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SUMMARY

Using a fully nonlinear Bayesian approach based on forward modelling of granular flow,
we invert for landslide parameters (volume, release geometry and rheology) from different
kinds of observations. Synthetic tests show that the runout distance and the deposit area by
themselves do not constrain landslide parameters. Better constraints on landslide parameters
are obtained from the thickness distribution of the landslide deposits, as well as from the force
history applied by the landslide to the ground, which contains information on the landslide
dynamics. Therefore, inverting force histories calculated from seismic broad-band records is
an important alternative to inverting thickness distributions of landslide deposits, which are
usually difficult to obtain. We test the method on the 1997 Boxing Day debris avalanche on
Montserrat Island, which involved 40 — 50 Mm?>. The Bayesian inversion and granular flow
model provide good estimates for volume, release geometry and effective friction coefficient.
This study thus underlines the value of broad-band seismic records as observations to monitor
landslides and validation for their numerical flow models.

Key words: Friction; Geomorphology; Atlantic Ocean; Numerical modelling; Waveform
inversion; Volcano seismology.

1 INTRODUCTION

Landslides and avalanches are key erosion processes and repre-
sent major natural hazards. Despite important research efforts, the
mechanisms that govern flow dynamics and deposition in a natural
environment are still unclear. Key questions remain unanswered,
such as the origin of the high mobility of some natural flows (e.g.
Legros 2002; Iverson et al. 2011; Lucas et al. 2014).

Numerical granular flow models are an important tool to inves-
tigate landslides and avalanches (Delannay ef al. 2017). However,
poor availability of field measurements of flow dynamics makes it
difficult to validate these models. Therefore, a common ‘inverse ap-
proach’ is to fit model output to observed landslide characteristics
like volume and shape of the released mass, deposit area and runout
distance to constrain effective friction, a key underlying rheological
parameter (Kelfoun & Druitt 2005; Lucas et al. 2011; Pirulli ez al.
2015).

A problem with the inverse approach is that the thickness dis-
tributions of landslide deposits are rarely available as they require
digital elevation models (DEMs) immediately before and after the

event. Unfortunately, landslide deposits are generally modified by
secondary flows or post-event erosion and for landslides terminat-
ing in water bodies, deposition DEMs may be nearly impossible to
come by. Furthermore, during the stopping phase of granular flows,
local surface rearrangements modify the final shape of the deposit,
as shown in laboratory experiments (e.g. Farin ef al. 2014). This
rearrangement is difficult to take into account in landslide models.
As a result, observed deposits may incorrectly constrain landslide
dynamics and rheology. Another key issue is that landslide models
may reproduce the deposit even though the simulated dynamics are
not correct (e.g. Mangeney-Castelnau et al. 2005; Ionescu et al.
2015). Therefore, more easily obtainable observations, such as de-
posit area and runout distance may not be appropriate either.

A range of studies suggests that long-period seismic signals re-
flecting the history of the force exerted by the landslide mass move-
ment onto the ground may be a better constraint of landslide dy-
namics (e.g. Kanamori et al. 1984; Kawakatsu 1989; Brodsky et al.
2003; Favreau et al. 2010; Lin et al. 2010; Moretti et al. 2012;
Allstadt et al. 2013; Ekstrom & Stark 2013; Yamada et al. 2018;
Walter et al. 2020). In contrast to static observations of before/after
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landscapes, comparing this seismically observed force history with
the force simulated by landslide models provides a diagnostic of
landslide dynamics. In this way, seismic records can constrain the
landslide volume, the number of sub-events and the effect of un-
usual ground properties, such as glacier ice and erosion processes
(Favreau ef al. 2010; Moretti et al. 2012, 2015). Given this per-
spective, two questions have to be answered: First, how does the
inversion of seismically derived force history compare with the in-
version of deposit data (runout distance, area of the deposit, spatial
distribution of the thickness of the deposit)? Second, what level of
constraint can be achieved on landslide parameters (volume, shape
of the landslide mass before release, effective friction coefficient,
etc.) from inversion of seismic data?

