018) for extracting Rayleigh-wave group velocities using
phase autocorrelation, and in Romero and Schimmel (2018)
for mapping the basement of the Ebro basin in Spain using
shallow subsurface reflections.

The computational cost of the signal processing methods
conventionally used in the preprocessing of the raw time series
is small compared with the correlation, weighted stacking, and
denoising operations subsequently applied. This is mainly
because preprocessing is done per station, and correlation
and denoising operations are done per station pair. ObsPy
(Krischer et al., 2015) and MSNoise (Lecocq et al., 2014)
are open-source packages for Python that are excellent for
proof-of-concept studies and often sufficient for preprocessing.
Compiled programming language solutions using the central
processing unit (CPU) or the graphics processing unit
(GPU) are however necessary to apply the most demanding
operations to large data volumes in a reasonable amount of
time. Several tools have been introduced recently for improving
the computational efficiency of key operations along intersta-
tion correlation processing flows. Zeng and Thurber (2016)
present a GPU implementation of the time–frequency
phase-weighted stack (tf-PWS; Schimmel et al., 2011), which
is up to 20 times faster than equivalent CPU implementations
using the fast Fourier transform (FFT). Ventosa et al. (2017)
reduce computational cost of tf-PWS by introducing the time-
scale phase-weighted stack (ts-PWS) that uses the wavelet
transform for the time–frequency representation, and propose
unbiased phase coherence and two-stage ts-PWS to improve
convergence speed and quality of the extracted signals. The
unbiased phase coherence estimator contributes to increase
noncoherent noise attenuation because it equals to 0 if the sig-
nals are totally incoherent. Further, the two-stage ts-PWS
reduces signal attenuation by stacking linearly the sequences
in a few groups to improve signal-to-noise ratio before applying
the actual ts-PWS method. Fichtner et al. (2017) present
Mirmex, a complete tool for the processing of seismic ambient
noise data that uses GPUs to compute the most demanding
operations including direct implementations of the PCC
and GNCC methods.

Conventional cross-correlations, and in particular GNCC,
are computed directly only if a very small number of lag times
are required; otherwise, they are computed much faster using
the FFT. The FFT is very efficiently implemented on the CPU
by the fastest Fourier transform in the west (FFTW) library

(Frigo and Johnson, 2005) and can be further accelerated on
the GPU using, for example, the compute unified device archi-
tecture (CUDA) platform. Despite the advantages of PCC
compared with the 1-bit cross-correlation, the application of
this method to the large data volumes that current seismic
applications demand is limited by its high-computational cost.

In this article, we introduce two solutions to speed up the
computation of PCC by a factor of 100 in conventional set-
tings, so that PCC becomes only two to four times slower than
conventional cross-correlation. We reduce operation complex-
ity of the PCC when using modulus raised to the power of 2,
and we present optimized CPU and GPU codes (see Data and
Resources) to accelerate computations when using other
powers, in particular, using the default power of 1 (PCC1)
as recommended in Schimmel (1999) and Schimmel et al.
(2011). These codes focus exclusively on the cross-correlation
operation and allow for an easy integration with current
processing flows.

CALCULATION OF THE PCC

The PCC methods evaluate similarity between two analytic
signals s1 and s2 at the lag time τ by subtracting the modulus
of the sum and difference of their unitary phasors. To obtain
these unitary phasors, we represent real time-series u as analytic
signals s using the Hilbert transform H,

EQ-TARGET;temp:intralink-;df1;311;433s�t� � u�t� �Hfu�t�g � a�t�eiθ�t�; �1�

in which a is the envelope, θ is the instantaneous phase, and t is
the time. In this signal representation, we obtain unitary pha-
sors containing the instantaneous phase information by divid-
ing s by its modulus,

EQ-TARGET;temp:intralink-;df2;311;347eiθ�t� � s�t�
js�t�j : �2�

Then, PCC uses the unitary phasors of the analytic signals
s1�t� � a1�t�eiθ1�t� and s2�t� � a2�t�eiθ2�t� to compute the
similarity between them.