To address these questions we use a Bayesian inversion of
synthetic and real data to constrain landslide parameters (vol-
ume, 3-D shape of the released mass, effective friction coeffi-
cient). We show that runout distance or the deposit area alone
cannot constrain these parameters, whereas the force history ob-
tained from seismic data strongly constrains the landslides pa-
rameters, nearly as well as the deposit thickness distribution. Our
study thus demonstrates that seismic measurements, which are
easy to obtain compared to accurate deposition DEMSs, offer
a valuable monitoring tool and important insights into landslide
dynamics.

2 BAYESIAN INVERSION

We formulate our inversion for landslide parameters in a Bayesian
framework (e.g. Sivia & Skilling 2006) where the solution is the ex-
pression for the posterior probability density function (PDF) p(m|d)
of our landslide model parameters m conditioned on observed
data d:

p(mid) = 24Im) x p(m) 0

p(d)

where p(m) is the prior PDF reflecting any knowledge about land-
slide parameters independent of our observations d and p(d|m) is
the likelihood function, that is, the probability of making observa-
tions d conditioned by a model m. The PDF of observations p(d)
(sometimes referred to as ‘evidence’) does not depend on model pa-
rameters m and can be determined via normalization of the posterior
PDF.

To sample the posterior PDF in eq. (1), we employ the Markov
chain Monte Carlo (MCMC) algorithm (Sambridge & Mosegaard
2002; Gallagher et al. 2009). We approximate the likelihood func-
tion by a multivariate Gaussian PDF:

1

_ — 1 ((d—g(m)) V=1 (d—g(m)))
-_— 2
(271)1/2‘V|N/Ze ’ (2)

p(djm)
where V is the covariance matrix of data errors, g(m) is the for-
ward model prediction for the parameter set m and N is the number
of data points. At each iteration the MCMC algorithm randomly
chooses a new model parameter set m’ as a perturbation of the
current parameter set m and calculates an acceptance probability
a = min(1, p(djm")/ p(d|m)). The proposed model m’ is accepted
with probability o. If « = 1 (m’ gives an equal or higher probabil-
ity than m), m’ is accepted and becomes the new best parameter
set m. Otherwise, a random number u between 0 and 1 is cho-
sen; if u < «, the parameter set m’ is accepted, otherwise it is
rejected. The MCMC algorithm is designed to generate an ensem-
ble of parameter sets that are distributed according to the posterior
distribution. In this way, the posterior PDF can be approximated by

a histogram of all the accepted parameter sets. The more iterations
we perform the better the approximation to the true posterior PDF

p(m|d).

3 LANDSLIDE MODEL AND
PARAMETER SET

To produce model predictions of our landslide parameters, we use
the numerical code SHALTOP that simulates landslides over a 3-
D topography (Bouchut ef al. 2003; Bouchut & Westdickenberg
2004; Mangeney et al. 2007). SHALTOP is a continuum model
based on the depth-averaged thin layer approximation and describes
granular flows by taking into account a specific friction law. One
example for such a friction law is Coulomb type friction involving
a velocity-independent (Savage & Hutter 1989) effective friction
coefficient u = tand, where § is the friction angle. Alternatively,
variable friction coefficients may be more appropriate as thin layer
modelling (such as SHALTOP) of various terrestrial and extrater-
restrial landslides has produced evidence for velocity-weakening
friction (Lucas et al. 2014). Choosing an appropriate friction law
and corresponding constant or varying friction coefficients may
be challenging and depends on local conditions (Favreau et al.
2010).

Given a parameter set m describing the released mass and
the frictional properties, SHALTOP calculates the flow thickness
h(x, t) (where x is the position vector and ¢ the time), the depth-
averaged velocity u(x,?) of the granular media and the force
F(¢) applied by the landslide to the bed surface (see eqs 4 and
5 in Moretti et al. 2015). SHALTOP reliably reproduces labo-
ratory granular flow experiments and real landslides as well as
the history of the force inverted from seismic data (Mangeney-
Castelnau et al. 2005; Favreau et al. 2010; Hibert et al. 2011;
Lucas et al. 2011, 2014; Moretti ef al. 2012, 2015; Yamada et al.
2018).

As the main unknowns of the problem, we choose the landslide
parameter set m = [§, ko, [y, wy], where § is the friction angle, 4,
lo and wy, are the thickness, length and width of the initial released
mass, respectively (Fig. 1a). In the following, four independent and
separate inversions will be carried out to constrain the landslide
parameter set. In each case, different data types will be inverted:
(1) the runout distance 7y, (2) the area of the deposit A, (3) the
deposit thickness distribution / ;(x) and (4) the force inverted from
seismic data F(¢). The goal is to calculate the a posteriori PDF of
the parameters and thus to assess which data type best constrains
the landslide parameters.

4 INVERSION OF THE
CHARACTERISTICS OF A SYNTHETIC
GRANULAR FLOW

We first apply the Bayesian approach to synthetic data obtained
by simulating a simple granular flow over an inclined plane of
inclination angle 10°. A parabolic-shaped mass of thickness %y =
30 m, length /; = 200 m and width wy = 200 m is released from
rest at + = 0 s and spreads down the slope until it comes to rest
(Figs la—c). Simulation of the flow and of the generated force F(¢)
is performed using SHALTOP with a friction angle § = 17°. Ateach
time step the equivalent point source force F(¢#) is calculated from
the spatial integral of the force field F(x, ¢) applied by the granular
mass on the underlying ground.
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Figure 1. (a) Initial and (b) final shapes of the granular mass simulated using SHALTOP and used as synthetic data for the MCMC inversion [the colours
indicate the mass thickness from thin (blue) to 40 m thick (red)], (c) corresponding simulated force applied to the ground surface in the vertical (dashed red),
downslope (dotted green) and transverse (solid blue) directions. (d—g) Probability functions of the four parameters 8, A, /y and wy inverted using different
data: (d) runout distance 7y, (e) deposit area A 7, (f) deposit shape / r(x) and (g) force F(z). The vertical axis of the plots represents the number of accepted
parameter sets. The actual values of the parameters (i.e. the input parameters used to simulate the synthetic data) are represented with vertical dotted lines on

each plot.

The simulated force in both the downslope and vertical direc-
tions reflects the acceleration and deceleration phases of the land-
slide (e.g., Brodsky et al. 2003). As a result of the parabolic mass
shape, the force in the transverse direction is symmetric over the
longitudinal axis through the mass’s centre and thus integrates to
zero. Consequently, the transverse spreading is not constrained by
the equivalent point source force F(¢). The presence of a more
complex topography would provide a non-zero transverse force that
would contain information on the transverse spreading dynamics
(e.g. Moretti et al. 2015).

We assign a flat PDF to the prior p(m), which means that we do
not consider prior information on §, A4, [y, and wy other than their
possible ranges shown in Figs 1(d)—(g). We furthermore assume a
diagonal covariance matrix for data errors, which means that the
multiple data points of the deposit thickness distribution and force
history are not correlated. The assumed measurement uncertainties
are typical values for deposit and runout mapping, digital elevation
models and inverted forces (Table 1).

Table 1. Uncertainties for synthetic landslide measure-
ments. Spatial uncertainties correspond to grid sizes of
simulations and digital elevation models, force history
uncertainties are ca. 5 per cent of the maximum value

(Fig. 1c).

Parameter Symbol Uncertainty
Runout distance 7 60m
Deposit area Ay 4 x 103 m?
Force history F(¢) 1.6 x 10N
Deposit distribution h r(x) S5m

4.1 Inversion from deposits data

When implementing the MCMC search we made sure that the
Markov chains converged. The width of the proposal distribution
was chosen in order to have an optimal acceptance rate in the MCMC
search, thus maximizing the speed of convergence. We chose 8000
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samples such that adding more samples did not significantly change
the form of the ensemble solution.

We first take the runout distance as the data of the Bayesian
inversion, that is, d = 7, and perform the 8000 MCMC iterations,
after which the algorithm is expected to provide an ensemble of
models representing well enough the posterior distribution. Fig. 1(d)
shows that the runout distance is unable to constrain the parameter
set: the PDF’s of all parameters are wide and do not exhibit clear
maxima. While the poorly defined maxima of the PDF of 4, and
Iy roughly correspond to their real values (vertical dotted lines in
Fig. 1), the values of wy and of the friction coefficient § are not
recovered at all.