The PCC of the discrete sequences s1�n� and s2�n� sampled
at t � t0 � nT , in which n is the sample number and T is the
sampling period, can be written as

EQ-TARGET;temp:intralink-;df3;311;228cpcc�m� �
1
N

XN−1

n�0

���� e
iθ1�n�m� � eiθ2�n�

2

����
ν

−
���� e

iθ1�n�m� − eiθ2�n�

2

����
ν

;

�3�
in which m is the lag time number (from the lag time
τ � mT ), ν is the power of PCC, and N is the number of
samples correlated from t0 to t0 � �N − 1�T .

Analyzing equation (3) in detail, we can see that if the
signals are totally correlated, the first term in the sum equals
to 1 and the second to 0, and thus cpcc � 1; conversely, if they
are totally anticorrelated, the first term is 0 and the second is 1,

1664 Seismological Research Letters Volume 90, Number 4 July/August 2019

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/90/4/1663/4790819/srl-2019022.1.pdf
by CNRS_INSU user
on 09 October 2019



and thus cpcc � −1; and if they are totally not correlated, the
two terms are equal and cpcc � 0. In this context, the power
factor v controls the sharpness of the transition from totally
correlated and anticorrelated to not correlated values.
Default values for v are 1 and 2. Setting v � 1 increases abso-
lute correlation values and setting v > 1, and particularly
v � 2, increases signal-to-noise ratio.

PCC with Power Factor 2
PCC as written in equation (3) simplifies for ν � 2 by devel-
oping the square modulus. The key operation to be imple-
mented when computing the PCC with ν � 2 (PCC2) at
one lag time is

EQ-TARGET;temp:intralink-;df4;52;589c �
X
i
jai � bij2 − jai − bij2 � ka� bk2 − ka − bk2; �4�

in which ai and bi are complex numbers, a and b are complex
vectors, and k · k denotes the Euclidean norm. The squared
norm of the sum and difference of two elements in a com-
plex Hilbert space can be developed as functions of inner
products as

EQ-TARGET;temp:intralink-;df5;52;484ka� bk2 � ha� b; a� bi
� ha; ai � ha; bi � hb; ai � hb; bi; �5�

EQ-TARGET;temp:intralink-;df6;52;418

ka − bk2 � ha − b; a − bi
� ha; ai − ha; bi − hb; ai � hb; bi: �6�

Then, the difference of the two squared norms reduces to a
single inner product,

EQ-TARGET;temp:intralink-;df7;52;341ka� bk2 − ka − bk2 � 4Reha; bi; �7�
which is the real part of the polarization identity for complex
Hilbert spaces (Young, 1988). When we apply this result to
equation (3), PCC2 simplifies to the real part of the complex
cross-correlation between the phase vectors,

EQ-TARGET;temp:intralink-;df8;52;259cpcc2�m� � Re
�
1
N

XN−1

n�0

eiθ1�n�m�e−iθ2�n�
�
; �8�

or equivalently, using s1�n� and s2�n�,

EQ-TARGET;temp:intralink-;df9;52;194cpcc2�m� � Re
�
1
N

XN−1

n�0

s1�n� m�
js1�n� m�j

s2�n�
js2�n�j

�
; �9�

in which s2�n� denotes the complex conjugate of s2�n�.
Writing PCC2 as a conventional complex cross-correla-

tion dramatically reduces its operation complexity and allows
for further acceleration by the FFT. Overall, the computational
cost of PCC2 and GNCC is now comparable, and the
main differences are due to the required analytic signal

representation for the PCC. Finally, it is important to note
that equation (9) defines PCC2 if s1 and s2 are analytic signals
and defines 1-bit GNCC if s1 and s2 are real signals. Because
the phase contains much more information about the signal
than its sign, it is reasonable to say that PCC can improve
waveform coherence and increase convergence compared with
1-bit GNCC in most applications.