Using the deposit area as data, that is, d = A, does not improve
the results (Fig. 1e) but results in worse determination of the initial
thickness %y and length /y. Compared to the inversion of the runout
distance 7y, the somewhat better estimate of wy is expected as the
transverse extent of the deposit affects deposit area, which we use
as data A,. The highest number of accepted models are obtained
for friction angles closer to the real value of § but with a rather flat
histogram shape and the PDF maximum does not correspond to &
=17°.

In contrast to using runout distance and deposit area as data, the
thickness distribution of the deposit, that is, d = % ¢(x), strongly
constrains the parameters’ set. The better performance does not
come as a surprise because the thickness distribution provides mul-
tiple data points as opposed to the single data point of runout and de-
posit area. All landslide parameters exhibit peaked PDF’s (Fig. 1f).
These maxima correspond to the real parameter values with an error
of less than 3 per cent. Indeed, after 8000 iterations, the inversion
gives § = 17.44° £+ 1.11°, hy = 30.61 £ 4.35 m, [, = 198.76
+ 14.98 m, wy = 198.12 £ 18.24 m (uncertainties are standard
deviation).

4.2 Inversion from the force applied to the ground

In the next synthetic test, we used the force simulated by the SHAL-
TOP model as data, that is, d = F(¢) (Fig. 1¢). This force is obtained
from inversion of seismic data (see next section) and is usually more
easily available than deposit DEM’s. To be more realistic, we added
random noise with amplitudes up to the expected uncertainty (Ta-
ble 1), still performing 8000 iterations. Fig. 1(g) shows that three
parameters are well constrained: /g, /y and 8. The mass width wy
is less well constrained, exhibiting two maxima. This was expected
from the vanishing transverse force as discussed above. Neverthe-
less, the maxima of all the parameters correspond to their real values
with an error calculated from the probability functions smaller than
7 per cent. The inversion gives § = 17.1° £ 1.5°, b =28.9 £ 3.6 m,
Iy =196.0 & 67.1 m and wy = 205.4 = 49.0 m.

The force history F(¢) constitutes an observation time-series,
which is much easier to obtain than the detailed thickness distri-
bution of the deposit / ;(x) but still makes it possible to constrain
the landslide parameters. In real cases, where the topography is ir-
regular, the transverse force no longer vanishes and therefore will
provide more information on the transverse mass spreading (e.g.,
Moretti ef al. 2012, 2015).

5 REAL LANDSLIDE CASE: THE 1997
BOXING DAY EVENT, MONTSERRAT

We now apply the Bayesian inversion to the Boxing Day debris
avalanche that occurred on Montserrat Island on 1997 December
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Figure 2. (a) Map of Montserrat Island in the Caribbean Sea. (b) Map of
Montserrat Island where the grey area represents the deposits of the Boxing
Day debris avalanche within the White River Valley. (c) Force history ob-
tained by waveform inversion of the SJG seismic data (red) and by numerical
modelling of the avalanche using the parameters deduced from the Bayesian
inversion (green). The grey area represents the 66 per cent confidence inter-
val for the ensemble of parameter sets representing the posterior solution.
The forces are filtered in the period range 25-40 s.

26. In this event, the southern flank collapse of the Soufriere Hills
Volcano (18.11°N, 66.15°W) generated a debris avalanche with a
volume of 40-50 Mm?® (Heinrich et al. 2001; Zhao et al. 2014;
Fig. 2). We selected this event because (i) it has a simple dynamic
history without substantial erosion, motion over a glacier modifying
basal fiction (Favreau et al. 2010) or multiple subevents, (ii) source
area outline and topography before the event are available (Sparks
et al. 2002).

For the Boxing Day debris avalanche, the three components of
F(¢) (Fig. 2c) were obtained by deconvolving the Green’s func-
tions from the record at SJG broad-band seismic station (16.71°N,
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Figure 3. (a) Initial and (b) final states of the simulation using 49 = 184 m, /[y = 785.2 m, wy = 665.6 m and § = 14.2°. 4 posteriori probability density of (c)

8, (d) ho, (e) wo, and (f) /.

62.18°W) located about 448km away from the Soufriere Hills
(Fig. 2a) (Zhao et al. 2014). In order to optimize the signal-to-
noise ratio, the force was inverted in a rather narrow period range
T € [25-40] s (for details see Zhao et al. 2014). Given this fre-
quency range and a landslide motion, which is small compared
to the source-station distance of 448 km, the inverted force corre-
sponds to the spatial integral F(¢) calculated with SHALTOP. Fi-
nally, Green’s functions were calculated using normal modes sum-
mation with the 1-D PREM Earth model (Dziewonski & Anderson
1981).

To be on the conservative side, we chose rather high uncertainties
for the force history (ca. 100 per cent for the east). We compare the
simulated and inverted forces rather than the simulated and observed
seismic wavefield at the station to facilitate the necessary 8000
simulation runs needed for our Bayesian approach. We acknowledge
that our force history is already the result of an inversion, that is
linearized and non-Bayesian.

Allstadt et al. (2013) and Moretti et al. (2015) have previously
shown that one-station inversions as used here provide a good es-
timate of the landslide force history. This has also been shown for

seismic signals of iceberg detachment in Greenland (Sergeant et al.
2016).

As with the synthetic tests, we approximate the initial collapsing
mass by parabolic shape, defined by three parameters: its height
hy, length [y and width wy (Fig. 3a). Although this is a simplifi-
cation for a landslide scar, it allows for an efficient Bayesian in-
version and at the same time provides an estimate of volume and
surface area covered by the released mass. As previously, we use
the force history as data (i.e. d = F(¢)) and invert for the land-
slide parameter set m = [§, Ay, /y, wo] and performed 8000 iter-
ations. Note that the seismic signal generated by the force cal-
culated with the best fitting model matches the recorded seismic
signal well (Fig. 4). The phase shift between simulated and ob-
served signals on the transverse component may result from uncer-
tainties on Green’s functions or approximations made in the flow
model.

Figs 3(c)—(f) show that the shape parameters of the collapsing
mass hy, Iy and wy are well constrained as the PDF’s exhibit clear
maxima. The MCMC algorithm converges toward the values sy =
184 + 258 m, [, = 785.2 £ 57.3 m, and wy, = 665.6 £+ 52.8 m,
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Figure 4. Ground velocity (i.e. seismic signal) calculated by convolution of
the force calculated by the best model (i.e. best parameter set) and the Earth
Green’s functions (dashed black lines), and recorded at SJG seismic station
(solid red lines) in the radial, transverse and vertical directions. The signals
are filtered between 25 and 40 s.

leading to a volume ¥ e [32.7, 58.9] Mm® with a central value of
V = 45.8 Mm?>. This is consistent with field observation, which
reports a volume of 40-50 Mm? and a 400 m wide and 400-500 m
long source area with a 100 m high head scarp (Sparks et al. 2002;
Voight et al. 2002). The slightly larger dimensions from our in-
version likely reflect the parabolic approximation of the source
geometry.

The friction coefficient is not so well constrained and the inver-
sion does not provide a single and well defined solution. Specifi-
cally, the PDF exhibits two maxima at §; = 14.2° + 0.9° and 6,
= 16.6° £ 1.4° (Fig. 3c). Using 8, underestimates the observed
runout distance by only about 150 m while using §, leads to an
underestimate by about 800 m. The friction angle §; = 14.2° is
close to the friction angle calibrated by Heinrich et al. (2001) to fit
the runout distance when using pre-defined field estimates of the
dimensions of the collapsing mass. It is also very close to the fric-
tion angle deduced from the empirical relation proposed by (Lucas
et al. 2014), which scales the friction coefficient u = 1/700774
against the landslide volume V. Indeed, this relation predicts
u =0.26 = tan (14.34°).