IMPLEMENTATION

To our knowledge, the PCC equation with a power factor v
different from 2 does not simplify and the operation complex-
ity cannot be reduced by algorithms such as the FFT; however,
it can be accelerated on the GPU. GPUs are optimized for com-
puting the same operations on large datasets in parallel and
CPUs for long sequential series of operations. Thus, GPUs
are optimal to solve simple but computationally intensive oper-
ations on relatively small datasets such as PCC, in which the
wall-clock time reduction of the computations largely compen-
sates for the time penalty of copying data to and from the GPU
memory. Conversely, 1-bit GNCC and PCC2 are convention-
ally more efficiently implemented in the CPU using a few FFT
operations than in the GPU, in which the acceleration of the
FFTcomputation is not worth the extra time required to move
data between the CPU and GPU memories. To compute the
FFT in the CPU, we use the most recent iteration of the
FFTW library (Frigo and Johnson, 2005), a very efficient
implementation that generally outperforms direct implementa-
tions of the cross-correlation. Direct solutions are typically
faster only if the number of lag times is very small, less than
about 1% of the number of samples of the time series.

The computation of PCC between two analytic sequences
of N samples at M lag times for the default value of v � 1
involves 2NM sums and modulus of complex numbers and
�2N − 1�M sums of real numbers. The most demanding oper-
ation among them is by far the computation of the modulus of
complex numbers, mainly due to the square root involved. This
operation is common in many physical problems and effi-
ciently computed on the GPU.

We develop CPU only and GPU enhanced codes of 1-bit
GNCC and PCC (see Data and Resources) that compute all
the correlations of a station pair at once. We use OpenMP to
compute these correlations in parallel on the CPU, instead of
parallelizing each correlation individually, to reduce scheduling
overhead and improve scaling with the number of cores. To
accelerate the PCC1 calculation when a GPU is available,
we compute the analytic representation of the data sequences
on the CPU using OpenMP and, in parallel, the subsequent
operations on the GPU. To speed up computations of the
actual correlations, equation (3), we distribute the computa-
tions of one correlation across many GPU-thread blocks.
Each thread in a block computes the correlation between
256 samples of the data sequences at one lag time using copies
of the portions of the sequences needed on the small shared
memory (much faster and with lower latency than the global
memory) available to each block. Moreover, we use 16 streams
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to compute several correlations in parallel, enough to fully
exploit the cores available on modern GPUs. In this configu-
ration, the GPU calculations limit wall-clock time and the
computation of the analytic signals on the CPU reduces
GPU usage and exploits resources that would be otherwise
wasted.

EXAMPLE

We illustrate the computational performance of 1-bit GNCC
and PCC using continuous data on the vertical component.
The preprocessing flow consists of removing the mean and
trends, correcting the instrument response to produce ground

velocity, band-pass filtering from 20 to 33 mHz (30–50 s
period), dividing data into one day-long nonoverlapping
sequences, and rejecting sequences with high-seismic activity
either containing strong earthquakes or having a mean energy
much higher than the average. We specifically reject raw-data
sequences with absolute maxima greater than the median plus
100 times the median absolute deviation (MAD). Then, we
reject preprocessed sequences with a standard deviation greater
than the median of the standard deviation of the sequences
recorded by a given station plus 500 times its MAD. The test
environment is a workstation equipped with a 4-core 64-bit
Intel Haswell CPU at 3.50 GHz (i5-4690K) with 16 GB of
DDR3 at 1866 MHz, an Nvidia GTX 1060 graphics card,
and a solid-state drive disk to store the data.