Variable friction is a possible explanation for the poor constraint
on the effective friction coefficient (Jop et al. 2006; Lucas et al.
2014; Yamada ef al. 2018). With the best estimates obtained from
the inversion for 4y, ly and wy (the maxima of the PDFs), we simu-
lated the Boxing Day debris avalanche using (i) a constant friction
coefficient (i.e. constant friction angle) u = tan 14.2° and (ii) the
variable friction coefficient proposed by Lucas et al. (2014) follow-
ing Rice (2006):

Mo — Hw

, 3
L+ [[ul[/ Uy ®)

pu(u) = py +

where p,, = tan12°, uo = tan18°, U,, = 4 m s~! and u is the
local flow velocity. The friction angles 12° and 18° are chosen to
represent the variation range of the friction angle around the max-
ima of the PDF p(8|d) (Fig. 5c). Slight changes of these values
do not significantly affect the results. The space-averaged friction
coefficient is high during the first instants and then decreases to-
wards smaller values (Fig. 5d), as observed in Yamada ez al. (2018).
The simulations for the constant and the variable friction law give
comparable deposits (Figs 5a and b). However, some details do im-
prove when taking the variable friction law (3): the runout distance
is approximately 200 m longer and thus closer to that observed in
the field (Figs 5b and c). Moreover, some details of the thickness
distribution / y(x) such as small bumps before the valley turn near
1500 m north (Fig. 5) are better reproduced with the variable friction
coefficient.

6 CONCLUSION

Based on synthetic and real data, we showed that the force his-
tory F(¢) that landslides apply to the ground provides a solid con-
straint for landslide models. Contrary to deposit data, the force
history represents a dynamic measurement of the flow, compara-
ble to the velocity field for which observations practically never
exist.

We showed that the force history obtained from broad-band
seismic records can be inverted using a numerical granular flow
model. A fully nonlinear Bayesian inversion makes it possible
to recover the initial shape and volume of the released mass to-
gether with the effective friction coefficient characterizing the flow.
Even though the force history results from a complex mixing of
effects related to the initial mass, its shape, landslide trajectory
and frictional processes, the granular flow model manages to un-
ravel these effects to provide reliable estimates on landslide param-
eters. The employed MCMC algorithm gives the posterior PDF
and allows us to quantify error estimates of the inverted land-
slide parameters. Results show that these parameters are quite well
constrained.

On the contrary, using the runout distance or the deposit area
as data does not allow recovering the initial mass shape and the
effective friction. In that case, the PDFs of these parameters are
wide and lack clear maxima. While synthetic tests show that the
spatial distribution of deposit thickness strongly constrains the
Bayesian inversion, such data are often unavailable for natural
landslides.

For a real landslide, our Bayesian inversion provides a poorer
constraint of the effective friction coefficient compared to the shape
and volume of the initial mass. In this case, the PDF of the friction
coefficient is wider and exhibits more than one maximum. This
likely results from the fact that the effective friction coefficient is not
constant during the flow as suggested by granular flow experiments
(Jop et al. 2006) and by observation of real landslides (Lucas et al.
2014). Inversion of other landslides and analysis of high-frequency
seismic signals from rockfalls also suggests the signature of variable
friction processes in seismic data (Levy et al. 2014; Yamada et al.
2018).

In conclusion, combining the force history, easily obtained from
seismic waveform inversion, with our granular flow model provides
a unique tool to back-analyse landslide events. For future appli-
cations, the proposed Bayesian approach can leverage this tool to
build up a data base of landslide characteristics, including rheolog-
ical properties.
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Figure 5. (a) Deposits of the Boxing Day avalanche simulated using a constant friction coefficient (§ = 14.2°), (b) deposit observed in the field extracted from
Heinrich et al. (2001) and (c) deposits of the simulation using a variable friction coefficient (Lucas et al. 2014; see eq. 3). Simulations are performed using the
parameters g = 184 m, [y = 785.2 m, wyp = 665.6 m deduced from the Bayesian inversion. (d) Spatially averaged friction angle § as a function of time for the
simulation using the friction law (eq. 3). Note that at the end of the simulation the velocities are not well constrained when deposit height is low because the
SHALTOP code calculates fluxes that are divided by flow height to obtain velocities. Consequently, the local friction coefficient is not well constrained at the

end of the simulation either.
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