Figure 1 shows the wall-clock time cost of applying 1-bit
GNCC, PCC2, and PCC1 with a maximum lag time of
�12; 000 s to 649 day-long pairs of seismograms from the
years 2016 and 2017 recorded by the GEOSCOPE stations
CAN and ECH and downsampled to 1, 2, 4, 8, and 10 s
per sample. We see that the time cost of 1-bit GNCC and

PCC2 has the same trend, mostly determined
by FFTcomputations the operation complexity
of which is O�N log2 N�, independent of the
number of lag times M . PCC2 is about two
times slower than 1-bit GNCC because the
PCC2 implementation uses seven single-
precision FFT operations (four to compute
the two analytic signals and three for the corre-
lation) whereas 1-bit GNCC uses only three. In
comparison, PCC1 on the CPU with an oper-
ation complexity of O�NM� is much slower
and its computational cost increases faster.
The GPU enhanced code of PCC1 substan-
tially reduces the wall-clock time of the
CPU-only code and makes PCC1 only about
four times slower than 1-bit GNCC in conven-
tional settings. For example, PCC1 takes
71.65 s on the CPU and 0.70 s on the GPU
for the sequence length of 21,600 samples
per day, which is 4.17 times slower than 1-bit
GNCC and 1.79 times slower than PCC2,
and 1.9 s on a single Nvidia Tesla K20 GPU

from the S-CAPAD cluster of the Institut de Physique du
Globe de Paris (IPGP).

In the next example, we selected data from the years 1990
to 2017 recorded by 299 broadband seismic stations distrib-
uted worldwide as shown in Figure 2. In particular, we selected
all stations from the global and regional networks of
GEOFON (GE), GEOSCOPE (G), Global Seismographic
Network (GSN-IRIS/IDA: II, GSN-IRIS/USGS: IU), and
New China Digital Seismograph Network (IC). In addition,
we included some stations from Geoscience Australia (AU),
the Canadian National Seismograph Network (CN), the
Danish Seismological Network (DK), the Pacific21 (PS) net-
work, and the Canfranc Underground Laboratory (LC) to
improve global Earth coverage.
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▴ Figure 2. Geographic distribution of the stations (red triangles) used in this test.
The color version of this figure is available only in the electronic edition.
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▴ Figure 1. Computational cost of cross-correlating 649 days of
data from the GEOSCOPE stations CAN and ECH using 1-bit geo-
metrical-normalized cross-correlation (GNCC), phase cross-corre-
lation using the power of 2 (PCC2), and phase cross-correlation
using 1 (PCC1) with a maximum correlation lag of�12; 000 s. CPU,
central processing unit; GPU, graphics processing unit.
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We computed 1-bit GNCC, PCC2, and PCC1 of day-
long sequences downsampled to sampling periods of 4 s per
sample. Then, we rejected correlations with an anomalous
standard deviation and stack the rest linearly. Under these
settings, the faster algorithms would have spent most of
the time on reading and writing operations. To accelerate
these operations, we gathered all data from a given station
in one file, and we used a ramdisk for temporal results such
as the daily correlations. Using the aforementioned worksta-
tion, the correlation and stack operations require 939 min for
1-bit GNCC, 1291 min for PCC2, and 2380 min for PCC1
on the GPU.

Figure 3a shows 110 million day-long interstation corre-
lations using PCC2 from 39,656 station pairs band-pass fil-
tered from 20 to 33 mHz as a function of distance stacked
on bins of 0.25° using only data from days with low-seismic
activity. The large amount of day-long correlations stacked
on each bin (Fig. 3b) is sufficient for the previous correlation
methods to converge to the empirical Green’s function. In
applications in which few data are available, PCC usually con-
tributes to improve signal quality and increases convergence
(Schimmel et al., 2011). The amplitude of the signals extracted
is meaningful, in spite of the aggressive amplitude normaliza-
tion of 1-bit GNCC or PCC but strongly influenced by the
distribution of noise sources (e.g., Snieder, 2004). Hence, to
extract accurate information from amplitudes, it is important
to design processing flows that minimize this bias as, for exam-
ple, Bowden et al. (2018) show in the construction of surface-
wave attenuation maps across the United States.

The strongest signal we observe in Figure 3 is the Rayleigh
wave starting at the bottom-left corner and progressively van-
ishing at larger distance due to heterogeneities in the crust and
the top upper mantle. Much weaker, we see a great variety of
body waves interacting with the mantle and the core such as
the P, PcP, S, ScS, PKP, PKIKP (I), or PKIKPPKIKP (I2), and
of noncausal phases (Phạm et al., 2018) such as PKP–PcP pre-
ceding the direct P-wave arrival in the range 120°–140° by
about 4 min. The number of station pairs per bin from 5°
to 162° varies from about 20 to 100 pairs; however, it reduces
to a few pairs close to 180°. At these interstation distances,
some of these signals may be interpreted as spurious arrivals
from dominant sources located far from the great circle
between some station pairs (Retailleau et al., 2017).

The signals we observe in this figure are produced by a mix
of ambient noise sources and coda waves from moderate and
smaller earthquakes, as can be seen from the anomalous high
amplitude of the ScS, PKP, and PKIKP waves. Removing
anomalously correlations and sequences with high-seismic
activity removed contributions from large earthquakes the poor
distribution of which in azimuth may introduce bias in, for
example, velocity dispersion or arrival-time observations. More
effective processing flows for removing coda waves can be
found in Nishida (2013) and Boué et al. (2014). Phạm et al.
(2018) observe some of the signals we show in Figure 3 using
coda from large earthquakes instead and explain the origin and
generation mechanism of causal and noncausal phases. Further,

in Figure 3, we observe signals with low-apparent velocity, such
as P, S, PS, and PPS, mainly produced by ambient noise
sources.
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▴ Figure 3. (a) 110 million day-long interstation correlations from
39,656 station pairs sorted by distance and stacked in bins of 0.25°
in the period band of 30–50 s using PCC2 and linear stacking on
days with low-seismic activity. (b) Day-long correlations stacked
per bin. The color version of this figure is available only in the
electronic edition.
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CONCLUSIONS

We introduced approaches that enable the application of PCC
on large data volumes using conventional workstations. The
stand-alone code implementing PCC and 1-bit GNCC is
designed to be easily integrated with current processing flows,
whether it is executed directly or the main functions imple-
menting each method are called from other codes.

We have shown that PCC simplifies to a conventional
cross-correlation of unitary phasors when using the power fac-
tor 2. This cross-correlation equation is fully analogous to 1-bit
GNCC with the single difference that 1-bit GNCC considers
the sign of the real signals and PCC2 the phase factor of ana-
lytic signals. Because phase carries more information than sign,
most applications using 1-bit GNCC should see a gain in
waveform coherence and increased convergence when applying
PCC2.

By writing PCC2 as a complex cross-correlation, we
achieved a lower operation complexity and, in conventional
settings, about 100 times faster code than direct implementa-
tions. This reduces the computational cost of PCC2 to about
two times that of the 1-bit GNCC method using only the
CPU. When using other powers, GPU acceleration allowed
us to apply PCC1 to the large data volume needed to extract
body-wave signals from interstation correlations using a con-
ventional workstation and a low-cost GPU. In general, these
computational cost reductions are important to efficiently find
and tune the best adapted methods to a given problem and,
especially, to process the large data volumes that modern seis-
mic ambient noise imaging and monitoring applications
demand with PCC.

DATA AND RESOURCES

The data used in this study were obtained from the
Incorporated Research Institutions of Seismology (IRIS)
and the European Integrated Data Archive (EIDA). The cen-
tral processing unit (CPU) and graphics processing unit
(GPU) accelerated versions of code implementing 1-bit geo-
metrical-normalized cross-correlation (GNCC) and phase
cross-correlation (PCC) are open source under the GNU
Lesser General Public License (LGPL) version 3 (v.3) license
and available at https://github.com/sergiventosa/FastPCC.
The fastest Fourier transform in the west (FFTW) is available
at http://www.fftw.org and the compute unified device archi-
tecture (CUDA) documentation and installation guides from
https://docs.nvidia.com/cuda/index.html. All websites were
last accessed on April 2019.
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